专题27 应用基本不等式求最值的求解策略高中数学黄金解题模板

合集下载

基本不等式求最值的策略

基本不等式求最值的策略

基本不等式求最值的策略例谈用基本不等式求最值的四大策略摘要基本不等式-__b v^ab ( a 0,b 0当且仅当a b 时等号成立)是高中必2修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。

从本质上 看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、 和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题 的强有力工具。

本文将结合几个实例谈谈运用基本不等式求最值的三大策略。

关键字:基本不等式求和与积的最值策略基本不等式的基础知识[1] 基本不等式:如果a 0,b0,则,当且仅当a b 时等号成立。

2在基本不等式的应用中,我们需要注意以下三点:“一正”:a 、b 是正数,这是利用基本不等式求最值的前提条件。

“二定”:当两正数的和a b 是定值时,积ab 有最大值;当两正数的积ab 是定 值时,和a b 有最小值。

“三相等” :a b 是U VOb 的充要条件,所以多次使用基本不等式时,要2注意等号成立的条件是否一致。

二、 利用基本不等式求最值的四大策略策略一利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的 式子,变为结构一致,再利用均值不等式求解最值。

题型一配凑系数3例1设0 x —,求函数y230,-时等号成立.2 q所以原式的最大值为-24x(3 2x)的最大值。

分析:因为4x (3 2x) 3 2x 不是个定值,所以本题无法直接运用基本不等式求解。

但凑系数将4x 拆为22x 后可得到和2x (32x) 3为定值,从而可利用基本不等式求其最大值。

33,所以3 2解:因为0 x 2x故 y 4x(32x) 2 2x(3 2x)22x 3 2x 2 -当且仅当2x 3 2x,即xab-— = \, a(a-b)-— ----- = 1 即(/一亦)• ab a(a-b) _ab两项°所以ab > 0, — > 0,故血+丄cib ab而 a(a-b)>09题型二配凑项 1配凑常数项已知V ,求函数尸4-2 +去的最大值。

基本不等式求最值的题型及解题策略

基本不等式求最值的题型及解题策略

ʏ喻 芳利用不等式求最值的实质是a b ɤa +b2ɤa 2+b 22(a ,b >0),a b ɤa +b 22ɤa 2+b22(a ,b ɪR )的灵活应用㊂题型一:简单的和或积为定值求最值例1 (1)已知x ,y ,z 都是正实数,若x y z =1,则(x +y )(y +z )(z +x )的最小值为( )㊂A.2 B .4C .6D .8(2)已知0<x <1,则函数f (x )=x 3(1-x 3)的最大值为㊂(1)由x >0,y >0,z >0,可知x +y ȡ2x y >0(当且仅当x =y 时等号成立),y +z ȡ2y z >0(当且仅当y =z 时等号成立),x +z ȡ2x z >0(当且仅当x =z 时等号成立)㊂以上三个不等式两边同时相乘得(x +y )(y +z )(z +x )ȡ8x 2y 2z 2=8(当且仅当x =y =z =1时等号成立)㊂应选D ㊂(2)由基本不等式得f (x )=x 3(1-x 3)ɤx 3+1-x322=14,当且仅当x 3=1-x 3,即x =312时等号成立㊂故所求的最大值为14㊂感悟:基本不等式a 2+b 2ȡ2a b (a ,b ɪR ),a +b ȡ2a b (a ,b ɪR +),当一端为定值时,另一端就可取到最值,且要注意两个不等式适应的范围和取等号的条件㊂题型二:配凑法构造和或积为定值求最值例2 (1)已知x <54,求y =4x -2+14x -5的最大值㊂(2)若x ȡ72,则f (x )=x 2-6x +10x -3有( )㊂A .最大值52B .最小值52C .最大值2D .最小值2(1)由x <54,可得5-4x >0,所以y =4x -2+14x -5=4x -5+14x -5+3=-5-4x +15-4x+3ɤ-2(5-4x )ˑ15-4x+3=1,当且仅当5-4x =15-4x ,即x =1时等号成立,所以y 的最大值为1㊂(2)由x ȡ72,可得x -3>0,所以f (x )=x 2-6x +10x -3=(x -3)2+1x -3=(x -3)+1x -3ȡ2(x -3)ˑ1x -3=2,当且仅当x -3=1x -3,即x =4时等号成立,所以f (x )有最小值2㊂应选D ㊂感悟:形如y =a x 2+b x +ck x +m的分式函数求最值,可化为y =m g (x )+Ag (x)+B (A >0,B >0),这里g (x )恒正或恒负,然后运用基本不等式求最值㊂题型三:常数代换法求最值例3 已知p ,q 为正实数,且p +q =3,81 知识结构与拓展 高一数学 2023年9月Copyright ©博看网. All Rights Reserved.则1p +2+1q +1的最小值为( )㊂A.23B .53C .74D .95由p ,q 为正实数,p +q =3,可知p +2+q +1=6㊂所以1p +2+1q +1=1p +2+1q +1 ㊃p +26+q +16 =13+16p +2q +1+q +1p +2 ȡ13+16ˑ2p +2q +1㊃q +1p +2=23,当且仅当p +2=q +1,即p =1,q =2时 = 成立㊂应选A ㊂感悟:常数代换法适用于求解条件最值问题㊂题型四:消元法求最值例4 若正实数x ,y ,z 满足x 2+4y 2=z +3x y ,则当x yz 取最大值时,1x +12y -1z 的最大值为㊂正实数x ,y ,z 满足x 2+4y 2=z +3x y ,则z =x 2-3x y+4y 2,所以x y z =x yx 2-3x y +4y2=1x y +4y x -3ɤ12x y ㊃4y x -3=1,当且仅当x =2y 时等号成立,所以x yzm a x=1,此时x =2y ,所以z =x 2-3x y +4y 2=2y 2㊂所以1x +12y -1z =12y +12y -12y 2=-121y -12+12ɤ12,所以1x +12y -1z的最大值为12㊂感悟:解决多元最值的方法是消元后利用基本不等式求解,但要注意所保留变量的取值范围㊂题型五:换元法求最值例5 若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是㊂设u =2-2a ,v =2-b ,则a =2-u2,b =2-v ,所以u +v =3(u >0,v >0)㊂所以a 2-2a +b 2-b =1-12uu +2-vv=1u +2v -32=13(u +v )1u +2v-32=13㊃3+v u +2u v-32ȡ133+2v u ㊃2uv-32=1+223-32=223-12,当且仅当v 2=2u 2,u +v =3,即v =6-32,u =32-3时等号成立,所以所求的最小值为223-12㊂感悟:换元法求最值的关键是整体换元,利用构造的新元求最值㊂题型六:构建不等式求最值例6 (1)已知正实数x ,y 满足x y =x +y +8,则x +y 的最小值为㊂(2)已知x ,y ɪR +,若x +y +x y =8,则x y 的最大值为㊂(1)由正实数x ,y ,可得(x +y )2=x 2+y 2+2x y ȡ4x y(当且仅当x =y 时等号成立),所以x y ɤ(x +y )24,所以x y =x +y +8ɤ(x +y )24,即(x +y )2-4(x +y )-32ȡ0,解得x +y ɤ-4(舍去)或x +y ȡ8(当且仅当x =y =4时等号成立),所以x +y 的最小值为8㊂(2)因为正数x ,y 满足x +y +x y =8,所以8-x y =x +y ȡ2x y ,即x y +2x y-8ɤ0,解得0<x y ɤ2,所以x y ɤ4,当且仅当x =y =2时取等号㊂所以x y 的最大值为4㊂感悟:利用题设条件,借助基本不等式进行放缩,得到关于 和 或 积 的不等式,解此不等式可得 和 或 积 的最值㊂作者单位:湖北省宜昌市长阳土家族自治县职业教育中心(责任编辑 郭正华)91知识结构与拓展高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。

(全)基本不等式应用-利用基本不等式求最值的技巧-题型分析

(全)基本不等式应用-利用基本不等式求最值的技巧-题型分析

基本不等式应用一.基本不等式1.(1)若R b a ∈,,则abb a222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则abb a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x<0时,y=x+1x= -(-x-1x)≤-2x·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。

解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

基本不等式求最值技巧总结

基本不等式求最值技巧总结

高三复习讲义: 基本不等式求最值总结一、直接法1.求函数2log log (2)x y x x =+的值域2.1,1,,a b x y R >>∈,若3,x y a b a b ==+=11x y +的最大值3.设01,01a x y <<<≤<,且log log 1a a x y ⋅=,求xy 的最大值4.已知0a b >>,求216()a b a b +-的最小值二、凑系数5.当04x <<时,求(82)y x x =-的最大值6.设0,0x y >>,且3212x y +=,求xy 的最大值三、凑项7.已知54x <,求函数14245y x x =-+-的最大值8.设,x y z n N >>∈*,且11n x y y z x z +≥---恒成立,求n 的最大值9.设01,,x a b R +<<∈,求1a b x x+-的最小值四、凑、配、拆 10.已知52x ≥,求24524x x y x -+=-的最小值 11.当0x >时,求22121x x y x x ++=++的最小值12.若对于任意的0x >,231x a x x ≤++恒成立,求a 的取值范围13.已知1x >-,求2158x y x x +=++的最大值 五、基本不等式失效14.求函数2y =15.求4sin (0)sin y x x xπ=+<<的值域 六、1的整体代换16.已知正数,x y 满足4x y +=,求使不等式14m x y+≥,恒成立的实数m 的取值范围 17.已知,x y R +∈,且20x y xy +-=,若222x y m m +>+恒成立的m 的取值范围18.函数22(0,1)x y a a a +=->≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,求12m n+的最小值 19.已知正数,,x y z 满足1x y z ++=,求149x y z ++的最小值七、凑和为定值20.已知正数,a b 满足2223a b +=,求21. 已知,x y R +∈,且2212y x +=,求22.已知30x -<<,求八、构造不等式23.设,x y R +∈,且()1xy x y -+=,求x y +的最小值24. ,x y R +∈,且228x y xy ++=,求2x y +最小值25.已知1,1x y >->-,且(1)(1)4x y ++=,求x y +的最小值九、平方26. 求y =27.设,,a b c R +∈,且1a b c ++=28.设,x y R +∈a 的最小值。

利用基本不等式求最值(解析版)-高中数学

利用基本不等式求最值(解析版)-高中数学

利用基本不等式求最值题型梳理【题型1直接法求最值】【题型2配凑法求最值】【题型3常数代换法求最值】【题型4消元法求最值】【题型5构造不等式法求最值】【题型6多次使用基本不等式求最值】【题型7实际应用中的最值问题】【题型8与其他知识交汇的最值问题】命题规律基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.知识梳理【知识点1利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.举一反三【题型1直接法求最值】1(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【解题思路】用基本不等式求解即可.【解答过程】因为a>0,所以a+1a+1≥2a⋅1a+1=3,当且仅当a=1a即a=1时取等号;故选:B.【变式训练】1(2023·北京东城·统考一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.22【解题思路】由基本不等式求得最小值.【解答过程】∵x>0,∴x+4x-4≥2x×4x-4=0,当且仅当x=4x即x=2时等号成立.故选:B.2(2023上·山东·高一统考期中)函数y=x2-x+9x(x>0)的最小值为()A.1B.3C.5D.9【解题思路】利用均值不等式求最小值即可.【解答过程】y=x2-x+9x=x+9x-1≥2x⋅9x-1=5,当且仅当x=9x,即x=3时等号成立,故选:C.3(2023下·江西·高三校联考阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+43【解题思路】依题意可得3+1 x21+4x2=7+1x2+12x2,再利用基本不等式计算可得.【解答过程】3+1 x21+4x2=7+1x2+12x2≥7+21x2⋅12x2=7+43,当且仅当1x2=12x2,即x4=112时,等号成立,故3+1 x21+4x2的最小值为7+4 3.故选:D.【题型2配凑法求最值】1(2023·浙江·校联考模拟预测)已知a>1,则a+16a-1的最小值为()A.8B.9C.10D.11【解题思路】运用基本不等式的性质进行求解即可.【解答过程】因为a>1,所以由a+16a-1=a-1+16a-1+1≥2a-1⋅16a-1+1=9,当且仅当a-1=16a-1时取等号,即a=5时取等号,故选:B.【变式训练】1(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x-3+2x的最小值是()A.6B.8C.10D.12【解题思路】利用基本不等式求和的最小值,注意取值条件.【解答过程】由x-3>0,则y=2x-3+2(x-3)+6≥22x-3⋅2(x-3)+6=10,当且仅当x=4时等号成立,故最小值为10.故选:C.2(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x-1+4x-2,的最小值为()A.7B.8C.14D.15【解题思路】利用基本不等式求解.【解答过程】因为x>2,所以x-2>0,所以y=4x-1+4x-2=4x-2+4x-2+7≥24x-2⋅4x-2+7=15,当且仅当4x -2 =4x -2,即x =3时等号成立,所以函数y =4x -1+4x -2的最小值为15,故选:D .3(2023上·辽宁·高一校联考期中)若x >0,y >0且满足x +y =xy ,则2xx -1+4y y -1的最小值为()A.6+26B.4+62C.2+46D.6+42【解题思路】结合条件等式,利用基本不等式求和的最小值.【解答过程】若x >0,y >0且满足x +y =xy ,则有1x +1y=1,所以x >1,y >1,2x x -1+4y y -1=2x -1 +2x -1+4y -1 +4y -1=6+2x -1+4y -1≥6+22x -1⋅4y -1=6+28xy -x +y +1=6+42,当且仅当2x -1=4y -1,即x =1+22,y =1+2时等号成立.所以2x x -1+4y y -1的最小值为6+4 2.故选:D .【题型3 常数代换法求最值】1(2023上·内蒙古通辽·高三校考阶段练习)已知a >0,b >0,若2a +3b=1,则2a +b3的最小值是()A.8B.9C.10D.11【解题思路】利用基本不等式“1”的应用即可求解.【解答过程】由题意得a >0,b >0,2a +3b=1,所以2a +b 3=2a +b 3 2a +3b =4+1+2b 3a +6ab ≥5+22b 3a ×6a b=9,当且仅当2b 3a =6ab 时,即a =3,b =9,取等号,故B 项正确.故选:B .【变式训练】1(2023·河南·校联考模拟预测)已知正实数a ,b ,点M 1,4 在直线xa +y b=1上,则a +b 的最小值为()A.4B.6C.9D.12【解题思路】根据题意可得1a+4b=1,结合基本不等式运算求解.【解答过程】由题意得1a+4b=1,且a>0,b>0,故a+b=a+b⋅1a+4b=5+b a+4a b≥5+2b a×4a b=9,当且仅当ba=4ab,即a=3,b=6时,等号成立.故选:C.2(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y-xy=0,则2x+y的最大值为()A.25B.16C.37D.19【解题思路】根据等式计算得出1,再结合常值代换求和的最值,计算可得最大值.【解答过程】∵x>0,y>0,2x+8y-xy=0,∴2y+8x=1,x+y=x+y2y+8x=2x y+8+2+8y x≥22x y×8y x+10=18,∴2 x+y ≤218=19.故选:D.3(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【解题思路】首先根据题意求出0≤a<12,0<b≤1,然后将原式变形得2a2a+1+b2+1b=2a+1+1b-1,最后利用1的妙用即可求出其最值.【解答过程】∵2a+b=1,且a,b为非负实数,b≠0,则a≥0,b>0则b=1-2a>0,解得0≤a<12,2a=1-b≥0,解得0<b≤1,∴2a2 a+1+b2+1b=2(a+1)2-4(a+1)+2a+1+b2+1b=2(a+1)-4+2a+1+b+1b=(2a+b-2)+2a+1+1b=2a+1+1b-12 a+1+1b=42a+2+1b=13(2a+2)+b⋅42a+2+1b=135+4b2a+2+2a+2b≥135+24b2a+2⋅2a+2b=3,当且仅当4b2a+2=2a+2b即2a+2=2b,2a+b=1时,即b=1,a=0时等号成立,故2a+1+1b-1min=2,故选:B.【题型4消元法求最值】1(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x-4=9y,则x+8y的最小值为12.【解题思路】根据指数方程,得出x,y的关系式,运用消元法将所求式化成关于y的关系式,再利用基本不等式求解.【解答过程】由3x-4=9y,可得x-4=2y,即x=2y+4,代入x+8y中,可得2y+4+8y=2y+8y+4≥22y⋅8y+4=12,当且仅当y=2,x=8时,取等号,所以x+8y的最小值为12.故答案为:12.【变式训练】1(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为62-5.【解题思路】根据题意,化简得到x+2y=x2-3x+14x+1,设t=x+1,求得x2-3x+14x+1=t+18t-5,结合基本不等式,即可求解.【解答过程】由x,y∈R+,且2x+y+xy=7,可得y=7-2xx+1,则x+2y=x+2×7-2xx+1=x2-3x+14x+1,设t=x+1,可得x=t-1且t>1,可得x2-3x+14x+1=t2-5t+18t=t+18t-5≥2t⋅18t-5=62-5,当且仅当t=18t时,即t=32时,等号成立,所以x+2y的最小值为62-5.故答案为:62-5.2(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为13.【解题思路】根据基本不等式即可求解.【解答过程】由2a+b+6=ab可得a=b+6b-2>0,由于b>0,所以b>2,故a+2b=b+6b-2+2b=8b-2+2b-2+5,由于b>2,所以8b-2+2b-2≥216=8,当且仅当b=4时等号成立,故a+2b=8b-2+2b-2+5≥13,故a+2b的最小值为13,故答案为:13.3(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2-ab+1=0,c2+d2=1,则当(a-c)2+(b-d)2取得最小值时,ab=22+1.【解题思路】将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,进而转化为a,b与圆心0,0的距离,结合基本不等式求得最小值,进而分析求解即可.【解答过程】可将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,由a2-ab+1=0,得b=a+1 a,而c2+d2=1表示以0,0为圆心,1为半径的圆,c,d为圆上一点,则a,b与圆心0,0的距离为:a2+b2=a2+a+1 a2=2a2+1a2+2≥22a2⋅1a2+2= 22+2,当且仅当2a2=1a2,即a=±412时等号成立,此时a,b与圆心0,0的距离最小,即a,b与c,d两点间距离的平方最小,即(a-c)2+(b-d)2取得最小值.当a=412时,ab=a2+1=22+1,故答案为:22+1.【题型5构造不等式法求最值】1(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a-1+2b-2的最小值为2C.a+b有最小值3+2D.a2-2a+b2-4b有最大值4【解题思路】根据基本不等式运用的三个条件“一正、二定、三相等”,可知ab≥8,所以A错误;将原式化成a-1b-2=2,即可得1a-1+2b-2=1a-1+a-1≥2,即B正确;不等式变形可得2b+1a=1,利用基本不等式中“1”的妙用可知a+b≥3+22,C错误;将式子配方可得a2-2a+b2 -4b=(a-1)2+(b-2)2-5,再利用基本不等式可得其有最小值-1,无最大值,D错误.【解答过程】对于A选项,ab=2a+b≥22ab,即ab≥22,故ab≥8,当且仅当a=2,b=4时等号成立,故ab的最小值为8,A错误;对于B选项,原式化为a-1b-2=2,b=2aa-1>0,故a-1>0;a=bb-2>0,故b-2>0;所以1a-1+2b-2=1a-1+a-1≥2,当且仅当a=2,b=4时等号成立,B正确;对于C选项,原式化为2b+1a=1,故a+b=a+b2b+1a=2a b+1+2+b a≥3+22,当且仅当a=2+1,b=2+2时等号成立,C错误;对于D选项,a2-2a+b2-4b=(a-1)2+(b-2)2-5≥2a-1b-2-5=-1,当且仅当a=1+2,b=2+2时等号成立,故有最小值-1,D错误.故选:B.【变式训练】1(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy-3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是42-3【解题思路】利用基本不等式得x+y+xy-3≥(xy+3)(xy-1)、x+y+xy-3≤(x+y)24+(x+y)-3分别求xy、x+y的最值,注意取等条件;由题设有x=3-yy+1且0<y<3代入x+4y、x+2y,结合基本不等式求最值,注意取等条件.【解答过程】由x+y+xy-3≥xy+2xy-3=(xy+3)(xy-1),当且仅当x=y=1时等号成立,即(xy+3)(xy-1)≤0,又x>0,y>0,故0<xy≤1,仅当x=y=1时等号成立,所以0<xy≤1,故xy的最大值是1,A错误;由x+y+xy-3≤(x+y)24+(x+y)-3,当且仅当x=y=1时等号成立,所以(x+y)24+(x+y)-3≥0,即(x+y+6)(x+y-2)≥0,又x>0,y>0,则x+y≥2,仅当x=y=1时等号成立,故x+y的最小值是2,B正确;由x+y+xy-3=0,x>0,y>0,可得x=3-yy+1,且0<y<3,所以x +4y =3-y y +1+4y =4y 2+3y +3y +1=4(y +1)2-5(y +1)+4y +1=4(y +1)+4y +1-5≥24(y +1)⋅4y +1-5=3,当且仅当y +1=1,即y =0、x =3时等号成立,故x +4y >3,C 错误;同上,x +2y =3-y y +1+2y =2y 2+y +3y +1=2(y +1)2-3(y +1)+4y +1=2(y +1)+4y +1-3≥22(y +1)⋅4y +1-3=42-3,当且仅当y +1=2,即y =2-1、x =22-1时等号成立,故x +2y ≥42-3,D 错误;故选:B .2(2023上·江苏·高一专题练习)下列说法正确的是()A.若x >2,则函数y =x +1x -1的最小值为3B.若x >0,y >0,3x +1y =5,则5x +4y 的最小值为5C.若x >0,y >0,x +y +xy =3,则xy 的最小值为1D.若x >1,y >0,x +y =2,则1x -1+2y的最小值为3+22【解题思路】选项A :将函数变形再利用基本不等式进行判断最值即可,选项B :由基本不等式进行判断即可,选项C :结合换元法与基本不等式求最值进行判断即可,选项D :对式子进行变形得到1+yx -1+2x -1 y+2,再利用基本不等式进行判断即可.【解答过程】解:选项A :y =x +1x -1=x -1+1x -1+1≥2x -1·1x -1+1=3,当且仅当x -12=1时可以取等号,但题设条件中x >2,故函数最小值取不到3,故A 错误;选项B :若x >0,y >0,3x +1y =5,则5x +4y =153x +1y 5x +4y =1519+5x y +12y x ≥1519+25x y ·12y x=19+4155,当且仅当5xy =12y x时不等式可取等号,故B 错误;选项C :3-xy =x +y ≥2xy ⇒xy +2xy -3≤0当且仅当x =y 时取等号,令xy =t t ≥0 ,t 2+2t -3≤0,解得-3≤t ≤1,即0<xy ≤1,故xy 的最大值为1,故C 错误;选项D :x +y =2,(x -1)+y =1,1x -1+2y =1x -1+2y·x -1 +y =1+y x -1+2x -1 y+2≥3+2y x -1·2x -1y=3+22,当且仅当y =2x -2时取等号,又因为x +y =2,故x =2y =2-2 时等号成立,即1x -1+2y最小值可取到3+22,故D 正确.故选:D .3(2023上·广东中山·高三校考阶段练习)设正实数x ,y 满足x +2y =3,则下列说法错误的是()A.y x +3y 的最小值为4 B.xy 的最大值为98C.x +2y 的最大值为2D.x 2+4y 2的最小值为92【解题思路】根据基本不等式以及“1”的妙用判断各选项.【解答过程】对于A ,y x +3y =y x +x +2y y =y x +x y +2≥2yxxy+2=4,当且仅当x =y =1时取等号,故A 正确;对于B ,xy =12⋅x ⋅2y ≤12×x +2y 2 2=12×94=98,当且仅当x =2y ,即x =32,y =34时取等号,故B 正确;对于C ,(x +2y )2=x +2y +22xy ≤3+22×98=3+3=6,则x +2y ≤6,当且仅当x =2y ,即x =32,y =34时,故C 错误;对于D ,x 2+4y 2=(x +2y )2-4xy ≥9-4×98=92,当且仅当x =32,y =34时取等号,故D 正确.故选:C .【题型6 多次使用基本不等式求最值】1(2023·河南·校联考模拟预测)已知正实数a ,b ,满足a +b ≥92a +2b,则a +b 的最小值为()A.5B.52C.52D.522【解题思路】先根据基本不等式求出92a +2ba +b ≥252.然后即可根据不等式的性质得出a +b2≥92a +2ba +b ≥252,列出两个等号同时成立的条件,即可得出答案.【解答过程】由已知可得,a >0,b >0,a +b >0.因为92a+2ba+b=92+2+9b2a+2ab≥29b2a×2ab+132=6+132=252,当且仅当9b2a=2ab,即2a=3b时等号成立.所以,a+b2≥92a+2ba+b≥252,当且仅当2a=3ba+b=92a+2b,即a=322b=2时,两个等号同时成立.所以,a+b≥322+2=522.故选:D.【变式训练】1(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1x+2xy的最小值为()A.22-1B.22+1C.2-1D.2+1【解题思路】分为x>0与x<0,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.【解答过程】当x>0时,1x+2xy=x+yx+2xy=yx+2xy+1≥2yx⋅2xy+1=22+1,当且仅当yx=2xy,即x=2-1,y=2-2时等号成立,此时有最小值22+1;当x<0时,1x+2xy=x+y-x+-2xy=y-x+-2xy-1≥2y-x⋅-2xy-1=22-1.当且仅当y-x=-2xy,即x=-1-2,y=2+2时等号成立,此时有最小值22-1.所以,1x+2xy的最小值为22-1.故选:A.2(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx=2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2 D.52【解题思路】两次应用基本不等式,根据两次不等式等号成立的条件列方程求解即可.【解答过程】因为实数x,y,z>0,满足xy+zx=2,所以xy +zx=2≥2xy ×z x =2yz ⇒yz ≤1,当且仅当z =yx 2时,yz =1,所以4y +1z≥24y ×1z=24yz≥241=4,当且仅当4y =1z且yz =1时,等号成立;所以当yz =1且4y =1z 时,4y +1z取得最小值4,此时解得y =2z =12 ⇒y +z =52,故选:D .3(2023上·辽宁大连·高一期末)若a >0,b >0,a +b =1,则a 2+3ab a +2b +2b +1-1b 的最大值为()A.2B.2-2C.3-2D.3-22【解题思路】由已知可得a 2+3ab a +2b +1b +1=3-2b -1b +1,进而有a 2+3ab a +2b +2b +1-1b =3-2b -1b,结合基本不等式求最大值,注意取值条件.【解答过程】由题设,a 2+3ab a +2b +1b +1=a (a +3b )+1b +1=a (2b +1)+1b +1,而a =1-b >0,b >0,所以a (2b +1)+1b +1=2+b -2b 2b +1=1+1-2b 2b +1=1+2(1-b 2)-1b +1=3-2b -1b +1,所以a 2+3ab a +2b +2b +1-1b =3-2b -1b 且0<b <1,又2b +1b≥22b ⋅1b =22,当且仅当b =22时取等号,所以a 2+3ab a +2b +2b +1-1b ≤3-22,当且仅当a =1-22,b =22时取等号,即目标式最大值为3-2 2.故选:D .【题型7 实际应用中的最值问题】1(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为400m 2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为8400元/m 2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m 2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m 2.设总造价为y (单位:元),AD 长为x (单位:m ).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【解题思路】(1)由题意可得矩形AMQD的面积,即可得出AM=400-x2 4x;(2)先表示出总造价y,再由基本不等式求解即可.【解答过程】(1)由题意可得,矩形AMQD的面积为S AMQD=400-x24,因此AM=400-x24x,∵AM>0,∴0<x<20.(2)y=8400x2+420×400-x2+160×4×12×400-x24x2=8000x2+3200000x2+152000,0<x<20,由基本不等式y≥28000x2×3200000x2+152000=472000,当且仅当8000x2=3200000x2,即x=25时,等号成立,故当x=25时,总造价y最小,最小值为472000元.【变式训练】1(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.2≤x≤6(1)当宽为多少时,甲工程队报价最低,并求出最低报价.(2)现有乙工程队也要参与竞标,其给出的整体报价为900a x+2x元(a>0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a的取值范围.【解题思路】(1)根据题意,列出函数关系式,结合基本不等式代入计算,即可得到结果;(2)根据题意,列出不等式,分离参数,再结合基本不等式代入计算,即可得到结果.【解答过程】(1)设甲工程队的总造价为y 元,则y =150×2x +16x×3+400×16+800=900x +16x+7200≥900×2x ⋅16x +7200=14400当且仅当x =16x时,即x =4时等号成立.即当宽为4m 时,甲工程队的报价最低,最低为14400元.(2)由题意可得900x +16x +7200>900a x +2 x.对∀x ∈2,6 恒成立.即a <x 2+8x +16x +12令y =x 2+8x +16x +2=x +2 +4x +2+4∵2≤x ≤6,∴4≤x +2≤8.令t =x +2,t ∈4,8 ,则y =t +4t+4在4,8 上单调递增.且t =4时,y min =9.∴0<a <9.即a 的取值范围为0,9 .2(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x 米(1≤x ≤5).(1)记y 为甲工程队整体报价,求y 关于x 的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t (x +1)x元,问是否存在实数t ,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t 满足的条件;若不存在,请说明理由.【解题思路】(1)根据题意分别计算正面和侧面以及其它各面的费用,相加,可得答案;(2)由题意可得不等关系240184x +10x-3120>4800t (x +1)x,对任意x ∈[1,5]都成立,进而转化t <10x 2-13x +18420(x +1)恒成立,采用换元法,结合基本不等式求得答案.【解答过程】(1)由题意,隔离室的左右两侧的长度均为x米(1≤x≤5),则底面长为24x米,正面费用为3604×24x-2×6,故y=3604×24x-2×6+4×24x×100+2×300×4x+1200=240184x +10x-3120,1≤x≤5.(2)由题意知, 240184x +10x-3120>4800t(x+1)x,对任意x∈[1,5]都成立,即t<10x2-13x+18420(x+1)对任意x∈[1,5]恒成立,令k=x+1,则x=k-1,k∈[2,6],则t<10(k-1)2-13(k-1)+18420k=10k2-33k+20720k=k2+20720k-3320,而k2+20720k≥2k2⋅20720k=20710,当且仅当k=20710∈[2,6]取等号,故0<t<20710-3320,即存在实数0<t<20710-3320,无论左右两侧长为多少,乙工程队都能竞标成功.3(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=xcm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【解题思路】(1)根据题意列出总面积y表示为x的表达式即可.(2)根据(1)利用基本不等式求可使用宣传栏总面积最大时AD和CD的值.【解答过程】(1)根据题意DC=xcm,矩形海报纸面积为36000cm2,所以AD=36000xcm,又因为海报上所有水平方向和竖直方向的留空宽度均为10cm,所以四个宣传栏的总面积y =CD -5×10 AD -2×10 =x -50 36000x-20 ,其中x -50>036000x -20>0 所以x ∈50,1800 .即y =x -50 36000x-20,x ∈50,1800 .(2)由(1)知y =x -50 36000x-20 ,x ∈50,1800 ,则y =x -50 36000x -20 =37000-20x +1800000x,x ∈50,1800 20x +1800000x≥220x ×1800000x =12000,当且仅当x =300时取等号,则y =37000-20x +1800000x≤25000,当且仅当x =300时取等号,即CD =300cm ,AD =36000300=120cm 时,可使用宣传栏总面积最大为25000cm 2.【题型8 与其他知识交汇的最值问题】1(2023上·安徽·高三校联考阶段练习)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足c +b cos2A =2a cos A cos B A ≤B .(1)求A ;(2)若角A 的平分线交BC 于D 点,且AD =1,求△ABC 面积的最小值.【解题思路】(1)由已知结合正弦定理边化角即可求解;(2)表示出所求面积后运用基本不等式即可求解.【解答过程】(1)由已知和正弦定理可得:sin C +sin B cos2A =2sin A cos A cos B ,所以sin C =sin2A cos B -sin B cos2A =sin (2A -B )>0.又因为C ∈(0,π),2A -B ∈(0,π),所以C =2A -B 或者C +2A -B =π.当C =2A -B 时,A +B +2A -B =π,A =π3;当C +2A -B =π时,A =2B 与题设A ≤B 不符.综上所述,A =π3.(2)△ABC 面积S =12bc sin π3=34bc ,由AD 是角平分线,∠BAD =∠CAD =π6,因为S △ABC =S △ABD +S △ADC ,得12bc sin π3=12b sin π6+12c sin π6,即b +c =3bc ,由基本不等式3bc ≥2bc ,bc ≥43,当且仅当b=c=233时等号成立.所以面积S=34bc≥34×43=33.故△ABC面积的最小值3 3.【变式训练】1(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l 都经过点(0,2),且l⊥l ,直线l交圆C于M,N两点,直线l 交圆C于P,Q两点,求四边形PMQN面积的最大值.【解题思路】(1)根据面积解出半径,再应用圆的标准方程即可;(2)根据几何法求出弦长,再应用面积公式计算,最后应用基本不等式求最值即可.【解答过程】(1)由题可知圆C的圆心为C(0,0),半径r=3.所以圆C的方程为x2+y2=9.(2)当直线l的斜率存在且不为0时,设直线l的方程为y=kx+2,圆心到直线l的距离为d,则d=2k2+1,|MN|=232-d2=29-4k2+1,同理可得|PQ|=29-41k2+1=29-4k2k2+1,则S PMQN=12|MN|⋅|PQ|=12×29-4k2+1×29-4k2k2+1=29-4k2+19-4k2k2+1≤9-4 k2+1+9-4k2k2+1=14,当且仅当9-4k2+1=9-4k2k2+1,即k2=1时等号成立.当直线l的斜率不存在时,|MN|=6,|PQ|=232-22=25,此时S PMQN=12|MN|⋅|PQ|=12×6×25=65.当直线l的斜率为0时,根据对称性可得S PMQN=65.综上所述,四边形PMQN面积的最大值为14.2(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f x 满足f f x +12x+1-ln x=23恒成立.(1)设f x +12x+1-ln x=k,求实数k的值;(2)解不等式f7+2x>-2x2x+1+ln-ex;(3)设g x =f x -ln x,若g x ≥mg2x对于任意的x∈1,2恒成立,求实数m的取值范围.【解题思路】(1)由题意列方程求解;(2)由函数的单调性转化后求解;(3)参变分离后转化为最值问题,由换元法结合基本不等式求解.【解答过程】(1)由题意得f x =ln x-12x+1+k,f k =ln k-12k+1+k,由于y=ln k-12k+1+k在k∈0,+∞上单调递增,观察ln k-12k+1+k=23,可得k=1;(2)由于f x 在定义域内单调,所以f x +12x+1-ln x为常数,由(1)得f x =ln x-12x+1+1,f x 在x∈0,+∞上单调递增,f-x=ln-x-12-x+1+1=ln-ex-2x2x+1,故原不等式可化为f7+2x>-2x2x+1+ln-ex=f-x,由2x+7>0-x>07+2x>-x,解得-73<x<0,故原不等式的解集为-7 3 ,0;(3)g x =f x -ln x=-12x+1+1=2x2x+1>0,g x ≥mg2x可化为m≤2x2x+1⋅4x+14x=4x+14x+2x=1+-2x+14x+2x对于任意的x∈1,2恒成立,设t=-2x+1∈-3,-1,则-2x+14x+2x=t1-t2+1-t=1t+2t-3,t∈-3,-1,由基本不等式得t+2t=--t+2-t≤-22,当且仅当-t=2-t即t=-2时等号成立,故当t=-2时1t+2t-3min=22-3,故m≤22-2,当且仅当x=log22+1等号成立.实数m的取值范围为-∞,22-2.3(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD-A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A-PD1-C的平面角.(1)证明:点P 在A 1C 1上;(2)若AB =BC ,求直线PA 与平面PCD 所成角的正弦的最大值.【解题思路】(1)由二面角定义知AP ⊥PD 1,CP ⊥PD 1,利用线面垂直的判定及性质可证PD 1⊥面APC 、PD 1⊥面ACC 1A 1,结合面APC 与面ACC 1A 1有交线,确定它们同平面,进而证结论;(2)构建空间直角坐标系,令P 12,12,k且k >0,C (1,1,0),D (0,1,0),求直线方向向量、平面法向量,应用空间向量夹角坐标表示、基本不等式求线面角正弦值的最大值,注意取值条件.【解答过程】(1)由∠APC 是二面角A -PD 1-C 的平面角,则AP ⊥PD 1,CP ⊥PD 1,又AP ∩CP =P ,AP ,CP ⊂面APC ,则PD 1⊥面APC ,又AC ⊂面APC ,即PD 1⊥AC ,由长方体性质知A 1C 1⎳AC ,故PD 1⊥A 1C 1,由长方体性质:AA 1⊥面A 1B 1C 1D 1,又PD 1⊂面A 1B 1C 1D 1,则PD 1⊥AA 1,又A 1C 1∩AA 1=A 1,A 1C 1,AA 1⊂面ACC 1A 1,故PD 1⊥面ACC 1A 1,而面APC ∩面ACC 1A 1=AC ,且PD 1⊥面APC 、PD 1⊥面ACC 1A 1,根据过AC 作与PD 1垂直的平面有且仅有一个,所以面APC 与面ACC 1A 1为同一平面,又P ∈面A 1B 1C 1D 1,面ACC 1A 1∩面A 1B 1C 1D 1=A 1C 1,所以点P 在A 1C 1上;(2)构建如下图示的空间直角坐标系A -xyz ,令AB =BC =1,AA 1=k ,由题设,长方体上下底面都为正方形,由(1)知PD 1⊥A 1C 1,则P 为A 1C 1中点,所以P 12,12,k且k >0,C (1,1,0),D (0,1,0),则AP =12,12,k ,PC =12,12,-k ,PD =-12,12,-k ,若m =(x ,y ,z )是面PCD 的一个法向量,则m ⋅PC =12x +12y -kz =0m ⋅PD =-12x +12y -kz =0,令y =2,则m =0,2,1k,所以|cos ‹AP ,m ›|=|AP ⋅m||AP ||m |=212+k 2⋅4+1k 2=23+4k 2+12k 2≤23+22=2(2-1),仅当k =422时等号成立,故直线PA 与平面PCD 所成角的正弦的最大值为2(2-1).直击真题1(2022·全国·统考高考真题)若x ,y 满足x 2+y 2-xy =1,则()A.x +y ≤1B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1【解题思路】根据基本不等式或者取特值即可判断各选项的真假.【解答过程】因为ab ≤a +b 2 2≤a 2+b 22(a ,b ∈R ),由x 2+y 2-xy =1可变形为,x +y 2-1=3xy ≤3x +y 2 2,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为x 2+y 2-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1变形可得x -y 2 2+34y 2=1,设x -y 2=cos θ,32y =sin θ,所以x =cos θ+1 3sinθ,y=23sinθ,因此x2+y2=cos2θ+53sin2θ+23sinθcosθ=1+13sin2θ-13cos2θ+13=43+23sin2θ-π6∈23,2,所以当x=33,y=-33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC.2(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a-b>12C.log2a+log2b≥-2D.a+b≤2【解题思路】根据a+b=1,结合基本不等式及二次函数知识进行求解.【解答过程】对于A,a2+b2=a2+1-a2=2a2-2a+1=2a-1 22+12≥12,当且仅当a=b=12时,等号成立,故A正确;对于B,a-b=2a-1>-1,所以2a-b>2-1=12,故B正确;对于C,log2a+log2b=log2ab≤log2a+b22=log214=-2,当且仅当a=b=12时,等号成立,故C不正确;对于D,因为a+b2=1+2ab≤1+a+b=2,所以a+b≤2,当且仅当a=b=12时,等号成立,故D正确;故选:ABD.3(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.32【解题思路】因为C:x2a2-y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±bax,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2a2+b2,结合均值不等式,即可求得答案.【解答过程】∵C:x2a2-y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±bax∵直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=bax,解得{x=ay=b故D(a,b)联立{x=ay=-bax,解得{x=ay=-b故E(a,-b)∴|ED|=2b∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x2a2-y2b2=1(a>0,b>0)∴其焦距为2c=2a2+b2≥22ab=216=8当且仅当a=b=22取等号∴C的焦距的最小值:8故选:B.4(2021·天津·统考高考真题)若a>0,b>0,则1a+ab2+b的最小值为22.【解题思路】两次利用基本不等式即可求出.【解答过程】∵a>0,b>0,∴1 a +ab2+b≥21a⋅ab2+b=2b+b≥22b⋅b=22,当且仅当1a=ab2且2b=b,即a=b=2时等号成立,所以1a+ab2+b的最小值为2 2.故答案为:2 2.5(2020·天津·统考高考真题)已知a>0, b>0,且ab=1,则12a+12b+8a+b的最小值为4【解题思路】根据已知条件,将所求的式子化为a+b2+8a+b,利用基本不等式即可求解.【解答过程】∵a>0,b>0,∴a+b>0,ab=1,∴12a+12b+8a+b=ab2a+ab2b+8a+b=a+b2+8a+b≥2a+b2×8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3,或a=2+3,b=2-3时,等号成立.故答案为:4.6(2020·江苏·统考高考真题)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是45.【解题思路】根据题设条件可得x 2=1-y 45y 2,可得x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25,利用基本不等式即可求解.【解答过程】∵5x 2y 2+y 4=1∴y ≠0且x 2=1-y 45y 2∴x 2+y 2=1-y 45y 2+y 2=15y2+4y 25≥215y 2⋅4y 25=45,当且仅当15y2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.故答案为:45.7(2019·天津·高考真题)设x >0, y >0, x +2y =5,则(x +1)(2y +1)xy的最小值为43【解题思路】把分子展开化为2xy +6,再利用基本不等式求最值.【解答过程】∵(x +1)(2y +1)xy =2xy +x +2y +1xy,∵x >0, y >0, x +2y =5,xy >0,∴2xy +6xy ≥2⋅23xyxy =43,当且仅当xy =3,即x =3,y =1时成立,故所求的最小值为43.8(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【解题思路】得到总费用为4x +600x ×6=4x +900x,再利用基本不等式求最值.【解答过程】总费用为4x +600x ×6=4x +900x≥4×2900=240,当且仅当x =900x,即x =30时等号成立.故答案为30.。

专题27 基本不等式中常见的方法求最值(解析版)

专题27 基本不等式中常见的方法求最值(解析版)

专题27 基本不等式中常见的方法求最值一、例题选讲 题型一、消参法消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!例1、(2017苏北四市期末). 若实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,则3x +1y -3的最小值为________. 【答案】 8【解析】解法1 因为实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,所以y =3x-3(y >3), 所以3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y -3=1y -3,即y =4时取等号,此时x =37,所以3x +1y -3的最小值为8.解法2 因为实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,所以y =3x -3(y >3),y -3=3x-6>0, 所以3x +1y -3=3x +13x -6=3x -6+13x -6+6≥2⎝⎛⎭⎫3x -6·13x -6+6=8,当且仅当3x -6=13x -6,即x =37时取等号,此时y =4,所以3x +1y -3的最小值为8.例2、(2013徐州、宿迁三检)若0,0a b >>,且,则的最小值为 .【解析】由已知等式得222122a b ab a b b ++=+++,从而212b b a b-+=,21222b b a b b b -++=+131222b b =++1122≥+=题型二、双换元若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系例3、(2015苏锡常镇、宿迁一调)已知实数x ,y 满足x >y >0,且x +y ≤2,则2x +3y +1x -y的最小值为________.【答案】3+224【解析】设⎩⎪⎨⎪⎧x +3y =m ,x -y =n .解得⎩⎨⎧x =m +3n4,y =m -n4.所以x +y =m +n 2≤2,即m +n ≤4.设t =2x +3y +1x -y =2m+1n ,所以4t ≥⎝⎛⎭⎫2m +1n (m +n )=3+2n m +m n ≥3+2 2.即t ≥3+224,当且仅当2n m =mn ,即m =2n 时取等号.例4、(2013徐州、宿迁三检)若0,0a b >>,且,则的最小值为 . 【答案】 【解析】所以332222m n a b +=+-,因为33113()()22222222m n m n m n m n n m+=++=++≥+所以332222m n a b +=+-≥题型三、1的代换1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形。

基本不等式应用利用基本不等式求最值的技巧题型分析

基本不等式应用利用基本不等式求最值的技巧题型分析

基本不等式应用一.基本不等式1.1若R b a ∈,,则ab b a 222≥+ 2若R b a ∈,,则222b a ab +≤当且仅当b a =时取“=”2. 1若*,R b a ∈,则ab b a ≥+2 2若*,R b a ∈,则ab b a 2≥+当且仅当b a =时取“=” 3若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab 当且仅当b a =时取“=” 3.若0x >,则12x x +≥ 当且仅当1x =时取“=”;若0x <,则12x x+≤- 当且仅当1x =-时取“=” 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 当且仅当b a =时取“=” 3.若0>ab ,则2≥+ab b a 当且仅当b a =时取“=” 若0ab ≠,则22-2a b a b a b b a b a b a+≥+≥+≤即或 当且仅当b a =时取“=” 4.若R b a ∈,,则2)2(222b a b a +≤+当且仅当b a =时取“=” 注:1当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.2求最值的条件“一正,二定,三取等”3均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域1y =3x 2+错误! 2y =x +错误!解:1y =3x 2+错误!≥2错误!=错误! ∴值域为错误!,+∞2当x >0时,y =x +错误!≥2错误!=2;当x <0时, y =x +错误!= -- x -错误!≤-2错误!=-2∴值域为-∞,-2∪2,+∞解题技巧:技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值; 解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =; 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值;技巧二:凑系数例1. 当时,求(82)y x x =-的最大值;解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值;注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可;当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8;评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值; 变式:设230<<x ,求函数)23(4x x y -=的最大值; 解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立; 技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域; 解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有x +1的项,再将其分离;当,即时,421)591y x x ≥+⨯+=+(当且仅当x =1时取“=”号; 技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值;22(1)7(1+10544=5t t t t y t t t t-+-++==++) 当,即t =时,4259y t t≥⨯=当t =2即x =1时取“=”号; 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值;即化为()(0,0)()A y mg xB A B g x =++>>,gx 恒正或恒负的形式,然后运用基本不等式来求最值; 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性;例:求函数224y x =+的值域;24(2)x t t +=≥,则224y x =+2214(2)4x t t t x =+=+≥+ 因10,1t t t >⋅=,但1t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性;因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥; 所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭;练习.求下列函数的最小值,并求取得最小值时,x 的值.1231,(0)x x y x x ++=> 212,33y x x x =+>- 312sin ,(0,)sin y x x x π=+∈2.已知01x <<,求函数y =.;3.203x <<,求函数y =. 条件求最值1.若实数满足2=+b a ,则b a 33+的最小值是 .分析:“和”到“积”是一个缩小的过程,而且b a 33⋅定值,因此考虑利用均值定理求最小值, 解: b a 33和都是正数,ba 33+≥632332==⋅+b a b a当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b a 33+的最小值是6. 变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错;; 2:已知0,0x y >>,且191x y+=,求x y +的最小值;错解..:0,0x y >>,且191x y +=,∴()1912x y x y x y ⎛⎫+=++≥ ⎪⎝⎭ 故 ()min 12x y += ;错因:解法中两次连用基本不等式,在x y +≥x y =,在19x y +≥是19x y=即9y x =,取等号的条件的不一致,产生错误;因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法;正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭ 当且仅当9y x x y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += ; 变式: 1若+∈R y x ,且12=+y x ,求yx 11+的最小值2已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值技巧七、已知x ,y 为正实数,且x 2+错误!=1,求x 错误!的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤错误!;同时还应化简错误!中y 2前面的系数为 错误!, x 错误!=x 错误!=错误!x ·错误!下面将x ,错误!分别看成两个因式:x ·错误!≤错误!=错误!=错误! 即x 错误!=错误!·x 错误!≤ 错误!错误!技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =错误!的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行;法一:a =错误!, ab =错误!·b =错误!由a >0得,0<b <15令t =b +1,1<t <16,ab =错误!=-2t +错误!+34∵t +错误!≥2错误!=8∴ ab ≤18 ∴ y ≥ 错误!当且仅当t =4,即b =3,a =6时,等号成立;法二:由已知得:30-ab =a +2b ∵ a +2b ≥2错误! ∴ 30-ab ≥2错误!令u =错误! 则u 2+2错误!u -30≤0, -5错误!≤u ≤3错误!∴错误!≤3错误!,ab ≤18,∴y ≥错误!点评:①本题考查不等式ab b a ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab b a ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围. 变式:1.已知a >0,b >0,ab -a +b =1,求a +b 的最小值;2.若直角三角形周长为1,求它的面积最大值;技巧九、取平方5、已知x ,y 为正实数,3x +2y =10,求函数W =错误!+错误!的最值.解法一:若利用算术平均与平方平均之间的不等关系,错误!≤错误!,本题很简单错误!+错误! ≤错误!错误!=错误!错误!=2错误!解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢;W >0,W 2=3x +2y +2错误!·错误!=10+2错误!·错误!≤10+错误!2·错误!2 =10+3x +2y =20∴ W ≤错误!=2错误!变式: 求函数15()22y x <<的最大值; 解析:注意到21x -与52x -的和为定值;2244(21)(52)8y x x ==+≤+-+-=又0y >,所以0y <≤当且仅当21x -=52x -,即32x =时取等号; 故max y =; 评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件;总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式;应用二:利用基本不等式证明不等式1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2221正数a ,b ,c 满足a +b +c =1,求证:1-a 1-b 1-c ≥8abc 例6:已知a 、b 、c R +∈,且1a b c ++=;求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又111a b c a a a -+-==≥可由此变形入手;解:a 、b 、c R +∈,1a b c ++=;∴111a b c a a a a -+-==≥;同理11b -≥,11c -≥;上述三个不等式两边均为正,分别相乘,得111221118ac ab a b c b c ⎛⎫⎛⎫⎛⎫---≥= ⎪⎪⎪⎝⎭⎝⎭⎝⎭;当且仅当13a b c ===时取等号; 应用三:基本不等式与恒成立问题例:已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围; 解:令,0,0,x y k x y +=>>191x y +=,99 1.x y x y kx ky ++∴+=1091y x k kx ky ∴++= 10312k k∴-≥⋅ ;16k ∴≥ ,(],16m ∈-∞ 应用四:均值定理在比较大小中的应用: 例:若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是 . 分析:∵1>>b a ∴0lg ,0lg >>b a21=Q p b a b a =⋅>+lg lg )lg lg Q ab ab b a R ==>+=lg 21lg )2lg( ∴R >Q >P ;。

高中数学-基本不等式---求最值的常见技巧

高中数学-基本不等式---求最值的常见技巧

高中数学-基本不等式---求最值的常见技巧【理论解析】一个技巧:222a b ab+≥逆用就是222a bab+≤,2a b+≥(0,0)a b>>逆用就是2()2a bab+≤等.两个变形:(1) 2112a ba b+≤≤≤+(,)a b R+∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b=时取等号)(2)222()22a b a bab++≤≤(,)a b R∈(当且仅当a b=时取等号).三个注意“一正、二定、三相等”的忽视.【解题方法技巧举例】1、添、减项(配常数项)例1 求函数221632y xx=++的最小值.222221620,32163(2)6266x y xxxx+>=++=++-+≥=解:当且仅当22163(2)2xx+=+,即22x=时,等号成立. 所以y的最小值是6.2、配系数(乘、除项)例2 已知0,0x y>>,且满足3212x y+=,求lg lgx y+的最大值.分析lg lg lg()x y xy+=, xy是二项“积”的形式,但不知其“和”的形式x y+是否定值,而已知是3x与2y的和为定值12,故应先配系数,即将xy变形为326x y⋅,再用均值不等式.220,032lg lg lg()lg6132112lg lg 6262lg 6x y x y x y xy x y >>⋅+==⎡⎤⎡⎤+⎛⎫⎛⎫≤=⎢⎥⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦=解: 当且仅当32x y =,即2,3x y ==时,等号成立. 所以lg lg x y +的最大值是lg 6.3、 裂项例3已知1x >-,求函数()()521x x y x ++=+的最小值.分析 在分子的各因式中分别凑出1x +,借助于裂项解决问题.()()141110,14(1)5519x x x y x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦+>=+=+++≥+=解:当且仅当411x x +=+,即1x =时,取等号.所以min 9y =.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值. 分析 分母是x 与(12)x -的积,可通过配系数,使它们的和为定值;也可通过配系数,使它们的和为(1)x + (这是解本题时真正需要的).于是通过取倒数即可解决问题.解 由102x <<,得10x +>,120x ->.221(12)1312(1)31131211113212x x x x y x x x x x x x --==⋅⋅+++-⎡⎤+⎢⎥++≤=⎢⎥⎢⎥⎣⎦当且仅当31211x xxx -=++,即15x =时,取等号. 故y 的最小值是12.5、 平方例5 已知0,0x y >>且22283y x +=求.分析 条件式中的x 与y 都是平方式,而所求式中的x 是一次式,y 是平方式但带根号.初看似乎无从下手,但若把所求式平方,则解题思路豁然开朗,即可利用均值不等式来解决.222222222((62)32(1)32(1)9333()22y x y x y x =+=⋅+⎡⎤++⎢⎥≤=⎢⎥⎢⎥⎢⎥⎣⎦解:当且仅当222(1)3y x =+,即32x =,2y =时, 等号成立.故的最大值是评注 本题也可将x纳入根号内,即将所求式化为.6、 换元(整体思想)例6求函数y =的最大值.分析t =,进行换元,再使分子常数化,然后运用均值不等式来解决.22,0,2,(0)2100;1014212=.23,2t t x t t y t t t y t y t t t t t x =≥=-=≥+==>=≤=+==-则当时,当时,当且仅当,即所以时7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .分析 直接利用均值不等式,只能求xy 的最小值,而无法求x y +的最小值.这时可逆用条件,即由191x y =+,得19()()x y x y x y +=++,然后展开即可解决问题.190,0,1199()()1010169,4,12.16.x y x y y xx y x y x y x yy x x y x yx y >>+=+=++=++≥====+解:由,得当且仅当即时,等号成立故的最小值是 评注 若已知0,0,x y >>1x y += (或其他定值),要求19x y +的最大值,则同样可运用此法. 8、 巧组合 例8 若,,0a b c >且()4a a b c bc +++=-求2a b c ++的最小值 .分析 初看,这是一个三元式的最值问题,无法利用a b +≥来解决.换个思路,可考虑将2a b c ++重新组合,变成()()a b a c +++,而()()a b a c ++等于定值4-,于是就可以利用均值不等式了.,,0,2()()2,,1.2 2.a b c a b c a b a c b c b c a a b c >++=+++≥======-++解:由知当且仅当即时,等号成立故的最小值为9、 消元例9、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值.分析 本题也是三元式的最值问题.由题意得32x zy +=,则可对2y xz 进行消元,用,x z 表示,即变为二元式,然后可利用均值不等式解决问题.22223,0,,29666=3,443,,=33.x zx z y y x z xz xz xz xz xz xzyx z x y z y xz +>=+++≥====解:由可得当且仅当即时,取“”.故的最小值为【例题解析】 例1 求函数()()yx x x=++49的最值.解: (1)当x >0时,25362133613=⋅+≥++=xx x x y , 当且仅当xx=36即6=x 时取等号.所以当x =6时,y min =25. (2)当x <0时,->->xx0360,, ()()-+-⎛⎝ ⎫⎭⎪≥--⎛⎝ ⎫⎭⎪=x x x x 3623612, 11213)]36()[(13=-≤-+--=∴xx y .当且仅当-=-x x 36,即x =-6时取等号,所以当x =-6时,y max =-=13121.例2已知0,0x y >>,且191x y+=,求x y +的最小值. 解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y x x y =时,上式等号成立,又191x y+=,可得4,12x y ==时,()min 16x y += . 例3 当04x <<时,求(82)y x x =-的最大值.解析:此题为两个式子积的形式,但其和不是定值.注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可.211282(82)[2(82)]()8222x x y x x x x +-=-=-≤=当282x x =-,即2x =时取等号 ,所以当2x =时,(82)y x x =-的最大值为8.例4 已知54x <,求函数14245y x x =-+-的最大值. 解析:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =.例5已知x,y为正实数,且2212yx+=,求的最大值.解析:因条件和结论分别是二次和一次,故采用公式222a bab+≤.12,==下面将x=2212222yx++≤4=当且仅当x=2212yx+=,即2x=,2y=时,等号成立.所以的最大值为4.评注:本题注意到适当添加常数配凑后,两项的平方和为常数,故而进行变形利用基本不等式链解决问题.【基本不等式课堂练习】一、选择题1.已知0,0a b >>,则112ab a b++的最小值是( )A .2 B .22 C .4 D .5 2.当0<x <2π时,函数f (x )=x x x 2sin sin 82cos 12++的最小值为( )A.2B.23C.4D.433.设y=x 2+2x+5+2125x x ++,则此函数的最小值为()A .174B .2C .265D .以上均不对 4,若,下列不等式恒成立的是( )A .B .C .D .5,若且,则下列四个数中最大的是 ( )A. B. C.2ab D.a6. 设x>0,则的最大值为 ( )A.3 B.C.D.-1 7,设的最小值是( ) A. 10 B.C.D.8. 若x, y 是正数,且,则xy 有( )A最大值16 B.最小值 C.最小值16 D.最大值9. a,b 是正数,则三个数的大小顺序是( )A. B.C. D.10.下列函数中最小值为4的是( )A B C D11、已知二次函数f(x)=ax 2-(a +2)x +1(a ∈Z),且函数f(x)在(-2,-1)上恰有一个零点,则不等式f(x)>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)12、已知M 是△ABC 内的一点,且AB →·AC →=23,∠BAC =30°,若△MBC ,△MCA 和△MAB 的面积分别为12,x ,y ,则1x +4y 的最小值是( )A .20B .18C .16D .913.设x,y 为正数, 则(x+y)(1x + 4y)的最小值为 ( )A.6 B.9 C.12 D.1514. 已知定义域为R 的偶函数在上是增函数,且,则不等式的解集为( )A .B .C .D .15.若,则的最小值为( )A .8 B .C .2D .417.若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( ) A. 245 B. 285C.5D.6 18.下列不等式一定成立的是( )A .21lg()lg (0)4xx x +>> B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 19若点(,)A x y 在第一象限且在236x y +=上移动,则3322log log x y + ( )A 、最大值为1B 、最小值为1C 、最大值为2D 、没有最大、小值 20、 已知01x <<,求函数411y x x=+-的最小值.21、已知0,0a b >>,328a b +=,求函数的最大值.。

高中基本不等式求最值解题技巧

高中基本不等式求最值解题技巧

高中基本不等式求最值解题技巧高中基本不等式求最值解题技巧一、基本不等式的概念和特点高中数学中,不等式是一个重要的概念,它与等式一样,是数学中的一种关系。

而基本不等式是不等式中的一种基础类型,它具有许多特点和求解技巧。

基本不等式一般为形如a/x + b/y ≥ c的形式,其中a、b、c为常数,x、y为变量,且x、y均大于0。

在基本不等式中,我们常常需要求解其最值,即找到使得不等式成立的最大或最小值。

这就需要掌握一些技巧和方法来解决这类问题,从而提高我们的数学解题能力。

二、基本不等式求最值的一般步骤1. 分析问题:我们需要对题目给出的基本不等式进行分析,明确要求的最值是最大值还是最小值。

要注意不等式中的常数和变量的具体取值范围。

2. 辅助变量法:辅助变量法是解决基本不等式求最值问题的常用方法。

通过引入一个新的变量,可以将原不等式转化为关于辅助变量的方程组,从而更容易地确定最值的取值范围。

3. 推广性分析:分析不等式中各项参数的推广性,确定不等式成立的条件,从而辅助我们找到最值的解法。

4. 求导分析:对于涉及函数的基本不等式问题,可以利用导数的性质进行求解。

通过求导分析函数的单调性和极值情况,可以确定不等式的最值区间。

5. 综合利用不等式性质:利用不等式的性质,结合数学推理和逻辑推导,可以更灵活地解决不等式求最值的问题。

三、高中基本不等式求最值的解题技巧与举例分析以基本不等式a/x + b/y ≥ c为例,我们可以通过具体的数学题目来演示基本不等式求最值的解题技巧。

给定不等式2/x + 3/y ≥ 5,求x和y的最小值。

我们可以引入辅助变量法,令t=1/x,s=1/y,那么不等式可以转化为2t + 3s ≥ 5。

通过求解辅助不等式2t + 3s = 5的解集,确定最值的取值范围。

进一步分析可知,不等式成立的条件为t>0,s>0,因此我们可以确定最值的解。

我们可以利用推广性分析的方法,分析a、b、c的取值范围,从而求解最值问题。

高中数学解题方法系列:用基本不等式求最值的4种策略

高中数学解题方法系列:用基本不等式求最值的4种策略

高中数学解题方法系列:用基本不等式求最值的4种策略基本不等式ab b a ≥+2(0,0>>b a 当且仅当b a =时等号成立)是高中必修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。

从本质上看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。

本文将结合几个实例谈谈运用基本不等式求最值的三大策略。

一、基本不等式的基础知识[1]基本不等式:如果0,0>>b a ,则ab b a ≥+2,当且仅当b a =时等号成立。

在基本不等式的应用中,我们需要注意以下三点:“一正”:a 、b 是正数,这是利用基本不等式求最值的前提条件。

“二定”:当两正数的和b +a 是定值时,积ab 有最大值;当两正数的积ab 是定值时,和b +a 有最小值。

“三相等”:b a =是ab b a =+2的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。

二、利用基本不等式求最值的四大策略策略一利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。

题型一配凑系数例1 设230<<x ,求函数)23(4x x y -=的最大值。

分析:因为x x x 23)23(4+=-+不是个定值,所以本题无法直接运用基本不等式求解。

但凑系数将4x 拆为x 22⋅后可得到和3)23(2=-+x x 为定值,从而可利用基本不等式求其最大值。

解:因为230<<x ,所以023>-x 故2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立. 所以原式的最大值为29. 题型二配凑项1 配凑常数项例2 已知54x <,求函数54124-+-=x x y 的最大值。

(完整版)一题多解之利用基本不等式求最值

(完整版)一题多解之利用基本不等式求最值

一题多解之利用基本不等式求最值用基本不等式求函数的最大(小)值是高中数学的一个重点,三个条件必须同时具备,才能应用,即“一正,二定,三相等”.在具体的题目中“正数”条件往往易从题设中获得,“相等”条件也易验证确定,而要获得“定值”条件却常常被设计为一个难点,它需要一定的灵活性和变形技巧.因此,“定值”条件决定着不等式应用的可行性.这是解题成败的关键。

例、已知正数a,b 满足311=+b a ,求b a +的取值范围。

思路点拨:一种思路是根据划归思想,二元转化为一元,即利用311=+b a 将ba +中的b 用a 表示,然后用基本不等式求范围;另一种思路是对311=+b a 变形,获得b a +与ab 的关系,然后利用解不等式消去ab 建立b a +的不等式求解.解析:方法一:由311=+b a 得ab b a 3=+,13-=∴a a b ,由于a>0,b>0,可得31>a ,于是 )31(913113-++=-+=+a a a a a b a 3432)31(91)31(232)31(9131=+-⨯-≥+-+-=a a a a , 当)31(9131-=-a a ,即32=a 时取等号,b a +∴的取值范围是),34[+∞令t ta a a g +-=33)(2,则⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⨯--≥⨯-=∆+-=0)31(31323034)3(33)(22g t t t t ta a a g解得34≥t , 所以b a +的取值范围是),34[+∞ 运用基本不等式求最值的技巧: 1、含有多个变量的条件最值问题,一种方法是减少变量的个数,将问题转化为只含有一 个变量的函数的最值问题进行解决;另一种方法是采用代换的方法,对代数式变形后, 在运用基本不等式。

2、妙用“1”的代换求代数式的最值:在求解含有两个变量的代数式的最值问题时,通常的解决办法是变量替换或常值“1”的替换,即由已知条件得到某个式子的值为常 数,然后将欲求最值的代数式乘上常数,再对代数式进行变形整理,从而可利用基本 不等式求最值. 针对性练习:1.已知a >0,b >0,131,a b+=则a+2b 的最小值为( ) (A)726+(B)23 (C)723+ (D)14 解析:选A.()133a 2b a 2b a 2b ()16726,a b b a+=++=+++≥+Q ∴a+2b 的最小值为72 6.+ 2.若-4<x <1,则2x 2x 2f (x)2x 2-+=-( ) (A)有最小值1 (B)有最大值1 (C)有最小值-1 (D)有最大值-13.已知0<x <1,则4y lgx lgx=+的最大值为_________. 解析:∵0<x <1,∴lgx <0,-lgx >0. ()4y lgx ()244lgx∴-=-+-≥=,即y ≤-4. 当且仅当41lgx x lgx 100-=-=,即时等号成立,故y max =-4. 4.已知函数2x 2y (x 2).x x 1+=-++> (1)求1y 的取值范围; (2)当x 为何值时,y 取何最大值?5.已知a>0,b>0,a+b=2,则14a b+的最小值是( )(A)72(B)4 (C)92(D)5解析:选C.由已知可得14a b1412a b()2a b2a b2b2a++=⋅+=+++≥52a b922b2a2+⋅=,当且仅当24a b33==,时取等号,即14a b+的最小值是92.6.若a>0,b>0,且a+b=1,则ab+1ab的最小值为( )(A)2 (B)4 (C)174(D)227.已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值为( )(A)5 (B)7 (C)8 (D)9解析:选B.由已知得log2(m-2)+log2(2n-2)=3,即log2[(m-2)(2n-2)]=3,因此m2,n1,(m2)(2n2)8.>⎧⎪>⎨⎪--=⎩于是4n1.m2=+-所以444m n m1m232(m2)37.m2m2m2+=++=-++≥-=---g当且仅当4m2,m2-=-即m=4时等号成立,此时m+n取最小值7.。

用基本不等式求最值的常见类型及解题方法

用基本不等式求最值的常见类型及解题方法

用基本不等式求最值的类型及方法之杨若古兰创作均值不等式是《不等式》一章主要内容之一,是求函数最值的一个主要工具,也是高考常考的一个主要常识点.请求能熟练地应用均值不等式求解一些函数的最值成绩. 一、几个主要的均值不等式a =b 时,“=”号成立;a =b 时,“=”号成立;a =b =c 时,“=”号成立;当且仅当a =b =c 时,“=”号成立.注:①留意应用均值不等式求最值时的条件:一“正”、二“定”、三“等”;(1)(2)②单调递增区间:(,]b a -∞-,[,)ba+∞;单调递减区间:(0,]b a,[,0)b a -.三、用均值不等式求最值的罕见类型 类型Ⅰ:求几个负数和的最小值.例1、已知54x <,求函数14245y x x =-+-的最大值.练习(1)231,(0)x x y x x ++=>(2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈类型Ⅱ:求几个负数积的最大值.例2、当时,求(82)y x x =-的最大值.练习①23(32)(0)2y x x x =-<< 类型Ⅲ:用均值不等式求最值等号不成立. 例3、若x 、y +∈R ,求4()f x x x =+)10(≤<x 的最小值.类型Ⅳ:条件最值成绩. 例4、已知负数x 、y满足811x y +=,求2x y +的最小值.类型Ⅴ:利用均值不等式化归为其它不等式求解的成绩. 例5、已知负数x y 、满足3xy x y =++,试求xy 、x y +的范围. 类型 条件求最值例6、若实数满足2=+b a ,则b a33+的最小值是练习1,y的值2.四、均值不等式易错例析:例1..例2..例3..例4..综上所述,利用均值不等式求最值要留意:一要正:各项或各因式必须为负数;二可定:必须满足“和为定值”或“积为定值”,要凑出“和为定值”或“积为定值”的式子结构,如果找不出“定值”的条件用这个定理,求最值就会出错;三能等:要包管等号确能成立,如果等号不克不及成立,那么求出的仍不是最值.。

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)

基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。

基本不等式应用利用基本不等式求最值的技巧

基本不等式应用利用基本不等式求最值的技巧

基本不等式应用利用基本不等式求最值的技巧————————————————————————————————作者: ————————————————————————————————日期:ﻩ基本不等式应用利用基本不等式求最值的技巧 应用一:求最值例1:求下列函数的值域(1)y =3x 2+\f(1,2x 2) (2)y =x +错误!解:(1)y=3x 2+错误!≥2错误!=错误! ∴值域为[错误!,+∞)(2)当x >0时,y=x +错误!≥2错误!=2;当x<0时, y =x +1x = -(- x -1x)≤-2错误!=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。

解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

利用基本不等式求最值

利用基本不等式求最值

利用基本不等式求最值利用基本不等式求最值一、学习目标:1、理解利用基本不等式求最值的原理2、掌握利用基本不等式求最值的条件3、会用基本不等式解决简单的最值问题二、学习重点与难点:重点:运用基本不等式求最值难点:利用基本不等式求最值满足的条件三、学习方法:自主探究式四、学习过程:1、探究一:极值定理问题1:a b(a,b R ),已知x y 2(x 0,y 0),你能求出x y 2a b(a,b R ),已知x y 2(x 0,y 0),你能求出x y 2的最小值吗?何时取小值?问题2:的最大值吗?何时取大值?问题3:已知x 0,y 0(1)若x y是定值p,求(x y)min,等号何时成立?(2)若x y是定值s,求(x y)max,等号何时成立?问题4:你能由问题1―3得出一般结论吗?已知x,y R则:(1)若积x y p(定值),则和xy有最小值当日仅当x y时,取“=”号(2)若和x y s(定值),则积x y有最大值当日仅当x y时,取“=”号即:“积为常数,和有最小值;和为常数,积有最大值”。

自主练习1:①若x 0时,求y x s2 41的最小值. x1②若x 1,求y x 的最小值. x 1③若0 x 1,求y x (1 x)的最大值.2、探究二:利用基本不等式求最值满足的条件问题5:若x 0,求y x 1的最大值。

x条件1:由问题5,你能总结出利用基本不等式求最值时字母必须满足什么条件?x2 x 1自主练习2:若x 0,求y 的最大值。

x1问题6:①若x 2,求y 2x 5 的最小值。

x 21②若0 x ,求y x(1 2x)的最大值。

2条件2:由问题6,你能总结出利用基本不等式求最值时必须满足什么条件?1(x 1)的最小值。

x 11②求y x(1 4x)(0 x )的最大值。

41问题7:若x 2,求y x 的最小值。

x自主练习3:①求y x条件3:由问题7,你能总结出利用基本不等式求最值时必须满足什么条件?自主练习4:求y sinx 2 (0 x )的最小值。

用基本不等式求最值的常见类型及解题方法

用基本不等式求最值的常见类型及解题方法

用基本不等式求最值的类型及方法均值不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。

要求能熟练地运用均值不等式求解一些函数的最值问题。

一、几个重要的均值不等式 ①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112+2a b +≤≤≤222b a +。

二、函数()(0)b f x ax a b x =+>、图象及性质(1)函数()0)(>+=b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x bax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,]b a -∞-,[,)b a +∞;单调递减区间:(0,]b a,[,0)b a -. 三、用均值不等式求最值的常见类型类型Ⅰ:求几个正数和的最小值。

例1、 已知54x <,求函数14245y x x =-+-的最大值。

练习(1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈类型Ⅱ:求几个正数积的最大值。

例2、当时,求(82)y x x =-的最大值。

【例题讲解】利用基本不等式求最值例 完整版课件

【例题讲解】利用基本不等式求最值例 完整版课件
利ห้องสมุดไป่ตู้基本不等式求最值
例题讲解
解:
用x表示出y (进行消元) 转化为只含有x的代数式 求和式最小值应使积为定值
积定和最小
方法一
利用基本不等式求最值
例题讲解
解:
方法二
利用基本不等式求最值
方法总结
利用基本不等式求最值的方法 : (1)构造定值:
结合已知条件对要求的代数式进行“拆”、“拼”、“凑”、“合”、“变形”,构造出和 或积的定值,再利用基本不等式求最值. (2)“1”的代换: 利用已知的条件或将已知条件变形得到含“1”的式子,将“1”代入后再利用基本不等式求最值.
谢谢观看
Thanks
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

且:
,因为对于任意 x,
恒成立,
结合均值不等式的结论可得:
.
当且仅当
,即
时等号成立.
综上可得
的最小值为 .
【点睛】 在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和 为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.
5. 【2015 高考天津,文 12】已知 a 0,b 0, ab 8, 则当 a 的值为
第三步 结合函数 f (x) x a 的单调性,并运用其图像与性质求出其函数的最值即可; x
第四步 得出结论.
例 3 求函数 y x2 5 的值域。 x2 4
【答案】详见解析. 【解析】第一步,运用凑项或换元法将所给的函数化简为满足基本不等式的形式:

x2 4 t(t 2) ,则 y x2 5
第三步 将其化简即可得到基本不等式的形式,并运用基本不等式对其进行求解即可得出所求 的结果.
例 2 求 y x2 7x 10 (x 1) 的值域。 x 1
【答案】详见解析.
【方法点晴】本题看似无法运用基本不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。分式 函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为
大值. 【答案】4
时 log2 alog2 2b 取得最
【考点定位】本题主要考查对数运算法则及基本不等 式应用. 【名师点睛】在利用基本不等式求最值时,一定要紧扣“一正、二定、三相等”这三个条件,注意创造“定”这个 条件时常要对所给式子进行拆分、组合、添加系数等处理,使之可用基本不等式来解决,若多次使用基本不等 式,必须保持每次取等的一致性. 6. 【2018 年天津卷】已知 a,b∈R,且 a–3b+6=0,则 2a+ 的最小值为__________.
y 2 x 4 (x 0) 的最大值为________. x
【答案】-2
【解析】
y
2
x
4 =2 x
x
4 x
2
2
4= 2 ,
当且仅当 x= 4 ,即 x=2时,“=”成立 x
【变式演练 2】【2018 届山西高三上期中数学(理)试卷】当 x 1 时,不等式 x 1 a 恒成立,则实数 x 1
y mg(x) A B( A 0, B 0) ,g(x)恒正或恒负的形式,然后运用基本不等式来求最值。 g(x)
【变式演练 3】求函数 yx4x9的最值。 x
【答案】详见解析. 【解析】 试题分析:上述解题过程中应用了均值不等式,却忽略了应用均值不等式求最值时的条件,两个数都应大
于零,因而导致错误。因为函数 yx4x9的定义域为 , 0 0 , ,所以必须对 x 的正
等式求最小值,要注意使用基本不等式求最值的三个 条件“正,等,定”,属于中档题.
4. 【2018 年天津卷】已知
,且
,则
的最小值为_____________.
【答案】
【解析】
【分析】
由题意首先求得 a-3b 的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.
【详解】

可知

a b a b ab
b 2a 时取等号),所以 ab 的最小值为 2 2 ,故选 C. 学科%网
【考点定位】基本不等式 【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一 些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与 积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.
【反馈练习 】
1.【安徽省蒙城县 2018 届高三上学期“五校”联考数学(文)试题】已知正项等比数列an n N 满足
a5 a4 2a3 ,若存在两项 am , an 使得
am, an
8a1 ,则
1 m
9 n
的最小值为(

A. 1 B. 2 C. 3 D. 4
【答案】B
2.【辽宁省沈阳市东北育才学校 2018 届高三第三次模拟考试数学(理)试题】
则 a 2b 的最小值为( )
A. 2 3
【答案】A
B. 5 3 3
C. 3 3
D. 7 3 2
4【. 贵州省凯里市第一中学 2018 届高三下学期《黄金卷》第二套模拟考试数学(理)试题】函数 f x x2 4
x
的最小值为( ) A. 3 B. 4 C. 6 【答案】B
D. 8
【解析】 f x x2 4 x 4 2 4 4
现错误.
2. 【2015 高考湖南 ,文 7】若实数 a, b 满足 1 2 ab ,则 ab 的最小值为( ) ab
A、 2
B、2
C、2 2
D、4
【答案】C
【 解 析 】 1 2 ab,a>0,b>0, ab 1 2 2 1 2 2 2 ,ab 2 2 ,( 当 且 仅 当
ab
【高考地位】
基本不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重
要知识点。应用基本不等式求最值时,要把握基本不等式成立的三个条件“一正二定三相等”,忽略理任何一
个条件,就会导致解题失败,因此熟练掌握基本不等式求解一些函数的最值问题的解题策略是至关重要的。
【方法点评】
4
4x 5
【答案】 ymax 1.
第三步,得出结论:
故当 x 1 时, y 1。学#科网 max
[来源:学。科。网 Z。X。X。K]
点评:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
【变式演练 1】【江苏省盐城市阜宁中学 2017-2018 学年高二上学期第一次学情调研数学(文)试题】函数
3. 【2015 高考福建,文 5】若直线 x y 1(a 0,b 0) 过点 (1,1) ,则 a b 的最小值等于( ) ab
A.2 B.3 C.4 D.5 【答案】C
【考点定位】基本不等式.
【名师点睛】本题以直线方程为背景考查基本不等式,利用直线过点寻求变量 a, b 关系,进而利用基本不
因为 y t 1 在区间1, 单调递增,所以在其子区间2, 为单调递增函数,
t
第四步 得出结论.

y
5 2
,所以函数的值域为
5 2
,

【变式演练 4】下列函数中,最小值为 4 的是( )
A. y x 4 x
B. y sin x 4 ( 0 x )
sin x
C. y ex 4ex
2mn
设函数 f x 2lnx 1 (x 0) ,
2x
f x
2 x
1 2x2
4x-1 2x2
,所以
f(x)在区间
0,
1 4
单调递减,在区间
1 4
,
单调递增。
f
x min
f
1 4
,即
mn
b2 a2
1 4
,又均值不等式等号成立条件当且仅当 a2
4b2 ,
所以 e
1
b a
2
方法一 凑项法
使用情景:某一类函数的最值问题
解题模板:第一步 根据观察已知函数的表达式,通常不符合基本不等式成立的三个条件“一正二定三相等”,
将其配凑(凑项、凑系数等)成符合其条件;
第二步 使用基本不等式对其进行求解即可;
第三步 得出结论.
例 1 已知 x 5 ,求函数 y 4x 2 1 的最大值。
5 .选 C. 2
【点睛】
(1)双曲线上任意关于原点对称的两点
A x1,
y1 , Bx1, y1 ,另一动点
P x0,
y0 ,则 kPAkPB
b2 a2
(2)椭圆上任意关于原点对称的两点
A x1,
y1 , Bx1, y1 ,另一动点
P x0,
y0 ,则 kPAkPB
b2 a2
3.【新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(文)试题】设 a , b R , a2 2b2 6 ,
D. y log3 x 4 logx 3
【答案】C 【解析】
试题分析: ex 4ex 2 ex 4ex 4 ,当且仅当 ex 4ex , x ln 2 时等号成立,故选 C.
考点:基本不等式.
【高考再现】
1. 【2018 年江苏卷】在
中,角 所对的边分别为 ,
, 的平分线交 于点 D,
x
x
故选 B 学科#网
5.【2018 届重庆市第一中学高三理 12 月月考数学试卷】设 x 0 , y 0 ,且 x 2y 1 0 ,则 1 1 的 xy
最大值为( )
A. 3 2 2
B.6
C.-6 【答案】D 【解析】
D. 3 2 2
考点:基本不等式. 【易错点睛】本题主要考查了基本不等式.基本不等式求最值应注意的问题:(1)使用基本不等式求最值, 其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不 可.( 2)在运用基本不等式时 ,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. 6.【衡水金卷 2018 年普通高等学校招生全国统一考试 分科综合卷 理科数学(二)模拟试题】已知

,则
的最小值为________.
【答案】9
【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.
点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件
要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出
相关文档
最新文档