北师大版七年级下册数学:同底数幂的除法

合集下载

北师大版数学七年级下册同底数幂的除法课件

北师大版数学七年级下册同底数幂的除法课件
米,用 科学记数法表示为__1_._2__1_0__7__米.
随堂练习:
3.每个水分子的质量是3×10-26 g,用小数表示为 _0_._0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_3g;
每个水分子的直径是4×10-10 m,用小数表示为
____0_.0_0_0__0_0_0_0__0_0_4____ m.
1. PM2.5是指大气中直径小于或等于2.5 μm的 颗粒物,也称为可入肺颗粒物. 虽然它们的 直径还不到人的头发丝粗细的二十分之一, 但它们含有大量的有毒、有害物质,并且在 大气中停留的时间长、输送距离远,因而对 人体健康和大气环境质量有很大的危害.假设 一种可入肺颗粒物的直径约为2.5 μm,相当 于多少米?多少个这样的颗粒物首尾连接起 来能到达1 m?
新课讲授
1 纳米=( )米,这个结果能用科学记数法表示吗?
1 纳米 1 米 0.000 000 001 米 1109
1

1000 000 000
10-9 米
110-9 米
1 ap
ap
一般地,一个小于 1 的正数可以表示为 a 10n , 其中 1 a 10 ,n 是负整数.
做一做:
用科学记数法表示一些 绝对值较小的数,即将 它们表示成a×10- n的情 势,其中n是正整数, 1≤∣a∣<10.
科学记数 法表示的 数还原
把a×10-n还原成原数时,只需 把a的小数点向左移动n位.
布置作业
作业 内容
必做作业 习题1.5 第1、2、3题
自主安排 习题1.5 第4题
A.0.000 051 8
B.0.000 005 18
C.0.000 000 518 D.0.000 000 051 8

北师大版七年级数学下册1.3同底数幂的除法第1课时优秀教学案例

北师大版七年级数学下册1.3同底数幂的除法第1课时优秀教学案例
2.作业反馈:教师及时批改学生作业,给予评价和反馈,帮助学生纠正错误,提高学生的学习效果。
3.作业总结:学生在完成作业的过程中,总结自己的学习收获和不足,提高自主学习能力。
五、案例亮点
1.生活情境引入:通过设置与学生生活密切相关的情境,引发学生的兴趣和思考,如讨论手机信号强度的表示方法,引入幂的概念。这种教学方式能够激发学生的学习兴趣,提高学生对知识的理解和记忆。
2.同伴评价:学生之间进行互相评价,给予他人建设性的意见和建议,培养良好的评价习惯。
3.教师评价:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,激发学生的学习积极性。
四、教学内容与过程
(一)导入新课
1.生活情境引入:教师通过展示手机信号强度的图片,引导学生思考如何表示信号的强度,从而引入幂的概念。
(四)总结归纳
1.教师引导:教师引导学生总结本节课所学知识,明确同底数幂的除法法则及其应用。
2.学生总结:学生根据自己的学习体验,总结同底数幂的除法运算方法和技巧。
3.课堂小结:教师对课堂学习内容进行梳理和总结,巩固学生对同底数幂的除法法则的理解。
(五)作业小结
1.作业布置:教师布置具有针对性的作业,让学生巩固所学知识,提高学生的数学应用能力。
3.例题讲解:教师选取具有代表性的例题进行讲解,引导学生掌握同底数幂的除法运算方法。
(三)学生小组讨论
1.小组划分:教师根据学生的学习特点和能力,合理划分学习小组,鼓励学生互相帮助、共决问题的方法,培养团队协作能力。
3.问题解决:学生通过小组合作,共同解决问题,体会数学的乐趣。
(三)小组合作
1.小组划分:根据学生的学习特点和能力,合理划分学习小组,鼓励学生互相帮助、共同进步。

七年级数学下册《1.3.2 同底数幂的除法》教案 (新版)北师大版

七年级数学下册《1.3.2 同底数幂的除法》教案 (新版)北师大版
C.4×10-6D.4×10-7
4.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.00000007平方毫米,那么这个数用科学记数法表示为__________平方毫米.
5.1本100张纸的书大约厚0.9 cm,则一张纸约厚______m.
6.一种塑料颗粒是边长为1毫米的小正方体,它的体积是多少立方米(用科学记数法表示)?若用这种塑料颗粒制成一个边长为1米的正方体塑料块,要用多少个颗粒?
同底数幂的除法公式为am÷an=am-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?
从学生已有的知识入手,引入课题
新知探索
例题
精讲
合作探究
探究点:用科学记数法表示较小的数
【类型一】用科学记数法表示绝对值小于1的数
2014年6月18日中商网报道,一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为()
A.3.5×104米B.3.5×10-5米
C.3.5×10-4米D.3.5×10-9米
2.一块10000 m2的足球场,它的百万分之一大约有 【】
A.一个大拇指头大B.一只手掌大
C.一张桌子大D.一张床大
3.1 ml的水大约可以滴10滴,1杯水约250 ml,则一滴水占一杯水的【】
A.4×10-4B.4×10-5
1.3.2同底数幂的除法
教学目标
1.理解并掌握科学记数法表示小于1的数的方法;
2.能将用科学记数法表示的数还原为原数.
教学重、难点
重点:理解并掌握科学记数法表示小于1的数的方法;

北师大版七年级数学下册《同底数幂的除法》评课稿

北师大版七年级数学下册《同底数幂的除法》评课稿

北师大版七年级数学下册《同底数幂的除法》评课稿一、课程背景和目标《同底数幂的除法》是北师大版七年级数学下册的一篇重要内容。

本课通过引导学生探索同底数幂的除法规则,培养学生对除法的理解和运用能力。

课程目标包括: - 理解同底数幂指数相减的原理; - 掌握同底数幂相除的运算方法; - 运用正确的除法规则解决实际问题。

二、教学内容和方法1. 教学内容本节课主要内容包括: - 同底数幂指数相减的原理; -同底数幂相除的运算方法。

2. 教学方法(1)“导入” 激发学生的学习兴趣和主动性,可以通过提问或生活实例等方式,引入同底数幂的除法概念。

(2)“探究” 指导学生自主探究同底数幂的除法规律,可以通过小组合作、讨论等形式,引导学生思考、发现和归纳。

(3)“讲解” 给出同底数幂除法规则的准确定义和解题方法,通过板书、示意图等形式,帮助学生理解和记忆。

(4)“练习” 设计一定数量和难度的练习题,让学生在课堂上通过个人、小组等形式进行练习,巩固所学知识。

(5)“提高” 在解题过程中引导学生思考,提高认识,培养学生的数学思维、分析问题和解决问题的能力。

(6)“归纳” 教师对本节课的重点知识进行概括和总结,引导学生归纳记忆。

1. 教学步骤(1)导入通过提问或以生活实例的方式引入同底数幂的除法概念,激发学生的学习兴趣和思考。

(2)探究学生分组讨论,自主探究同底数幂的除法规律,发现同底数幂的除法可以通过对指数进行相减来实现。

教师鼓励学生互相交流和探讨,引导他们找到规律。

(3)讲解教师给出同底数幂的除法规则的准确定义和解题方法。

通过板书、示意图等形式,帮助学生理解和记忆。

(4)练习设计一定数量和难度的练习题,让学生在课堂上通过个人、小组等形式进行练习,并及时纠正他们的错误。

(5)提高在解题过程中引导学生思考与提高,鼓励他们尝试不同的解题方法,培养他们的数学思维和解决问题的能力。

(6)归纳教师对本节课的重点知识进行概括和总结,引导学生归纳所学知识,加深记忆。

北师大版七年级册下数学1.3.1同底数幂的除法(教案)

北师大版七年级册下数学1.3.1同底数幂的除法(教案)
首先,我们要了解同底数幂除法的基本概念。同底数幂的除法是指当两个幂的底数相同时,我们可以直接将它们的指数相减。这个法则非常重要,因为它可以简化我们的计算过程。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有2^5 / 2^2,通过同底数幂除法,我们可以直接得到2^3。这个案例展示了同底数幂除法在实际中的应用,以及它如何帮助我们解决问题。
-同底数幂除法的应用:通过典型例题,重点训练学生将同底数幂除法应用于实际问题的能力,如科学计数法、比例计算等。
举例:讲解同底数幂除法概念时,可举例2^5 / 2^2 = 2^(5-2) = 2^3,强调指数相减的重要性。
2.教学难点
-理解同底数幂除法法则:学生可能难以理解为什么底数相同、指数相减的幂可以相除,需要通过具体实例和图形直观展示。
本节课的核心素养目标旨在培养学生具备扎实的数学基础和良好的数学思维能力,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
-同底数幂除法的概念:重点讲解同底数幂除法的定义,即a^m / a^n = a^(m-n),强调底数相同且指数相减的规律。
-同底数幂除法的运算性质:详细阐述同底数幂除法的运算性质,如负指数、零指数幂的特殊情况,以及如何与其他幂运算结合。
-难点2:讲解负指数和零指数幂时,可用2^0 = 1(任何数的零次幂都是1)和2^(-3) = 1 / 2^3(负指数表示倒数)来具体说明。
-难点3:针对高级运算,如(2^5 / 2^2) * (3^2 / 3^4),需要引导学生先进行同底数幂的除法运算,再进行乘法运算,即2^3 * 3^(-2) = 2^3 / 3^2。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案一. 教材分析《同底数幂的除法》是北师大版数学七年级下册第9章幂的运算中的一节内容。

本节课主要让学生掌握同底数幂的除法法则,并能灵活运用该法则进行计算。

教材通过引入实际问题,引导学生探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在七年级上册已经学习了幂的定义、幂的运算性质等基础知识,对幂的概念有一定的了解。

但是,对于同底数幂的除法运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,帮助学生理解和掌握同底数幂的除法运算。

三. 教学目标1.知识与技能目标:让学生掌握同底数幂的除法法则,能够正确进行同底数幂的除法运算。

2.过程与方法目标:通过探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:同底数幂的除法法则。

2.难点:同底数幂的除法运算的灵活运用。

五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学素养。

六. 教学准备1.教师准备:熟练掌握同底数幂的除法运算,了解学生的学习情况,准备相关案例和问题。

2.学生准备:回顾幂的定义和运算性质,准备好笔记本和笔。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾幂的定义和运算性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示同底数幂的除法运算的案例,引导学生观察和分析,提出问题:“如何进行同底数幂的除法运算?”3.操练(10分钟)教师引导学生分组讨论,共同探讨同底数幂的除法法则。

学生在小组内进行练习,教师巡回指导。

4.巩固(10分钟)教师挑选几组学生代表的答案,进行讲解和分析,巩固学生对同底数幂的除法法则的理解。

5.拓展(10分钟)教师提出一些有关同底数幂的除法运算的实际问题,引导学生运用所学知识进行解决,提高学生的解决问题的能力。

同底数幂的除法课件 2022—2023学年北师大版数学七年级下册

同底数幂的除法课件 2022—2023学年北师大版数学七年级下册

方法二:
1012 1010
1012 1010
1010 10 1010
2
102.
方法三:
12个10
10 12
÷1010
=
10×10×10×10×···×10 ————1—0×—··—·×—1—0 ———
=10×10
10个10
=102
新课探究 用你熟悉的一种方法计算,并说明理由
做一做
25 23
a7 a(3 a 0)
新课导入
思考
同学们有不少人都喜欢吃辣条,据卫生部门统计一袋辣条所含 的有害细菌为1010个,小明一生吃了1012个细菌,那么他一生吃了 多少袋呢?列出式子
北师大版
第 一 章 整式的乘除
3.1同底数幂的除法
方法一:
102 1010 1012,
1012 1010 102.
新课探究
试一试
1012 1010 102 101210
规定:a0 (1 a 0).
新知探究
当m<n时
试一试
根据同底数幂的除法法则填空:
53 56
104 108
am an
53-6=5-3
104-8 =10-4
am-n=a(n-m)=ap
根据除法意义计算:
53
56
53 56
5
5
5
5
5
5
5
5
5
1 555
1 53
104
108
104 108
同底数幂相乘,底数不变,指数相加.
新知应用
题目游戏
新知应用
疑难解惑
计算
新知应用
am3 am1 b2m2 (b)2

北师大版七年级数学下册第一章1.3同底数幂的除法优秀教学案例

北师大版七年级数学下册第一章1.3同底数幂的除法优秀教学案例
2.问题导向激发探究欲望:通过设计一系列问题,引导学生思考同底数幂的除法运算规律,激发学生的探究欲望,培养了学生独立思考、解决问题的能力。
3.小组合作培养团队精神:组织学生进行小组讨论,鼓励学生分享自己的观点和思路,培养了学生的团队协作能力和沟通能力,使学生在讨论中发现问题、解决问题,提高了学生的抽象思维能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示超市购物的图片,引导学生关注商品价格标签中的数学信息,激发学生对同底数幂除法运算的兴趣。
2.提出“购物预算”问题,让学生在解决实际问题的过程中,自然地引入同底数幂的除法运算。
3.通过情境导入,让学生感受到数学与生活的紧密联系,激发学生对数学学习的热情。
教学目标的设计旨在让学生在掌握知识与技能的基础上,形成积极的学习态度,培养良好的学习习惯和团队协作能力,提高学生的综合素质,为他们的可持续发展奠定基础。
三、教学策略
(一)情景创设
1.利用多媒体展示超市购物的图片,引导学生关注商品价格标签中的数学信息,激发学生对同底数幂除法运算的兴趣。
2.设计“购物预算”问题,让学生在解决实际问题的过程中,自然地引入同底数幂的除法运算。
3.引导学生运用归纳总结的方法,自主发现同底数幂的除法运算规律,培养学生的逻辑推理能力和抽象思维能力。
(三)情感态度与价值观
1.通过解决实际问题,让学生感受到数学与生活的紧密联系,提高学生对数学学习的兴趣和热情。
2.培养学生勇于尝试、克服困难的勇气,增强学生的自信心和自尊心。
3.通过对幂的运算规律的学习,让学生认识到数学知识的系统性和连贯性,培养学生的整体思维和归纳总结能力。
北师大版七年级数学下册第一章1.3同底数幂的除法优秀教学案例
一、案例背景

(北师大版)初中数学《同底数幂的除法》教学反思(1)

(北师大版)初中数学《同底数幂的除法》教学反思(1)

同底数幂的除法教学反思同底数幂的除法的主要内容是根据除法是乘法的逆运算,从计算具体的同底数的幂的除法,到计算底数具有一般性的字母,逐步归纳出同底数幂除法的法则,并运用法则熟练、准确地进行计算。

本节课是在学习了同乘方、积的乘方的基础上进行的,它们构成一个有机整体,为后续的整式除法的学习打下基础,并且同底数幂的除法在今后的物理、化学、生物学课中常得以应用。

本节课的学习对于学生来说,无论在知识上,还是类比学习能力和抽象思维能力的培养上,都起着不容忽视的作用。

反思本节课的教学,使我进一步明确了数学学习不能单纯依赖模仿与记忆,应该从学生的生活经验和已有知识的背景出发,提供给学生充分进行数学活动和探索的机会,使他们在自主探索的过程中真正理解和掌握数学知识。

反思本节课的教学,学生给了我几个惊喜:惊喜一:在探索“同底数幂的除法法则”时,我本来以为学生可能不会想到可以用两种方法来解决,在备课时预先想好了如何启发引导等方案,在PPT制作过程中也充分考虑了这些因素,做了几个“超链接”以应对可能出现的情况。

结果这几个“超链接”根本就没用上,因为学生在前面知识的铺垫下已经水到渠成地想到了这两种方法,这是我事先没有估计到的。

惊喜三:课上,我让学生进行交流,辨析 (-x)5 ÷ (-x)5和-x5 ÷ (-x)5 的值是否相等?学生分组进行了讨论,他们畅所欲言,各抒己见,由开始的意见不一致,引起争论,被同学反驳,到最后达成共识,统一意见。

在他们讨论的过程中,我及时进行指导,适度点拨,学生既把握了知识的本质,又提高了交流的能力。

在教学过程中出现了问题,不是都能在备课时预料得到的,我觉得自己本堂课还有很多需要改进的地方:①在学生出现的错误时,只指出了学生运算顺序的错误,简单地进行纠正,如果当时举个整数乘除法的例子来说明,学生可能更容易接受和理解,可能比纯粹说理效果更好,我没有利用好学生“解答错误”这一资源。

②时间没有把握好,在用字母法则时由于过多强调字母的限定条件,而浪费了较多时间,导致后面的练习题没有时间完成,没能在课上巩固所学的知识。

同底数幂的除法北师大七年级下

同底数幂的除法北师大七年级下
第14页/共17页
思考●探索●交流
若aX= 3 , ay= 5, 求:
(1) aX-y的值?
3
5
(2) a3x-2y的值? 27
25
第15页/共17页
再 见!
第16页/共17页
谢谢您的观看!
第17页/共17页
(4)(-ab )5÷ (-ab ) 2=(-ab)5-2= (-ab)3 = -a3b3
(5)62m+1 ÷ 6 m = 62m+1-m= 6m+1
第12页/共17页
习题 下面的计算是否正确?如有错误, 请改正:
(1) a6 ÷ a1 = a 错误,应等于a6-1 = a5 (2)b6 ÷ b3 = b2 错误,应等于b6-3 = b3 (3) a10 ÷a9 = a 正确. (4)(-bc )4÷ (-bc ) 2 = -b 2 c 2
=10m-n
有m个10 有n个10
第5页/共17页
解题思路
解:(根据幂的定义) (3) (-3)m ÷ (-3)n
有m个(-3)
(-3) ● (-3) …… (-3) =
(-3) ● (-3) …… (-3)
= (-3) m-n
n个(-3)
第6页/共17页
总结规律 ——幂的除法的一般规律
am ÷ a n
有m个a
= a●a●a ………a a●a●a ………a
=am-n
有n个a
am ÷a n = am- n (a ≠ 0,m,n都是正整数,且m>n)
同底数幂相除,底数 不变 ,指数 相减 .
第7页/共17页
解题依据: 同底数幂相除,底数 不变 ,指数 相减 。
举例 例1 计算: (1) a7 ÷ a4 = a7-4 = a3 (2) (-x)6÷(-x)3 = (-x)6-3 = (-x)3 = -x3 (3) (xy)4÷ (xy) = (xy)4-1 = (xy)3 = x3y3 (4) b 2m+2÷ b2 = b2m+2-2 = b2m

北师大版七年级数学下册《1.3第1课时同底数幂的除法》说课稿

北师大版七年级数学下册《1.3第1课时同底数幂的除法》说课稿

北师大版七年级数学下册《1.3 第1课时同底数幂的除法》说课稿一. 教材分析《1.3 第1课时同底数幂的除法》是人教版七年级数学下册的一节重要课程。

本节课的主要内容是让学生掌握同底数幂的除法法则,并能够运用该法则解决相关问题。

教材通过引入实例,引导学生发现并总结同底数幂的除法法则,进而提高学生的数学思维能力和解决问题的能力。

二. 学情分析根据对七年级学生的了解,他们在学习本节课之前已经掌握了同底数幂的乘法,有了一定的数学基础。

但是,对于幂的除法,他们可能还存在一些困惑和误解。

因此,在教学过程中,我需要关注学生的学习情况,及时解答他们的疑问,并帮助他们澄清错误观念。

三. 说教学目标1.知识与技能目标:学生能够理解同底数幂的除法法则,并能够运用该法则进行计算。

2.过程与方法目标:学生通过观察实例,总结同底数幂的除法法则,培养学生的数学思维能力。

3.情感态度与价值观目标:学生能够积极参与课堂讨论,增强对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:同底数幂的除法法则的推导和应用。

2.教学难点:理解同底数幂的除法法则,能够灵活运用该法则解决实际问题。

五. 说教学方法与手段在本节课的教学中,我将采用讲授法、引导法和实践法相结合的方法。

通过实例引入,引导学生观察和思考,进而总结出同底数幂的除法法则。

同时,我会鼓励学生进行实际操作,通过计算练习来巩固所学知识。

六. 说教学过程1.导入:通过一个具体的实例,如计算2^3 ÷ 2^2,引导学生思考同底数幂的除法应该如何计算。

2.探究:让学生分组讨论,观察和分析实例,引导学生发现同底数幂的除法法则。

3.讲解:引导学生总结同底数幂的除法法则,并进行解释和讲解。

4.练习:布置一些相关的计算练习题,让学生进行实际操作,巩固所学知识。

5.应用:通过解决实际问题,让学生运用同底数幂的除法法则,提高学生的解决问题的能力。

七. 说板书设计板书设计要简洁明了,能够突出同底数幂的除法法则。

第一章第03讲 同底数幂的除法(6类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第一章第03讲 同底数幂的除法(6类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第03讲同底数幂的除法(6类热点题型讲练)1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;3.会用同底数幂的除法法则进行计算.知识点01同底数幂的除法m n m n a a a -÷=(其中,m n 都是正整数).即同底数幂相除,底数不变,指数相减.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)逆用公式:即=m n m n aa a -÷(,m n 都是正整数).知识点02零指数幂:01a =(a ≠0)知识点03负指数幂:1p p a a-=(a ≠0,p 是正整数)题型01同底数幂的除法【例题】(2023上·八年级课时练习)计算:(1)()()()722ab ab ab -÷-÷-;(2)()243m m ÷;(3)()()426x x x -⋅÷-.【答案】(1)33a b -(2)5m (3)4x -【分析】(1)把()ab -当作一个整体,根据同底数幂的除法法则计算,再利用积的乘方法则计算即可;(2)先根据幂的乘方法则计算,再根据同底数幂的除法法则计算;(3)先根据同底数幂的乘法法则计算同时根据有理数乘方进行运算,再根据同底数幂的除法法则计算即可.【详解】(1)解:()()()722ab ab ab -÷-÷-()722ab --=-()3ab =-33a b =-;(2)()243m m ÷83m m =÷5m =;(3)()()426x x x -⋅÷-84x x =-÷4x =-.【点睛】本题考查整式的乘除混合运算,掌握相应的运算法则、掌握运算顺序是解题的关键.【变式训练】1.(2023上·全国·八年级课堂例题)计算:(1)93m m -÷;(2)63()()a a -÷-;(3)2366m m +÷.【答案】(1)6m -(2)3a -(3)36m +【分析】(1)根据同底数幂的除法运算即可求解;(2)根据同底数幂的除法运算即可求解;(3)根据同底数幂的除法运算即可求解.【详解】(1)解:93m m -÷93m -=-6m =-.(2)解:63()()a a -÷-63()a -=-3()a =-3a =-.(3)解:2366m m +÷236m m +-=36m +=.【点睛】本题主要考查整式的乘除法的运算,掌握其运算法则是解题的关键.2.(2023上·全国·八年级课堂例题)计算:(1)1023a a a ÷÷;(2)255a a a ⋅÷;(3)()()5222x y x y ÷;(4)432()()()p q q p p q -÷-⋅-.【答案】(1)5a (2)2a (3)63x y (4)3()p q --【分析】(1)利用同底数幂的除法法则计算即可;(2)利用同底数幂的乘法和除法法则计算即可;(3)利用积的乘方和同底数幂的除法法则计算即可;(4)先把()q p p q -=--,底数p q -作为一个整体,利用同底数幂的乘法和除法计算即可;【详解】(1)解:310231025a a a a a --÷=÷=.(2)解:225755a a a a a a ⋅÷÷==.(3)解:()()10542635222x x y x y y x y y x =÷÷=.(4)解:3432432()()()()())(()p q q p p q p q p q p p q q -÷-⋅--÷-⋅-=-=--.【点睛】本题考查了同底数幂的乘法,同底数幂的除法,积的乘方,熟练运用这些运算法则是解题的关键.题型02同底数幂除法的逆用1.(2023下·安徽安庆·七年级校考期中)已知3x a =,5y a =,求:(1)x y a -的值;∴1n =.【点睛】本题主要考查了同底数幂乘除法的逆运算,幂的乘方和幂的乘方的逆运算,熟知相关计算法则是解题的关键.题型03幂的混合运算【例题】(2023·上海·七年级假期作业)计算:(1)()()4334a a -÷-;(2)()()22237a a a a ⋅÷⨯-.【答案】(1)1-(2)5a 【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a -÷-=÷-=-;(2)解:()()()22223757210725a a a a a a a a a -+⋅÷⨯-=÷⋅==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,()nm mn a a =,m n m na a a -÷=(0a ≠,m ,n 都是正整数),注意负数的奇次幂还是负数.【变式训练】(1)2642135(2)5x x x x x ⋅--+÷(2)253()()[()]a b b a a b -⋅-÷--;(3)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.【答案】(1)82x (2)4()a b -(3)2a -,-25.【分析】(1)先算幂的乘方,再算乘除,最后计算加减即可求解;(2)把()a b -作为一个整体,从左往右计算,即可求解;(3)先算括号内的,再计算除法,最后再代入求值,即可求解.【详解】(1)原式88845x x x =-+8(145)x =-+82x =;(2)原式253()()[()]a b a b a b =---÷--4()a b =-.(3)原式=()61264594a a a a -÷÷=6444a a -÷=2a -,当a =-5时,原式=-25.【点睛】本题主要考查了幂的混合运算,零指数幂,负整数指数幂,熟练掌握幂的运算法则,零指数幂,负整数指数幂法则是解题的关键.题型04零指数幂题型05负整数指数幂题型06用科学计数法表示绝对值小于1的数1.(2023上·黑龙江佳木斯·八年级统考期末)纳米是一种长度单位,1纳米910-=米,冠状病毒的直径约为一、单选题1.(2023上·河南濮阳·八年级校联考期中)下列各式运算结果为6x 的是()A .24x x ⋅B .()42x C .122x x ÷D .33x x +【答案】A 【分析】直接根据同底数幂的乘除法,幂的乘方,合并同类项的运算法则计算各项,即可得到答案.【详解】解:A .24246x x x x +⋅==,故选项符合题意;B .()428x x =,故选项不符合题意;C .12210122x x x x -÷==,故选项不符合题意;D .3332x x x +=,故选项不符合题意.故选:A .2.(2023上·四川宜宾·八年级统考期中)下列计算正确的是()A .426235a a a +=B .824a a a ÷=C .53822a a a ⋅=D .()236ab a b=【答案】C 【分析】本题考查的是合并同类项,同底数幂的除法,乘法运算,积的乘方运算,根据各自的运算法则逐一分析即可,熟记运算法则是解本题的关键.【详解】解:A 、42a 与23a 不是同类项,不能合并,不符合题意;B 、826a a a ÷=,故本选项计算错误,不符合题意;C 、53822a a a ⋅=,计算正确,符合题意;D 、()2362a b a b =,故本选项计算错误,不符合题意;故选:C .3.(2023上·吉林松原·八年级校联考期末)经测算,一粒芝麻的质量约为0.00000201kg ,数据0.00000201用科学记数法表示为()A .320.110-⨯B .42.0110-⨯C .50.20110-⨯D .62.0110-⨯【答案】D【分析】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.00000201 2.0110-=⨯.故选:D .4.(2023上·河南濮阳·八年级校联考期中)若()021x +=,则x 的取值范围是()A .2x ≥-B .2x ≤-C .2x ≠-D .2x =-【答案】C 【分析】本题考查零指数幂的意义,根据零指数幂的定义即可判断.【详解】解:根据零指数幂的意义,20x +≠,∴2x ≠-.故选:C .5.(2023上·河南新乡·八年级校考阶段练习)下列四个算式:①()()4322x x x -÷-=-;②()()2122242n n x x x +--÷-=-;③()2522a b a b a ÷=;④()2642221832a b a b a b ÷-=.其中计算不正确的是()A .①②B .①③C .②④D .②③【答案】B【分析】本题考查幂的运算,涉及同底数幂的除法、积的乘方、幂的乘方等知识,是基础考点,掌握相关知识是解题关键.根据同底数幂的除法、积的乘方、幂的乘方法则逐个解题【详解】解:①()()43222x x x -÷-=-,错误,②()()2122242n n x x x +--÷-=-,正确,③()2522a b a b a ÷=,错误,④()2642221832a b a b a b ÷-=,正确故①③错误,故选:B .【答案】2【分析】本题主要考查了整式的加减计算,同底数幂除法的逆运算,先分别表示出经过取走和取出后,甲、乙、丙三个袋子中的球数分别为个,由此得到292y -【详解】解:经过取走和取出后,()22525x y y +-+=+∵一共有29295++=∴最后三个袋子中的球都是∴2125922x y =+-,∴82126y x ==,,∴22216x y x y -=÷=故答案为:2.。

北师大版七下数学同底数幂的除法教学课件

北师大版七下数学同底数幂的除法教学课件
1.3 同底数幂的除法
一、导入
1.同底数幂乘法法则:
am an amn (m, n都是正整数)
2.幂的乘方法则:
(am )n amn (m, n都是正整数)
3.积的乘方法则:
(ab)n anbn (n是正整数)
做一做: 如何计算下列各式?
(1)108 105
(2)10m 10n
(3)(3)m (3)n
例1 计算
(1) 8
3
(2)
10
(((123)))(解解4解)::解:2:aaxa87 610a23ax4a3
3
822aaa3aaaaaxx37875415637031
(3) 2a7 2a4
(4) x6 x
例2 计算
(1) a 5 a3
(3(()21解)):解解::abaa465aaa2 3 b 2 aaa64 baa52a22 a3
253
10 (2)107
103
4
___________;
1073
a (3)a7 a3
4
_________
a0
. a73
你能发现什么规律?
三、学习同底数幂除法法则
一般地,设m、n为正整数,且
m>n,a 0 有:
am an amn
这就是说,同底数幂相除, 底数不变,指数相减.
a a a a 典型例题
b2
4
b3
2
(7) x5 x
(8) 163 43
(9)m10 m5 m2
例4 计算
分析:本例的
(1) 273 92 312
(2) 82m 42m1
每个小题,由 于底数不同, 不能直接运用

北师大版数学七年级下册第1课时同底数幂的除法课件(共18张)

北师大版数学七年级下册第1课时同底数幂的除法课件(共18张)

(3) (-3 )m÷( -3 )n.
(1) 1012÷109 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
=1000=103
合作探究
m 个 10
(m-n)个10
(2) 10m÷10n 10 10
10 10
10 =10×10×···×10
归纳总结
n个a
运算法则:
am÷an = am-n (a≠0,m,n 是正整数,且 m>n).
文字说明:同底数幂相除,底数_不__变__,指数_相__减__.
典例精析
例1 计算: (1) a7÷a4 ;
(2) (-x)6÷(-x)3;
(3) (xy)4÷(xy);
(4) b2m+2÷b2.
解:(1) a7÷a4 = a7-4 = a3.
=0.001.
(2)70×8-2
=1
1 82
=
1. 64
注意:
a0 =1
(3)1.6×10-4
1 =1.6
104
=
1.6×0.0001
=
0.00016.
议一议
计算下列各式,你有什么发现?与同伴进行交流.
(1) 7-3÷7-5;
(2) 3-1÷36;
3 15
12
2
解:(1)
2
7-3÷7-5
=
1 73
(4) (-8)0÷(-8)-2.
1 75
1 73
75
72= 7-3-(-5).
(2)
3-1÷36
=
1 3
1 36
=
1 3 36

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

第一章整式的乘除第3节同底数幂的除法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.下列计算正确的是( )A .3412a a a ⋅=B .()326a a =C .()2222a a =D .4442a a a ÷= 2.下列计算错误的是( )A .325a a a ⋅=B .2222a a a +=C .()326a a -=D .826a a a ÷= 3.下列计算正确的是( )A .336a a a +=B .3225()xy x y =C .624a a a ÷=D .()2231931m m m +=++ 4.运算结果为6a 的式子是( )A .32a a ⋅B .()32aC .122a a ÷D .7a a - 5.下列计算中,正确的是( )A .33a a ÷=B .23a a a +=C .()235a a =D .426a a a ⋅= 6.下列运算正确的是( )A .()123a a =B .221a a -=C .623a a a ÷=D .()224ab ab = 评卷人得分二、填空题 7.计算423287x y x y -÷的结果等于___________.8.已知28m =,31n =,则n m -=____.9.2﹣2+|3﹣2|=_____.10.计算()()2201901130142π-⎛⎫-+--= ⎪⎝⎭________. 11.已知23x =,25y =,则212x y +-=_______.12.若6m a =,4n a =,则2m n a -=__.评卷人得分三、解答题 13.计算:1020201( 3.14)2(1)2π-⎛⎫-+---- ⎪⎝⎭.14.根据题意,完成下列问题.(1)若8,2322m n ==,求22m n -的值;(2)已知2330x y +-=,求48x y ⋅的值;(3)已知22332510x x x ++-⋅=,求x 的值.15.已知53a =,52b =,572c =.(1)求25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系为_______.16.计算 (1)101|2|(2)3π-⎛⎫---+- ⎪⎝⎭; (2)()()254822()x x x x +-⋅÷-17.小明和小红在计算100101133⎛⎫-⨯ ⎪⎝⎭时,分别采用了不同的解法.小明的解法:10010010010110010011133333(1)33333⎡⎤⎛⎫⎛⎫⎛⎫-⨯=-⨯⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 小红的解法:()100100100101101110110010111333333333--⎛⎫⎛⎫-⨯=⨯=⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.请你借鉴小明和小红的解题思路,解决下列问题:(1)若4310a b -+=,求2213927a b +⨯÷的值;(2)已知x 满足24222296x x ++-=,求x 的值.18.(1)填空()10222-=()21222-= ()32222-=(2)探索(1)中式子的规律,试写出第n 个等式,并说明理由.(3)计算234991*********+++++⋯++;19.计算(1)23a a ⋅(2)()322y y ⋅ (3)3236415x y x y ⎛⎫-- ⎪⎝⎭(4)852()()()x y y x y x -÷-⋅-.20.(1)()()13011273π-⎛⎫-+-+-- ⎪⎝⎭ (2)()22436310a a a a ⋅+--21.(1)若34213927m m +-⋅÷的值为81,试求m 的值;(2)已知4434,381m m n -==,求2008n 的值.22.观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;① 22x ,33x -,45x ,59x -,617x ,733x -,⋯;①根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第①行的第9个单项式为_______;第①行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.23.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.24.阅读材料,求1+2-1+2-2+…+2-2 016的值.解:设S=1+2-1+2-2+…+2-2016,①则2S=2+1+2-1+…+2-2 015,①①-①得S=2-2-2 016.请你仿此计算:(1)1+3-1+3-2+…+3-2 016;(2)1+3-1+3-2+…+3-n(n为正整数).25.x n+1·x n-1÷(x n) 2 (x≠0)参考答案:1.B【解析】【分析】根据运算法则逐一计算判断即可【详解】①347⋅=,a a a①A式计算错误;①()326=,a a①B式计算正确;①()22=,24a a①C式计算错误;①44a a÷=,22①D式计算错误;故选B【点睛】本题考查了同底数幂的乘法,幂的乘方,积的乘方,单项式除以单项式,熟练掌握公式和运算的法则是解题的关键.2.C【解析】【分析】根据运算法则逐一计算判断即可【详解】①325⋅=,a a a①A式计算正确,不符合题意;①222+=,a a a2①B式计算正确,不符合题意;①()326a a-=-,①C式计算错误,符合题意;①826a a a ÷=,①D 式计算正确,不符合题意;故选C【点睛】本题考查了整式的加减,幂的乘方,同底数幂的除法,熟练掌握运算的法则和化简的方法是解题的关键.3.C【解析】【分析】根据合并同类项的法则判断A ;根据积的乘方法则判断B ;根据同底数幂的除法法则判断C ;根据完全平方公式判断D .【详解】A 、3332a a a +=,计算错误,故本选项不符合题意;B 、()2326xy x y =,计算错误,故本选项不符合题意; C 、624a a a ÷=,计算正确,故本选项符合题意;D 、22(31)961m m m +=++,计算错误,故本选项不符合题意; 故选:C .【点睛】本题考查了合并同类项,积的乘方,同底数幂的除法,完全平方公式,掌握公式与法则是解题的关键.4.B【解析】【分析】先将选项中的式子进行化简算出正确的结果,然后进行对照即可解答本题.【详解】解:A .33522a a a a +⋅==,故不符合题意;B .()23236a a a ⨯==,符合题意; C .12210122=a a a a -=÷ ,故不符合题意;D . 7a 与a -无法合并,故不符合题意;故选:B【点睛】本题考查幂的乘方与积的乘方、合并同类项、同底数幂的乘除法,解题的关键是明确它们各自的计算方法.5.D【解析】【分析】分别根据同底数幂的除法,合并同类项,幂的乘方,同底数幂的乘法法则逐项判断即可.【详解】A 、32a a a ÷=,原计算错误,不符合题意;B 、a 和2a 不是同类项,不能合并,不符合题意;C 、()236a a =,原计算错误,不符合题意; D 、426a a a ⋅=,正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的除法,幂的乘方,同底数幂的乘法,解题的关键是掌握运算法则.6.B【解析】【分析】按照幂的运算法则计算判断即可.【详解】①()212=a a , ①选项A 错误;①221a a -=, ①选项B 正确;①6642-2=a a a a ÷=,①选项C 错误;①()2224ab a b =,①选项D 错误;故选B .【点睛】本题考查了同底数幂的乘方,同底数幂的除法,积的乘方,负整数指数幂的运算,熟练掌握各类运算的法则是解题的关键.7.4xy -【解析】【分析】利用同底数除法的法则计算即可【详解】解:423287x y x y -÷=-4x 4-3y 2-1=-4xy故答案为:-4xy【点睛】本题考查同底数除法法则,正确使用法则是关键 8.-3【解析】【分析】现将8化成32,在利用零指数,得出m ,n 的值计算即可【详解】解:①28m =,38=2①322m =①m =3①031=①n =0①n -m =0-3=-3故答案为:-3【点睛】本题考查乘方的含义,零指数.灵活应用概念是关键.9.934- 【解析】【分析】先算负指数、绝对值,再进行计算即可.【详解】解:2﹣2+|3﹣2|=1234+- =934-; 故答案为:934-. 【点睛】本题考查了实数的混合运算,解题关键是熟练运用相关法则计算负指数和绝对值. 10.2.【解析】【分析】 先计算有理数的乘方、负整数指数幂、零指数幂,再计算有理数的加法即可得.【详解】解:原式141=-+-,2=故答案为:2.【点睛】本题考查了有理数的乘方、负整数指数幂、零指数幂,熟记各运算法则是解题关键. 11.452. 【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】解:①23x =,25y =,①212x y +-=()2222x y ⨯÷=32×5÷2=452故答案为:452. 【点睛】本题考查了同底数幂的除法,幂的乘方,掌握运算法则是解题关键.12.9【解析】【分析】根据幂的运算的逆运算,把所求式子变成幂的运算即可.【详解】6m a =,4n a =,222()643649m n m n a a a -∴=÷=÷=÷=.故答案为:9.【点睛】 本题考查了幂的运算的逆运算,解题关键是灵活运用幂的运算的逆运算,把所求式子转换成幂的运算.13.0【解析】【分析】根据实数的运算法则计算.【详解】解:原式1221=+--0=.【点睛】本题考查实数的混合运算,熟练掌握负整数指数幂和零指数幂运算、绝对值运算和负数的偶次幂运算是解题关键.14.(1)2;(2)8;(3)52. 【解析】【分析】(1)先逆用同底数幂的乘法公式、同底数幂的除法公式和幂的乘方公式,将22m n -转化为()222m n ÷的形式,再代入8,2322m n ==进行计算即可;(2)先求出233x y +=,再利用幂的乘方公式和同底数幂的乘法公式将48x y ⋅转化为232x y +的形式,最后代入数值运算即可;(3)先逆用积的乘方公式将2225x x ++⋅转化为210x +,然后得到关于x 的一元一次方程后求解即可.【详解】解:(1)①8,2322m n ==,①()22222283264322m n m n -=÷=÷=÷=;①22m n -的值为2.(2)①2330x y +-=,①233x y +=,①232334822228x y x y x y +⋅=⋅===;①48x y ⋅的值为8.(3)①2222510x x x +++⋅=,①2331010x x +-=,①233x x +=-,①52x =, ①x 的值为52. 【点睛】本题综合考察了同底数幂的乘法公式以及逆用、同底数幂的除法公式的逆用、幂的乘方公式及其逆用、积的乘方公式及其逆用等知识,要求学生能理解并熟记公式,能灵活运用公式对代数式进行变形等,考察了学生对基础知识的理解与公式的掌握,本题蕴含了整体代入的思想方法.15.(1)9;(2)108;(3)c =2a +3b【解析】【分析】(1)根据幂的乘方直接解答即可;(2)根据同底数幂的乘除法进行解答即可;(3)根据幂的乘方法则以及同底数幂的乘法法则,即可得到结论.【详解】解:(1)①5a=3,①25a=(5a)2=32=9;(2)①5a=3,5b=2,5c=72,①5a b c-+=5a×5c÷5b=.3×72÷2=108;(3)①72=32×23=(5a)2×(5b)3=2+35a b,572c=①2+35a b=5c,①c=2a+3b;故答案为:c=2a+3b.【点睛】本题主要考查同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.16.(1)-2;(2)103x【解析】【分析】(1)原式根据绝对值的代数意义,零指数幂的运算法则以及负整数指数幂的运算法则化简各项,然后再进行加减运算即可;(2)原式根据积的乘方运算法则,单项式乘以单项式、单项式除以单项式运算法则化简各项后再合并即可得到答案.【详解】解:(1)11 |2|(2)3π-⎛⎫---+-⎪⎝⎭=2-1-3 =-2;(2)()()254822()x x x x +-⋅÷- =481024x x x x -⋅÷=101224x x x -÷=10104x x -=103x【点睛】此题主要考查了整式的运算,熟练掌握运算法则是解答此题的关键.17.(1)27;(2)32x =. 【解析】【分析】(1)根据同底数幂的乘法和除法化简2213927a b +⨯÷,然后再计算即可;(2)将24222296x x ++-=化成2222222926x x ++-=⨯,然后得到22232x +=,然后再化成指数相同计算即可.【详解】解:(1)2213927a b +⨯÷()()21223333a b +=⨯÷2423333a b +=⨯÷4433a b +-=4343a b -+=①4310a b -+=①431a b -=-①原式1433327-+===;(2)①24222296x x ++-=①2222222926x x ++-=⨯①()22222196x +-=⨯①229326x +⨯=①22232x +=①22522x +=①225x +=①32x =. 【点睛】本题考查了同底数幂的运算,熟悉相关性质是解题的关键.18.(1)0, 1,2;(2)2n -2n -1=2n -1,理由见解析;(3)2101-1.【解析】【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得2n -2n -1=2n -1,然后利用提2n -1可以证明这个等式成立; (3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式,相减即可.【详解】解:(1)21-20=2-1=20,22-21=4-2=21,23-22=8-4=22;故答案为: 0, 1,2;(2)第n 个等式为:2n -2n -1=2n -1,①左边=2n -2n -1=2n -1(2-1)=2n -1,右边=2n -1,①左边=右边,①2n -2n -1=2n -1;(3)设a =20+21+22+23+…+299+2100.①则2a =21+22+23+…+299+2100+2101①由①-①得:a =2101-1①20+21+22+23+…+298+2100=2101-1.【点睛】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n -2n -1=2n -1成立.19.(1)5a ;(2)8y ;(3)64691125x y x y --;(4)5()y x - 【解析】【分析】(1)直接利用同底数幂的乘法计算即可;(2)先计算幂的乘方,再计算同底数幂的乘法;(3)直接利用积的乘方计算即可;(4)先利用乘方的符号法则将底数化为相同,再利用同底数幂的乘、除法计算即可.【详解】解:(1)原式=235a a +=;(2)原式=62y y ⋅=8y ;(3)原式=64691125x y x y --; (4)原式=852()()()y x y x y x -÷-⋅-=852()y x -+-=5()y x -.【点睛】本题考查幂的相关运算.主要考查同底数幂的乘、除法,幂的乘方和积的乘方.(4)中注意底数互为相反数时可先将底数化为相同在利用同底数幂的乘、除法计算.20.(1)9-;(2)0.【解析】【分析】(1)分别化简绝对值,计算乘方、零指数幂和负整数指数幂,再相加减即可; (2)分别计算同底数幂的乘法、积的乘方,再合并同类项即可.【详解】解:(1)原式=1(8)13+-+-=9-;(2)原式=666910a a a +-=0.【点睛】本题考查同底数幂的乘法、积的乘方、零指数幂和负整数指数幂等.熟练掌握相关运算法则,并能熟练运用是解题关键.21.(1)m =52;(2)2008. 【解析】【分析】(1)由33•9m +4÷272m -1的值为81,易得3+2(m +4)-3(2m -1)=4,继而求得答案;(2)由4434,381m m n -==易得34n =81=34,继而求得n =1,则可求得2008n 的值. 【详解】解:(1)①33•9m +4÷272m -1=33•32(m +4)÷33(2m -1)=33+2(m +4)-3(2m -1)=81=34,①3+2(m +4)-3(2m -1)=4,解得:m =52; (2)①3m =4,①44443334381m n m n n -=÷=÷=, ①34n =81=34,①4n =4,解得:n =1,①2008n =2008.【点睛】此题考查了同底数幂的乘法运算、幂的乘方以及同底数幂的除法.此题难度适中,注意掌握指数的变化是解此题的关键.22.(1)8128x ;(2)9512x -,11513x -;(3)12.【解析】【分析】(1)观察第①行的前四个单项式,归纳类推出一般规律即可得;(2)分别观察第①行和第①行的前四个单项式,归纳类推出一般规律即可得;(3)先计算整式的加减进行化简,再将x 的值代入即可得.【详解】(1)第①行的第1个单项式为112x x -=,第①行的第2个单项式为221222x x -=,第①行的第3个单项式为313342x x -=,第①行的第4个单项式为414482x x -=,归纳类推得:第①行的第n 个单项式为12n n x -,其中n 为正整数,则第①行的第8个单项式为81882128x x -=,故答案为:8128x ;(2)第①行的第1个单项式为()122x x -=-,第①行的第2个单项式为()22242x x =-,第①行的第3个单项式为()33382x x --=,第①行的第4个单项式为()444162x x -=,归纳类推得:第①行的第n 个单项式为()2n n x -,其中n 为正整数,则第①行的第9个单项式为()9992512x x -=-,第①行的第1个单项式为()()11211112211x x -+-+=-,第①行的第2个单项式为()()21132213211x x +---+=-, 第①行的第3个单项式为()()11433135211x x -+-+=-, 第①行的第4个单项式为()()41154419211x x +---+=-,归纳类推得:第①行的第n 个单项式为()()111211n n n x --++-,其中n 为正整数, 则第①行的第10个单项式为()()10101101111121513x x --+-=-+, 故答案为:9512x -,11513x -; (3)由题意得:()89998102221A x x x =-++,当12x =时,()99108981112221222A ⎛⎫⎛⎫⎛⎫=⨯-⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭⨯⎭, 101111242=-++, 101142=-+, 则910111151224424A ⎛⎫⎛⎫+=⨯-++ ⎪ ⎪⎝⎭⎝⎭, 910122=⨯,12=. 【点睛】本题考查了单项式的规律型问题、整式的化简求值,正确归纳类推出一般规律是解题关键.23.(1)23;(2)10121-.【解析】【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)①2x a =,3y a =,①23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,①S=2S-S=10121-.【点睛】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键. 24.(1)-2?0163-3 2(2) -3-32n 【解析】【详解】试题分析:(1)类比题目中的解题方法计算即可;(2)类比题目中的解题方法计算即可. 试题解析:(1)设M=1+3-1+3-2+…+3-2 016,①则3M=3+1+3-1+…+3-2 015,①①-①得2M=3-3-2 016,即M=-20163-32. (2)设N=1+3-1+3-2+…+3-n ,①则3N=3+1+3-1+…+3-n+1,①①-①得2N=3-3-n,即N=-3-32n.点睛:本题是一道阅读理解题,根据题目中所给的运算顺序或解题方法解决所给的问题,是处理这类问题的基本思路.25.1【解析】【详解】试题分析:根据幂的混合运算,先算同底数幂相除及幂的乘方,再算同底数相乘即可.试题解析:x n+1·x n-1÷(x n) 2 =x(n+1)+(n-1)-2n=x0=1。

北师大版七年级下册1.3.2同底数幂的除法---用科学记数法表示较小的数(教案)

北师大版七年级下册1.3.2同底数幂的除法---用科学记数法表示较小的数(教案)
针对以上教学难点,教师应采取以下措施:
-通过具体例题和练习题,反复强调同底数幂的除法法则和科学记数法的运用,帮助学生加深记忆。
-设计具有实际背景的问题,引导学生将问题抽象为数学模型,并运用所学知识解决。
-在教学中注重启发式教学,鼓励学生提问和思考,及时纠正学生容易出现的错误,提高其对知识点的理解程度。
五、教学反思
今天在教授同底数幂的除法以及科学记数法表示较小的数这一章节时,我发现学生们对这两个概念的理解程度有所不同。有些学生能迅速掌握法则和转换方法,但也有一些学生在实际运用中感到困惑。这让我意识到,在今后的教学中,我需要更加关注以下几个方面:
首先,对于同底数幂的除法法则,我应通过更多具体的实例来帮助学生加深记忆,让他们在实际计算中能够熟练运用。同时,针对学生容易出现的错误,如指数相减的错误,我可以设计一些针对性的练习题,帮助他们巩固知识点。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“科学记数法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.应用同底数幂的除法法则将较小的数转换为科学记数法:通过实例演示,让学生掌握如何将较小的数表示为科学记数法,并运用同底数幂的除法法则进行计算。
4.习题练习:布置相关习题,巩固学生对同底数幂的除法和科学记数法的理解和应用。
本节课内容旨在帮助学生掌握同底数幂的除法,并能够运用科学记数法表示较小的数,提高学生的数学运算能力和数学思维。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(2)因为(-a3)2=a6,(-a4)3=-a12,
所以a6·(-a3)2÷(-a4)3=a6·a6÷(-a12)=a12÷(-a12)=-a0=-1.
【规律总结】 进行零指数幂和负整数指数幂计算的两点注意
1.注意它们的前提条件是底数不为0. 2.任意一个不等于零的数的零次幂是1;任意一个不等于零的数的 -p次幂,等于这个数的p次幂的倒数.
2.(2012·梅州中考) ( 1)0 =(
2
(A)-2
(B)2
(C)1
【解析】选D.( 1)0 1.
2
) (D)-13.若ax=2 Nhomakorabeaay=3,则a3x-y=_____.
【解析】a3x-y=(ax)3÷ay=8÷3=8 .
3
答案: 8
3
4.将 (1)1,2 0130,32 按从小到大的顺序排列:________.
3
=1×9-9÷1=9-9=0.
2(7)5 (7)5 21 (1)2.
99
2
( 7 )55 ( 1 ) ( 1 )2 ( 7 )55 1 4
9
22 9 2
1 1 9. 88
1.(2012·乐山中考)计算(-x)3÷(-x)2的结果是( ) (A)-x (B)x (C)-x5 (D)x5 【解析】选A.(-x)3÷(-x)2=(-x)3-2=-x.
【跟踪训练】
4.(-5)-3等于( )
(A)-125
(B) 1
125
(C)15
(D) 1
125
【解析】选B.
(5)3
1
53
1 125
1. 125
5.计算:1( 7)0 (1)2 32 12 012 .
3
2(7)5 (7)5 21 (1)2.
99
2
【解析】 1( 7)0 (1)2 32 12 012 .
【跟踪训练】
1.(2012·衢州中考)下列计算正确的是( )
(A)2a2+a2=3a4
(B)a6÷a2=a3
(C)a6·a2=a12
(D)(-a6)2=a12
【解析】选D.A选项2a2+a2=3a2,所以A选项错误;B选项
a6÷a2 =a4,所以B选项错误;C选项a6·a2=a8,所以C选项错
误;D正确.
第1课时
点击进入相应模块
一、同底数幂的除法 1.因为105×103=108,所以108÷103=_1_0_5=108_-__3. 2.根据1中结论可知:109÷102=107=109_-_2_ ,10m÷10n=10m_-__n , 3m÷3n=3m_-_n_. 3.由此可得同底数幂的除法法则:同底数幂相除,底数不变,指 数相减.用公式表示为:am÷an=a_m_-_n(a≠0,m,n都是正整数).
2.(2012·厦门中考)计算:m3÷m2=_____. 【解析】m3÷m2=m3-2=m. 答案:m 3.计算:(1)-b2m+2÷bm.(2)(-x2)3÷(-x)3. 【解析】(1)-b2m+2÷bm=-b2m+2-m=-bm+2. (2)(-x2)3÷(-x)3=(-x6)÷(-x3)=x6÷x3=x3.
零指数幂和负整数指数幂的应用
【例2】计算:(1) (2)0 (1)2 013 ( 1)1.
2
(2)a6·(-a3)2÷(-a4)3.
【解题探究】(1)因为(-2)0=1,(-1)2 013=-1,( 1)1=
2
1=
( 1 )1 2
-2,所以(-2)0+(-1)2 013- ( 1=)11 +(-1)-(-2)=2.
【规范解答】(1)(-ab)5÷(-ab)2=(-ab)5-2=(-ab)3 =-a3b3.……………………………………………………………3 分 (2)(b2)3÷bm+3=b6÷bm+3=b6-(m特+3别)=提b3醒- :底数不同时不能 m.…………………………3分 利用同底数幂除法的法则. (3)[(a-b)3]2÷[(b-a)2]3 =[(a-b)3]2÷[(a-b)2]3 =(a-b)6÷(a-b)6=1.…………………………………………… 3 分
二、零指数幂和负整数指数幂 1.因为25÷25=25-5=20,又因为25÷25=_1_,所以得20=_1_,同理 得,30=_1_,50=_1_,π0=_1_,… 【归纳】 a0=_1_(a≠0).
1
1
2.因为23÷25=23-5=2-2,又因为23÷25=__2_2_,所以得2-2=__2_2_,
1
1
同理得,3-2=__3_2_,5-1=__5_,…
1
【归纳】 a-p= _a_p__(a≠0,p是正整数).
【预习思考】 am÷an÷ap(a≠0,m,n,p都是正整数)的结果是什么? 提示:am÷an÷ap=am-n-p.
同底数幂的除法运算 【例1】(9分)计算:(1)(-ab)5÷(-ab)2.(2)(b2)3÷bm+3. (3)[(a-b)3]2÷[(b-a)2]3.
【规律总结】 运用同底数幂除法的三点注意
1.底数:运用同底数幂的除法公式时,如果底数不相同,要先化 为同底数,再用公式计算. 2.符号:底数是负数时常出现符号错误,一定要牢记“负数的偶 数次幂是正数,负数的奇数次幂是负数”. 3.顺序:如果有混合运算,一定要按先乘方,再乘除,最后加减 的运算顺序计算.
6
【解析】因为 (1)1=6,2 0130 所=1,以按32从 小9, 到大的顺
6
序排列为:2 0130 (1)1 32 .
6
答案:2 0130 (1)1 32 .
6
5.计算:(1)(a2b)3÷(a2b). (2)(m-n)10÷(n-m)5÷(m-n). 【解析】(1)(a2b)3÷(a2b)=(a2b)3-1=(a2b)2=a4b2. (2)(m-n)10÷(n-m)5÷(m-n) =-(m-n)10÷(m-n)5÷(m-n) =-(m-n)10-5-1 =-(m-n)4.
相关文档
最新文档