第8章 椭球面元素归算至高斯平面——高斯投影

合集下载

椭球面元素归算至高斯平面高斯投影

椭球面元素归算至高斯平面高斯投影
椭球面元素归算至投影面——
测绘工程系
5.1 高斯投影概述
1 一、长度比
2 3 4 5 6 7 或者 8 9
10
2 /4 长度比不仅随点的位置,而且随线段的方向而发生变化。
7
二、高斯投影的基本概念
高斯投影是等角横轴切椭圆柱投影。
1 2 3 4
高斯投影是一种等角投影。它是由德国数学家高斯 (Gauss,1777 ~ 1855)提出,后经德国大地测量学家克 吕格(Kruger,1857~1923)加以补充完善,故又称“高
1
2
3
4
5
6
7
8
9
(4)确定平面三角形各边坐标方位角a。
10
16 /4 7
(5)确定平面三角形各边长。
2、将椭球面三角系化算到高斯 投影面的主要内容
(1)高斯投影坐标计算
1 将起始点的大地坐标B,L归算为高斯平面直角坐标x,y;根
2 3
据(x,y)反算(B,L)。
4(2) 通过计算该点的子午线收敛角及方向改正,将椭球面上起算
长),且曲线都凹向纵坐标轴;
1、椭球面三角系化算到高斯投 影面问题分析
1
2
3
4
5
6
7
8
9
10
(1)投影后需用连接各点间的弦线来代替曲线。为此,必
须在每个方向上引进曲改直的水平方向改正;
(2)根据始点P的大地坐标B,L计算其平面坐标的坐标正
15 /4
算公式;
7 (3)反算公式;
1、椭球面三角系化算到高斯投 影面问题分析
5
斯—克吕格投影”,简称“高斯投影”。
6
7
8
9
10

高斯投影

高斯投影

高斯-克吕格投影(1)高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。

德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes K ruger,1857~1928)于 1912年对投影公式加以补充,故名。

该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。

投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。

设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。

将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。

取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。

由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。

(2)高斯-克吕格投影分带按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。

分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。

通常按经差6度或3度分为六度带或三度带。

六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2…60带。

三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2…120带。

高斯投影计算

高斯投影计算

确定投影关系 -----数学规则 数学规则
x = F1 ( B, L) y = F2 ( B, L)
x = f1 ( q , l ) y = f 2 (q, l )
确定F 确定 1,F2或f1,f2
二、高斯投影条件 (Condition of Gauss projection)
Gauss — Kruger projection
四、高斯投影的计算内容 (Calculation contents of Gauss projection)
2. 具体计算内容
高斯投影
高斯—克吕格投影 高斯 克吕格投影
Gauss — Kruger projection
四、高斯投影的计算内容 (Calculation contents of Gauss projection)
m1 = −
dn0 dq 1 dn1 2 dq
1 dn2 3 dq
n0 →m →n2 →m3 →n4 →m5...... 1
m2 = −
m3 = −
1 dm3 n4 = 4 dq
n5 = 1 dm4 5 dq
m4 = −
1 dn3 4 dq
m0 →n1 →m2 →n3 →m4 →n5......
m5 = −
4. 分带投影的缺点 (Shortcoming of belt dispartion) (1) 不便于跨带三角锁网平差 (2) 不利于图幅拼接 解决办法 西带向东带重迭30 西带向东带重迭 ‘ 东带向西带重迭15 东带向西带重迭 ‘
高斯—克吕格投影 高斯 克吕格投影
Gauss — Kruger projection
1 dn4 5 dq
高斯投影正算公式
Direct solution of Gauss projection 一、公式推导 (Formula derivation)

高斯投影及计算

高斯投影及计算

x y y 2 - 1= y
C
2dδ
ε 2
2dδ
δ21

B
dδ dσ
DA
Tδ12
1
y
x B′
y A′
B dδ
A dδ
η
椭球面上的方向和长度归算至高斯投影平面
• 二、方向改正计算 • 方向改正——正形投影后,椭球面上大地线投影
到平面上仍为曲线,化为直线方向所加的改正δ。 • 适用于三、四等三角测量的方向改正计算公式
2、将椭球面上起算元素和观测元素归算至高斯投影平面, 然后解算平面三角形,推算各边坐标方位角,在平面上进 行平差计算,求解各点的平面直角坐标。
高斯投影计算内容
归算
解算
椭球面
大地坐标
高斯投影 坐标公式


地面观测数据

高斯直角 平面坐标

归算
椭球面
高斯平面
归算
解算平面三角形
平差计算
高斯投影计பைடு நூலகம்内容
Vy 2 项。
项y,4m
西(Cauchy)—黎曼(Riemann)条件,式中,f代 表任意解析函数。
x iy f (q il)
高斯投影坐标计算
• 高斯投影坐标正算——由(B,L)求(x, y)
• 高斯投影坐标反算——由(x,y)求(B, L)
高斯投影坐标计算
大地经度L是从起始子午面开始起算的 起始子午线作为投影的中央子午线
上式的计算精度为0.1″。
椭球面上的方向和长度归算至高斯投影平面
• 三、距离改正计算
• 距离改正——椭球面上大地线长S改换为平面上投
影曲线两端点间的弦长D,要加距离改正△S。

椭球面元素归算至高斯平面详解

椭球面元素归算至高斯平面详解

长度比:
投影面上的边长与原面上的相应长度之比,称为长度比。
AB E A m AB EA
有关投影的基本知识(了解)
• 1、地图投影的概念
在数学中,投影(Project)的含义是指建立两个点集 间一一对应的映射关系。同样,在地图学中,地图投影就 是指建立地球表面上的点与投影平面上点之间的一一对应 关系。地图投影的基本问题就是利用一定的数学法则把地 球表面上的经纬线网表示到平面上。由于地球椭球体表面 是曲面,而地图通常是要绘制在平面图纸上,因此制图时 首先要把曲面展为平面,然而球面是个不可展的曲面,即 把它直接展为平面时,不可能不发生破裂或褶皱。若用这 种具有破裂或褶皱的平面绘制地图,显然是不实际的,所 以必须采用特殊的方法将曲面展开,使其成为没有破裂或 褶皱的平面。
S
UTM与高斯投影的异同:
(1)UTM是对高斯投影的改进,改进的目的是为了减少投影变形。 (2)UTM投影的投影变形比高斯的要小,最大在0.001。但其投影变形 规律比高斯要复杂一点,因为它用的是割圆柱,所以,它的m=1的地方 是在割线上,实际上是一个圆,处在正负1°40′的位置,距离中央经线大 约180km。 (3)UTM投影在中央经线上,投影变形系数m=0.9996,而高斯投影的 中央经线投影的变形系数m=1。 (4)UTM为了减少投影变形也采用分带,它采用6°分带。但起始的1带 是(e174°-e180°),所以,UTM的6°分带的带号比高斯的大30。 (5)很重要的一点, 高斯投影与UTM投影可近似计算。计算公式是: XUTM=0.9996 * X高斯 YUTM=0.9996 * Y高斯 这个公式的误差在1米范围内,完全可以接受。
[知识点及学习要求]
1.高斯投影的基本概念; 2.正形投影的一般条件;

大地测量习题11

大地测量习题11

第五章 高程控制测量1.何谓一对水准标尺零点差及基、辅分划读数差常数?在作业中采取何种措施才能消除其影响?为什么?答:两水准标尺的零点误差不相等,他们都会在水准标尺上长生误差!同一高度的基本分划与辅助分划读数相差一个常数,称为基辅差故在实际水准测量作业中各测段的测站数目应安排成偶数,且在相邻测站上使两水准标尺轮流作为前视尺和后视尺测站Ⅰ上顾及两水准标尺的零点误差对前后视水准标尺上读数b1,a1的影响,则测站Ⅰ的观测高差为 在测站Ⅱ上,顾及两水准标尺零点误差对前后视水准标尺上读数a2,b2的影响,则测站Ⅱ的观测高差为 则1﹑3点的高差,即I 、Ⅱ测站所测高差之和为由此可见,尽管两水准标尺的零点误差 , 但在两相邻测站的观测高差之和中,抵消了这种误差的影响。

2.水准观测误差来源有哪些?各由什么因素引起?对观测有何影响?如何减弱或消除?3.分析超限原因:1)闭合路线中环线闭合差很小,而测段往返测高差不符值超限;2)附合路线中各测段往返测高差不符值均很小,而路线闭合差超限。

4.水准测量作业时,一般要求采取下列措施:(1)前后视距相等;(2)按“后一前一前—后”程序操作;(3)同一测站的前、后视方向不得作两次调焦;(4)旋转微倾斜螺旋及测微轮最后为“旋进”。

试述上列措施分别可以减弱哪些误差的影响?还有哪些主要误差不能由这些措施得到消除?5、名词解释(1)正常位水准面 (2)重力异常 (3)重力位水准面 (4)理论闭合差(5)正高系统 (6)正高 (7)正常高系统 (8)似大地水准面。

6、大地测量上使用哪几种高程系统?说明各种高程系统的相互关系?如何求地面上一点在各高程系统中的高程值?7、精密水准仪的角和交叉误差是如何产生的,它们对水准测量成果有什么影响?进行观测时应采取哪些措施以削弱由于角的变化和交叉误差残余影响所引起的误差。

8、设有一水准网如图所示,A 、B 、C 为已知点,F 为结点,(1,2,3)表示各水准路线之长度(以公里为单位),试问网中最弱点在哪条路线上?在何位置?又若要求网中最弱点相对已知点之高程中误差不大于15mm ,问应配置何等级水准测量?ba b a b b a a h ∆+∆--=∆--∆-=)()()(111112ab a b a a b b h ∆+∆--=∆--∆-=)()()(222223)()(2211231213a b b a h h h -+-=+=b a ∆≠∆9、三角高程测量求得的高差是什么高差?怎样求得正常高高差(列出基本公式,并说明各量的意义)?10、沿着同一纬度圈进行水准测量是否需要加入正常重力位不平行性改正,为什么?11、什么叫正常高?根据水准测量的高差求一点的正常高需加哪些改正(列出基本公式,并说明各量的意义)?12、精密水准测量外业计算时,应求出哪些高差改正数?接着按什么公式计算每公里高差中数的中误差。

高斯投影概述81

高斯投影概述81

第八章 高斯投影地面-----椭球面-----平面熟悉,简单地图投影高斯—克吕格投影〔高斯投影〕高斯投影概述投影与变形所谓地球投影,简略说来就是将椭球面各元素〔包括坐标、方向和长度〕按一定的数学法则投影到平面上。

研究这个问题的专门学科叫地图投影学。

这里所说的数学法则可用下面两个方程式表示:),(),(21B L F y B L F x == (8-1)式中L ,B 是椭球面上某点的大地坐标,而y x ,是该点投影后的平面(投影面)直角坐标。

式(8-1)表示了椭球面上一点同投影面上对应点之间坐标的解析关系,也叫做坐标投影公式。

投影问题也就是建立椭球面元素与投影面相对应元素之间的解析关系式。

投影的方法很多,每种方法的本质特征都是由坐标投影公式F 的具体形式表达的。

椭球面是一个凸起的、不可展平的曲面,假设将这个曲面上的元素〔比方一段距离、一个角度、一个图形〕投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称作投影的变形。

地图投影必然产生变形。

投影变形一般分为角度变形、长度变形和面积变形三种。

在地图投影时,我们可根据需要使某种变形为零,也可使其减小到某一适当程度。

因此,地图投影中产生了所谓的等角投影〔投影前后角度相等,但长度和面积有变形〕、等距投影〔投影前后长度相等,但角度和面积有变形〕、等积投影〔投影前后面积相等,但角度和长度有变形〕等。

控制测量对地图投影的要求1.应采用等角投影〔又称正形投影〕。

这样①保证了在三角测量中大量的角度元素在投影前后保持不变,免除了大量的投影工作;②所测制的地图可以保证在有限的范围内使得地图上图形同椭球上原形保持相似,给国民经济建设中识图用图带来很大方便。

如图多边形,相应角度相等,但长度有变化,投影面上的边长与原面上的相应长度之比,称为长度比。

图中,EA A E AB B A m ''==''=即在微小范围内保证了形状的相似性,当ABCDE 无限接近时,可把该多边形看作一个点,因此在正形投影中,长度比m 仅与点的位置有关,与方向无关,给地图测制及地图的使用等带来极大方便。

高斯投影及换带计算

高斯投影及换带计算

测绘学院《大地测量学基础》课件
10
6.2 高斯投影概述(重点)
1、控制测量对地图投影的要求
1)等角投影(又称正形投影)
2)长度和面积变形不大,并能用简单公式计算由变形而引起 的改正数。
3)能很方便地按分带进行,并能按高精度的、简单的、同样 的计算公式和用表把各带联成整体 。
测绘学院《大地测量学基础》课件
8
• 3、中国各种地图投影:
1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方 位投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割 圆锥投影。
• 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正 轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投 影(宽带)。
• 3)中国大比例尺地图的投影:多面体投影(北洋军阀时 期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯克吕格投影(解放以后)。
x F1(L, B) y F2 (L, B)
椭球面是一个凸起的、不可展平的曲面,若将这个曲面上 的元素(比如一段距离、一个角度、一个图形)投影到平 面上,就会和原来的距离、角度、图形呈现差异,这一差 异称作投影的变形
测绘学院《大地测量学基础》课件
4
长度比:
投影面上的边长与原面上的相应长度之比,称为长度比。
(1)该点位于6˚ 带的第几带?
(第19带)
(2)该带中央子午线经度是多少?
(L。=6º×19-3º=111˚)
(3)该点在中央子午线的哪一侧?
(先去掉带号,原来横坐标y=367622.380—500000=-132377.620m,在西侧)
(4)该点距中央子午线和赤道的距离为多少?
(距中央子午线132377.620m,距赤道3102467.280m)

第八章将地面的测量元素归算至高斯

第八章将地面的测量元素归算至高斯
设:
、 表示垂线偏差在子午圈、卯酉圈的分量,则:
1 ( sin A cos A)tg1
说明:δ的量值很小,只有一、二等三角测量 (或导线)才进行此项改正。
控制测量技术
福建信息职业技术学院
21
2.标高差改正
这是一项由照准点的高度而引 起的改正。 产生的原因:由于A、B两点 的法线不共面。如果B点高出 椭球面,照准面就不能通过B 点法线同椭球面的交点。 解决方法:进行标高差改正:
投影改正;
弧化弦改正。
控制测量技术
福建信息职业技术学院
28
习题
已知数值:
D=34884.181m, B1=30°33′, A12=129°35′, H1=3930.35m, H2=3879.54m。 常数值:
a=6378245m e2=0.00669342
e′2=0.00673852 求解:RA=6371440m
控制测量技术
福建信息职业技术学院
24
控制测量技术
福建信息职业技术学院
25
控制测量技术
福建信息职业技术学院
26
控制测量技术
福建信息职业技术学院
27
小结
将地面上的方向观测值归算至椭球面需加入
三项改正(即三差改正):
标高差改正;
垂线偏差改正;
截面差改正。
将地面上的长度归算至椭球面一般需加入:
倾斜改正;
椭球面上任意一点A,其大地坐标为(L,B), 投影后在平面上有一对应点a,其平面坐标为 (x,y)
控制测量技术
福建信息职业技术学院
36
8.4 高斯投影的分带
控制测量技术
福建信息职业技术学院
37
8.4.1 为什么要分带

高斯投影及换带计算

高斯投影及换带计算

测绘学院《大地测量学基础》课件
24
高斯平面直角坐标系与数学上的笛卡尔平面直角 坐标系的异同点 :
不同点: 1、 x,y轴互异。 2、 坐标象限不同。 3、表示直线方向的方位角
定义不同。 相同点:
数学计算公式相同。
测绘学院《大地测量学基础》课件
Ⅳx
o

α Ⅰp
D
y

x=Dcosα
y=Dsinα
高斯平面直角坐标系
y3
6N
3 f
cos
Bf
1
2t
2 f
2 f
y5
120N
5 f
cos
Bf
5
28t
2 f
24t
4 f
6
2 f
8
2 f
t
2 f
测绘学院《大地测量学基础》课件
30
3、高斯投影坐 标正反算公式的
几何解释 :
①当B=0时x=X=0,y则随l的变化而变化,这就是说,赤道投影为一直线且 为y轴。当l=0时,则y=0,x=X,这就是说,中央子午线投影亦为直线,且为x轴, 其长度与中央子午线长度相等。两轴的交点为坐标原点。
B B f
tf 2M f N f
y2
tf
24M
f
N
3 f
5
3t
2 f
2 f
9
2 f
t
2 f
y4
过所求点P作中央子午线的垂线,
tf
720M
f
N
5 f
y
61

90t
2 f
45t
4 f
y6
该垂线与中央子午线的交点的纬 度,称垂足纬度。其值由子午线 弧长计算公式反算求得。

椭球面上观测成果归化到高斯平面上计算

椭球面上观测成果归化到高斯平面上计算
认为 ab = ba
高斯正形等角投影
R2
(xa
xb )
( ya
2
yb )
方向改化
(2)方向改化计算公式
• 球面角超公式为:
R2
(xa
xb )
( ya
2
yb )
• 适用于三、四等三角测量的方向改正的计算公式:
• 式中
ab
2R2
ym (xa
xb )
ba
2R2
ym (xa
xb )
ym
1 2
( ya
yb
)
,为a、b两点的y坐标的自然平均值
第三部分
距离改化
距离改化
1、距离改正数
距离改化计算 S
• 椭球面上已知的大地线边长(或观测的大地线边长)归算至平 面上相应的弦线长度
• 如图所示,设椭球体上有两点 P1, P2 及其大地线S,在高斯投影 面上的投影为 P1P2 长度为s;连接 P1, P2 两点的直线距离为D;
Nf
y2
y
tan B f
1
3N
3 f
(1
t
2 f
2 f
)
上式计算精度可达1“ 如果要达到0.001"计算精度,可用下式计算:
Nf
yt f
y 2
3N
3 f
t
f
(1
t
2 f
2 f
)
y 15N
5
5 f
t
f
(2
5t
2 f
3t
4 f
)
第二部分
方向改化
方向改化
(1)方向改化分析
• 方向改化值 ab :椭球面上大地线AB方向改

将椭球面上的元素化算至高斯平面

将椭球面上的元素化算至高斯平面
第9页/共31页
一、平面子午线收敛角计算公式
2、公式推导
1)由大地坐标L、B计算平面子午线收敛角γ的公式
x
tan r
d d
x y
l y
l
条件:B=常数,dB=0
由高斯投影正算公式,可以得到:
第10页/共31页
经整理得平面子午线收敛角计算公式
sin B l 1 sin B cos2 Bl3(1 3 2 2 4 )
A
3) 将椭球面上各三角形内角归算到高斯平面上 的由相应直线组成的三角形内角。这是通过计算方 向的曲率改化即方向改化来实现的。
第7页/共31页
▪椭球面三角系归算到高斯投影面的计算
4) 将椭球面上起算边PK的长度S归算到高斯 平面上的直线长度s。这是通过计算距离改化Δs 实现的。
因此将椭球面三角系归算到平面上,包括坐 标、曲率改化、距离改化和子午线收敛角等项 计算工作。
3、什么是高斯投影坐标正、反算?
4、高斯投影必须满足以下三个条件
(1)中央子午线投影后为直线,两侧的投影对称于中央子午线
(2) (3)投影具有正形性质,即正形投影条件 y x , x y
l q l q
5、高斯投影坐标正算推导思路
• 由第一个条件可知:
x m0 m2l 2 m4l 4
• 由第三个条件可知:
▪ 当控制网跨越两个相邻投影带,以及为将 各投影带联成统一的整体,还需要进行平面坐 标的邻带换算。
第8页/共31页
§4.9.5-7 将椭球面上的元素化算至高斯平面 一、平面子午线收敛角计算公式
1、平面子午线收敛角的定义 过某点的子午线切线与坐标纵轴 正向之间的夹角 计算平面子午线收敛角的意义:
A

椭球面元素归算至高斯平面(高斯投影)-93页文档资料

椭球面元素归算至高斯平面(高斯投影)-93页文档资料

17 /47将椭球面三角系归算到平面上,包括坐标、曲率改正、距离 改正和子午线收敛角等项计算工作。
5.2 高斯投影坐标正反算
第一类称高斯投影正算公式,亦即由(B, L)求(x、y);
1 2
第二类称高斯投影反算公式,亦即由(x、y)求(B, L)。
3 4
一、高斯投影坐标正算公式
5
6
7 8
高斯投影必须满足以下三个条件:
5 /4均7 大于l。
(7)离中央子午线愈远,长度变形愈大。
3、投影带的划分
我国规定按经差6º和3º
1 2
进行投影分带。
3 4
6º带自首子午线开始,
5 按6º的经差自西向东分成
6 7
60个带。
8 9
3º带自1.5 º开始,按3º
10 的经差自西向东分成120个
带。
6 /47
高斯投影带划分
6º带与3º带中央子午线之间的关系如图:
1高890 斯其中投他央子影子午午面线线上和和:平赤行道圈分均别变为为直曲线线ON。'及OE ' ,
P'N'是PN的投影,P' P 1'是PP1的投影; P'的直角坐标为(x,y); 14/4因7 是等角投影,大地方位角APK投影后没有变化。 三角形投影后变为边长si的曲线三角形(长度大于椭球面上的边

6
2 f

8
2 f
t
2 f
垂足纬度。 其值由子午线
2弧2 /长47计算公式反
算求得
5.3 高斯投影坐标计算的实用公式
1. 正算实用公式
1 2 3 4 5 6 7 8 9
10
23 /47

控制测量学

控制测量学

控制测量学1、控制测量学的基本任务:① 在设计阶段建立用于测绘大比例尺地形图的测图控制网② 在施工阶段建立施工控制网③ 在工程竣工后的运营阶段,建立以监视建筑物变形为目的的变形观测专用控制网2、大地水准面:与平均海水面相重合,不受潮汐、风浪及大气压变化影响,并延伸到大陆下面处处与铅垂线相垂直的水准面。

3、大地水准面是测量外业的基准面,与其相垂直的铅垂线是外业测量的基准线;参考椭球面是内业测量的基准面,与其相垂直的法线是内业测量的基准线。

4、大地高:是地面点沿法线到椭球面的距离。

正高:是地面点沿实际重力线到大地水准面的距离。

正常高:是地面点沿正常重力线到似大地水准面的距离。

5、垂线偏差:地面一点上的重力向量g和相应椭球面上的法线向量n之间的夹角定义为该点的垂线偏差。

6、测定垂线偏差一般有四种方法:天文大地测量方法;重力测量方法;天文重力测量方法以及GPS方法。

第二章、水平控制网的技术设计1、建立国家水平大地控制网的方法:①常规大地测量法:1)三角测量法,2)导线测量法,3)边角网和三边网③现代定位新技术:1)GPS测量,2)甚长基线干涉测量系统(VLBI),3)惯性测量系统(INS)2、建立国家水平大地控制网的基本原则:①大地控制网应分级布设、逐级控制;②大地控制网应有足够的精度;③大地控制网应有一定的密度;④大地控制网应有统一的技术规格和要求3、工程测量水平控制网的布设原则:①分级布设、逐级控制;②要有足够的精度;③要有足够的密度;④要有统一的规格第三章、精密测角仪器和水平角观测1、①经纬仪的视准轴误差(c值):仪器的视准轴不与水平轴正交所产生的误差。

消除方法:取盘左、盘右实际读数的中数②经纬仪的水平轴倾斜误差(i角):仪器的水平轴不与垂直轴正交所产生的误差。

消除方法:取盘左、盘右实际读数的平均值③经纬仪的水平轴倾斜误差(v角):由于仪器未严格整平,而使垂直轴偏离测站铅垂线一微小角度。

消除方法:1)尽量减小垂直轴的倾斜角v值2)测回间重新整平仪器3)对水平方向观测值施加垂直轴倾斜改正数2、影像精密测角的因素:①外界条件的影响:1)大气层密度的变化和大气透明度对目标成像质量的影响2)水平折光的影响3)照准目标的相位差4)温度变化对视准轴的影响5)外界条件对觇标内架稳定性的影响②仪器误差的影响:1)水平度盘位移的影响2)照准部旋转不正确的影响3)照准部水平微动螺旋作用不正确的影响4)垂直微动螺旋作用不正确的影响③照准和读数误差的影响3、精密测角的一般原则:(判断)P994、方向观测法:(计算)P100第四章、电磁波测距仪及其距离测量1、电磁波测距仪的精度公式:m=A+BDA代表固定误差,单位mm。

[整理](第8章)高斯平面直角坐标.

[整理](第8章)高斯平面直角坐标.

第八章高斯平面直角坐标§1 正形投影的基本公式一、地图投影的概念1.投影的必要性及其方法①投影的必要性:测量工作的根本任务,是测定地面点的坐标和测绘各种地形图。

因:1)椭球面上计算复杂;2)地图是画在平面图纸上,故,有必要将椭球面上的坐标、方向、长度投影到平面上。

②投影的方法:按一定的数学法则,得到如下的解析关系(函数关系)x=F1(B,L)y=F2(B,L)式中B,L——椭球面上的大地坐标x,y——投影平面上的直角坐标按高斯投影方法得到的平面直角坐标x,y叫高斯平面直角坐标。

2.投影的分类椭球面是不可展开的曲面(圆柱,圆锥面是可展开曲面)。

若展开成平面,必产生变形。

投影按变形的性质可分为:等距离投影━投影后地面点见的距离不变等面积投影━保证投影后面积不变等角投影━投影后微分范围的形状相似3.测量采用的投影测量工作从计算和测图考虑,采用等角投影(又称正形投影、保角投影)。

其便利在于:1)可把椭球面上的角度,不加改正地转换到平面上。

(注:椭球面上大地线投影到平面上亦为曲线。

为实用,需将投影的曲线方向改正为两点间弧线方向,称方向改化。

方向改化是在平面上为实用而做的工作,非投影工作。

且:①改化小,公式简单;②只在等级控制改化,图根控制、测图不顾及)2)因微分范围内投影前后图形相似,则大比例尺图的图形与实地完全相似,应用方便。

二、正形投影1.正形投影的特性有微分三角形如图:对于保角投影:A′=A;B′=B;C′=C所以长度比 cc b b a a md d d d d d '='='=故,正形投影在一个点(微分范围)上,各方向长度比相同。

即投影后保持图形相似。

例如下图,对一个任意形状的微小图形,总可以取一个边数极多的中点多边形逼近它,对于正形投影:m obb o oa a o =='='但上述特点只在微分范围内成立。

在广大范围内,投影前后图形保持相似是不可能的(否则意味着椭球面可以展开)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)分带投影
高斯投影 6 带:自 0 子午线起每隔经差 6 自西向东分带,依次编号 1,2,3,…。我国 6 带中央子午线的经度,由75 起每隔 6 而至135 , 共计 L 0 表示,它 11带(13~23带),带号用 n表示,中央子午线的经度用 6 n 3,如下图所示。 们的关系是 L 0
x
x
500Km
B
xA
xB
y
xB
xA
yB
yA
A
B
yB
yA
A
y
(3)高斯平面直角坐标系 在我国 x坐标都是正的,y 坐标的最大值(在赤 道上)约为330km。为了避免出现负的横坐标, 可在横坐标上加上500 000m。此外还应在坐标前 面再冠以带号。这种坐标称为国家统一坐标。例 如,有一点 Y =19 123 456.789m,该点位于19带 内,其相对于中央子午线而言的横坐标则是:首 先去掉带号,再减去500000m,最后得 y =-376 543.211m。
返回本章首页
8.2
正形投影的一般条件
高斯投影首先必须满足正形投影的一般条件。图a为椭球面,图b为它 在平面上的投影。在椭球面上有无限接近的两点P1和 P2,投影后为P1′ p2 dS 和 ,其坐标均已注在图上, 为大地线的微分弧长,其方位角为 。 A 在投影面上,建立如图 b所示的坐标系, 的投影弧长为 。 ds dS
8.3 高斯平面直角坐标系与大地坐标系
1 高斯投影坐标正算公式
(1)高斯投影正算:已知椭球面上某点的大地坐标 L, B ,求该点 L , B ( x , y )的坐标变换。 在高斯投影平面上的直角坐标 x, y ,即 (2)投影变换必须满足的条件: 中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点 P1 和 P2 ,它们的大地坐标 分别为(l ,B)及(-l ,B),式中 l为椭球面上 P点的经度与中央子 l LL 午线( L 0 ) 的经度差: , P点在中央子午线之东, l 为正,在 0 , y) 和 P 西则为负,则投影后的平面坐标一定 为 P x , y ) 。 1(x 2(
[知识点及学习要求] 1.高斯投影的基本概念; 2.正形投影的一般条件; 3.高斯平面直角坐标与大地坐标的相互转换——高斯投影的正算与反 算 4.椭球面上观测成果(水平方向、距离)归化到高斯平面上的计算; 5.高斯投影的邻带换算; 6.工程测量投影面与投影带的选择。
[难点]在对本章的学习中,首先要理解和掌握高斯投影的
地图投影的方式
等角投影——投影前后的角度相等,但长度和面积有变形; 等距投影——投影前后的长度相等,但角度和面积有变形; 等积投影——投影前后的面积相等,但角度和长度有变形。
1 投影与变形 投影变形:椭球面是一个凸起的、不可展平的曲 面。将这个曲面上的元素(距离、角度、图形) 投影到平面上,就会和原来的距离、角度、图形 呈现差异,这一差异称为投影变形。
概念。高斯正算和反算计算;方向改化和距离改化计算; 高斯投影带的换算与应用;工程测量中投影面与投影带的 选择。
返回本章首页
8.1 高斯投影概述
1 投影与变形
地图投影:就是将椭球面各元素(包括坐标、方向和长度)按一 定的数学法则投影到平面上。研究这个问题的专门学科叫地图投影 学。可用下面两个方程式(坐标投影公式)表示: x F1 ( L , B ) y F2 ( L , B ) 式中L,B是椭球面上某点的大地坐标,而x ,y是该点投影后的平面直角 坐标。
(4)高斯平面投影的特点:
(5) 椭球面三角系化算到高斯投影面
将椭球面三角系归算到高斯投影面的主要内容是:
将起始点的大地坐标归算为高斯平面直角坐标;为了检核还 应进行反算,亦即根据反算。 通过计算该点的子午线收敛角及方向改正,将椭球面上起算 边大地方位角归算到高斯平面上相应边的坐标方位角。 通过计算各方向的曲率改正和方向改正,将椭球面上各三角 形内角归算到高斯平面上的由相应直线组成的三角形内角。 通过计算距离改正,将椭球面上起算边的长度归算到高斯平 面上的直线长度。 当控制网跨越两个相邻投影带,需要进行平面坐标的邻带换 算。
高斯投影 3 带:它的中央子午线一部分同 6 带中央子午线重合,一部 L表示 3 带中 分同 6 带的分界子午线重合,如用 n 表示3 带的带号, 下图所示。我国 3 带共计22带 央子午线经度,它们的关系L3 n (24~45带)。
(3)高斯平面直角坐标系
在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午 线和赤道的交点 O 作为坐标原点,以中央子午线的投影为纵坐标 x 轴,以赤道的投影为横坐标 y 轴。
3 高斯投影的基本概念
(1)基本概念:
如下图所示,假想有一个椭圆柱面横套在地球椭球体外面,并与某一 条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中 心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一 定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影 面,此投影为高斯投影。高斯投影是正形投影的一种。
图a
图b
椭球面到平面的正形投影一般公式——称柯西-黎曼条件:
x q x l y l y q
平面正形投影到椭球面上的一般条件:
q x l x

l y q y

返回本章首页
第 8章
椭球面元素归算至高斯平面—高斯投影
[本章提要] 8.1 高斯投影概述
8.2
8.3
正形投影的一般条件
高斯平面球面上观测成果归化到高斯平面上计算
工程测量投影面与投影带选择 [习题]
本章提要
本章介绍从椭球面上大地坐标系到平面上直角坐 标系的正形投影过程。研究如何将大地坐标、大地线 长度和方向以及大地方位角等向平面转化的问题。重 点讲述高斯投影的原理和方法,解决由球面到平面的 换算问题,解决相邻带的坐标坐标换算。讨论在工程 应用中,工程测量投影面与投影带选择。
投影变形的形式:角度变形、 长度变形和面积变形。
2 控制测量对地图投影的要求 应当采用等角投影(又称为正形投影) 采用正形投影时,在三角测量中大量的角度观测 元素在投影前后保持不变;在测制的地图时,采 用等角投影可以保证在有限的范围内使得地图上 图形同椭球上原形保持相似。 在采用的正形投影中,要求长度和面积变形不 大,并能够应用简单公式计算由于这些变形而带 来的改正数。 能按分带投影
相关文档
最新文档