2-5第五节 函 数 的 微 分

合集下载

高等数学第五节多元复合函数与隐函数微分法ppt课件

高等数学第五节多元复合函数与隐函数微分法ppt课件
x y
这就是说,不论x,y是自变量还是中间变量,其微 分形式不变,称为(二元函数)一阶微分的形式不变性.
20
例10 求下列函数的偏导数和全微分.
(1) z ( x y)exy
解 dz d[( x y)exy ] ( x y)de xy exyd( x y)
( x y)exy ( y dx x dy) exy(dx dy)
dz z du z dv dx u dx v dx
vuv1 1 uvlnv 1 x x x1 x xlnx
10
情形3 z f (x,v),v v(x, y) 则有
z f f v ; x x v x
z f v y v y
或者 z f (x, y,v),v v(x, y) 则有
z Fx , z Fy . x Fz y Fz
dz z dx z dy x y
dz
Fx' Fz'
dx
Fy' Fz'
dy
所以
Fx'dx Fy'dy Fz'dz 0
dF( x, y, z) Fx'dx Fy'dy Fz'dz 0
33
例13 设隐函数 z z( x, y) 由 sin z x2 yz 0 确定,
12
课堂 设 z f (u, v, t) uv sint ,其中 u et , 练习 v cost ,
求全导数 dz . dt
dz f du f dv f 解
dt u dt v dt t
vet usint cos t
et cos t et sint cos t
et (cos t sint ) cos t .
z f f v ; x x v x

06 第六节 函数的微分

06 第六节 函数的微分

第五节 函数的微分在理论研究和实际应用中,常常会遇到这样的问题:当自变量x 有微小变化时,求函数)(x f y =的微小改变量)()(x f x x f y -∆+=∆. 这个问题初看起来似乎只要做减法运算就可以了,然而,对于较复杂的函数)(x f ,差值)()(x f x x f -∆+却是一个更复杂的表达式,不易求出其值. 一个想法是:我们设法将y ∆表示成x ∆的线性函数,即线性化,从而把复杂问题化为简单问题. 微分就是实现这种线性化的一种数学模型.分布图示★ 引言★ 问题的提出 ★ 微分的定义 ★ 可微的条件 ★ 例1-2 ★ 基本微分公式 ★ 微分四则运算法则 ★ 例3★ 例4 ★ 微分的几何意义★ 复合函数的微分法★ 例5 ★ 例6 ★ 例7 ★ 例8★ 例9★ 例10★ 微分近似计算公式 ★ 例11 ★ 例12★ 例13 ★ 例14★ 常用函数的近似计算公式★ 例15 ★ 例16★ 误差计算 ★ 例17 ★ 内容小结 ★ 课堂练习 ★ 习题 2- 6内容要点:一、 微分的定义:定义1 设函数)(x f y =在某区间内有定义, 0x 及x x ∆+0在这区间内, 如果函数的增量)()(00x f x x f y -∆+=∆可表示为)(x o x A y ∆+∆⋅=∆ (5.1)其中A 是与x ∆无关的常数, 则称函数)(x f y =在点0x 可微, 并且称x A ∆⋅为函数)(x f y =在点0x 处相应于自变量改变量x ∆的微分, 记作dy , 即x A dy ∆⋅= (5.2)二、函数可微的条件dx x f dy )('= (5.8))(x f dxdy '= (5.9)即,函数的导数等于函数的微分与自变量的微分的商. 因此,导数又称为“微商”.三、 微分的几何意义四、基本初等函数的微分公式与微分运算法则 五、 微分形式不变性:无论u 是自变量还是复合函数的中间变量, 函数)(u f y =的微分形式总是可以按微分定义的形式来写,即有du u f dy )('=这一性质称为微分形式的不变性. 利用这一特性,可以简化微分的有关运算. 六、利用微分进行近似计算: 近似值的计算 误差计算dy y ≈∆. (5.10)例题选讲:微分的定义例1(E01)求函数2x y =当x 由1改变到1.01的微分.解 因为,2xdx dy =由题设条件知 ,1=x 01.0101.1=-=∆=x dx 所以 .02.001.012=⨯⨯=dy例2(E02)求函数3x y =在2=x 处的微分. 解 函数3x y =在2=x 处的微分为 dx x dy x 2'3)(==.12dx =基本初等函数的微分公式与微分运算法则的应用例3(E03)求函数x e x y 23=的微分. 解 因为'23')(xex y =xxex ex 232223+=)23(22x ex x+=所以 dx x e x dx y dy x )23(22'+== 或利用微分形式不变性)()(2332xxed x x d edy +=dx ex dx x e xx232223⋅+⋅=.)23(22dx x ex x+=例4(E04)求函数xx y sin =的微分.解因为''sin ⎪⎭⎫⎝⎛=x x y 2sin cos x x x x -=所以 dx y dy '=.s i n c o s 2dx xxx x -=微分形式的不变性例5(E05)设),12sin(+=x y 求dy . 解 设,sin u y =,12+=x u 则)(sin u d dy =udu cos =)12()12cos(++=x d x dx x 2)12cos(⋅+=.)12cos(2dx x +=注: 与复合函数求导类似, 求复合函数的微分也可不写出中间变量, 这样更加直接和方便.例6 设),1ln(2x e y += 求.dy解 )1l n (2xe d dy +=)1(1122xxed e++=)(11222x d eexx+=x d x eexx2122+=.1222dx exe xx+=例7(E06)设,2sinxe y =求.dy解 应用微分形式不变性, 有 .2sin cos sin 2sin sin 2sin2222sin sinsin2sindx xexdxx ex xd ex d edy xxxx=⋅=⋅==例8(E07)已知,22xey x = 求dy .解 222222)()()(x x d eed x dy xx-=422222xxdxedx ex xx⋅-⋅=.)1(232dx xx ex-=例9(E08)在下列等式的括号中填入适当的函数, 使等式成立.(1) ;cos )(tdt d ω= (2) ).()()(sin 2x d x d = 解 ,cos )(sin tdt t d ωωω= ∴)(s i n 1c o s td t d t ωωω=);sin 1(t d ωω=一般地,有.cos sin 1tdt C t d ωωω=⎪⎭⎫⎝⎛+例10(E09)求由方程32y x e xy +=所确定的隐函数)(x f y =的微分dy . 利用微分进行近似计算解 对方程两边求微分, 得 ),2()(3y x d e d xy +=),()2()(3y d x d xy d exy+= ,32)(2dy y dx xdy ydx e xy +=+于是 .322dx yxeye dy xyxy --=例11(E09) 求x )x (f +=1在0=x 与3=x 处的线性化.解 首先不难求得xx f +='121)( ,则413(21)0(23(1)0(='='==),,),f f f f ,于是,根据上面线性化定义知)(x f 在0=x 处的线性化121)0)(0()0()(+=-'+=x x f f x L ,在3=x 处的线性化为4541)3)(3()3()(+=-'+=x x f f x L))(()()(000x x x f x f x L -'+=示意图见右,故x x 2111+≈+(在x=0处), 45411+≈+x x (在x=3处).例12(E11) 求)x ln()x (f +=1在0=x 的线性化. 解 首先求得)(x f 'x+=11,得1)0(='f ,又0)0(=f ,于是)(x f 在x=0处的线性化x x f f x L =-'+=)0)(0()0()(例13(E12)半径10厘米的金属圆片加热后, 半径伸长了0.05厘米, 问面积增大了多少?解 设,2r A π=10=r (厘米), 05.0=∆r (厘米).∴dA A ≈∆r r ∆⋅=π205.0102⨯⨯=ππ=(厘米2).例14(E13)计算0360cos ' 的近似值.解 设x x f cos )(=⇒,sin )('x x f -=x (为弧度),取,30π=x 360π=∆x⇒,21)3(=πf .23)3('-=πf所以 ⎪⎭⎫⎝⎛+=3603cos 3060cos 'ππ 3603s i n 3c o s πππ⋅-=3602321π⋅-=.4924.0≈例15计算下列各数的近似值.(1) (E14)35.998的近似值. (2) .03.0-e解 (1)335.110005.998-=310005.111000⎪⎭⎫ ⎝⎛-=30015.0110-=⎪⎭⎫ ⎝⎛⨯-=0015.031110.995.9=(2) 03.0103.0-≈-e .97.0=例16(E15) 最后我们来看一个线性近似在质能转换关系中的应用. 我们知道,牛顿的第二运动定律αm F =(α为加速度)中的质量m 是被假定为常数的,但严格说来这是不对的,因为物体的质量随其速度的增长而增长. 在爱因斯坦修正后的公式中,质量为2201c/v m m -=,当v 和c 相比很小时,22c /v 接近于零,从而有⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+≈-=22002202201212111c v m m c v m c/v m m 即 ⎪⎭⎫ ⎝⎛+≈2200121c v m m m , 注意到上式中K v m =2021是物体的动能,整理得)K (m v m v m c )m m (∆=-=≈-202020200212121,或 )K (c )m (∆∆≈2. (1)换言之,物体从速度0到速度v 的动能的变化)K (∆近似等于2c )m (∆. 因为8103⨯=c 米/秒,代入式(1)中,得≈)K (∆90 000 000 000 000 000m ∆焦耳,由此可知,小的质量变化可以创造出大的能量变化.例如,1克质量转换成的能量就相当于爆炸一颗2万吨级的原子弹释放的能量.例17 正方形边长为005.041.2±米, 求出它的面积, 并估计绝对误差与相对误差. 解 设正方形的边长为x ,面积为y ,则.2x y = 当41.2=x 时,).(8081.5)41.2(22m y ==.82.4241.241.2'====x x xy边长的绝对误差为,005.0=x δ ∴面积的绝对误差为).(0241.0005.082.42m x =⨯=δ ∴面积的相对误差为%.4.08081.50241.0≈=yy δ课堂练习1.求函数x x y -=的微分dy .2.因为一元函数)(x f y =在0x 的可微性与可导性是等价的, 所以有人说“微分就是导数, 导数就是微分”,判断这种说法对吗?3.设,0>A 且n A B <||, 证明1-+≈+n n n nAB A B A (A , B 为常数), 并计算101000的近似值.。

D2_5微分

D2_5微分
dy
y y f (x) y
o
x0
x
x0 x
机动 目录 上页 下页 返回 结束
二、 微分运算法则
(一)四则运算法则
设 u(x) , v(x) 均可微 , 则
(1) d(u v) du dv (2) d(Cu) Cdu (C 为常数)
(3) d(uv) vdu udv
(4)
d(
u v
)
vdu udv v2
d x x x x
故以后我们把x 记为d x, 称为自变量的微分。则有
dy f (x)x f (x) dx
即有
f (x)
dy dx
函数关某个变量的导数等函数的微分与该变量微分的商
故导数也叫微商。
比较 f (x) dy , f (x) lim y lim y
dx
x dx x0
x0
机动 目录 上页 下页 返回 结束
注 (1)可导能得可微,可微能得可导。但导数与微分
含义完全不同!导数反映的是函数值变化快慢,而微分是
反映的是函数值变化了多少的线性近似值。相当于速度与 路程的关系
(2) 故当f (x0 ) 0 时 , lim y lim y 1 lim y 1
x0 dy x0 f (x0 )x f (x0 ) x0 x
)
1
y 1 ex2
ex2
2xex2 1 ex2
1 1 ex2
(
d1
dex2
)
1 1 ex2
0
e x 2d
(x2 )

dy
2 xe x 2 1 ex2
dx
1
1 e
x
2
ex2
2xdx

第五节复合函数微分法与隐函数微分法在一元函数的复合求导中,有...

第五节复合函数微分法与隐函数微分法在一元函数的复合求导中,有...

第五节 复合函数微分法与隐函数微分法在一元函数的复合求导中,有所谓的“链式法则”,这一法则可以推广到多元复合函数的情形. 下面分几种情况来讨论.分布图示★ 链式法则(1) ★ 链式法则(2) ★ 链式法则(3)★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 例7 ★ 全微分形式的不变性★ 例 8 ★ 例 9 ★ 例 10 ★ 例 11 ★ 隐函数微分法(1)★ 例12 ★ 例13 ★ 隐函数微分法(2)★ 例14 ★ 例15 ★ 例16★ 例17★ 例18★ 内容小结★ 课堂练习 ★ 习题6-5内容要点一、多元复合函数微分法1.复合函数的中间变量为一元函数的情形设函数),(v u f z =,)(t u u =,)(t v v =构成复合函数)](),([t v t u f z =.dtdvv z dt du u z dt dz ∂∂+∂∂= (5.1) 公式(5.1)中的导数dtdz称为全导数. 2、复合函数的中间变量为多元函数的情形设),,(v u f z =),,(y x u u =),(y x v v =构成复合函数)],,(),,([y x v y x u f z =,xv v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ (5.3) ,yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ (5.4) 3、复合函数的中间变量既有一元也有为多元函数的情形定理3 如果函数),(y x u u =在点),(y x 具有对x 及对y 的偏导数, 函数)(y v v =在点y 可导,函数),(v u f z =在对应点),(v u 具有连续偏导数, 则复合函数)](),,([y v y x u f z =在对应点),(y x 的两个偏导数存在, 且有,xu u z x z ∂∂∂∂=∂∂ (5.7) .dydv v z y u u z y z ∂∂+∂∂∂∂=∂∂ (5.8) 注:这里x z ∂∂与x f ∂∂是不同的,x z ∂∂是把复合函数],),,([y x y x u f z =中的y 看作不变而对x 的偏导数,x f ∂∂是把函数),,(y x u f z =中的u 及y 看作不变而对x 的偏导数. y z ∂∂与yf∂∂也有类似的区别.在多元函数的复合求导中,为了简便起见,常采用以下记号:,),(1u v u f f ∂∂=' ,),(2v v u f f ∂∂='vu v u f f ∂∂∂=''),(212 ,这里下标1表示对第一个变量u 求偏导数,下标2表示对第二个变量v 求偏导数,同理有2211,f f '''' , 等等.二、全微分形式的不变性根据复合函数求导的链式法则,可得到重要的全微分形式不变性. 以二元函数为例,设),(v u f z =, ),(),,(y x v v y x u u ==是可微函数,则由全微分定义和链式法则,有dy y z dx x z dz ∂∂+∂∂=dy y v v z y u u z dx x v v z x u u z ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂= ⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=dy y v dx x v v z dy y u dx x u u z .dv vz du u z ∂∂+∂∂=由此可见,尽管现在的u 、v 是中间变量,但全微分dz 与x 、y 是自变量时的表达式在形式上完全一致. 这个性质称为全微分形式不变性. 适当应用这个性质,会收到很好的效果.三、 隐函数微分法在一元微分学中,我们曾引入了隐函数的概念,并介绍了不经过显化而直接由方程0),(=y x F (5.11)来求它所确定的隐函数的导数的方法. 这里将进一步从理论上阐明隐函数的存在性,并通过多元复合函数求导的链式法则建立隐函数的求导公式,给出一套所谓的“隐式”求导法.定理4 设函数),(y x F 在点),(00y x P 的某一邻域内具有连续的偏导数, 且,0),(00≠y x F y ,0),(00=y x F 则方程0),(=y x F 在点),(00y x P 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数),(x f y = 它满足),(00x f y = 并有.yx F Fdx dy -= (5.12) 定理5 设函数),,(z y x F 在点),,(000z y x P 的某一邻域内有连续的偏导数, 且,0),,(,0),,(000000≠=z y x F z y x F z则方程0),,(=z y x F 在点),,(000z y x P 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数),(y x f z =, 它满足条件),(000y x f z =,并有.,zy zx F F y zF F x z -=∂∂-=∂∂ (5.14)例题选讲多元复合函数微分法例1 (E01) 设,sin t uv z +=而,cos ,t v e u t == 求导数.dtdz 解dt dz tzdt dv v z dt du u z ∂∂+⋅∂∂+⋅∂∂=t t u ve t cos sin +-= t t e t e t t cos sin cos +-=.cos )sin (cos t t t e t +-=例2 (E02) 设,sin v e z u =而,,y x v xy u +== 求x z ∂∂和.yz ∂∂ 解x z ∂∂xvv z x u u z ∂∂⋅∂∂+∂∂⋅∂∂=1c o s s i n ⋅+⋅=v e y v e u u )cos sin (v v y e u +=)],cos()sin([y x y x y e xy +++= y z ∂∂yv v z y u u z ∂∂⋅∂∂+∂∂⋅∂∂=1cos sin ⋅+⋅=v e x v e u u )cos sin (v v x e u +=)].cos()sin([y x y x x e xy +++=例3 求y x y x z 2422)3(++=的偏导数.解 设,322y x u +=,24y x v +=则.v u z = 可得,1-⋅=∂∂v u v u z ,ln u u vz v ⋅=∂∂ ,6x x u =∂∂,2y y u =∂∂,4=∂∂xv2=∂∂y v 则x z ∂∂xvv z x u u z ∂∂∂∂+∂∂∂∂=4ln 61⋅⋅+⋅⋅=-u u x u v v v 12422)3)(24(6-+++=y x y x y x x )3ln()3(4222422y x y x y x ++++ y z ∂∂yv v z y u u z ∂∂∂∂+∂∂∂∂=2ln 21⋅⋅+⋅⋅=-u u y u v v v 12422)3)(24(2-+++=y x y x y x y ).3ln()3(2222422y x y x y x ++++例4 设,sin ,),,(2222y x z e z y x f u z y x ===++ 求xu∂∂和.y u ∂∂ 解x u ∂∂xzz f x f ∂∂∂∂+∂∂=y x ze xe z y x z y x sin 222222222⋅+=++++ ,)sin 21(22422sin 22yx y xe y x x +++=y u ∂∂yzz f y f ∂∂∂∂+∂∂=y x ze ye z y x z y x cos 222222222⋅+=++++ .yx y xe y y x y 2422sin 4)cos sin (2+++=例5 (E03) 设),,(,y x u u xy z ϕ=+= 求.,,222yx zx z x z ∂∂∂∂∂∂∂ 解),,(y x y xu y x z x ϕ+=∂∂+=∂∂ ),,(2222y x x u x u y x x z x x z xx ϕ=∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂).,(1122y x yx ux u y y x z y y x z xy ϕ+=∂∂∂+=⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂例6 设),,(22y x e f z xy-= 其中),(ηξf 有连续的二阶偏导数, 求.,22yz y z ∂∂∂∂解 设,xy e =ξ,22y x -=η则xz ∂∂x f x f ∂∂⋅∂∂+∂∂⋅∂∂=ηηξξξ∂∂=f ye xy η∂∂+f x 2 y x z ∂∂∂2⎪⎪⎭⎫ ⎝⎛∂∂∂∂=ξf ye y xy ⎪⎪⎭⎫⎝⎛∂∂∂∂+ηf x y 2 ξ∂∂=f exyξ∂∂+f xye xy 22ξ∂∂+f xye xy ηξ∂∂∂-f e y xy 222ηξ∂∂∂+f e x xy 222224η∂∂-f xy ξ∂∂+=f xy e xy)1(222ξ∂∂+f xye xy 例7 (E04) 设),,(xyz z y x f w ++= 其中函数f 有二阶连续偏导数,求x w∂∂和zx w ∂∂∂2.解 令,z y x u ++=,xyz v =记,),(1uv u f f ∂∂=',),(212v u v u f f ∂∂∂='' 同理记,2f ',11f '',22f ''. x w ∂∂xvv f x u u f ∂∂⋅∂∂+∂∂⋅∂∂=;21f yz f '+'= z x w ∂∂∂2)(21f yz f z '+'∂∂=;221z f yz f y z f ∂'∂+'+∂'∂= z f ∂'∂1zvv f z u u f ∂∂⋅∂'∂+∂∂⋅∂'∂=11;1211f xy f ''+''= z f ∂'∂2zvv f z u u f ∂∂⋅∂'∂+∂∂⋅∂'∂=22;2221f xy f ''+''= zx w∂∂∂2)(222121211f xyf f yz f y f xy f ''+''+'+''+''=.)(22221211f y f z xy f z x y f '+''+''++''=例8 利用全微分形式不变性解本节的例2.设,sin v e z u = 而,xy u = ,y x v += 求x z 和.y z解 dz )s i n (v e d u =,c o s s i nv d v e v d u e u u+= 因du )(xy d =,xdy ydx +=dv )(y x d +=,dy dx +=代入后归并含dx 及dy 的项,得dz dx v e y v e u u )cos sin (+⋅=,)cos sin (dy v e x v e u u +⋅+即dy yzdx x z ∂∂+∂∂dx y x y x y e xy )]cos()sin([+++=.)]cos()sin([dy y x y x x e xy ++++ 比较上式两边的dx 、dy 的系数,得x z )],cos()sin([y x y x y e xy +++=y z )].cos()sin([y x y x x e xy +++=它们与例2的结果一样.全微分形式的不变性例9 (E05) 利用一阶全微分形式的不变性求函数222z y x xu ++=的偏导数.解du =2222222222)()()(z y x z y x xd dx z y x ++++-++2222222)()222()(z y x zdz ydy xdx x dx z y x ++++-++= .)(22)(2222222z y x xzdzxydy dx x z y ++---+=所以 x u ∂∂,)(2222222z y x x z y ++-+=y u ∂∂,)(22222z y x xy ++-=z u∂∂.)(22222z y x xz ++-=例10 求函数xyyx z -+=1arctan的全微分. 解 设,y x u +=,1xy v -=则,arctan vuz =于是dz dv v z du u z ∂∂+∂∂=du v v u 1)(112⋅+=dv v u vu ⎪⎭⎫⎝⎛-++22)(11).(122udv vdu v u -⋅+= 由,y x u +=,1xy v -=,dy dx du +=),(xdy ydx dv +-=代入上式,得 =dz22)1()(1xy y x -++[)1(xy -)(dy dx +)(y x ++)(xdy ydx +].1122y dyx dx +++=例11 (E06) 已知,02=+--z xy e z e 求x z ∂∂和yz∂∂. 解 ,0)2(=+--z xy e z e d∴,02)(=+---dz e dz xy d e z xydz e z )2(-),(ydx xdy e xy +=- dz .)2()2(dy e xe dx e ye z xyz xy -+-=--故所求偏导数x z∂∂,2-=-z xy e ye y z ∂∂.2-=-z xy e xe隐函数微分法例12 (E07) 验证方程0122=-+y x 在点(0, 1)的某邻域内能唯一确定一个有连续导 数、当0=x 时1=y 的隐函数)(x f y =,求这函数的一阶和二阶导数在0=x 的值.证 令,1),(22-+=y x y x F 则x F ,2x =y F ,2y =)1,0(x F ,0=)1,0(y F 2=,0≠依定理知方程0122=-+y x 在点)1,0(的某领域内能唯一确定一个有连续导数,当0=x 时1=y 的隐函数),(x f y =函数的一阶和二阶导数为dx dy yxF F =,y x -=0=x dx dy ,0= 22dx y d 2y y x y '-=2)(yyx x y --=,13y -=022=x dx y d .1-=例13 求由方程0=+-y x e e xy 所确定的隐函数y 的导数.,0=x dxdydx dy解 此题在第二章第六节采用两边求导的方法做过,这里我们直接用公式求之. 令,y x e e xy F +-=则x F ,x e y -=y F ,ye x +=dxdy y x F F -=,y x e x y e +-=由原方程知0=x 时,,0=y 所以0=x dx dy 00==+-=y x yx e x y e .1=例14 (E08) 求由方程y z z x ln =所确定的隐函数),(y x f z =的偏导数.,yz x z ∂∂∂∂ 解 设,ln ),,(yzz x z y x F -=则,0),,(=z y x F 且.1,1,1222z zx y z y z x z F y y z z y y F z x F +-=⋅--=∂∂=⎪⎪⎭⎫ ⎝⎛--=∂∂=∂∂ 利用隐函数求导公式,得.)(,2z x y z F F y z z x z F F x z z y z x +=-=∂∂+=-=∂∂例15 求由方程a a xyz z (333=-是常数)所确定的隐函数),(y x f z =的偏导数xz ∂∂和.yz ∂∂ 解 令,3),,(33a xyz z z y x F --=则x F ',3yz -=y F ',3xz -=z F '.332xy z -=显然都是连续.所以,当z F 'xy z 332-=0≠时,由隐函数存在定理得x z ∂∂zx F F ''=xy z yz 3332---=,2xy z yz -=y z ∂∂z y F F ''=xy z xz 3332---=.2xyz xz -=例16 (E09) 设,04222=-++z z y x 求 .22x z∂∂ 解 令,4),,(222z z y x z y x F -++=则x F ,2x =z F ,42-=z∴xz ∂∂z x F F -=,2z x -=22x z ∂∂2)2()2(z x z xz -∂∂+-=2)2(2)2(z z xx z --⋅+-=.)2()2(322z x z -+-=注:在实际应用中,求方程所确定的多元函数的偏导数时,不一定非得套公式,尤其在方程中含有抽象函数时,利用求偏导或求微分的过程则更为清楚.例17 设),,(xyz z y x f z ++= 求.,,zy y x x z ∂∂∂∂∂∂ 解 z 看成y x ,的函数对x 求偏导数得x z∂∂⎪⎭⎫ ⎝⎛∂∂+⋅+⎪⎭⎫ ⎝⎛∂∂+⋅=x z xy yz f x z f v u 1x z ∂∂,1vu v u xyf f yzf f --+= 把x 看成y z ,的函数对y 求偏导数得0⎪⎪⎭⎫⎝⎛∂∂+⋅+⎪⎪⎭⎫ ⎝⎛+∂∂⋅=y x yz xz f y x f v u 1y x∂∂,v u v u y z ff x z f f ++= 把y 看成z x ,的函数对z 求偏导数得1⎪⎭⎫ ⎝⎛∂∂+⋅+⎪⎭⎫⎝⎛+∂∂⋅=z y xz xy f z y f v u 1zy ∂∂.1v u vu x z f f xyf f +--=例18 设方程ze z y x =++确定了隐函数),,(y x z z =求.,,22222y zy x z x z ∂∂∂∂∂∂∂解 方程两边分别对x 求偏导和对y 求偏导,得,1xze x z z ∂∂=∂∂+.1x z e y z z ∂∂=∂∂+ 所以,11-=∂∂z e x z .11-=∂∂z e y z 22x z ∂∂⎪⎭⎫ ⎝⎛∂∂∂∂=x z x x z e e z z ∂∂⋅-=2)1(111)1(2-⋅--=z z z e e e .)1(3--=z z e e 同理 22y z∂∂.)1(3--=z z e e课堂练习1.设),(xyz xy x f w ++= 求.,,zw y w x w ∂∂∂∂∂∂ 2.设),sin (sin sin x y F x u -+=其中F 是可微函数, 证明.cos cos cos cos y x x yuy x u ⋅=∂∂+∂∂ 3.设,⎪⎭⎫⎝⎛=z y z x ϕ其中ϕ为可微函数, 求y z y x z x ∂∂+∂∂.。

高等数学上册第五节函数的微分及其应用

高等数学上册第五节函数的微分及其应用

线性主部 (f(x0)0时 )
©
说明: y f( x 0 ) x o ( x ) dyf(x0) x
当 f(x0)0时 , lim y lim y x 0 d y x0 f(x0)x 1 limy 1 f(x0)x0x
所以 x 0时 y 与 d y 是等价无穷小, 故当 x
导数也叫作微商
©
例1 设 y x3, 求当 x 0 1, x0.1及 x0.01
时,函数的增量和微分的值 . 解: 当 x 0 1 时,函数的增量
y f( 1 x ) f( 1 ) ( 1 x )3 1 3
3x3(x)2(x)3 dy 3x
得增量x 时, 面积的增量为
A (x0 x)2x2 2x0x(x)2
关于△x 的 x0时为
线性主部 高阶无穷小
x x0x
x 0 A x02
(x)2 x0x
故 A2x0x 称为函数在 x 0 的微分
©
定义: 若函数 yf(x)在点 x 0 的增量可表示为 y f( x 0 x ) f( x 0 )A xo ( x)
第五节
函数的微分
第二章
一、微分的概念 二、微分的几何意义 三、微分的运算法则 四、微分在近似计算中的应用
©
一、微分的概念
引例: 一块正方形金属薄片受温度变化的影响, 其
边长由x 0 变到 x0x,问此薄片面积改变了多少?
设薄片边长为 x , 面积为 A , 则 A x2, 当 x 在 x 0 取
说明: 上述微分的反问题是不定积分要研究的内容. 注意: 数学中的反问题往往出现多值性.
©
四、 微分在近似计算中的应用 (一)函数值的近似计算

经济数学微积分-第二版第三章-第五节函数的微分

经济数学微积分-第二版第三章-第五节函数的微分

(1)
(2)
当 x 很小时, (2)是x的高阶无穷小o(x),
y
3
x
2 0
x
.
既容易计算又是较好的近似值
问题:这个线性函数(改变量的主要部分)是否 所有函数的改变量都有?它是什么?如何求?
2. 定义
设函数 y f ( x)在某区间内有定义, x0及 x0 x在这区间内, 如果 y f ( x0 x) f ( x0 ) A x o(x) 成立(其中A是与x无关的常数), 则称函数 y f ( x)在点 x0可微, 并且称A x为函数 y f ( x)在点 x0相应于自变量增量 x的微分, 记作 dy x x0 或df ( x0 ), 即dy x x0 A x.
dy yxdx f (u)g( x)dx
又因为g( x)dx du,
所以复合函数y f [g( x)]的微分公式也可写成
dy f (u)du 或 dy yu du ;
(对于函数y f (u),当u是自变量时,dy f (u)du ) 结论: 无论u是自变量还是中间变量, 函数
y f (u)的微分形式总是 dy f (u)du
三、基本初等函数的微分公式 与微分运算法则
dy f ( x)dx
求法: 计算函数的导数, 乘以自变量的微分.
1.基本初等函数的微分公式
d(C ) 0
d( x ) x1dx
d(sin x) cos xdx
d(cos x) sin xdx
d(tan x) sec2 xdx d(cot x) csc2 xdx
第七节 函数的微分
一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式
与微分运算法则 四、微分在近似计算中的应用 五、小结 思考题

2-5第五节 二次函数与幂函数练习题(2015年高考总复习)

2-5第五节 二次函数与幂函数练习题(2015年高考总复习)

第五节 二次函数与幂函数时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.已知幂函数f (x )=x α的图象经过点⎝⎛⎭⎪⎫2,22,则f (4)的值为( )A .16 B.116 C.12D .2解析 由已知,得22=2α,即2α=2-12,∴α=-12.∴f (x )=x -12.∴f (4)=4-12=12.答案 C2.函数y =x13的图象是( )A. B.C. D.解析 由幂函数的性质知:①图象过(1,1)点,可排除A 、D ;②当指数0<α<1时为增速较缓的增函数,故可排除C ,从而选B.答案 B3.(2013·重庆卷)(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.322解析(3-a )(a +6)=-a 2-3a +18=-(a +32)2+814,当a =-32时,(3-a )(a +6)取得最大值92. 答案 B4.(2014·陕西榆林期末)设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为( )A .1B .-1 C.-1-52D.-1+52解析 由b >0,排除图象①②;若a >0,则-b2a <0,排除图象④;由图象③得⎩⎪⎨⎪⎧a <0,a 2-1=0,即a =-1.故选B.答案 B5.(2014·江南十校联考)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析 函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0的图象如图.知f (x )在R 上为增函数. 故f (2-a 2)>f (a ),即2-a 2>a . 解得-2<a <1. 答案 C6.(2013·安徽卷)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 由二次函数的图象和性质知f (x )=|(ax -1)x |在(0,+∞)内单调递增只需f (x )的图象在(0,+∞)上与x 轴无交点,即a =0或1a <0,整理得a ≤0,而当a ≤0时结合图象可知f (x )在(0,+∞)上为增函数,故a ≤0是f (x )在(0,+∞)上单调递增的充要条件.故选C.答案 C二、填空题(本大题共3小题,每小题5分,共15分)7.(2014·西城模拟)若二次函数f (x )满足f (2+x )=f (2-x ),且f (a )≤f (0)<f (1),则实数a 的取值范围是________.解析 由题意知,抛物线f (x )开口向下,对称轴为x =2,又f (0)=f (4),∴a ≤0或a ≥4.答案 (-∞,0]∪[4,+∞)8.若二次函数y =ax 2+bx +c 的图象与x 轴交于A (-2,0),B (4,0)且函数的最大值为9,则这个二次函数的表达式是________.解析 设y =a (x +2)(x -4),对称轴为x =1, 当x =1时,y max =-9a =9,∴a =-1, ∴y =-(x +2)(x -4)=-x 2+2x +8. 答案 y =-x 2+2x +89.(2013·江苏卷)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x (x >0)图象上一动点.若点P ,A 之间的最短距离为22,则满足条件的实数a 的所有值为________.解析 设P (t ,1t ),其中t >0,P A 2=(t -a )2+(1t -a )2=t 2+1t 2-2a (t +1t )+2a 2,即P A 2=(t +1t )2-2a (t +1t )+2a 2-2,令m =t +1t ≥2,所以P A 2=m 2-2am +2a 2-2=(m -a )2+a 2-2,当P A 取得最小值时,⎩⎪⎨⎪⎧ a ≤2,22-4a +2a 2-2=(22)2,或⎩⎪⎨⎪⎧a >2,a 2-2=(22)2,解得a =-1或a =10.答案 -1 10三、解答题(本大题共3小题,每小题10分,共30分) 10.(2014·杭州模拟)已知函数f (x )=x 2+(2a -1)x -3, (1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 解 (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],∴f (x )min =f (-32)=94-92-3=-214, f (x )max =f (3)=15,∴值域为[-214,15]. (2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时, f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意. 综上可知a =-13或-1.11.已知函数f (x )=ax 2+(b -8)x -a -ab (a ≠0),当x ∈(-3,2)时,f (x )>0;当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0.(1)求f (x )在[0,1]内的值域;(2)c 为何值时,不等式ax 2+bx +c ≤0在[1,4]上恒成立.解 由题意,得x =-3和x =2是函数f (x )的零点,且a <0,则⎩⎪⎨⎪⎧0=a ×(-3)2+(b -8)×(-3)-a -ab ,0=a ×22+(b -8)×2-a -ab .解得⎩⎪⎨⎪⎧a =-3,b =5.∴f (x )=-3x 2-3x +18.(1)由图象知,函数在[0,1]内单调递减, ∴当x =0时,y =18;当x =1时,y =12. ∴f (x )在[0,1]内的值域为[12,18]. (2)令g (x )=-3x 2+5x +c .∵g (x )在⎝ ⎛⎭⎪⎫56,+∞上单调递减,要使g (x )≤0在[1,4]上恒成立,则需要g (1)≤0.即-3+5+c ≤0,解得c ≤-2.∴当c ≤-2时,不等式ax 2+bx +c ≤0在[1,4]上恒成立. 12.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ) (x >0),-f (x ) (x <0).求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,求b 的取值范围.解 (1)由已知c =1,a -b +c =0,且-b2a =-1. 解得a =1,b =2. ∴f (x )=(x +1)2,∴F (x )=⎩⎪⎨⎪⎧(x +1)2(x >0),-(x +1)2(x <0). ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b ≤0.。

2-5函数的微分

2-5函数的微分
例1. 求 的近似值 . 解: 设 f (x) = sin x , 取 则 dx = − 180
o
π
π π 29 π π ≈ sin + cos ⋅ (− ) sin 29 = sin 6 180 180 6 1 3 = + ⋅ (−0.0175) 2 2
2 = (4 )
2
( ±2 ) = 4
2
2 sin = ( 2 ) 4
π
2 sin( + 2kπ ) = 4 2
19
π
七、 微分在近似计算中的应用
1、计算函数的近似值 、 当 ∆x 很小时, 得近似等式:
∆y = f (x0 + ∆x) − f (x0 ) ≈ dy = f ′( x0 )∆x f (x0 + ∆x) ≈ f (x0 ) + f ′(x0 )∆x
必要性” 证: “必要性” 必要性 已知 在点 可微 , 则
∆ y = f (x0 + ∆x) − f (x0 ) = A∆x + o(∆x)
∆y o(∆x) ∴ lim = lim ( A + )= A ∆x→0 ∆x ∆x→0 ∆x
故 在点 的可导, 且
7
定理 : 函数 在点
在点 x0可微的充要条件 充要条件是 充要条件 处可导, 且 即
′ = yudu( 或= f ′(u)du)
讨论: 讨论:(1) 若u = x, 则dy = f ′( x )dx = f ′(u )du;
(2) 若u = ϕ ( x ) , 则dy = f ′(u )du
一阶微分形式不变性 一阶微分形式不变性
dy = f ′( x)dx
无论x是自变量还是中间变量, 函数 y = f (x)的微分形式总是dy = f ′(x)dx

第五节多元函数微分法

第五节多元函数微分法
求导公式 函数结构
复合函数求导法则特征说明 u z z u z v = + z x u x v x v
x y
项数等于路径条数 因子数等于连线数
公式与结构图两者之间的联系: 公式与结构图两者之间的联系 ①公式中偏导数由 两项组成, 的路径. 两项组成 对应结构图中有两条 x 到达 z 的路径 公式中每项为两个偏导数的乘积, ②公式中每项为两个偏导数的乘积 这两个偏导数形式 与结构图中相连接的两个变量的偏导数相对应. 与结构图中相连接的两个变量的偏导数相对应 基本规律: 分路向加, 连线相乘, 分清变量, 逐层求导. 基本规律 分路向加 连线相乘 分清变量 逐层求导 复合函数求导法则虽然是多种多样, 复合函数求导法则虽然是多种多样 但是把握了 其规律就 可以直接写出给定的复合函数的偏导数的公 式.
一,复合函数求导法则 设函数 z= f (u, v) , 而 u = (x), v =ψ (x), 则有复合 中间变量为一元函数) 函数 z = f [(x),ψ (x)] (中间变量为一元函数 定理 处均可导, 设函数 u = (x) 与v = ψ(x) 在x 处均可导 二元函数 z = f (x , y)在 x 对应点 , v)处有一阶连续偏 在 对应点(u 处有一阶连续偏 的导数存在, 导数则复合函数 z = f [(x),ψ (x)] 对 x 的导数存在 且 u dz z du z dv x z = + . v dx u dx v dx
z z u z v = + . y u y v y
z u z v z u z v + + dy dx + 所以 dz = u x v x u y v y z u u z v v = dx + dy + dx + dy u x y v x y z z = du + dv. u v

05多元复合函数微分法

05多元复合函数微分法
3. 理解二元和三元函数的偏导数、全导数、全微分等概念。 了解全微分存在的必要条件和充分条件。了解二元函数的 偏导数和全微分的几何意义。
4. 熟练掌握二元和三元函数的偏导数、全导数、全微分的计 算方法及复合函数求导法。能熟练求出函数的二阶偏导数。 了解求偏导与求导顺序无关的条件。
5. 理解方向导数的概念,并掌握它的计算方法以及它与梯度 的关系。
( v 1 , ,v m ) 处 ,则 可复 u 微 f(1 ( x ) 合 ,m ( x )在 函 )x 处 点 数
可偏,导 且
du m udvi .
dx i1vi dx 现在证明定理

给 x 以增量 x, 相应地有
v i i( x x ) i( x ) (i1,,m )
由 uf(v 1, ,v m )的可微性, 有

dzzdxzdy比较, 得 x y
eusivn (ydxxdy)eucov(sdxdy)
e x[y ysix n y ) (co x s y )d (]x
e x[y x six n y ) (co x s y )d (]y
zex[yysix n y ()cox sy()] x
设 zeusinv, uxy, vxy,
z f ( u ( x , y ) v ( x , y ) w ( x , , y ))
求 z, z. x y
u
x
zv y
w
将 y 看成常数
z z u z v z w x u x v x w x
将 x 看成常数
z z u z v z w y u y v y w y
分别将 x , y 看成常数, 按全导数公式求导, 而在 具体运算时, 实质上又是求多元函数的偏导数.

微积分课件2-5隐函数及参数方程

微积分课件2-5隐函数及参数方程
第五节 隐函数及参数方程确定 函数的导数
一 隐函数求导法 二 对数求导法 三 参数方程确定函数的导数 四 小结
一、隐函数的导数
1.定义: 由二元方程F ( x, y )所确定的函数 y y ( x )
称为隐函数 .y f ( x ) 形式称为显函数.
F ( x, y) 0 y f (x)
4
.
例9 设抛射体的运动方程为
x v 0 cos t v 1 t 1 2 1 2 y v 0 sin t gt v 2 t gt 2 2 求抛射体在时刻 t的与动方向和速度大小.
解 先求运动的方向 在 t 时刻的运动方向,即 y 轨道的切线方向, 可由切线的斜率来反映.
1
)
x sin x sin x x (cos x ln x ) x
y x
sin x
转化为指数函数
y e
sin x ln x
然后利用复合函数求导 y 的导数
方法,求出
( e sin x ln x ) e sin x ln x (sin x ln x ) y e

2
dy dt

2

1 cos

2
当t

2
时 , x a( :

2
1 ), y a ,
所求切线方程为
y a x a(


2
1)
y x a(2

2
).
若函数
x (t ) 二阶可导 , y (t )
d dy
d y dx
2
2
d ( t ) dt ( ) ( ) dt ( t ) dx dx dx

函数的微分

函数的微分

微分与增量的关系
定理:当f ( x0 ) 0 时,微分是增量的线性 主部。
主部:设 , 均为无穷小,若 o
则称 是 的主部,有 o 结论: 若 o ,则 ~ 。

证: 若 f ( x 0 ) 0 ,则 Δy f ( x 0 Δx ) f ( x 0 ) 0


3 x 2 d x 3 y 2 d y 3 cos 3 x d x 6 d y 0 1 由上式得 d y x 0 d x x 0 时 y 0, 2
返回
称为a 的相对误差
若 称为测量 A 的绝对误差限 称为测量 A 的相对误差限
误差传递公式 :
若直接测量某量得 x , 按公式 已知测量误差限为 计算 y 值时的误差
x ,
d y f ( x) x
故 y 的绝对误差限约为
y f ( x) x
y
f ( x) x y f ( x)
整理并移项即得: x (dy dx ) y (dy dx ) #
思考: 若 y=e
sin x
dy ,怎样求 ? d cos x
返回
三、 微分在近似计算中的应用
y f ( x0 )x o( x)

x
很小时,
得近似等式:
y f ( x0 x) f ( x0 ) f ( x0 )x f ( x0 x) f ( x0 ) f ( x0 ) x
y 2 2 例 3 推证等式 arctan =ln x +y 满足 x 关系式 x dy-dx = y dy+dx .
证:
利用微分的形式不变性 对等式两边求微分 1 xdy ydx 1 1 2 (2 xdx 2 ydy ) 2 2 2 2 x y x y 1 x

2-5第五节 二次函数与幂函数(2015年高考总复习)

2-5第五节 二次函数与幂函数(2015年高考总复习)

新课标A版数学
解析
2
在同一平面直角坐标中作出y=f(x)和y=g(x)的图象,
1 g(x)=x -4x+5的顶点(2,1),2ln2>2lne 2 =1,所以(2,1)位于y=f(x) 图象下方,故交点个数为2.
答案 B
考源教学资源网
第36页
返回导航
第二章
第五节
高考总复习模块新课标
顶点式:f(x)=a(x-h)2+k(a≠0),顶点坐标为 (h,k) ; 零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.
考源教学资源网
第6页
返回导航
第二章
第五节
高考总复习模块新课标
新课标A版数学
(2)二次函数的性质
考源教学资源网
考源教学资源网
第27页
返回导航
第二章
第五节
高考总复习模块新课标
新课标A版数学
解析
令g(x)= x,即f(x)=-g(x),则g(x)的图象如下:
在图中,在区间(0,+∞)上任取两点C,D,
考源教学资源网
第28页
返回导航
第二章
第五节
第18页
返回导航
第二章
第五节
高考总复习模块新课标
新课标A版数学
4.函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数, 则实数a的取值范围是________.
解析
二次函数f(x)的对称轴是x=1-a,由题意知1-
a≥3,∴a≤-2.
答案
(-∞,-2]
考源教学资源网
高考总复习模块新课标
新课标A版数学
设其横坐标分别为x1,x2,过C、D分别作x轴的垂线交曲线 于点A、B. x1+x2 P为CD中点,则P点坐标为( ,0),过P作MP⊥x轴与g(x) 2 x1+x2 的图象交于点M交线段AB于点N容易求得|MP|=g( 2 ),|NP|= gx1+gx2 , 2

第二章第5节函数的微分22042

第二章第5节函数的微分22042

切线M 段可 P 近似代替M 曲N.线段
9
五、微分的求法
d yf(x)dx
求法 计算函数的导数, 乘以自变量的微分.
1.基本初等函数的微分公式
d(C)0
d(x)x1dx
d(sixn)coxsdx d(coxs)sinxdx
d(taxn)se2cxdx d(coxt)cs2cxdx
d(sexc)sexctanxdxd(csxc)csxccoxt dx
例4 yearcta1nx2,求dy. 解 dyearct1axn2d(arc1 t axn 2)
earct1 ax2 n
1 d1x2
1( 1x2)2
earc1 txa 2n 2 1 x221 1 x2d(1x2)
xea rct a n1x2
dx.
(x2 2) 1 x2
14
例5 在下列等式左端的括号中填入适当的函数,使 等式成立.
cx o ( 3 s e 1 3 x )d e x 1 3 x ( sx i)d nx
e 1 3 x(3 co x s six )n d.x
12
六、微分形式的不变性
设y 函 f(x )有 数 f导 (x ), 数 (1)若 x是自,变 d yf量 (x)d时 ;x (2)若x是中间变 , 即量为时另一 t的变 可量 微函x数 (t),则 d yf(x) (t)d,t
19
例2 计算下列各数的近似值. (1 )39.5 9 ; 8 (2 )e 0 .0.3
解 (1 )39.9 5 8 3101 0 .50 3 100(01 1.5 ) 13010.0015 1000 10(110.001) 59.99. 5 3
(2)e0.0310.03 0.9.7

《高等数学教学资料》05第五节函数极限与最大值最小值.docx

《高等数学教学资料》05第五节函数极限与最大值最小值.docx

第五节函数的极值与最大值最小值在讨论函数的单调性时,曾遇到这样的情形,两数先是单调增加(或减少),到达某一点后又变为单调减少(或增加),这一类点实际上就是使函数单调性发生变化的分界点.如在上节例3的图3・4・5中,点兀=1和兀=2就是具有这样性质的点,易见,对兀=1的某个邻域内的任一点兀(2 1),恒有f(x) </(I),即曲线在点(1,/(1))处达到“峰顶”:同样,对“2 的某个邻域内的任一点X(XH2),恒有f(x) > /(2),即曲线在点(2,/(2))处达到“谷底”. 具有这种性质的点在实际应用中有着重耍的意义.由此我们引要入函数极值的概念.分布图示★函数极值的定义★函数极值的求法★例1★例2★例3笫二充分条件★例4★例5★例6最大值最小值的求法★例7★例8★例9★例10★例11★例]2内容小结★课堂练习★习题3・5 ★返回内容要点一、函数的极值极值的必要条件第一充分条件与第二充分条件求函数的极值点和极值的步骤(1)确定函数/(兀)的定义域,并求其导数;(2)解方程f\x) = 0求出于(兀)的全部驻点与不可导点;(3)讨论厂(劝在驻点和不可导点左、右两侧邻近符号变化的情况,确定函数的极值点;(4)求出各极值点的函数值,就得到函数/(兀)的全部极值.二、函数的最大值与最小值在实际应用屮,常常会遇到求最大值和最小值的问题.如用料最省、容暈最大、花钱最少、效率最高、利润最大等.此类问题在数学上往往可归结为求某一函数(通常称为目标函数)的最大值或最小值问题.求函数在创上的最大(小)值的步骤如下:(1)计算函数/(兀)在一切可能极值点的函数值,并将它们与相比较,这些值中最大的就是最大值,最小的就是最小值;(2)对于闭区间[d,b]上的连续函数/(兀),如果在这个区间内只有一个可能的极值点,并且函数在该点确有极值,则这点就是函数在所给区I'可上的最大值(或最小值)点.例题选讲求函数的极值例1 (E01)求出函数/(%) = x3 -3x2 -9x4-5的极值.解f(x) =3X2-6X-9=3(X +1)(X一3),令f(x) = 0,得驻点x1=-l,x2=3.列表讨论如下:X(―-1)-1(-1, 3)3(3, 4- °°)•厂⑴+0——0+f(x)f极大值1极小值t所以,极大值/(-!) = 10,极小值/(3) = -22.例2 (E02)求函数的极值.解⑴ 函数f(兀)在(-oo,+oo)内连续,除x = -l外处处可导,且厂(无)=孝二2;3沿+1(2)令f\x) = 0,得驻点x = l;兀=-1为/*(兀)的不可导点;(3)列表讨论如下:(-00,-1)-1(-1, 1)1(1,+呵/'(X)+不存在—0+/⑴f极大值1极小值t⑷ 极大值为/(-1) = 0,极小值为/⑴=-3^4.3例3求函数y(x) = x-jx2/3的单调增减区间和极值.解求导数= 当"1时八0) = 0,而x = 0时/©)不存在,因此,函数只可能在这两点取得极值.列表如下:X(一8,0)0(0,1)1(1, + °°) f\x)+ 不存在—0+fM/极大值0极小值-丄2/由上表可见:函数/(兀)在区间(_oo,0),(l,+oo)单调增加,在区间(0,1)单调减少.在点x =()处有极大值,在点兀=1处有极小值/(I) = 如图.例4 (E03)求出函数/(x) = x3 + 3x2一24兀- 20的极值.解f(x) = 3x2 +6x-24 = 3(x + 4)(兀—2),令f\x) = 0,得驻点册=-4,勺=2.又/'(x) = 6x + 6, ・・・/"(-4) = —18vO,故极大值于(一4) = 60, /*(2) = 18>0,故极小值/(2) = -4&注意:1./"(必)=0吋,/(X)在点勺处不一定収极值,仍用第一充分条件进行判断.2.函数的不可导点,也可能是函数的极值点.例5 (E04)求函数f(x) =(X2 -厅+ I的极值.解由/,(X)=6X(X2-I)2=0,得驻点可=一1,七=0*3=1. f\x) = 6(x2 -l)(5x2 -1).因f\x) = 6 > 0,故/(x)在x = 0处収得极小值,极小值为/(0) = 0.因厂(-1)=厂⑴=0,故用定理3无法判别.考察一阶导数f\x)在驻点册=-1及勺=1左右邻近的符号:当兀取-1左侧邻近的值时,f(x) < 0;当兀取-1右侧邻近的值吋,f(x) < 0;因厂(兀)的符号没有改变,故/(兀)在x = -l处没有极值.同理,/(兀)在x = l 处也没有极值.如图所示.例6求出函数/W=1-(X-2)2/3的极值.2 --解f'M = -一(兀-2) '("2). x = 2是函数的不可导点.当xv2时,f(x) > 0;当x>2时,.厂(兀)v0. /. /(2) = 1为/(兀)的极大值.例7 (E05)求y = 2疋+ 3兀$ _ 12x + 14的在[-3,4]上的最大值与最小值.解*«*= 6(x + 2)(兀一1),解方程f\x) = 0,得x, =-2,X2 =1.计算/(-3) = 23; /(—2) = 34; /⑴二7; /⑷二142;比较得最大值/⑷=142,最小值/(I) = 7.例8求函数)usin2x-x在-彳冷上的最大值及最小值.解函数y = sin2x- x在-巴工上连f\x) = / = 2cos2x-1, 2 2令)/ = (),得/ = 土牛.故皿¥上最大值为务最小值为号例9 (E06)设工厂4到铁路线的垂直距离为20km,垂足为3.铁路线上距离B为100km 处有一原料供应站C,如图3-5-4.现在要在铁路BC屮间某处D修建一个原料屮转车站,再由车站D 向工厂修一条公路.如果已知每km 的铁路运费与公路运费之比为3:5,那么,D 应 选在何处,才能使原料供应站C 运货到工厂A 所需运费最省?解 BD = x (km), CD = 100 — x (km), AD = ^202 + x 2 ・铁路每公里运费眈公路每公里5R,记那里目标函数(总运费)y 的函数关系式: y = 5kAD + 3k-CD 即y = 5k ・ 7400 +x 2 + 3k(l 00-x) (0<x<100).问题归结为:x 収何值时目标函数y 最小./ \ I求导得y f = k 1 =一3,令y" = 0得x = 15(km).、V400 + x~ ) 由于 y(0) = 400£, y(15) = 380£, y(100) = 100@£. 从而当BD = 15 (kmJB'J-,总运费最省.例10(E07)某房地产公司有50套公寓要出租,当租金定为每月180元时,公寓会全部 租111去.当租金每月增加10元时,就有一套公寓租不出去,而租出去的房子每月需花费20 元的整修维护费.试问房租定为多少可获得最大收入?解 设房租为每月兀元,租出去的房子有50-(犬二型]套,每月总收入为10V =70 一一,解 R\x ) = 0,得兀=350 (唯一驻点). 故每月每套租金为350元时收入最高.最大收入为/?(350) = 10890(元).求函数的最大值最小值例11敌人乘汽车从河的北岸A 处以1米/分钟的速度向正北逃窜,同时我军摩托车从 河的南岸B 处向正东追击,速度为2千米/分钟,问我军摩托车何吋射击最好(相距最近射击 最好)?解(1)建立敌我相距函数关系 设t 为我军从B 处发起追击至射击的事件(分).敌我相距函数5(/)5(f) = J(0.5 + r)2+(4-2r)2⑵求5 = 5(r)的最小值点5/-7.5 7(0.5 + z)2+(4-2r)2令= o,得唯一驻点( = 1.5.故得我军从B 处发起追击后1.5分钟设计最好. 实际问题求最值应注意:(1) 建立目标函数; (2) 求最值;若目标函数只有唯一驻点,则该点的函数值即为所求的最人(或最小)值.R(x) = U - 20) 50- x-180、10 )X = (x-20) 68——,I 10丿 + (“20)卜茁2 2例12求内接于椭圆与+务=1而面积最大的矩形的各边之长. a~ b~ 解 设M(x,y)为椭圆上第一象限内任意一点,则 以点M 为一顶点的内接矩形的面积为S(x) = 2x- 2y = — x^a 1 -x 2,0 <x<a,a且 S(0) = S(d) = 0.Qyla 2-x 2是S(x)的最人值,最大值仏=乎诗卜倍!=切课堂练习1. 下列命题正确吗?若兀()为/(X )的极小值点,则必存在旳的某邻域,在此邻域内,/(兀)在兀()的左侧下降,而 在兀()的右侧上升.2. 若/(d)是/(兀)在[d,切上的最大值或最小值,且广⑺)存在,是否一定有f(a) = 0?4b a 2 -2x 2 万需2“由 S3 = o,求得驻点尤0 =为唯一的极值可疑点.依题意,S(x)存在最大值,故对应的y 值为即当矩形的边长分别为血a, Qb 时面积最大.。

高教社2024高等数学第五版教学课件-2.5 函数的微分

高教社2024高等数学第五版教学课件-2.5 函数的微分

故 = ′ (0 ) ⋅ + ⋅ .
当 → 0时,第一项 ′ (0 ) ⋅ 是的线性函数,第二项 ⋅ 是当
→ 0时比高阶的无穷小量.所以就近似等于 ′ (0 ) ⋅ ,即
∆ ≈ ′ (0 ) ⋅ .
例5 当一块正方形金属薄片受到温度变化的影响时,其边长会发生
例1 已知函数 = 2 ,求当 = 1, = −0.01时的微分与增量.

= ′ |=1 ⋅ = 2|=1 ⋅ = 2 × 1 × (−0.01) = −0.02.
= (1 − 0.01)2 − 12 = −0.0199.
可见 ≈ .
2.微分的几何意义
利用公式∆ ≈ ′ (0 ) ⋅ ,得到金属薄片面积的改变量
∆ ≈ ′ 0 ⋅ = 20 × 0.1 = 2cm2 .
2
近似计算( + )
由 = (0 + ) − (0 )可得
0 + ∆ − (0 ) ≈ ′ (0 ) ⋅ ,
第二章 导数与微分
第五节 函数的微分
在实际问题中,我们经常要计算当自变量有一微小增
量 时,相应的函数的增量 的大小. 如果函数比较复
杂,那么计算函数的增量 = (0 + ) − (0 )也会很
复杂.能否找到一个既简单,又有较高精确度的计算近
似值的方法,就是我们即将要讨论的微分.
(13) ( ) =
( )′
=
1
1
1
1−
1

1+ 2
1
( ) =
1 + 2


2
− 2
(15) ( ) =
(12) ( ) = −

《高等数学》第2章导数与微分2-5函数的微分

《高等数学》第2章导数与微分2-5函数的微分

d (a x ) a x ln adx
d (e x ) e xdx
d (loga
x)
1 dx x ln a
d(arcsin x)
1
1
x2
dx
d
(arctan
x
)
1
1 x
2
dx
d(ln x) 1 dx x
d(arccos x)
1
1
x2
dx
d
(arc
cot
x)
1
1 x2
dx
2. 函数和、差、积、商的微分法则
函数 f ( x)在点 x0可微, 且 f ( x0 ) A.
可导 可微. A f ( x0 ).
函数 y f ( x)在任意点 x的微分, 称为函数的 微分, 记作 dy或 df ( x), 即 dy f ( x)x.
例1 求函数 y x 3 当 x 2, x 0.02时的微分.
设函数 y f ( x)有导数 f ( x),
(1) 若x是自变量时 , dy f ( x)dx;
(2) 若x是中间变量时 , 即另一变量 t 的可
微函数 x (t ), 则 dy f ( x)(t)dt
(t )dt dx,
dy f ( x)dx.
结论:无论 x是自变量还是中间变量 , 函数 y f ( x)的微分形式总是 dy f ( x)dx
(1)
(2)
x0
x0x
x (x)2
x
A x02
x0x x0
(1) : x的线性函数,且为A的主要部分;
(2) : x的高阶无穷小,当 x 很小时可忽略.
再例如,
设函数
y
x 3在点

2-5第五节 函 数 的 微 分

2-5第五节    函 数 的 微 分

高 等 数 学 电 子 教 案
定理 由于f ’(x)和△ x 无关,且 α ∆x = ο (∆x) 所以上式相当(1)式, f(x)在点x0可微.且 f ′( x0 ) = A 上面表示可微 可导
函数f(x)在点x0可微的充分必要条件是f(x)在点x0 可导,且 dy | x = x0 = f ′( x0 ) ∆x
1− 2 x 2 1− 2 x 2
解: 将1-2x2看成中间变量u
dy = e d (1 − 2 x ) = − 4 xe
2
dx
y ′ = − 4 xe x
例5
解 :
1− 2 x 2
2
y = f [φ ( x 2 ) + ψ 求函数的微分
( x )]
已知 f 可导 .
y = f [φ ( x 2 ) + ψ
′ ′ ′ dy = y ′ dx = y u ⋅ u ′ dx = y u du → dy = y u du x x
对照 dy=yx’dx, 公式dy=yu’du 说明不论u是自变量还是中
学 数
间变量,函数微分的形式是完全一样的,此即称为微分形式 不变性质.
高 等 数 学 电 子 教 案
例4
利用函数微分的不变性,求函数y=e1-2x2的微分和导数
∆y = A∆x + o(∆x) → ∆y o(∆x) = A+ ∆x ∆x
所以,f(x)在点x0可导,且A=f‘(x0). (2) 可导也可推出可微 如果y=f(x)在点x0可导,即有 由极限和无穷小的关系,得到
∆y lim = f ′( x0 ) = A ∆ x → 0 ∆x
学 数
∆y = f ′( x0 ) + α ( lim α = 0) ∴ ∆y = f ′( x)∆x + α∆x ∆x → 0 ∆x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0

x
e x f (0) f (0)x e0 e0 x 1 x
x
武 汉
ln(1 x) ln(1 0)
x
1 0
科 技 学
n
1
x

n
1
0

1
(1
1 1
0) n x
1
x
院 数
n
n


高 例1 计算sin60020’的近似值
等 数
解:
将60020’化为弧度,得到 60020' ( 20 )
1
解:设 f ( x) x 3
x 1, x 0.05

汉 科
由 f (x x) f (x) f (x)x
技 学 院 数 理 系
f (1 x) f (1) f (1)x 且f ' (1) 1
3
1
所以(1 0.05) 3
1 1 0.05

(28)d(u ) v

vdu udv v2

学 院
同学们,如果能将此表从左到右,或从右到左地记熟它们,
数 理
对今后的演算积分是大有好处的.

高 等
三. 微分形式的不变性


与复合函数求导法则相对应的微分运算法则为下面的
电 子
微分形式不变性质.
教 设 y 是由 y=f(u),u=g(x) 复合而成的x的函数,则由
叫做相对误差.在实际中准确值A往往无法知道,所以绝对
误差和相对误差没有办法得到。但根据某些条件或加工

汉 科 技
要求,有时能确定误差在某一个容许范围δA之内,有
学 院
|A-a|≤δA 则称δA为A的绝对误差限,把δA/|a|称为A的相

理 系
对误差限。有时也把它们称为A的绝对误差与相对误差.
高 等



等 定义 如果函数y=f(x)在点x0的增量能分成两部分的和,其
数 学
中一项为的线性函数A △ x(A与△ x无关),另一项是较△x
电 子
高阶的无穷小, 有 y Ax o(x)
( 1)
教 案
则称函数y=f(x)在x0点可微,并称A △ x为函数y=f(x)
在点x0的微分 记作 dy|x=x0 或 df(x)|x=x0 即
1.0167
3
高 等
例3 计算 3 8.02 的近似值
数 学
解:3 8.02 3 8(1 1 ) 23 1 1 2(1 1 1 ) 2.0017
400
400
3 400
电 子
二. 微分在误差估计中的应用
教 案
设某个量的准确值为A,它的近似值为a,则A与a之差
的绝对值|A-a|叫做a的绝对误差,而绝对误差与 |a| 的比值
(13)d sec x sec xtgxdx

院 数 理 系
(15)d arcsin x dx 1 x2
(2)d (xa ) axa1dx(a R)
(4)d x dx 2x
(6)dex e x dx (8)d ln x dx
x (10)d cos x sin xdx


等 由于f’(x)和△ x 无关,且 x (x) 所以上式相当(1)式,
数 学
f(x)在点x0可微.且 f (x0 ) A


上面表示可微
可导

案 定理 函数f(x)在点x0可微的充分必要条件是f(x)在点x0
可导,且 dy |xx0 f (x0 )x


今后我们把可导和可微不严格区分而混合使用.
(12)dctgx csc2 xdx
(14)d cscx cscxctgxdx
(16)d arccos x dx 1 x2
高 等 数
(17)darctgx dx 1 x2
学 (19)dshx chxdx
电 子 教 案
(21)dthx dx ch2 x
(23)darchx dx

数 dy就是曲线上相应点的切线纵坐标的增量,当| △x|很小时,
学 电
| △y-dy| 比 |△x| 小得多,因此在点M邻近,可用切线段
子 来近似代替曲线段.


三. 基本初等函数的微分公式与微分运算法则
从函数微分表达式 dy=f’(x)dx 可以看出要计算函数的微

汉 科
分值是把函数的导数,再乘以自变量的微分。由此可得如
所以也叫线性函数,当△x很小时, α △x 可以忽略不计,
所以f ‘(x)成为 △y的主要部分,称为线性主部.
武 (2) 当△x很小时,函数的增量△y可以用它的微分来代替.

科 技

△y≈dy= f ‘(x) dx
学 院
(3) 微分的几何意义是y=f(x)图象上一点(x,f(x))处切线的

理 系
纵坐标的改变量.

yx yu ux
dy yx dx yu ux dx yu du dy yu du
武 汉 科
对照 dy=yx’dx, 公式dy=yu’du 说明不论u是自变量还是中
技 学
间变量,函数微分的形式是完全一样的,此即称为微分形式

数 理
不变性质.

高 例4 利用函数微分的不变性,求函数y=e1-2x2的微分和导数

f [(x 2 ) 2 (x)][ (x 2 )d (x 2 ) 2 (x)d (x)]

科 技
f [(x 2 ) 2 (x)][ 2 (x 2 )x 2 (x) (x)]dx
学 院
利用微分不变性质求函数的微分,比直接用公式

理 系
dy=f’(x)dx 求微分更有规律性,不容易出错.

从而得到曲线上另一点N(x0+△x,y0+△y)
Y=f(x) 从图可见 MQ=△x, QN=△y

N
T 过M点作曲线的切线MT,
汉 科 技
M
P
△y dy
它的倾角为α,
学 院 数 理 系
α △x Q x0 x0+△x
则QP=MQ·tgα=△x·f’(x0) 即dy=QP

由此可见,当△y是曲线y=f(x)上点的纵坐标的增量时,
D V 100 D 300
理 系
即测量直径D的相对误差不能超过0.6%

在这里我们把微分进行小结,微分和导数一样是微积分

数 的基本概念在理解微分的概念时,要注意以下几点:
学 电
(1)
函数的微分是函数改变量(函数增量)的线性主部.

△y=f ‘(x) △x+α △x 其中α是△x的高阶小量
教 案
f ‘(x)是 △x的一次函数,因为一次函数的图象是直线,
(2)
x x0 x x x x0
f (x) f (x0 ) f (x0 )( x x0 ),
( 3)

汉 科
如果知道f(x0),f’(x0)就可以利用(1)式计算增量△ y,利用(2),
技 学 院
(3)式计算函数值。特别是若 x0=0, x在原点附近, 有△ x=x,
微分作近似计算的常用公式

汉 科
e x (1 x)

学 院
(1 x) 1 x ln(1 x) x


学 院
下微分公式和微分运算法则.



高 等
(1)dC 0(C为常数)
数 学
(3)d ( 1 ) x


1 x2
dx
电 子
(5)da a x ln adx
教 案
(7)d log a
x

dx x ln a
(9)d sin x cosxdx
(11)dtgx sec2 xdx


科 技
3 540 180 60 540
学 电 子
令x0=π/3, △ x= π/540,
sin 60020' sin( ) sin cos
3 540
3
3 540

31

0.0058 0.8689 22
要求x0比△x大很多,
否则不精确
例2 计算 3 1.05 的近似值
x2 1
(18)darcctgx dx 1 x2
(20)dchx shxdx
(22)darshx dx
1 x2
(24)darthx

1
dx x
2
(25)d(u v) du dv
(26)d(Cu) Cdu (C为常数)
武 汉
(27)d(uv) vdu udv

科 技
=11*0.01=0.11





高 二. 微分的几何意义
等 数
为了对微分有比较直观的了解,我们来说明微分的几何
学 意义。在直角坐标系中,函数y=f(x)的图形是一条曲线。
电 子
对于某一固定的值x0,曲线上有一个确定点M (x0,y0),当
教 自变量x有微小增量△x时, 相应函数有微小增量△y,
例4
测得某圆半径r=22.5cm,测量r的绝对误差限δr=0.1cm,

计算 这圆面积A的绝对误差限为多少?
相关文档
最新文档