离散数学-第七章-图论
离散数学第七章图论习题课
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
证明 :
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
1、基本概念。 无向图的邻接矩阵A 根据邻接矩阵判断:各结点的度, 有向图结点 出,入度。 由Ak可以求一个结点到另一个结点长度为k 的路条数. 有向图的可达矩阵P 用P可以判定:各结点的度. 有向图的强分图。 关联矩阵M:是结点与边的关联关系矩阵. 用M判定:各结点的度
设给定图G(如由图所示),则图G的点割集
是
.
应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
割点。
a c
a c
b
d
b
d
a c
a c
b
d
b
d
推论:任何6人的人群中,或者有3人互相认识,或者有 3人彼此陌生。(当二人x,y互相认识,边(x,y)着红色, 否则着兰色。则6人认识情况对应于K6边有红K3或者 有兰K3。)
证明简单图的最大度小于结点数。
证明: 设简单图G有n个结点。对任一结点u,由于G没
第7章 图论 [离散数学离散数学(第四版)清华出版社]
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e
2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)
离散数学图论
例:把下面的m叉树改写为二叉树。
14
第七章 图论
信 息 科 学 与 工 程 学 院
练习:把下面的有序树改写为二叉树。
。 。 。。 。 。。 。 。 。 知识点提示:
。 。。
。 。 。
。
课下自学
此方法可推广至有序森林到二叉树的转换。 此方法具有可逆性。
15
第七章 图论
信 息 科 学 与 工 程 学 院
给定一棵2叉树T,设它有t片树叶。设v为T的一个分枝点, 则v至少有一个儿子,最多有两个儿子。若v有两个儿 子,在由v引出的两条边上,左边的标上0,右边的标 上1;若v有一个儿子,在由v引出的边上可标上0,也
可标上1。设vi为T的任一片树叶,从树根到vi的通路
上各边的标号组成的0,1串组成的符号串放在vi处,t 片树叶处的t个符号串组成的集合为一个二元前缀码。
定义7-8.5
在根树中, 科 一个结点的通路长度为从树根到此结点的通路中的边 学 数。 与 分枝点的通路长度称为内部通路长度。 树叶的通路长度称为外部通路长度。
工 程 学 院
。 。 。 。。 A 。 。 。。
18
第七章 图论
信 息 科
定理7-8.2
若完全二叉树有n个分枝点,且内部通路长度总和为L,外 部通路长度总和为E,则 E=L+2n。 证明:
学 与 工 程 学 院
对分枝点数目n进行归纳证明。
。
当n=1时,如右图所示,
L=0, E=2,
。
。
显然, E=L+2n成立。
19
第七章 图论
信 息 科 学
定理7-8.2 若完全二叉树有n个分枝点,且内部通路长度总 和为L,外部通路长度总和为E,则 E=L+2n。 证明:
离散数学7-1图论
图7-1.9 不同构的图
作业
P279 (1) (4)
如图7-1.6中的(a)和(b)互为补图。
[定义] 子图(subgraph) 设图G=<V,E>,如果有图G’= <V’,E’>,若有 V’ V ,E’ E,则称图G’是图G的子图。 [定义] 生成子图(spanning subgraph) 如果图G的子图G’包含G的所有结点,则称该图 G’为G的生成子图。如图7-1.8中G'和G"都是 G的生成子图。
[定义] 相对于图G的补图 设图G'=〈V',E'〉是图G=〈V,E〉的子图,若 给定另外一个图G"=〈V",E"〉使得E"=EE', 且 V" 中仅包含 E"的边所关联的结点。则 称G"是子图G'的相对于图G的补图。
图7-1.7 (c )为(b)相对于(a)的补图
如图 7-1.7 中的图 (c) 是图 (b) 相对于图 (a) 的补 图。而图 (b) 不是图 (c) 相对于图 (a) 的补图 , 因为图(b)中有结点c。在上面的一些基本概 念中,一个图由一个图形表示,由于图形的结 点的位置和连线长度都可任意选择 , 故一个 图的图形表示并不是唯一的。下面我们讨 论图的同构的概念。
表7-1.1
结 点 出 度 入 度
a 2 0
b 1 1
c 0 2
d 1 1
结 点 出 度
入 度
v1 1 1
v2 0 2
v3 2 0
v4 1 1
分析本例还可以知道 , 此两图结点的度数也 分别对应相等,如表7-1.1所示。
两图同构的一些必要条件: 1.结点数目相等; 3.边数相等; 3.度数相等的结点数目相等。 需要指出的是这几个条件不是两个图同构的 充分条件,例如图7-1.9中的(a)和(b)满足上 述的三个条件,但此两个图并不同构。
离散数学——图论
2021/10/10
11
哥尼斯堡七桥问题
❖ 把四块陆地用点来表示,桥用点与点连线表 示。
2021/10/10
12
❖ 欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
2021/10/10
2
图论的发展
❖ 图论的产生和发展经历了二百多年的历史, 从1736年到19世纪中叶是图论发展的第一阶 段。
❖ 第二阶段大体是从19世纪中叶到1936年,主 要研究一些游戏问题:迷宫问题、博弈问题、 棋盘上马的行走线路问题。
2021/10/10
3
❖ 一些图论中的著名问题如四色问题(1852年)和哈密 尔顿环游世界问题(1856年)也大量出现。同时出现 了以图为工具去解决其它领域中一些问题的成果。
❖ P(G)表示连通分支的个数。连通图的连通 分支只有一个。
2021/10/10
40
练习题---图的连通性问题
❖ 1.若图G是不连通的,则补图是连通的。 ❖ 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
2021/10/10
41
❖ 2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
❖ 例子
2021/10/10
29
多重图与带权图
❖ 定义多重图:包含多重边的图。 ❖ 定义简单图:不包含多重边的图。 ❖ 定义有权图:具有有权边的图。 ❖ 定义无权图:无有权边的图。
2021/10/10
30
《离散数学》word版
第七章图在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。
例如用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。
图论起源于18世纪,它是研究由线连成的点集的理论。
一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。
事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。
由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。
由此经数学抽象产生了图的概念。
研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。
7.1 图的基本概念7.1.1图的定义7.1.1.1无向图定义7.1.1 设A,B是任意集合。
集合{(a,b)|aA且bB}称为A和B的无序积,记为A&B。
在无序积中,两个元素间的顺序是无关紧要的,即(a,b)=(b,a)。
定义7.1.2 无向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为结点(顶点)。
E是一个V&V的多重子集,其元素称为边(无向边)。
我们可用平面上的点来表示顶点,两点间的连线表示边,从而将任一个无向图用图形表示出来。
[例7.1.1]无向图G=<V,E>,其中V={a,b,c,d,e,f},E={(a,b),(a,c),(a,d),(b,b),(b,c),(b,c),(b,d),(c,d)}。
7.1.1.2有向图定义7.1.3 有向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为顶点,E是一个V V的多重子集,其元素称为有向边或弧,简称为边。
注:1)在有向图G=<V,E>中,若e=〈u,v〉,则称u和v为e的起点和终点;2)自回路既可看成是有向边又可看成是无向边;3)去掉有向图中边的方向得到的图称为该有向图的基图。
《离散数学之图论》课件
二分图
二分图是指一个图中的所有顶点可 以被分成两个不相交的集合,即两 个集合内的点之间没有边。
树
树是一种特殊的无向图,他是一个 无环连通图。
图的表示
1
邻接矩阵
邻接矩阵是表示图的最直观的一种方法,它将图中的每个点与其他点之间的连接 关系用一个矩阵来表示。
2
邻接表
邻接表是图中比较常见的一种数据结构,用于存储有向图或无向图中顶点的邻接 关系。
Kruskal算法是一种贪心算
2 自反闭包
3 反对称闭包
在一个有向图中,如果由顶 点i到顶点j有路径,由顶点j 到顶点k有路径,则从i到k也 有路径。这种情况称为传递 闭包。
在一个有向图中,如果自己 只能到自己,则称之为自反 闭包。
在一个有向图中,如果存在 有向边从i到j,同时存在一 个从j到i的反向边,则称之 为反对称闭包。
3
关联矩阵
关联矩阵是一个图矩阵,它将图中的所有点和边都表示为元素,可以将和特定边 相关的点和总结点联系起来。
图的遍历
1 深度优先遍历
深度优先遍历是从图中的起始点开始,递归地访问所有可达的顶点。它通常用堆栈来实 现。
2 广度优先遍历
广度优先遍历是从图中的起始点开始访问每一层可达的顶点。它通常用队列来实现。
最短路径
Dijkstra算法
Dijkstra算法是一种用来求图中单个源点到其他所有点 的最短路径的平均算法。
Floyd算法
Floyd算法是一种用于发现非负权重图中所有点对之间 的最短路径的算法。
最小生成树
1
Prim算法
Prim算法用于寻找加权无向连通图的最小生
Kruskal算法
2
成树,该树包含了关键点并且保证了所有点 都连通。
离散数学第七章图的基本概念
4.无向图的连通性
若无向图G中任何两顶点都连通,则称G是连通图.
对于任意的无向图G.设V1,V2,…,Vk是顶点之间连通关系的 等价类,则称他们的导出子图为G的连通分支.用p(G)表示G 的连通分支数.
V1 e1
e2 e3
V3
e4 V2
V4
a
de
h
i
b
c
f
g
5.有向图的连通性
若略去有向图D中各边的键头,所得无向图是无向连通图,则 称D是弱连通图(或称D是连通图).
(2) mij d (vi )(i 1,2,..., n)
j 1
mn
nm
n
(3) mij mij d(vi ) 2m
j1 i1
i1 j1
i 1
m
(4) mij 0 vi是孤立点 j 1
(5)若第j列与第k列相同, 则说明e j与ek为平行边.
2.有向图的关联矩阵
设有向图D=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em} 1, vi为ej的始点
e1,e2,e3},{e1,e2,
e2
e4},{e9}等边割集 ,e9是桥.
e3 V4
e5 e6
V5 e4
V6
e9
V7
7.3 图的矩阵表示
1.无向图的关联矩阵
设无向图G=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em}
令mij为顶点vi与ej的关联次数, 则称(mij)n×m为G的关联矩阵.记为M(G)
若Γ 满足:vi-1,vi为ei的端点(若G为有向图,vi-1是ei的始 点,vi是ei的终点)i=1,2,…,k,则称Γ 为G中通路,v0,vk分 别称为通路的始点和终点,Γ 中边的数目k称为通路长度.
离散数学--第7章 图论-2(路与连通)
15
连通图可以看成是只有一个连通分支的图,即 w(G ) 1 。
返回 结束
7.2.2 图的连通性
4、有向图的连通
强连通—— G 中任一对顶点都互相可达 (双向) 连通 单向连通—— G 中任一对顶点至少一 向可达
路
10
(vi v j ) ,则从 vi 到 v j 存在长度小于等于
n 1的路。
证明思路:多于n-1条边的路中必有重复出现的结点,反 复删去夹在两个重复结点之间的边之后,剩余的边数不会 超过n-1条边。
v n 在一个 阶图中,若从顶点 i 到 v j 存在 推论:
通路(vi v j ) ,则从 vi 到 v j 存在长度小于等于
返回 结束
7.2.2 图的连通性
7.2.2 图的j 存在路,称 有向图中,从 vi 到 v j 存在路,称 (注意方向) 2、短程线,距离。 短程线——连通或可达的两点间长度最短的 路。 距离——短程线的长度,
12
vi 到 v j 是 连通的(双向)。 vi 可达 v j 。
1 v1e1v2e5v5e7v6 2 v1e1v2e2v3e3v4e4v2e5v5e7v6
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路
简单通路
复杂通路
返回 结束
7.2.1 路
例1、(2)
7
图(2)中过 v 2 的回路 (从 v 2 到 v 2 )有:
1 v2e4v4e3v3e2v2 2 v2e5v5e6v4e3v3e2v2
7.2 路与连通
内容:图的通路,回路,连通性。 重点:
离散数学第7章 图论 习题
1 0 1 10
A=
1 0 0 00
1 0 1 00
0 0 0 00 i=4时,因为A[4,2]=1,将第四行
用Warshall算法求可
加到第2行,A不变。
达性矩阵。
i=5时,因为A的第5列全为0,所
i=1时,因为A的第一行 以A不变。
0 0 0 00
全为0,所以A不变。
i=2时,因为A的第2列 全为0,所以A不变。
充分性。 如果边e不包含在G的任一条回路中,那么连接结点u和v的边只 有e,而不会有其它连接u和v的任何路。因为如果连接u和v还有 不同于边e的路,此路与边e就组成一条包含边e的回路,从而导 致矛盾。所以删去边e后,u和v就不连通,故边e是割边。
300页(2) 如果u可达v,它们之间可能不止一条
路,在所有这些路中,最短路的长度 称为u和v之间的距离(或短程线), 记作d<u,v>,如果从u到v是不可达的, 则通常写成 d<u,v> =∞
2
练习7-2(2):若无向图G中恰有两个奇数度的结点, 则这两个结点之间必有一条路。
证明:设无向图G中两个奇数度的结点为u和v。 从u开始构造一条迹,即从u出发经关联于结点u的边e1到达结点 u1,若deg(u1)为偶数,则必可由u1再经关联于结点u1的边e2到达结 点u2,如此继续下去,每边只取一次,直到另一个奇数度结点停止, 由于图G中只有两个奇数度结点,故该结点或是u或是v。如果是v, 那么从u到v的一条路就构造好了。如果仍是结点u,此路是闭迹。
第7章 习题课
离散数学第7章 图论 习题
1
练习7-1(6)简单图的最大度小于结点数。
证明:设简单图G中有n个结点。 任取一个结点v, 由已知G是简单图没有环和重边,
离散数学--第7章 图论-5(匹配)
MM’
其中回路包含相同数目的M边和M’边。由|M’|>|M|, 必 存在M’边开始, M‘边终止的M交互道路,即M-可增广 道路,矛盾!
返回 结束
7.5 .2 最大匹配的基本定理
例] 从匹配M={(v6,v7)}开始,求下图的最大匹 配
11
(a)
(b)
系统地检查不饱和点出发有无可增 广道路,如,v1出发有可增广道路 v1,v7v6,v8(可画以v1为根的交互树), 由此得到匹配(a), v2出发没有,v3出 发存在v3v4,可得更大匹配(b), 其他 点出发不存在可增广道路,故(b)是 最大匹配。
交错路为一条 M可增广路。
例
v1 v6 v2 v3 v4
匹配, M {v1v6 , v2v5 }是一个对集;但不是
最大对集,有路 P:v3v2v5v4,通过 匹配, ( M E ( P)) ( E ( P) M )得比M 更大的对集。 匹配,P称为M 可扩路。 增广路
返回 结束
v5
7.5 .2 最大匹配的基本定理
为图G的最大匹配。
[匹配数] G中最大匹配中的边数称为匹配数,记作
(G)。设G的所有匹配为M1、M2、… 、Mk,记
' (G) max | M i |
i 1,...,k
返回 结束
7.5 .1 匹配的基本概念
e2 e6 e1
5
最大匹配: {e1,e5 ,e6} e7
e4 e3 匹配数:3
返回 结束
7.5 .2 最大匹配的基本定理
[M交错路] 设G和M如上所述,G的一条M交错路 指G中一条路,其中的边在M和 EM 中交错出现 。
路是由属于M的匹配边和不属于M的非匹配边交替出现组成
《离散数学》第七章_图论-第2节-预习
定理7-2.1推论
推论1: 在n阶图G中,若从不同结点vj到vk有 路,则从vj到vk有长度小于等于n-1的通路。 证明: 若路不是通路, 则路上有重复结点, 删除所有重复结点之间的回路, 得到的是通 路, 其长度小于等于n-1。 推论2:在一个具有n个结点的图中,如果存在 经过结点vi回路(圈),则存在一条经过vi 的长度不大于n的回路(圈)。
Whitney定理
(最小点割集<=最小边割集<=最小点度数)
Whitney定理的证明
证明:设G中有n个结点m条边。 (2)若G连通 1)证明λ(G)≤δ(G)
若G是平凡图,则λ(G)=0≤δ(G); 若G是非平凡图,由于每一结点上关联的所有 边显然包含一个边割集,因而删除最小度数 δ(G)对应结点所关联的边,则使G不连通,即 存在一个边割集的元素个数小于等于δ(G) , 即λ(G)≤δ(G)。
e6,e5都是割边
边连通度(edgeconnectivity)
为了破坏连通性,至少需要删除多少条边? 边连通度: G是无向连通图, (G) = min{ |E’| | E’是G的边割集 } 即产生一个不连通图需删去的边的最小数 目。 规定: G非连通: (G)=0 (Kn) = n-1
0
ei (vi 1 , vi ), (ei v i 1 , v i )
v
v1 v 2 0 e e 1 2
v i 1 v i ei
vn en
结点数=边数+1
路长度 :边的数目。
回路(closed walk)
回路: … v e v e v
0 1 1 2
当v 0 v n时
i 1
圈(cycles)
C1 C2 C3 C4 C5
《离散数学》第七章图的基本概念讲稿
《离散数学》第七章图的基本概念讲稿7.1 ⽆向图及有向图⼀、本节主要内容⽆向图与有向图顶点的度数握⼿定理简单图完全图⼦图补图⼆、教学内容⽆序对: 两个元素组成的⼆元组(没有顺序),即⽆论a,b是否相同,(a,b )=(b, a )⽆序积: A与B 为两个集合,A&B={(x,y) |x∈A∧y∈B}例A={a1, a2}, B={b1, b2}A&B={(a1 , b1 ), (a1 , b2 ) ,(a2 , b1 ) ,(a2 , b2 )}A&A={(a1 , a1 ), (a1 , a2 ) ,(a2 , a2 )}多重集合: 元素可以重复出现的集合⽆向图与有向图定义⽆向图G=, 其中(1) V?≠为顶点集,元素称为顶点(2) E为V&V的多重⼦集,其元素称为⽆向边,简称边.例如, G=如图所⽰,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}定义⽆向图G=, 其中(1) V≠?为顶点集,元素称为顶点(2) E为V&V的多重⼦集,其元素称为⽆向边,简称边.例如, G=如图所⽰,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} ⽆向图与有向图(续)定义有向图D=, 其中(1) V同⽆向图的顶点集, 元素也称为顶点(2) E为V?V的多重⼦集,其元素称为有向边,简称边.⽤⽆向边代替D的所有有向边所得到的⽆向图称作D的基图右图是有向图,试写出它的V和E⽆向图与有向图(续)通常⽤G表⽰⽆向图, D表⽰有向图,也常⽤G泛指⽆向图和有向图,⽤ek表⽰⽆向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=?平凡图: 1 阶零图顶点和边的关联与相邻定义设ek=(vi, vj)是⽆向图G=的⼀条边, 称vi, vj为ek的端点, ek与vi ( vj)关联.若vi ≠ vj, 则称ek与vi ( vj)的关联次数为1;若vi = vj, 则称ek为环, 此时称ek与vi 的关联次数为2;若vi不是ek端点, 则称ek与vi 的关联次数为0.⽆边关联的顶点称作孤⽴点.定义设⽆向图G=, vi,vj∈V,ek,el∈E,若(vi,vj) ∈E, 则称vi,vj相邻;若ek,el⾄少有⼀个公共端点, 则称ek,el相邻.对有向图有类似定义. 设ek=?vi,vj?是有向图的⼀条边, vi,vj是ek端点,⼜称vi 是ek的始点, vj是ek的终点,vi邻接到vj, vj邻接于vi.邻域和关联集设⽆向图G , v ∈V(G)v 的邻域 N(v)={u|u ∈V(G)∧(u,v)∈E(G)∧u ≠v} v 的闭邻域 = N(v)∪{v} v 的关联集 I(v)={e|e ∈E(G)∧e 与v 关联} 设有向图D, v ∈V(D)v 的后继元集 ={u|u ∈V(D)∧∈E(G)∧u ≠v}v 的先驱元集 ={u|u ∈V(D)∧∈E(G)∧u ≠v}v 的邻域v 的闭邻域顶点的度数设G=为⽆向图, v ∈V,v 的度数(度) d(v): v 作为边的端点的次数之和悬挂顶点: 度数为1的顶点悬挂边: 与悬挂顶点关联的边 G 的最⼤度?(G)=max{d(v)| v ∈V} G 的最⼩度δ(G)=min{d(v)| v ∈V} 例如 d(v5)=3, d(v2)=4, d(v1)=4, ?(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环顶点的度数(续)设D=为有向图, v ∈V,v 的出度d+(v): v 作为边的始点的次数之和 v 的⼊度d -(v): v 作为边的终点的次数之和 v 的度数(度) d(v): v 作为边的端点次数之和 d(v)= d+(v)+ d-(v)D 的最⼤出度?+(D), 最⼩出度δ+(D) 最⼤⼊度?-(D), 最⼩⼊度δ-(D) 最⼤度?(D), 最⼩度δ(D) 例如 d+(a)=4, d-(a)=1, d(a)=5, d+(b)=0, d-(b)=3, d(b)=3,+(D)=4, δ+(D)=0, ?-(D)=3, δ-(D)=1, ?(D)=5, δ(D)=3. 图论基本定理——握⼿定理定理任意⽆向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点⼊度之和等于出度之和等于边数.)(v N )(v D +Γ)(v D -Γ)()()(v v v N D D D -+ΓΓ= }{)()(v v N v N D D =证 G 中每条边(包括环)均有两个端点,所以在计算G 中各顶点度数之和时,每条边均提供2度,m 条边共提供2m 度.有向图的每条边提供⼀个⼊度和⼀个出度, 故所有顶点⼊度之和等于出度之和等于边数. 握⼿定理(续)推论在任何⽆向图和有向图中,度为奇数的顶点个数必为偶数. 证设G=为任意图,令 V1={v | v ∈V ∧d(v)为奇数} V2={v | v ∈V ∧d(v)为偶数}则V1∪V2=V, V1∩V2=?,由握⼿定理可知∑∑∑∈∈∈+==21)()()(2V v V v Vv v d v d v d m由于2m,∑∈2)(V v v d 均为偶数,所以 ∑∈1)(V v v d 也为偶数, 但因为V1中顶点度数都为奇数,所以|V1|必为偶数.图的度数列设⽆向图G 的顶点集V={v1, v2, …, vn} G 的度数序列: d(v1), d(v2), …, d(vn) 如右图度数序列:4,4,2,1,3设有向图D 的顶点集V={v1, v2, …, vn} D 的度数序列: d(v1), d(v2), …, d(vn) D 的出度序列: d+(v1), d+(v2), …, d+(vn) D 的⼊度序列: d -(v1), d -(v2), …, d -(vn) 如右图度数序列:5,3,3,3出度序列:4,0,2,1 ⼊度序列:1,3,1,2 握⼿定理的应⽤例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数序列吗? 解不可能. 它们都有奇数个奇数.例2 已知图G 有10条边, 4个3度顶点, 其余顶点的度数均⼩于等于2, 问G ⾄少有多少个顶点? 解设G 有n 个顶点. 由握⼿定理, 4?3+2?(n-4)≥2?10 解得 n ≥8握⼿定理的应⽤(续)例3 给定下列各序列,哪组可以构成⽆向图的度数序列 (2,2,2,2,2) (1,1,2,2,3) (1,1,2,2,2) (1,3,4,4,5)多重图与简单图定义(1) 在⽆向图中,如果有2条或2条以上的边关联同⼀对顶点, 则称这些边为平⾏边, 平⾏边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平⾏边, 简称平⾏边, 平⾏边的条数称为重数.(3) 含平⾏边的图称为多重图.(4) 既⽆平⾏边也⽆环的图称为简单图.注意:简单图是极其重要的概念多重图与简单图(续)例如e5和e6 是平⾏边重数为2不是简单图e2和e3 是平⾏边,重数为2 e6和e7不是平⾏边不是简单图图的同构定义设G1=, G2=为两个⽆向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的vi,vj∈V1,(vi,vj)∈E1(∈E1)当且仅当(f(vi),f(vj))∈E2(∈E2),并且,(vi,vj)()与(f(vi),f(vj))()的重数相同,则称G1与G2是同构的,记作G1?G2.图的同构(续)⼏点说明:图之间的同构关系具有⾃反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:①边数相同,顶点数相同②度数列相同(不计度数的顺序)③对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构图的同构(续)例1 试画出4阶3条边的所有⾮同构的⽆向简单图例2 判断下述每⼀对图是否同构:(1)度数列不同不同构例2 (续)(2)不同构⼊(出)度列不同度数列相同但不同构为什么?完全图与正则图n阶⽆向完全图Kn: 每个顶点都与其余顶点相邻的n阶⽆向简单图.简单性质: 边数m=n(n-1)/2, ?=δ=n-1n阶有向完全图: 每对顶点之间均有两条⽅向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ?=δ=2(n-1),+=δ+=?-=δ-=n-1n阶k正则图: ?=δ=k 的n阶⽆向简单图简单性质: 边数m=nk/2完全图与正则图(续)(1) 为5阶⽆向完全图K5(2) 为3阶有向完全图(3) 为彼得森图, 它是3 正则图⼦图定义设G=, G '=是2个图(1) 若V '?V且E '?E, 则称G '为G的⼦图, G为G '的母图, 记作G '?G(2)若G '?G且G '≠ G(即V '?V 或E '?E),称G '为G的真⼦图(3) 若G '?G 且V '=V,则称G '为G的⽣成⼦图(4) 设V '?V 且V '≠?, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的⼦图称作V '的导出⼦图,记作G[V '](5) 设E '?E且E '≠?, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的⼦图称作E '的导出⼦图, 记作G[E ']⼦图(续)例画出K4的所有⾮同构的⽣成⼦图补图定义设G=为n阶⽆向简单图,以V为顶点集,所有使G成为完全图Kn的添加边组成的集合为边集的图,称为G的补图,记作G?G.若G ? G , 则称G 是⾃补图.例画出5阶7条边的所有⾮同构的⽆向简单图⾸先,画出5阶3条边的所有⾮同构的⽆向简单图然后,画出各⾃的补图7.2 通路、回路与图的连通性⼀、本节主要内容简单通(回)路, 初级通(回)路, 复杂通(回)路⽆向连通图, 连通分⽀弱连通图, 单向连通图, 强连通图点割集与割点边割集与割边(桥) ⼆、教学内容通路与回路定义给定图G=(⽆向或有向的),设G 中顶点与边的交替序列Γ=v0e1v1e2…elvl ,(1) 若?i(1≤i ≤l), vi -1 和 vi 是ei 的端点(对于有向图, 要求vi -1是始点, vi 是终点), 则称Γ为通路, v0是通路的起点, vl 是通路的终点, l 为通路的长度. ⼜若v0=vl ,则称Γ为回路. (2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为初级通路(初级回路).初级通路⼜称作路径, 初级回路⼜称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路). 通路与回路(续) 说明:在⽆向图中,环是长度为1的圈, 两条平⾏边构成长度为2的圈. 在有向图中,环是长度为1的圈, 两条⽅向相反边构成长度为2的圈. 在⽆向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2. 通路与回路(续)定理在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通路,则从vi 到vj 存在长度⼩于等于n -1的通路.推论在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通121212G G G G G G ??例设与均为⽆向简单图,当且仅当路,则从vi到vj存在长度⼩于等于n-1的初级通路.定理在⼀个n阶图G中,若存在vi到⾃⾝的回路,则⼀定存在vi到⾃⾝长度⼩于等于n的回路.推论在⼀个n阶图G中,若存在vi到⾃⾝的简单回路,则⼀定存在长度⼩于等于n的初级回路.⽆向图的连通性设⽆向图G=,u与v连通: 若u与v之间有通路. 规定u与⾃⾝总连通.连通关系R={| u,v ∈V且u~v}是V上的等价关系连通图: 平凡图, 或者任意两点都连通的图连通分⽀: V关于R的等价类的导出⼦图设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk]是G的连通分⽀, 其个数记作p(G)=k.G是连通图? p(G)=1u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ? u=vd(u,v)=d(v,u)(对称性)d(u,v)+d(v,w)≥d(u,w) (三⾓不等式)点割集记G-v: 从G中删除v及关联的边G-V': 从G中删除V'中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设⽆向图G=, 如果存在顶点⼦集V'?V, 使p(G-V')>p(G),⽽且删除V'的任何真⼦集V''后(? V''?V'),p(G-V'')=p(G), 则称V'为G的点割集. 若{v}为点割集, 则称v为割点.点割集(续)例{v1,v4}, {v6}是点割集, v6是割点.{v2,v5}是点割集吗?边割集定义设⽆向图G=, E'?E, 若p(G-E')>p(G)且?E''?E',p(G-E'')=p(G), 则称E'为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上⼀页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?⼏点说明:Kn⽆点割集n阶零图既⽆点割集,也⽆边割集.若G连通,E'为边割集,则p(G-E')=2若G连通,V'为点割集,则p(G-V')≥2有向图的连通性设有向图D=u可达v: u到v有通路. 规定u到⾃⾝总是可达的.可达具有⾃反性和传递性D弱连通(连通): 基图为⽆向连通图D单向连通: ?u,v∈V,u可达v 或v可达uD强连通: ?u,v∈V,u与v相互可达强连通?单向连通?弱连通有向图的连通性(续)例下图(1)强连通, (2)单连通, (3) 弱连通有向图的短程线与距离u到v的短程线: u到v长度最短的通路(u可达v)u与v之间的距离d: u到v的短程线的长度若u不可达v, 规定d=∞.性质:d+d ≥d注意: 没有对称性7.3 图的矩阵表⽰⼀、本节主要内容⽆向图的关联矩阵有向图的关联矩阵有向图的邻接矩阵有向图的可达矩阵⼆、教学内容⽆向图的关联矩阵定义设⽆向图G=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n?m为G的关联矩阵,记为M(G).定义设⽆向图G=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n?m为G的关联矩阵,记为M(G).性质关联次数为可能取值为0,1,2有向图的关联矩阵定义设⽆环有向图D=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令则称(mij)n ?m 为D 的关联矩阵,记为M(D). 性质:有向图的邻接矩阵定义设有向图D=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令 )1(ij a 为顶点vi 邻接到顶点vj 边的条数,称()1(ij a )n ?n 为D 的邻接矩阵, 记作A(D), 简记为A. 1110001110()1001200000M G=1100010111()0000101110M D ---?=-??-??平⾏边的列相同)4(2)3(),...,2,1()()2(),...,2,1(2)1(,11mm n i v d m m j m ji ijimj ijni ij =====∑∑∑==(1)1(1)1(1)(),1,2,...,(2)(),1,2,...,nij i j n ij ji a d vi n a d v j n+=-=====∑∑性质D 中的通路及回路数定理设A 为n 阶有向图D 的邻接矩阵, 则Al(l ≥1)中元素)(l ij a 为D 中vi 到vj 长度为 l 的通路数, )(l ii a 为vi 到⾃⾝长度为 l 的回路数,∑∑==n i nj l ija11)( 为D 中长度为 l 的通路总数,∑=ni l iia1)( 为D 中长度为 l 的回路总数.D 中的通路及回路数(续)推论设Bl=A+A2+…+Al(l ≥1), 则Bl 中元素为D 中长度⼩于或等于l 的通路数,为D 中长度⼩于或等于l 的回路数. 例有向图D 如图所⽰, 求A, A2, A3, A4, 并回答问题:(1) D 中长度为1, 2, 3, 4的通路各有多少条?其中回路分别为多少条? (2) D 中长度⼩于或等于4的通路为多少条?其中有多少条回路?12100010()00010010A D=有向图的可达矩阵定义设D=为有向图, V={v1, v2, …, vn}, 令称(pij)n ?n 为D 的可达矩阵, 记作P(D), 简记为P. 性质:P(D)主对⾓线上的元素全为1.D 强连通当且仅当P(D)的元素全为1. 有向图的可达矩阵(续)例右图所⽰的有向图D 的可达矩阵为7.4 最短路径及关键路径⼀、本节主要内容最短路关键路线⼆、教学内容对于有向图或⽆向图G 的每条边,附加⼀个实数w(e),则称w(e)为边e 上的权. G 连同附加在各边上的实数,称为带权图.设带权图G=,G 中每条边的权都⼤于等于0.u,v 为G 中任意两个顶点,从u 到v 的所有通=1101110111110001P路中带权最⼩的通路称为u 到v 的最短路径.求给定两个顶点之间的最短路径,称为最短路径问题. 算法:Dijkstra(标号法){}()*()*1()*()()1()*1.2./5.i r r i i i i ir i r r j j j j j r i r v l v v v l v r p l l v v v l v r l v v p r T V r ∞==-j ij r r 如果顶点与v 不相邻,则w =为顶点到顶点最短路径的权,如果顶点获得了标号,则称顶点在第步获得了标号(永久性标号)3.为顶点到顶点最短路径的权的上界,如果顶点获得了标号,则称顶点在第步获得了t 标号(临时性标号)4.P 已经获得标号为第步通过集P 为第步未通过集例:求图中v0与v5的最短路径(0)*000(0)0(1)*(0)(1)*1010100,{},T {},1,2,3,4,5{},min {},T T {}(2)T j jj i j i v T l P l w j l l l P P t ∈=======?=-0012345j i i i i 第步(r=0):v 获得p 标号v v ,v ,v ,v ,v ,v 获得t 标号第1步(r=1):(1)求下⼀个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标1(1)(0)(1)*(2)*(1)(2)*2121(2)(1)(2)*2min{,}{},min {},T T {}(2)T min{,}j jj iij i j iv T j j iij ll lw l l l P P t l l l w ∈=+==?=-=+i i i i 号:第2步(r=2):(1)求下⼀个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标号:2.关键路径问题,(){/,}(){/,}D D D V E v V v x x V v x E v v x x V x v E v +=<>∈Γ=∈∧<>∈Γ=∈∧<>∈-设为⼀个有向图,,则为的后继元集为的先继元集定义:PERT 图设D=是n 阶有向带权图1. D 是简单图2. D 中⽆环路3. 有⼀个顶点出度为0,称为发点;有⼀个顶点⼊度为0,称为收点4. 记边的权为wij,它常常表⽰时间1. 最早完成时间:⾃发点v1开始,沿最长路径(权)到达vi 所需时间,称为vi 的最早完成时间,记为TE (vi ),i=1,2,…,nj 1i i j ij v ()234567TE(v )=0,v (1)TE(v )={(v )+w },1,2,,max TE(v )=max{0+1}=1;TE(v )=max{0+2,1+0}=2;TE(v )=max{0+3,2+2}=4;TE(v )=max{1+3,4+4}=8;TE(v )=max{2+4,8+1}=9;TE(v )=max{1+4,2+D i v i TE i n -∈Γ≠=显然的最早完成时间按如下公式计算:813784}=6;TE(v )=max{6+6,9+1}=12;v v v v 关键路径:从发点到收点的⼀条最长路径,2. 最晚完成时间:在保证收点vn 的最早完成时间不增加的条件下,⾃发点v1最迟到达vi 所需时间,称为vi 的最晚完成时间,记为TL (vi ).j n n i i j ij v ()876543TL(v )=TL(v ),v ()TL(v )={(v )-w },1,2,,min TL(v )=12;TL(v )=min{12-6}=6;TL(v )=min{12-1}=11;TL(v )=min{11-1}=10;TL(v )=min{10-4}=6;TL(v )=min{6-2,11-4,6-4}=2;TL(D i v i n TL i n∈Γ≠=+显然的最晚完成时间按如下公式计算:21v )=min{2-0,10-3,6-4}=2;TL(v )=min{2-1,2-2,6-3}=0;3. 缓冲时间:TS(vi)=TL(vi)- TE(vi) TS(v1)= TS(v3)= TS(v7)= TS(v8)=0 TS(v2)=2-1=1; TS(v4)=6-4=2; TS(v5)=10-8=2; TS(v6)=11-9=2。
离散数学-第七章-图论
5
离 例1、G1=<V,E>
散 数
V={v0, v1, v2,v3}
学 E={(v0,v2),(v0,v3),(v1,v2),(v1,v3),(v2,v3)}
v0
v3
v1
第
七
章
v2
图
论
4/24/2020 2:55 PM
G1
6
离 例2、
散 数 学
G2=<V,E> V={v0, v1, v2,v3}
中的所有边,称为删除E´ 。
(2)设vV,用G-v表示从G中去掉v及所关联的 一切边,称为删除结点v;又设V´ V,用G-V´ 表示从G中删除V´中所有结点,称为删除V´ 。
学 u,v之间存在路,则称u,v是连通的,记作uv 。
定义2.3 设无向图G是平凡图或G中任何两个结 点都是连通的,则称G为连通图,否则称G为非连 通图或分离图。
第
任意一个连通无向图的任两个不同结
七 点都存在一条通路。
章
图
论
4/24/2020 2:55 PM
38
离
非连通图G可分为几个不相连通的子图,
七 章
边,构成一个无向重图,问题化为图论中简单道路
的问题。
图
论
4/24/2020 2:55 PM
3
离 一、图的基本概念
散 数 学
旧金山
丹佛
洛杉矶
第 七 章
图
论
4/24/2020 2:55 PM
底特律
芝加哥
纽约 华盛顿
4
离
散 设A、B是两个集合,称
数
学
A&B={{a,b}|aA, bB}
《离散数学》第七章_图论-第3-4节
图的可达性矩阵计算方法 (3) 无向图的可达性矩阵称为连通矩阵,也是对称的。 Warshall算法
例7-3.3 求右图中图G中的可达性矩 阵。 分析:先计算图的邻接矩阵A布尔乘法的的2、 v1
3、4、5次幂,然后做布尔加即可。
解:
v4
v2
v3 v5
P=A∨ A(2) ∨ A(3) ∨A(4)∨A(5)
图的可达性矩阵计算方法(2)
由邻接矩阵A求可达性矩阵P的另一方法: 将邻接矩阵A看作是布尔矩阵,矩阵的乘法运算和加 法运算中,元素之间的加法与乘法采用布尔运算 布尔乘:只有1∧1=1 布尔加:只有0∨0=0 计算过程: 1.由A,计算A2,A3,…,An。 2.计算P=A ∨ A2 ∨ … ∨ An P便是所要求的可达性矩阵。
v4
v3
v2
G中从结点v2到结点v3长度 为2通路数目为0,G中长 度为2的路(含回路)总数 为8,其中6条为回路。 G中从结点v2到结点v3长度 为3的通路数目为2, G中 长度为3的路(含回路)总
图的邻接矩阵的 应用 (2)计算结点vi与vj之间的距离。
中不为0的最小的L即为d<vi,vj>。
(一)有向图的可达性矩阵
可达性矩阵表明了图中任意两个结点间是否至少存在一条 路以及在任何结点上是否存在回路。
定义7-3.2 设简单有向图G=(V,E),其中V={v1, v2,…,vn },n阶方阵P=(pij)nn ,称为图G的可达 性矩阵,其中第i行j列的元素
p ij =
1 1 1 1 P v3 1 1 v4 0 0 v5 0 0 v1 v2 1 1 1 1 1 1
0 1 A(G)= 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0
离散数学_第7章 图论 -1-2图的基本概念、路和回路
第9章 图论
返回总目录
第9章 图论
第7章 图论
图论是一个重要的数学分支。数学家欧拉1736年发 表了关于图论的第一篇论文,解决了著名的哥尼斯堡七 桥问题。克希霍夫对电路网络的研究、凯来在有机化学 的计算中都应用了树和生成树的概念。随着科学技术的 发展,图论在运筹学、网络理论、信息论、控制论和计 算机科学等领域都得到广泛的应用。本章首先给出图、 简单图、完全图、子图、路和图的同构等概念,接着研 究了连通图性质和规律,给出了邻接矩阵、可达性矩阵、 连通矩阵和完全关联矩阵的定义。最后将介绍欧拉图与 哈密尔顿图、二部图、平面图和图的着色、树和根树。
v3
e7
a e6e3
e2
b e5
(本课程仅讨论无向图和有向图)
v4
c
9章 图论
【例7.1.1】无向图G=V(G),E(G),G
其中:V(G)=a,b,c,d
E(G)=e1,e2,e3,e4
G:G(e1)=(a,b) G(e2)=(b,c) G(e3)=(a,c) G(e4)=(a,a)
试画出G的图形。
即,deg(v)=deg-(v)+deg+(v),或简记为d(v)=d-(v)+d+(v)
4)最大出度:+(G) =max deg+(v) | vV
5)最小出度:+(G) = min deg+(v) | vV
6)最大入度: (G) =max deg-(v) | vV
7)最小入度: (G) = min deg-(v) | vV
解:G的图形如图7.1.2所示。
图 7.1.2
由于在不引起混乱的情况下,图的边可以用有序对或无序 对直接表示。因此,图可以简单的表示为:
离散数学 第7章 图论
v2 v3
v4
v3
(b) 图G
v3 (c) 图G’
(a) 完全图K5
图G是图G’ 相对于图K5的补图。 图G’不是图G 相对于图K5的补图。(图G’中有结点v5 )
例:276页图7-1.7 图(c)是图(b)相对于图(a)的补图。 图(b)不是图(c)相对于图(a)的补图。
25
7-1
图的同构
图的基本概念
8
7-1
图的基本概念
1.无向图:每条边均为无向边的图称为无向图。 2.有向图:每条边均为有向边的图称为有向图。 3.混合图:有些边是无向边,有些边是有向边的图称 为混合图。
v1 (孤立点) v5 V1’
v1 v2
v2
v4 v3 (a)无向图
V2’
V3’ (b)有向图 V4’
v4 v3 ( c ) 混合图
17
7-1
图的基本概念
三、特殊的图
定义4 含有平行边的图称为多重图。 不含平行边和环的图称为简单图。
定义5 简单图G=<V,E>中,若每一对结点间均有边 相连,则称该图为完全图。
无向完全图:每一条边都是无向边 不含有平行边和环 每一对结点间都有边相连
有n个结点的无向完全图记为Kn。
18
7-1
图的基本概念
推论 在一个具有n个结点的图中,如果从结点vj 到结点vk存在一条路,则从结点vj到结点vk 必存在一条边数小于n的通路。
32
7-2
路与回路
定理7-2.1的证明 如果从结点vj到vk存在一条路,该路上的结点序列 是vj…vi…vk,如果在这条中有l条边,则序列中必有 l+1个结点,若l>n-1,则必有结点vs,它在序列中不止 出现一次,即必有结点序列vj…vs…vs…vk,在路中去 掉从vs到vs的这些边,仍是vj到vk的一条路,但此路比 原来的路边数要少,如此重复进行下去,必可得到一 条从vj到vk的不多于n-1条边的路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为方便起见,常将无序对{a,b}记为(a,b)
定义1.1 一个无向图是一个有序的二元组<V,E>,
记为G,其中
(1)V≠称为结点集,元素称为结点或顶点;
第 (2)E称为边集,它是无序积V&V的多重子集,
七 其元素称为无向边,简称为边。
章
图
常把无向图记为G=<V,E>
论
12/22/2019 9:31 PM
5
离 例1、G1=<V,E>
散 数
V={v0, v1, v2,v3}
学 E={(v0,v2),(v0,v3),(v1,v2),(v1,v3),(v2,v3)}
v0
v3
v1
第
七
章
v2
图
论
12/22/2019 9:31 PM
G1
6
离 例2、
散 数 学
G2=<V,E> V={v0, v1, v2,v3}
E={(v0,v3),(v1,v3),(v1,v3),(v2,v3),(v0,v0)}
环
v0
v1
第 七
G
v3
v2
G2
平行边
章
简单图
多重图
( 图
论
不含平行边也不含环) 12/22/2019 9:31 PM7Βιβλιοθήκη 离 散 数 学旧金山
丹佛
洛杉矶
第 七 章
图
论
12/22/2019 9:31 PM
底特律
芝加哥
纽约 华盛顿
散 数
解: K4的所有非同构的生成子图如下图所示。
学
第 七 章
图
论
12/22/2019 9:31 PM
33
离
二、路与回路
散
数 定义2.1 设G为无向标定图,G中结点与边 学 的 交 替 序 列 =vi0ej1vi1ej2…ejlvil 称 为 vi0 到
vil的路。vi0,vil分别称为的始点和终点, 中边的条数称为它的长度。
怎样定义有向图的同构?
第 七 章
图
论
12/22/2019 9:31 PM
28
离
散 例7、
数 学
a
d
第 七 章
图
论
12/22/2019 9:31 PM
b
c
c' (a)
a' (b) d' (d)
b' (c)
29
离
散
数
学
1
2
6
10
7
9 8
2
5
3
第
3
4
七 章
彼得松图(petersen)
图
论
12/22/2019 9:31 PM
离
散 数 学
一个具n有=410个顶点,每 个结点m的=度45 都为6的图,
v1
有多少顶结条点边度?之和为810
e5
e1
e3 e4
v2 e2
v3
v4
定理1.1 设G=<V,E>为无向图, |V(G)|= n, |E(G)|=m,则
n
握手定理 deg(vi) 2m
第
i 1
即使出现多重边和环,这
W(G)=2
39
离 设G=<V,E>为无向图
散 数
(1)设eE,用G-e表示从G中去掉边e,称为删
c
d
G″´
d
G″
27
离 定义1.8 设G1=<V1,E1>,G2= <V2,E2>为两个无向
散 数
图,若存在一一映射
学
g: V1 V2
对于vi,vjV1,
(vi,vj)E1 当且仅当 (g(vi),g(vj))E2,
并且(vi,vj)与(g(vi),g(vj))的重数相同,
则称G1与G2是同构的,记作G1 G2
华盛顿
11
离
散 数
e0
学
v1
v5
v3
孤立点
标定图
非标定图
e1 e3
v2
在无向图G=<V,E>中,若ek= (vi,vj) ∈E,则称vi,vj 为
e2 边ek的端点,
e4
ek与vi或ek与vj是彼此关联的;
(v3e,5 v4) v4
关联次数 邻接点、邻接边
第 七 章
图
论
12/22/2019 9:31 PM
七 章
边,构成一个无向重图,问题化为图论中简单道路
的问题。
图
论
12/22/2019 9:31 PM
3
离 一、图的基本概念
散 数 学
旧金山
丹佛
洛杉矶
第 七 章
图
论
12/22/2019 9:31 PM
底特律
芝加哥
纽约 华盛顿
4
离
散 设A、B是两个集合,称
数
学
A&B={{a,b}|aA, bB}
为A与B的无序积。
35
有向图中,路、回路等概念与无向图类似
离
散
b
数
学
e1
e4
a
e2
d
e5 e3
c
(e ,e ,e ,e ,e )是迹,不是通路,因
5
1
2
3
4
第 为(c,a,b,c,d,b)中b,c均出现了
七 章
两次。(c,d,b,c)是圈。
图
论
12/22/2019 9:31 PM
36
离
散
数 学
定理2.1 在n阶图中,若从结点vi到vj(vivj) 存在一条路,则从vi到vj存在长度不大于n-1的路。
a e
b c 图G d
a
b e
c d
图 G3
23
离 散 数 学
k4
G
第 七 章
图
论
12/22/2019 9:31 PM
G
24
离 定义1.6 设G=<V,E>,G’= <V’,E’>为两个图,
散 数
若V’ V且E’ E,则称G’为G的子图,G为
学 G’的母图,记作G’G;
又若V’V或E’ E,则称G’为G的真子图。
第
任意一个连通无向图的任两个不同结
七 点都存在一条通路。
章
图
论
12/22/2019 9:31 PM
38
离
非连通图G可分为几个不相连通的子图,
散 每一子图本身都是连通的。称这几个子图为
数 学
G的连通分支,G的连通分支数记为W(G)。
k4
B A
第
七
W(G)=1
章
图
论
12/22/2019 9:31 PM
viV1
viV2
偶数
e1 v1
偶数 v2
偶数
第 七 章
e3
e2
e4
因此|V2 |为偶数
图
v3
v4
论
12/22/2019 9:31 PM
18
离 例4、已知无向图G中结点数n与边数m相等,2度
散 数 学
结点与3度结点各2个,其余结点的度数均为1,试 求G的边数m。
解:由握手定理
n
2m deg(vi) =22+ 32+ 1(n-4)
推论 在n阶图中,若从结点vi到vj(vivj)存在一 条路,则从vi到vj存在长度小于n的通路。
第 七 章
图
论
12/22/2019 9:31 PM
37
离
散 数
定义2.2
设无向图G=<V,E>, u,vV,若
学 u,v之间存在路,则称u,v是连通的,记作uv 。
定义2.3 设无向图G是平凡图或G中任何两个结 点都是连通的,则称G为连通图,否则称G为非连 通图或分离图。
1
5
6
10 7 8
9
4
30
离 散 数 学
第 七 章
图
论
12/22/2019 9:31 PM
31
离 散 数 学
两个图同构必有: (1)结点数相同;
但不是充分条件
(满足这三个条件的两图 不一定同构)
第 (2)边数相同;
七
章 (3)度数列相同
图
论
12/22/2019 9:31 PM
32
离 例8、 画出K4的所有非同构的生成子图。
v3
章 图
degv+3 (v1)=3
degv+4(v2)= deg+(v4)=1 dve2g+(v3)=0
论 ddeegg-1((2vv/2112/))2==019dd9e:3eg1gP(M-v(4v)2=)=2ddeegg-((vv42))==1deg(dve3g)=-(3v3)=2
14
离 散 数
学
定义1.5 设G=<V,E>为n阶无向简单图, 以V为结点集,以所有使G成为完全图Kn的添加 边组成的集合为边集的图,称为G的相对于完 全图的补图,记作 G
第
七
章
图
k4
G
论
12/22/2019 9:31 PM
G
22
离
图 K5 a
散
数
学
b
e
c
d
a
b
e
第
七
c
d
章
图 G1
图
论
12/22/2019 9:31 PM