(推荐)高效液相色谱法的分类及原理

合集下载

高效液相色谱法的检测原理

高效液相色谱法的检测原理

高效液相色谱法的检测原理高效液相色谱法(HighPerformanceLiquidChromatography,HPLC)是一种分离、检测和定量化分析化合物的高效分析技术。

它已成为现代分析化学中不可缺少的手段之一。

一、HPLC的基本原理HPLC的基本原理是利用化合物在固定相和流动相之间的分配行为,通过不同的相互作用力(如极性、亲疏水性、离子性等)使化合物在固定相中发生分离。

其中,固定相是一种具有特定化学性质的材料,常用的固定相有硅胶、高分子材料等;流动相则是一种能够溶解样品的溶剂或混合物,流动相中的溶剂性质和浓度对分离效果有很大的影响。

在HPLC中,样品被注入进入色谱柱中,随着流动相的不断流动,化合物会在固定相中发生一系列的吸附、解吸、扩散等步骤,从而实现分离。

在某些情况下,需要利用色谱柱上的化学反应来实现分离。

例如,利用离子交换色谱柱可以实现对带电化合物的分离,利用手性固定相可以实现对手性化合物的分离。

二、HPLC的检测方式HPLC的检测方式主要有以下几种:1. UV检测:利用紫外线在化合物中的吸收特性,通过测定样品在不同波长下的吸光度来定量分析化合物。

2. 荧光检测:利用荧光化合物在激发光下的荧光发射特性,通过测定样品在不同波长下的荧光强度来定量分析化合物。

荧光检测对于具有荧光基团的化合物非常敏感,可以检测到极低浓度的化合物。

3. 电化学检测:利用电极与样品之间的电化学反应,通过测定电极的电势变化来定量分析化合物。

电化学检测通常用于检测带电化合物,如离子、电解质等。

4. 质谱检测:利用质谱仪对样品进行分析,通过测定化合物的质量谱图来确定化合物的结构和分子量。

三、HPLC的应用领域HPLC广泛应用于药物分析、食品安全、环境监测、化学品生产等领域。

例如,药物分析中常用HPLC对药物成分进行分离和定量,食品安全中常用HPLC对食品中的添加剂、农药残留等进行检测,环境监测中常用HPLC对水体、土壤中的有害物质进行检测。

高效液相色谱简介及操作

高效液相色谱简介及操作

HPLC和经典液相色谱法的比较
3.高效液相色谱法的分类
• 通常将液相色谱法按分离机理分成吸附色谱法、分配色谱法、离子色 谱法和凝胶色谱法四大类。
4.如何阅读色谱图??
tR:保留时间;tM:死时间; :调整保留时间; W:峰宽
• 定性分析:在同一色谱系统中相同物质具 有相同的保留值 • 定量分析:组分含量与其响应值(峰高或 面积)成正比
2 色谱柱使用的注意事项
• 色谱柱在任何情况下不能碰撞、弯曲或强烈震动。 • 当分析柱长期不使用,应用适当有机溶剂保存(一般 为甲醇)。 • 每天工作结束后用适当的溶剂来清洗柱。
3 其他注意事项
• 未经提取净化的蛋白样品、血样、生物样品绝对禁 止直接进样分析。 • 要注意流动相的脱气。 • 避免使用高粘度的溶剂作为流动相。 • 使用新鲜配制的流动相,特别是水溶剂或缓冲液建 议不超过两天,最好每天更换。
(5)色谱柱平衡后,打开检测器(开灯) (6)测定样品 (7)清洗仪器
色谱柱及流路清洗 进样阀清洗 进样针清洗
四、主要注意事项
1 泵使用的注意事项

• •
• •
防止任何固体微粒进入泵体(用0.22 um或0.45 um 的微孔滤膜过滤) 流动相不应含有任何腐蚀性物质,含有缓冲盐的流 动相不应保留在泵内更不允许留在柱内。 泵工作时防止溶剂瓶内的流动相用完,否则空泵运 转一是会使大量空气进入柱内柱床崩塌、也会磨损柱塞、 密封圈,最终产生漏液。 输液泵的工作压力决不要超过规定的最高压力。 流动相应先脱气,以免在泵内产生气泡,影响流量 的稳定性和分析结果。
c. 荧光检测器 (FLD) 只适用于具有荧光的有机化合物(如多环芳烃、氨基 酸、胺类、维生素和某些蛋白质等)的测定。

高效液相色谱法的分离原理

高效液相色谱法的分离原理

高效液相色谱法的分离原理(原创版)目录一、高效液相色谱法的基本概念二、高效液相色谱法的分离原理1.流动相与固定相的相互作用2.溶质在两相间的分配3.平衡时的计算公式三、高效液相色谱法的应用领域四、高效液相色谱法的常见故障及其排除方法正文高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种以液体为流动相的色谱分析方法,广泛应用于医药卫生、食品安全、环境化学等各个领域。

其分离原理主要基于溶质在固定相和流动相之间的分配,达到平衡时,服从于高效液相色谱计算公式。

在高效液相色谱法中,流动相与固定相之间应互不相溶,且具有明显的分界面。

当试样进入色谱柱后,溶质会在两相间进行分配。

在达到平衡时,溶质在固定相和流动相中的浓度会达到一定的比例关系。

通过计算公式,我们可以得到溶质在固定相和流动相中的浓度。

高效液相色谱法的应用领域十分广泛,包括但不限于医药卫生、食品安全、环境化学等各个领域。

在医药卫生领域,高效液相色谱法可以用于药物分析、药物研发和药品质量控制等;在食品安全领域,可以用于食品成分分析、添加剂检测和农药残留检测等;在环境化学领域,可以用于水质分析、土壤污染检测和空气污染监测等。

在使用高效液相色谱法过程中,可能会遇到一些常见故障,如流动相泄漏、检测器信号不稳定、色谱柱分离效果差等。

对于这些故障,我们可以采取相应的排除和解决方法。

例如,对于流动相泄漏,可以检查流动相输送管路是否破损、接头是否松动等;对于检测器信号不稳定,可以检查检测器是否受到外界干扰、信号线是否接触良好等;对于色谱柱分离效果差,可以检查色谱柱是否损坏、固定相是否流失等。

综上所述,高效液相色谱法是一种分离效果高、速度快、应用广泛的色谱分析方法。

第1页共1页。

hplc高效液相色谱法

hplc高效液相色谱法

HPLC高效液相色谱法简介高效液相色谱法(HPLC)是一种利用液体作为流动相,通过高压输液系统,将样品中的各组分在固定相和流动相之间进行分配或吸附等作用而实现分离和检测的色谱技术。

HPLC具有分离效率高、灵敏度高、选择性强、分析速度快、样品适用范围广等优点,已成为化学、生物、医药、环境等领域中最重要的分析方法之一。

本文将简要介绍HPLC的基本原理、仪器组成、常用的色谱模式和应用领域,以期对HPLC感兴趣的读者有所帮助。

一、HPLC的基本原理HPLC的基本原理是利用样品中的各组分在固定相和流动相之间的不同亲和力,使其在色谱柱内以不同的速度移动,从而达到分离的目的。

固定相是填充在色谱柱内的颗粒状物质,可以是固体或涂于固体载体上的液体。

流动相是通过高压泵送入色谱柱的溶剂或溶剂混合物,可以是极性或非极性的。

样品是通过进样器注入流动相中,并随流动相进入色谱柱。

当样品中的各组分经过固定相时,会发生吸附、分配、离子交换、排阻等作用,导致它们在固定相中停留不同的时间。

这个时间称为保留时间(retention time),通常用tR表示。

保留时间是反映样品组分在色谱柱内分离程度的重要参数,不同的组分有不同的保留时间。

当样品组分从色谱柱出口流出时,会被检测器检测到,并产生一个信号。

这个信号随时间变化而变化,形成一个色谱峰(chromatographic peak)。

色谱峰的位置反映了样品组分的保留时间,色谱峰的面积或高度反映了样品组分的含量或浓度。

将检测器信号随时间变化而绘制出来,就得到了一条色谱图(chromatogram)。

色谱图上可以看到不同的色谱峰,每个峰对应一个样品组分。

通过比较保留时间和色谱峰面积或高度,就可以对样品进行定性和定量分析。

二、HPLC仪器组成HPLC仪器主要由以下几个部分组成:溶剂供给系统(solvent delivery system):负责提供恒定压力和流速的流动相,并将溶剂混合成所需比例。

第二十章高效液相色谱(第五版)

第二十章高效液相色谱(第五版)

(2)L2 = 30cm:
R1 2 L1 ( ) R2 L2
L2 30 R 2 R1 1.33 1.88 L1 15
56
紫外检测器的重要进展; 光电二极管阵列检测器:1024个二极管阵列,各检测特 定波长,计算机快速处理,三维立体谱图,如图所示。
48
光电二极管阵列检测器
49
(二) 荧光检测器 fluorophotometric detector 特点: • 灵敏度高(高于紫外检测器)
• 只适用于能产生荧光或其衍生物能发
荧光的物质。
50
(三) 蒸发光散色检测器 evaporative light scattering detector
流动相 (样品)
流动相蒸发除去
加热
组分形成气溶胶
强光
特点: 测定散射光强 • 灵敏度低 I = k mb • 通用型:如糖类、 氨基酸等分析
51
(四) 化学发光检测器
组分 + 发光试剂 激发态产物 光辐射
n1/2 -1 k2 R = —— (——) (——) 4 1+k2
:主要受溶剂种类的影响
k :主要受溶剂配比的影响
29
选择流动相时应注意的几个问题
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积损坏色谱柱和使检测器噪声增加。 (2)避免流动相与固定相发生作用而使柱效下降或损坏 柱子。如使固定液溶解流失; (3)试样在流动相中应有适宜的溶解度,防止产生沉 淀并在柱中沉积。
24
第二节 HPLC的固定相和流动相及其选择
一、化学键合固定相:目前应用最广、性能最佳的固定相;
a. 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C 稳定,耐水、耐光、耐有机溶剂,应用最广; c. 硅碳键型: ≡Si—C d. 硅氮键型: ≡Si—N

高效液相色谱法的原理

高效液相色谱法的原理

高效液相色谱法的原理高效液相色谱法(HPLC)是一种常用的分离和分析技术,它是在液相色谱法的基础上发展起来的,具有高效、灵敏、准确、快速等特点。

其原理是利用液相在固定填料上的分配作用,通过样品在流动相中的分配系数不同,实现对混合物中各成分的分离和检测。

HPLC的原理主要包括样品的进样、流动相的选择、填料的选择和柱温控制等几个方面。

首先是样品的进样。

样品通过进样装置进入流动相中,然后被输送到填料柱中进行分离。

在进样过程中,要求样品能够均匀、快速地进入流动相中,以保证分析结果的准确性。

其次是流动相的选择。

流动相是HPLC分离的关键,它可以是有机溶剂、水、缓冲液等。

不同的流动相对于不同的样品具有不同的适用性,因此在选择流动相时需要考虑样品的性质和分离的要求。

填料的选择也是HPLC分离的重要因素。

填料是HPLC柱中的固定相,它的种类和粒径大小直接影响到分离的效果。

常用的填料有C18、C8、SiO2等,它们具有不同的分离机理和适用范围,需要根据具体的分析要求进行选择。

此外,柱温的控制也对HPLC分离有着重要的影响。

柱温的升高可以提高分离效率和分辨率,减少分离时间,但也会增加柱的压力和流动相的挥发,因此在实际应用中需要综合考虑。

总的来说,HPLC的原理是通过样品在流动相和固定相之间的分配作用,实现对混合物中各成分的分离和检测。

在实际应用中,需要根据具体的分析要求选择合适的进样方式、流动相、填料和柱温控制,以达到最佳的分离效果。

通过对HPLC原理的深入了解,可以更好地应用HPLC技术进行分离和分析,为科研和生产提供准确、可靠的数据支持。

同时,不断探索和创新HPLC技术,将有助于提高其分离效率和应用范围,推动科学研究和工程技术的发展。

高效液相色谱法的原理及影响因素

高效液相色谱法的原理及影响因素

高效液相色谱法的原理及影响因素高效液相色谱(High Performance Liquid Chromatography,简称HPLC)是一种在液相中进行分离和分析的高效分析技术。

它具有高分辨率、高灵敏度、良好的线性范围和广泛的适用性。

以下是关于HPLC的原理和影响因素的详细介绍。

一、高效液相色谱的原理:高效液相色谱的原理基于物质在液态流动相中的分配和吸附特性,通过调节流动相的组成和性质,控制样品成分在固定相中的分离。

高效液相色谱的基本组成包括进样器、流动相系统、柱和检测器。

1.进样器:样品通过进样器引入色谱柱中。

进样器可以分为自动进样器和手动进样器两种类型。

2.流动相系统:流动相系统由溶剂混合器、溶剂泵和压力传递系统组成。

溶剂混合器用于混合不同溶剂的比例,以制备合适的流动相。

溶剂泵用于将流动相以一定的流速送入色谱柱中,常用的泵有恒压泵和梯度泵等。

3.柱:色谱柱是高效液相色谱的核心部件。

分离是通过样品成分在柱中的相互作用和分配系数的差异实现的。

色谱柱常见的填充物包括C18、C8和氨基硅胶等,不同填充物对于不同的样品具有不同的分离效果。

4.检测器:搭配不同的检测器可以对样品成分进行定性和定量分析。

常见的检测器包括紫外可见光谱检测器(UV)、荧光检测器(FLD)、电化学检测器和质谱检测器等。

五、高效液相色谱的影响因素:高效液相色谱的分离和分析结果受多种因素的影响,包括以下几个方面:1.流动相组成:流动相的组成直接影响样品成分在固定相上的分配系数,进而影响分离效果。

流动相的成分要根据样品的性质和需要进行选择。

常用的流动相包括纯溶剂、溶剂混合物和缓冲液等。

2.流动相性质:流动相的性质包括溶液的pH值、离子强度、流速和温度等。

其中,溶液的pH值和离子强度的变化可以影响分析物的离子态,进而影响分离效果。

流速的选择要根据分析物的种类和浓度进行调整。

温度的增加可以提高分子的扩散速度,加快分离过程。

3.色谱柱:色谱柱的类型、填充物和尺寸等也对分离效果有重要影响。

高效液相色谱法的分类及原理

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。

1.液-固色谱法(液-固吸附色谱法)固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。

①液-固色谱法的作用机制吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。

流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应:X(液相)+nS(吸附)<==>X(吸附)+nS(液相)其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。

吸附反应的平衡常数K为:K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。

K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。

发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。

②液-固色谱法的吸附剂和流动相常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。

一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。

对流动相的基本要求:试样要能够溶于流动相中流动相粘度较小流动相不能影响试样的检测常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。

③液-固色谱法的应用常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。

2.液-液色谱法(液-液分配色谱法)将液体固定液涂渍在担体上作为固定相。

①液-液色谱法的作用机制溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。

高效液相色谱原理

高效液相色谱原理

高效液相色谱法(HPLC)一、方法原理1、液相色谱法概述高效液相色谱分析法其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。

HPLC仪器的基本结构2、高效液相色谱法的特点(HPLC)与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分配系数、离子交换作用或分子尺寸大小的差异来进行分离。

由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。

特点是选择性高、分离效能高、分析速度快的特点。

高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。

高效液相色谱法与气相色谱法相比,各有所长,互相补充。

如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。

3、高效液相色谱法的固定相和流动相(1)固定相表面多孔型和全多孔型两大类。

(2)流动相(淋洗液)流动相的选择对改善分离效果产生重要的辅助效应。

从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求:①与固定相互不相溶,并能保持色谱柱的稳定性。

②高纯度,以防所含微量杂质在柱中积累,引起柱性能的改变。

③与所用的检测器相匹配。

④应对样品有足够的溶解能力,以提高测定的灵敏度。

⑤具有低的黏度(可减少溶质的传质阻力,提高柱效)和适当低的沸点。

⑥应避免使用具有显著毒性的溶剂,以保证工作人员的安全。

液相色谱法中常用的流动相有正己烷、正庚烷、甲醇、乙腈等。

4、高效液相色谱法的主要类型(1)液—固吸附色谱法①分离原理:基于各组分吸附能力的差异来进行混合物分离的。

②固定相:极性和非极性两种。

极性固定相:硅胶、氧化镁。

高效液相色谱分类及工作原理

高效液相色谱分类及工作原理


硅胶
Good transport between sample and sorbent Conditioned sorbent
分配色谱 (L-L,G-L)
1.分离原理
液液分配色谱的分离原理基本与液液萃取相同, 都是根据物质在两种互不相溶的液体中溶解度的不同, 具有不同的分配系数。所不同的是液液色谱的分配是在 柱中进行的,使这种分配平衡可反复多次进行,造成各 组分的差速迁移,提高了分离效率,从而能分离各种复 杂组分。
2.固定相
液液色谱的固定相由载体和固定液组成。常用 的载体有下列几类: (1)全多孔型载体:由硅胶、硅藻土等材料制成, 直径约100 m的全多孔型颗粒。
这类固定相由于颗粒很细,孔仍然较浅,传质速 率快,易实现高效、高速。特别适合复杂混合物分离 及痕量分析。
(2)表面多孔型载体(薄壳型微珠载体):由直径为 30 ~ 40m的实心玻璃球和厚度约为1 ~ 2 m的多孔性 外层所组成。目前,这种载体粒度为5 ~ 10 m。
式样种类 键合基团 流动相
色谱类型
实例
低极性,溶 解于烃类
—C18
中等极性, 可溶于醇
—CN —NH2
—C18 —C8 —CN
—C8 —CN
高极性,可 溶于水
—C18 —SO3-
+
甲醇-水 乙腈-水 乙腈-四氢呋喃
反相
多环芳烃、甘油三酯、类脂、脂溶 性维生素、甾族化合物、氢醌
乙腈、正己烷 氯仿 正己烷 异丙醇
液相传质过程
液相传质过程是指待测组分从气液界面移动到液相内部,发生 质量交换以达到分配平衡,然后又返回气液界面的传质过程。
速率理论方程
公式说明影响n或H的因素 ①填料性质:填料颗粒均匀程度、填料颗粒大小 ②填充情况:填料在色谱柱中填充均匀程度 ③流动相:流动相种类和流速 ④固定相:固定液厚度 结论:范弟姆特方程对色谱分离条件的选择具有指导意义

高效液相色谱法分离原理

高效液相色谱法分离原理

高效液相色谱法分离原理高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。

1(液固色谱法使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。

分离过程是一个吸附,解吸附的平衡过程。

常用的吸附剂为硅胶或氧化铝,粒度5~10μm。

适用于分离分子量200~1000的组分,大多数用于非离子型化合物,离子型化合物易产生拖尾。

常用于分离同分异构体。

2(液液色谱法使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分离的组分在流动相和固定相中溶解度不同而分离。

分离过程是一个分配平衡过程。

涂布式固定相应具有良好的惰性;流动相必须预先用固定相饱和,以减少固定相从担体表面流失;温度的变化和不同批号流动相的区别常引起柱子的变化;另外在流动相中存在的固定相也使样品的分离和收集复杂化。

由于涂布式固定相很难避免固定液流失,现在已很少采用。

现在多采用的是化学键合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。

液液色谱法按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。

正相色谱法采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。

常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。

反相色谱法一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。

适用于分离非极性和极性较弱的化合物。

RPC在现代液相色谱中应用最为广泛,据统计,它占整个HPLC应用的80%左右。

随着柱填料的快速发展,反相色谱法的应用范围逐渐扩大,现已应用于某些无机样品或易解离样品的分析。

为控制样品在分析过程的解离,常用缓冲液控制流动相的pH值。

高效液相色谱原理

高效液相色谱原理

高效液相色谱法(HPLC)一、方法原理1、液相色谱法概述高效液相色谱分析法其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。

HPLC仪器的基本结构2、高效液相色谱法的特点(HPLC)与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分配系数、离子交换作用或分子尺寸大小的差异来进行分离。

由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。

特点是选择性高、分离效能高、分析速度快的特点。

高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。

高效液相色谱法与气相色谱法相比,各有所长,互相补充。

如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。

3、高效液相色谱法的固定相和流动相(1)固定相表面多孔型和全多孔型两大类。

(2)流动相(淋洗液)流动相的选择对改善分离效果产生重要的辅助效应。

从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求:①与固定相互不相溶,并能保持色谱柱的稳定性。

②高纯度,以防所含微量杂质在柱中积累,引起柱性能的改变。

③与所用的检测器相匹配。

④应对样品有足够的溶解能力,以提高测定的灵敏度。

⑤具有低的黏度(可减少溶质的传质阻力,提高柱效)和适当低的沸点。

⑥应避免使用具有显著毒性的溶剂,以保证工作人员的安全。

液相色谱法中常用的流动相有正己烷、正庚烷、甲醇、乙腈等。

4、高效液相色谱法的主要类型(1)液—固吸附色谱法①分离原理:基于各组分吸附能力的差异来进行混合物分离的。

②固定相:极性和非极性两种。

极性固定相:硅胶、氧化镁。

高效液相色谱法工作原理

高效液相色谱法工作原理

高效液相色谱法工作原理
高效液相色谱法(High-Performance Liquid Chromatography,HPLC)是一种用于化合物分离和分析的分离技术。

它是一种液相色谱法,可以用于分离极性、非极性和大分子化合物。

它广泛应用于化学、制药、生物、环境和食品等领域。

高效液相色谱法的工作原理主要基于化合物间在移动相(流动相)和静态相(固定相)之间相互作用的不同程度。

在HPLC分析中,样品会通过由强度调节器和检测器组成的色谱系统。

化合物从具有高压气源并被称为“移动相”的溶液中通过一个柱子,该柱子由高度填充的吸附剂组成。

柱子上的静态相被称为“固定相”,并且通过静态相和流动相之间的化合物相互作用来实现对化合物的分离。

高效液相色谱法中的移动相通常是一个高压液体。

固定相通常可以是任何一种吸附剂,但通常是硅胶或者高性能液相色谱固定相。

为了分离化合物,需要通过调整移动相的性质来调整化合物与静态相相互作用的程度。

这可以通过调整溶剂性质来实现,包括极性、pH 值、浓度和离子强度。

在高效液相色谱法中,化合物被分离并纯化时,它们同时被聚集并聚集在某些列与某些未受分离的化合物之间。

通过单独对某些列进行采集,可以隔离和收集已经分离的化合物。

可以使用不同类型的探测器来检测和量化化合物。

总结一下,高效液相色谱法可以用于分离和分析各种类型的化合物。

它基于化合物在移动相和静态相之间相互作用的程度而进行分离。

通过调整移动相的性质,
可以调整化合物与静态相相互作用的程度,从而实现更好的分离效果。

高效液相色谱仪的原理 液相色谱工作原理

高效液相色谱仪的原理 液相色谱工作原理

高效液相色谱仪的原理液相色谱工作原理高效液相色谱仪的原理:调配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。

在不同的色谱分别机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数(或称交换系数),凝胶色谱法为渗透参数。

但一般情况可用调配系数来表示。

在条件(流动相、固定相、温度和压力等)确定,样品浓度很低时(Cs、Cm很小)时,K只取决于组分的性质,而与浓度无关。

这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在很多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。

因此,只有尽可能削减进样量,使组分在柱内浓度降低,K恒定时,才能获得正常峰。

仪器使用:高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分别热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。

与试样预处理技术相搭配,HPLC所达到的高辨别率和高灵敏度,使分别和同时测定性质上特别相近的物质成为可能,能够分别多而杂相体中的微量成分。

随着固定相的进展,有可能在充分保持生化物质活性的条件下完成其分别。

HPLC成为解决生化分析问题Z有前途的方法。

由于HPLC具有高辨别率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药讨论、环境分析、无机分析等各种领域。

高效液相色谱仪与结构仪器的联用是一个紧要的进展方向。

液相色谱—质谱联用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等;液相色谱—红外光谱联用也进展很快,如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的进展。

该仪器应用特别广泛,几乎遍及定量定性分析的各个领域。

1、分别混合物:高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分别热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。

高效液相色谱法的原理

高效液相色谱法的原理

高效液相色谱法的原理高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种分离和分析化学物质的常用技术。

它基于样品在流动相中的相互作用,利用不同化学物质在固定相上的差异来实现分离。

HPLC的原理可以分为以下几个步骤:1. 流动相选择:HPLC中的流动相由溶剂组成,根据分析物性质的不同,可以选择不同的流动相。

溶剂的选择应使得分析物在流动相中有适当的溶解度,并且不与固定相发生显著的反应。

2. 固定相选择:HPLC中的固定相通常是一种多孔的固体材料,它具有较大的比表面积以增加分离效果。

常用的固定相有疏水性相、亲水性相、离子交换相等。

固定相的选择应根据分析物的化学特性和分离要求进行。

3. 样品处理:样品需要经过预处理,通常包括提取、浓缩、净化等步骤。

样品处理的目的是去除杂质和提高分离效果。

4. 进样:样品通过进样器引入色谱柱。

进样时要保证样品量的准确控制,以确保分析结果的准确性。

5. 色谱柱:样品在色谱柱中进行分离。

色谱柱是由固定相填充的管状结构,样品在固定相中的相互作用与时间有关,这将导致样品分离。

分离的准确性和效率取决于固定相的性能和色谱柱的尺寸。

6. 检测器:色谱柱输出的混合物被送入检测器进行检测。

常见的检测器包括紫外可见光检测器、荧光检测器、质谱检测器等。

检测器将染料信号转化为电信号,通过数据处理系统得到分析结果。

7. 数据处理:色谱仪将检测到的信号传输到计算机上进行数据处理和结果分析。

数据处理的步骤包括峰面积和峰高计算,峰的定性和定量分析等。

通过以上步骤,HPLC可以实现对复杂混合物的高效分离和定量分析。

它在制药、环境监测、食品分析等领域被广泛应用。

高效液相色谱法的主要类型及其分离原理

高效液相色谱法的主要类型及其分离原理

高效液相色谱法的主要类型及其分离原理高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9´107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。

特点1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。

一般可达150~350×105Pa。

2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。

高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。

3. 高效:近来研究出许多新型固定相,使分离效率大大提高。

4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。

如荧光检测器灵敏度可达10-11g。

另外,用样量小,一般几个微升。

5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。

而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。

对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。

据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。

高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。

用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。

高效液相色谱法基本原理

高效液相色谱法基本原理

高效液相色谱法基本原理高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种基于溶液相的色谱分析技术,其基本原理如下:1. 溶液相选择:在HPLC中,溶液相通常为无机盐溶液、有机溶剂或水。

选择合适的溶液相可以使被分析物在色谱柱中发生有效的分离和保持稳定。

2. 色谱柱选择:色谱柱是HPLC中最关键的组成部分。

根据被分离物的性质和所需分析的目的,选择合适的色谱柱类型,如反相色谱柱、离子交换色谱柱、凝胶过滤色谱柱等。

3. 样品进样:将待测样品通过自动进样器或手动进样器引入色谱系统。

进样总量应在仪器所能承受范围之内,且样品需提前进行前处理,如过滤、稀释等。

4. 色谱分离:进样后,溶液会通过色谱柱,其中的被分析物会在色谱柱中发生吸附、分配、离子交换等物理和化学作用,从而实现分离。

此过程依赖于被分析物和色谱柱固相之间的相互作用。

5. 流动相控制:为了保证色谱柱中样品的分离效果,需要采用恒定的流动相速度。

流动相的选择与被分析物的性质及分离要求有关,可通过梯度洗脱来实现更好的分离效果。

6. 检测器检测:色谱柱出口的物质会进入检测器进行检测。

常用的检测器有紫外-可见吸收光谱仪、荧光光谱仪、电导检测器等。

检测信号会被放大、处理和记录。

7. 数据分析:将检测到的信号转化为图谱,通过波峰的面积、保留时间等数据进行定性和定量分析。

常见的数据处理方法有峰面积法、内标法、标准曲线法等。

通过以上步骤,高效液相色谱法可以实现对复杂混合物的定性和定量分析,具有灵敏度高、分离效果好、样品处理简单等优点,广泛应用于化学、生物、药学等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效液相色谱法的分类及其分离原理
高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。

1.液-固色谱法(液-固吸附色谱法)
固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。

①液-固色谱法的作用机制
吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。

流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应:
X(液相)+nS(吸附)<==>X(吸附)+nS(液相)
其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。

吸附反应的平衡常数K为:
K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。

K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。

发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。

②液-固色谱法的吸附剂和流动相
常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。

一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。

对流动相的基本要求:
试样要能够溶于流动相中
流动相粘度较小
流动相不能影响试样的检测
常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。

③液-固色谱法的应用
常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。

2.液-液色谱法(液-液分配色谱法)
将液体固定液涂渍在担体上作为固定相。

①液-液色谱法的作用机制
溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。

液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液
K值大的组分,保留时间长,后流出色谱柱。

②正相色谱和反相色谱
正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。

反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

一般地,正相色谱是固定液的极性大于流动相的极性,而反相色谱是固定相的极性小于流动相的极性。

正相色谱适宜于分离极性化合物,反相色谱则适宜于分离非极性或弱极性化合物。

③液-液色谱法的固定相
常用的固定液为有机液体,如极性的β,β′氧二丙腈(ODPN),非极性的十八烷(ODS)和异二十烷(SQ)等。

缺点:涂渍固定液容易被流动相冲掉。

采用化学键合固定相则可以避免上述缺点。

使固定浓与担体之间形成化学键,例如在硅胶表面利用硅烷化反应:形成Si-O-Si-C 型键,把固定液的分子结合到担体表面上。

优点:
化学键合固定相无液坑,液层薄,传质速度快,无固定液的流失。

固定液上可以结合不同的官能团,改善分离效能。

固定液不会溶于流动相,有利于进行梯度洗提。

④液-液色谱法的应用
液-液色谱法既能分离极性化合物,又能分离非极性化合物,如烷烃、烯烃、芳烃、稠环、染料、留族等化合物。

化合物中取代基的数目或性质不同,或化合物的相对分子质量不同,均可以用液-液色谱进行分离。

3.离子交换色谱法
原理:离子交换色谱法是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的被测离子进行可逆交换,由于被测离子在交换剂上具有不同的亲和力(作用力)而被分离。

①离子交换色谱法的作用机制
聚合物的分子骨架上连接着活性基团,如:-SO3-,-N(CH3)3+等。

为了保持离子交换树脂的电中性,活性基团上带有电荷数相同但正、负号相反的离子X,称为反离子。

活性基团上的反离子可以与流动相中具有相同电荷的被测离子发生交换:
离子交换色谱的分配过程是交换与洗脱过程。

交换达到平衡时:
K值越大,保留时间越长。

②溶剂和固定相
两种类型:多孔性树脂与薄壳型树脂。

多孔性树脂:极小的球型离子交换树脂,能分离复杂样品,进样量较大;缺点是机械强度不高,不能耐受压力。

薄壳型离子交换树脂:在玻璃微球上涂以薄层的离子交换树脂,这种树脂柱效高,当流动相成分发生变化时,不会膨胀或压缩;缺点是但柱子容量小,进样量不宜太多。

③离子交换色谱法的应用
主要用来分离离子或可离解的化合物,凡是在流动相中能够电离的物质都可以用离子交换色谱法进行分离。

广泛地应用于:无机离子、有机化合物和生物物质(如氨基酸、核酸、蛋白质等)的分离。

4.凝肤色谱法(空间排阻色谱法)
凝胶是一种多孔性的高分子聚合体,表面布满孔隙,能被流动相浸润,吸附性很小。

凝胶色谱法的分离机制是根据分子的体积大小和形状不同而达到分离目的。

①凝胶色谱法的作用机制
体积大于凝胶孔隙的分子,由于不能进入孔隙而被排阻,直接从表面流过,先流出色谱柱;小分子可以渗入大大小小的凝胶孔隙中而完全不受排阻,然后又从孔隙中出来随载液流动,后流出色谱柱;中等体积的分子可以渗入较大的孔隙中,但受到较小孔隙的排阻,介乎上述两种情况之间。

凝胶色谱法是一种按分子尺寸大小的顺序进行分离的一种色谱分析方法。

②凝胶色谱法的固定相
软质凝胶、半硬质凝胶和硬质凝胶三种。

③凝胶色谱法的应用特点
保留时间是分子尺寸的函数,适宜于分离相对分子质量大的化合物,相对分子质量在400~8×105的任何类型的化合物。

保留时间短,色谱峰窄,容易检测。

固定相与溶质分子间的作用力极弱,趁于零,柱的寿命长。

不能分辨分子大小相近的化合物,分子量相差需在10%以上时才能得到分离。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档