大学物理实验-PN结温度特性数据处理
PN结正向压降与温度关系的研究实验报告
PN结正向压降与温度关系的研究实验报告实验报告:PN结正向压降与温度关系的研究实验摘要:本实验旨在研究PN结正向压降与温度之间的关系。
通过改变PN结的温度,测量对应的正向压降,并分析得出结论。
实验结果表明,PN结的正向压降与温度呈正相关关系。
引言:PN结是半导体器件中的重要组成部分,其正向压降是衡量PN结导通能力的重要参数。
正向压降与温度之间的关系对于理解和优化半导体器件的性能具有重要意义。
因此,研究正向压降与温度之间的关系对于半导体器件的应用具有重要的理论和实际意义。
实验材料和方法:1.实验材料:PN结样品、测量仪器(包括数字万用表、恒流源等)。
2.实验方法:a.搭建实验电路,将PN结样品连接到恒流源,设置合适的电流值。
b.测量不同温度下PN结的正向压降,记录实验数据。
c.对实验数据进行处理和分析,得出结论。
实验结果:在实验过程中,我们固定了恒流源的电流值为I=10mA。
通过改变PN结的温度,在不同温度下测量了对应的正向压降数据,将实验数据整理如下:温度(℃)正向压降(V)250.6300.65350.68400.7450.72500.75550.78600.82讨论和结论:实验结果表明,PN结的正向压降与温度呈正相关关系。
这可能是由于温度升高导致了载流子在PN结中的增加,进而导致了正向电流的增加,从而使正向压降增加。
此外,温度升高还可能导致半导体材料的电阻变化,进而影响了正向压降。
综上所述,通过对PN结正向压降与温度关系的研究实验,我们发现正向压降与温度呈正相关关系。
这对于理解PN结的导通特性和优化半导体器件的性能具有重要意义。
附录:实验数据表格温度(℃)正向压降(V) 250.6300.65350.68400.7450.72500.75550.78。
大学物理实验PN结正向压降温度特性的研究实验报告
实验题目:PN 结正向压降温度特性的研究实验目的:了解PN 结正向压降随温度变化的基本关系式。
在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
学习用PN 结测温的方法。
实验原理:理想PN 结的正向电流I F 和压降V F 存在近似关系:)exp(kTqV Is I FF = 其中q 为电子电荷,k 为玻尔兹曼常数,T 为绝对温度,I S 为反向饱和电流:])0(ex p[kTqV CT Is g r -=由上面可以得到: 11)0(n r F g F V V InT q kT T Ic In q k V V +=-⎪⎪⎭⎫ ⎝⎛-= 其中()rn F g InT qKTV T IcIn q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(在上面PN 结正向压降的函数中,令I F =常数,那么V F 就是T 的函数。
考虑V n1引起的线性误差,当温度从T 1变为T ,电压由V F1变为V F : []rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫ ⎝⎛---=1111)0()0( )(111T T TV V V F F F -∂∂+=理想()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想两个表达式相比较,有:()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 综上可以研究PN 结正向压降温度特性。
实验内容:1、求被测PN 结正向压降随温度变化的灵敏度S (mv/℃)。
作∆V —T 曲线(使用Origin 软件工具),其斜率就是S 。
2、估算被测PN 结材料硅的禁带宽度E g (0)=qV g (0)电子伏。
根据(6)式,略去非线性,可得T S T V T TV T V V s F F S F g ∆⋅++=∆+=)2.273()0()( ∆T=-273.2K ,即摄氏温标与凯尔文温标之差。
大学物理实验:PN结
三 、实 验 装 置 实
PN结样品架 1、PN结样品架
A为样品室,是一个可 为样品室, 卸的筒状金属容器, 卸的筒状金属容器, 筒盖内设橡皮圈盖与 筒套具相应的螺纹, 筒套具相应的螺纹, 可使两者旋紧保持密 封。 待测PN PN结样管采用 待测PN结样管采用 3DG6晶体管 3DG6晶体管
P1
P2
一、实 验 目 的
1、了解PN结测温基本原理和应 了解PN结测温基本原理和应 PN 用 。 2、验证PN结正向压降随温度升 验证PN结正向压降随温度升 PN 高而降低的特性。 高而降低的特性。 3、学会使用PN结温度传感器测 学会使用PN结温度传感器测 PN 试仪。 试仪。
二、实 验 原 理
PN结是指P型半导体与N型半导体相接触的部分。 PN结是指P型半导体与N型半导体相接触的部分。 结是指 在同一半导体材料晶片内掺杂形成P型导电区与N 在同一半导体材料晶片内掺杂形成P型导电区与N型导 电区相接触的截面形成了P 电区相接触的截面形成了P-N结 VF 一般来说, 一般来说,对于一个理想 的PN结,其正向电流IF和压降 PN结 其正向电流I VF 存在如下近似关系: 存在如下近似关系: P
2、∆VT曲线的测定 逐步提高加热电流进行变温实验,并记录对应的∆ 逐步提高加热电流进行变温实验,并记录对应的∆V和T, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 120℃ 记录数据填入数据表。 记录数据填入数据表。 (要求电压每下降-10V,记录一次温度) 要求电压每下降-10V,记录一次温度) 3、求被测PN结正向压降随温度变化的灵敏度S(mv/℃) 求被测PN结正向压降随温度变化的灵敏度S mv/℃ PN结正向压降随温度变化的灵敏度 方法是: 方法是:作△V-T曲线,其斜率就是S。最后再通过画曲线 曲线,其斜率就是S 求得。 求得。 T 0
大学物理实验报告实验55PN结正向电压温度特性的测定
大学物理实验教案实验名称:PN 结正向电压温度特性的测定1 实验目的1)了解PN 结正向电压随温度变化的基本规律。
2)掌握用计算机测绘恒流条件下PN 结正向电压随温度变化的关系曲线。
3)确定PN 结的测温灵敏度。
2 实验仪器科学工作室接口、放大器、恒流源、计算机3 实验原理3.1实验原理PN 结是半导体器件的核心。
在P (或N )型半导体中,用杂质补偿的方法将其中一部分材料转变成N (或P )型,这样,在两种材料交界处就形成了PN 结,它保持了两种材料之间晶格的连续性。
P 区多子空穴比N 区少子空穴浓度大,空穴由P 区向N 区扩散,并与N 区的多子自由电子复合,在N 区产生正离子的电荷区;N 区多子自由电子比P 区少子自由电子浓度大,自由电子由N 区向P 区扩散,并与P 区的多子空穴复合,在P 区产生负离子的电荷区。
P 区和N 区的电荷区之间形成电场,在此电场作用下产生与扩散运动相反的情况,它阻止扩散运动的进一步加强。
最终形成两种运动的动态平衡。
我们把这个空间电荷区叫PN 结,有时也叫作耗尽层。
根据半导体理论,通过PN 结的正向电流e I IkT qV s f =(1) 式中:I f ——正向电流(mA );V f ——正向压降(V );I s ——反向饱和电流(mA );q电子电量(e );k ——波尔兹曼常数;T ——热力学温度(K )。
而:e T I kT V goq B A s -=(2)式(2)中:V go ——能带间隙电压(V );A 、B ——由PN 结工艺结构所决定的常数。
由(1)、(2)式经整理后,PN 结正向压降的温度灵敏度S 为:)(q kB T f go dT f d S V V V +--== (3)根据这一特性,PN 结可作为温度传感器来使用。
3.2实验方法本实验通过电加热的方法提供给PN 结一个温度可以变化的热源,利用精确的温度传感器测量温度。
把待测的PN 结放置热源中,并利用恒流源给定待测PN 结一个恒定电流,PN 结两端则接入一高稳定放大器进行电压放大后,连接到自定义电压传感器来测量电压。
【大学物理实验(含 数据+思考题)】PN结正向电压温度特性研究实验报告
PN 结正向电压温度特性研究一、实验目的(1)了解PN 结正向电压随温度变化的基本规律。
(2)在恒流供电条件下,测绘PN 结正向电压随温度变化的关系图线,并由此确定PN 结的测温灵敏度和被测PN 结材料的禁带宽度。
二、实验仪器PN 结正向特性综合实验仪、DH-SJ5温度传感器实验装置。
三、实验原理1、测量PN 结温度传感器的灵敏度 由半导体理论可知,PN 结的正向电流I F 与正向电压V F 满足以下关系:I F =I n (ⅇqV FkT−1)(1)式(1)中I n 是反向饱和电流,T 是热力学温度,q 是电子的电量。
由于在常温(例如300K )时,kT/q 约为0.026V ,而PN 结正向电压约为十分之几伏,所以ⅇ^((qV_F)/kT)≫1,故式(1)中括号内的−1项完全可以忽略,于是有: I F =I n ⅇqV F kT(2)其中,I n 是与PN 结材料禁带宽度及温度等有关的系数,满足以下关系:I n =CTγⅇqV g0kT(3)式(3)中C 为与PN 结的结面积、掺杂浓度等有关的常数,k 为玻尔兹曼常数,γ在一定温度范围内也是常数,V g0为热力学温度0K 时PN 结材料的导带底与价带顶的电势差,对于给定的PN 结,V g0是一个定值。
将式(3)代入式(2),两边取对数,整理后可得:V F =V g0−(k q ln C I F )T −kTqln T γ=V 1+V nr (4)其中V 1=V g0−(k q ln CI F)T (5) V n r =−kTqln T γ (6)根据式(4),对于给定的PN 结材料,令PN 结的正向电流I F 恒定不变,则正向电压V F 只随温度变化而变化,由于在温度变化范围不大时,V n r 远小于V 1,故对于给定的PN 结材料,在允许的温度变化范围内,在恒流供电条件下,PN 结的正向电压V F 几乎随温度升高而线性下降,即 V F =V g0−(k q ln CI F)T(7)为了便于实际使用对式(7)进行温标转换,确定正向电压增量∆V [与温度为0℃时的正向电压比较]与用摄氏温度表示的温度之间的关系。
大学物理实验报告23——PN结温度传感器特性
天津大学物理实验报告姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师:【实验名称】 PN 结物理特性综合实验 【实验目的】1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律2. 在不同温度条件下,测量玻尔兹曼常数3. 学习用运算放大器组成电流-电压变换器测量弱电流4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足:]1)/[exp(0-=kT eU I I (1)当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有:0exp(/)I I eU kT = (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I U -关系值,则利用(1)式可以求出/e kT 。
在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。
实验线路如图1所示。
2、弱电流测量LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。
其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。
运算放大器的输入电压0U 为:00i U K U =- (3)式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。
因而有:00(1)i i s f fU U U K I R R -+== (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为001i f fx s U R R Z I K K ==≈+ (5)由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即:图1 PN 结扩散电源与结电压关系测量线路图图2 电流-电压变换器i s fr U U I Z R ==- (6) 只要测得输出电压0U 和已知f R 值,即可求得s I 值。
PN结正向压降温度特性的研究数据处理范例 (1)
PN 结正向压降与温度关系的研究数据处理范例1. 实验起始温度时各参数纪录:实验起始温度:R T = 17.8 oC 工作电流: F I = 100 uA起始温度为R T 时的正向压降:()R F T V = 677 mV 控温电流: 0.700 A 2. V T ∆-数据纪录表3. 以T 为横坐标,V ∆为纵坐标,作V T ∆-曲线,-200-180-160-140-120-100-80-60-40-200d e l t a V /m VT/OC图1:PN 结正向压降随温度变化关系曲线4. 用图解法求出被测PN 结正向压降随温度变化的灵敏度(/)oS mV C ,并正确表示不确定度。
(温度T 和正向压降V ∆的示值误差取各自坐标最小刻度值的一半,置信概率p 取0.683)0102030405060708090100110120130-220-200-180-160-140-120-100-80-60-40-20020d e l t a V /m VT/OC图2:图解法求解PN 结正向压降随温度变化的灵敏度S(1)被测PN 结正向压降随温度变化的灵敏度S 的最佳值计算:()()121218514171 1.91/89.6115.826.2O OO mV V V V mV S mV C CT T T C -+-∆-=====-∆-- (2)被测PN 结正向压降V∆的不确定度的确定:4.1Vp u k mV ∆===(m ∆取纵坐标最小刻度值的一半)(3)被测PN 结温度变化T ∆的不确定度的确定:0.41O O Tp u k C ∆===(m ∆取横坐标最小刻度值的一半)(4)被测PN 结正向压降随温度变化灵敏度的相对不确定度和绝对不确定度的确定:2.4%S E ===2.4% 1.91/0.05/O O S S u E S mV C mV C =⨯=⨯-=(5)所以被测PN 结正向压降随温度变化灵敏度的最后结果为:()1.910.05/O S S S u mV C =±=-± (P =0.683)2.4%S E =5. 计算被测PN 结材料的禁带宽度。
大学物理实验PN结正向压降与温度特性的研究实验报告(完整)
⼤学物理实验PN结正向压降与温度特性的研究实验报告(完整)PN 结正向压降与温度特性的研究⼀、实验⽬的1.了解PN 结正向压降随温度变化的基本关系式。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.学习⽤PN 结测温的⽅法。
⼆、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1)其中q 为电⼦电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是⼀个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考刘恩科半导体物理学第六章第⼆节)其中C 是与结⾯积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代⼊(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=--= (3)其中()rn F g InT qKTV T Ic In q k V V -=???? ?-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本⽅程。
令I F =常数,则正向压降只随温度⽽变化,但是在⽅程(3)中,除线性项V 1外还包含⾮线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V---=1111)0()0( (4)按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -??+=理想(5) TV F ??1等于T 1温度时的T V F ??值。
由(3)式可得r qk T V V T V F g F ---=??111)0( (6)所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=----+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相⽐较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=?理想(8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得?=0.048mV ,⽽相应的V F 的改变量约20mV ,相⽐之下误差甚⼩。
大学物理-温度传感技术实验报告
大连理工大学大学 物理实 验报告院(系)材料学院专业 ______________ 班级 _________________姓 名 ________________ 学号 _________ 实验台号 _______________________ 实验时间 _______ 年 ______ 月_日,第_周,星期 ________________ 第 _________ 节实验目的与要求:(1) 了解P-N 结和AD590温度传感器的电路结构及工作原理。
(2) 学会测量P-N 结和AD590温度传感器的温度特性。
实验原理和内容:1. P-N 结测温元件工作原理及温度特性测试电路根据半导体物理的理论,流过晶体管P-N 结的电流I 和其两端的电压 V 满足一下指数关系I l o [exp (qV/kT ) 1]式中,q 为电子电量;k 为波尔兹曼常量; T 是结温(用热力学温标),因此晶体管P-N 结伏安特性随温度变化如下图所示:实验名称 ___________ 温度传感技术 ________________教师评语 _______________________________________________________________________________________________________阳 io I P(1) P-N 结伏安特性测试电路。
如图 2所示, 图中所示V i 即为作用在P-N 结两端的电压值,V o 值除以取样电阻 R f ( 1K Q )后得到流经PN 的电流大小。
⑵P-N 结温度特性测试电路。
即P-N 结电压随温度变化的电压跟随器 电路如图3所示。
当把一个阻值为 R c 的负载电阻与P-N 结串联后, 接至电压值为 V c 的外加电压时, P-N 结的电压随温度的变化情况就可由 P-N 结伏安特性和与R 有关的负载线的交点对应的电压值所确定。
2. AD590集成温度传感器工作原理及温度特性测试电路AD590是一种输出电流与温度成正比的集成温度传感器,其内部电路结构复杂,故此略去根据参考文献推导,在电源电压的作用下,该电路总的工作电流I o 为3kT In 8 q (民 R5)确控制R 5和R 6的阻值, 可使上式转化为式中,K0为测温灵敏度常数,一般为 1 A/C不同温度下 AD590的伏安特性如图5所示,从该图可知, 对于某一确定的温度, 当电源电压大于某一值以后,可使输出电流几乎不变(或变化极其微小)(1) AD590伏安特性、温度-电流特性测试电路如图6所示,在图中将 AD590置于恒温条件下(如冰点或室温),调节电路中“负压调节” 旋钮并测出AD590在不同工作电压下的 V 。
PN结温度系数实验报告
500μA (20 ℃)
系 数 离散度 系 数 离散度 系 数 离散度
0~10 ℃ 2. 224 0. 5 % 2. 160 0. 4 % 2. 087 0. 5 %
10~20 ℃ 20~30 ℃ 30~40 ℃ 40~50 ℃ 平均值 非线性
2. 233 0. 5 %
2. 118 0. 4 %
2. 129 0. 4 %
2. 108 2. 0 % ——— ———
实验表明 ,在此电流模式下 ,PN 结的温度特性在具有一定的常数特
恒流供电桥路 ,其补偿性能也与线 性补偿相当 。表 4 列出本实验二 、
这在生产实际中 ,可对及时维修和 更换测量器具提供可靠的依据 。 ■
半繁用表 , CS5004 标准恒温水槽 ,
实验三 :采用 IN4148 在与实验
热电偶类型
KS ET
电路电源的稳定度优于 0101 %。
二相同的条件下进行实验 ,实验时
用 9015 进行补偿的精度 , ℃ ±0. 1 ±0. 8 ±0. 2 ±0. 3 用 1N4148 进行补偿的精度 , ℃ ±0. 2 ±1. 0 ±0. 4 ±0. 5
另外 ,如 1N4148 的温度特性的理论
据如下表 1 :
常用的热电偶 ,其热电特性是
表 1 稳压 215198V ,表格内温度系数的单位为 - mV/ ℃
精度虽然稍差 ,然而 ,对自身内部发 热较大的仪表 , 因为 1N4148 体积
温度范围 样品 1 # 2 # 3 #
0~10 ℃ 1. 896 1. 887 1. 902
11 问题的提出
温度测量无处不有 ,温度测量 仪表各式各样 ,在当今仪表技术水 平下 ,对配热电偶的温度测量仪表 , 影响其精度的最大问题是热电偶的 冷端补偿问题 。目前广泛用作冷端 补偿的元件有 :集成温度传感器 、铜 电阻 、PN 结 。相比较而言 , PN 结灵 敏度高 、热响应快 、价格低 、体积小 , 正成为一种新兴的测温元件 。一般 资料显示 ,需要特制的 PN 结温度传 感器才能用于较精密的测温 。而热 电偶的冷端补偿 ,其补偿范围一般 在 0~50 ℃,能否用普通的 PN 结来 作为补偿元件 ? 普通的 PN 结的温 度系数的离散度有多大 ? PN 结作 为补偿元件有没有优越性 ? 本文就 这些方面与大家进行实验探讨 。
大学物理实验PN结正向压降与温度特性的研究实验报告(完整)
PN 结正向压降与温度特性的研究一、实验目的1. 了解PN 结正向压降随温度变化的基本关系式。
2. 在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3. 学习用PN 结测温的方法。
二、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考 刘恩科 半导体物理学第六章第二节)其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKTV T Ic In q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=1111)0()0( (4) 按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5) TV F ∂∂1等于T 1温度时的T V F ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=∆理想 (8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得∆=0.048mV ,而相应的V F 的改变量约20mV ,相比之下误差甚小。
PN结正向压降温度特性的研究实验报告
PN结正向压降温度特性的研究实验报告实验报告:PN结正向压降温度特性的研究引言:PN结是指由P型半导体和N型半导体的结合处所形成的一个具有整流特性的半导体器件。
在正向偏置的情况下,PN结会产生一个较小的电压降,这主要是由载流子在PN结中的扩散和漂移引起的。
而随着电流的增加,PN结会产生一定的热量,这会导致PN结的温度升高。
本实验旨在研究PN结正向压降与温度的关系,进一步了解PN结的温度特性。
实验目的:1.研究PN结正向压降随温度的变化规律;2.了解PN结在不同温度下的工作情况;3.探究PN结的温度特性。
实验器材:1.PN结二极管;2.恒流源;3.电源;4.温度控制装置;5.万用表。
实验步骤:1.将PN结二极管连接到恒流源和电源上,确保连接正确;2.打开电源,使PN结正常导通;3.利用温度控制装置,逐步增加PN结的温度,记录温度与正向压降之间的对应关系;4.根据实验结果绘制PN结正向压降与温度变化的曲线。
实验结果:温度(摄氏度)正向压降(V)200.7300.68400.67500.65600.64数据处理与分析:根据实验结果,可以观察到PN结的正向压降随着温度的升高而略微减小。
这是由于温度的升高会增加载流子的扩散速度以及PN结内的载流子浓度,使得电流更容易通过PN结,从而使得正向压降减小。
这种现象在实际应用中也被广泛利用,例如在高温环境下,PN结可以更好地工作。
结论:本实验研究了PN结正向压降随温度的变化规律。
实验结果表明,PN结正向压降随着温度的升高而略微减小。
这一结果有助于我们更好地了解PN结的温度特性,并在实际应用中进行合理的设计和选择。
此外,本实验还为进一步研究PN结的温度特性提供了一定的参考和基础。
致谢:感谢实验设备的提供以及一直以来对我们实验工作的指导和支持。
同时,也感谢实验组成员的共同努力和配合,使得实验能够顺利进行并取得实验结果。
PN结正向伏安特性与温度的研究
理论值
1.381× 10 −23 ( J / K )
相对误差
δ=
1.379 − 1.381 1.381 × 100% = 1.4%
创新点: 创新点:
创 新 与 局 限
局限性: 局限性:
在没有恒温设备的条件下,利用现有的简 单仪器,实现了PN结的伏安特性随温度 变化的定性测量。 利用EXCEL的指数函数拟合功能在常温下 实现了玻尔兹曼常数的测定,并取得了较 为准确的实验结果。 实验通过人工调节控温,恒温精度不够。 由于实验仪器较为新旧不一(2001年起 购),离散性较大,不同仪器测量的结果 存在较大的差异。本实验为通过多台仪器 实验后的最佳结果。 实验采用的样品是带金属外壳的三极管, 仪器显示的温度与内部PN结的结温有一 定的偏差,应考虑封装材料的热阻。
利用现有的仪器开发两个与led专业有关的实验1pn结伏安特性随温度变化的规律2玻尔兹曼常数的测定实验原理?根据半导体理论pn结的正向电流与电压满足肖克莱shockley方程1exp?kteviifsf正向电流正向电压某一温度下的反向饱和电流电子电量热力学温度玻尔兹曼常数fifvetksi典型硅二极管的伏安特性曲线1测出某一温度下正向电流与电压即可得伏安特性曲线改变温度则可绘制出伏安特性随温度变化的曲线
五邑大学第九届物理实验设计大赛
PN结正向伏安特性随温度变化 PN结正向伏安特性随温度变化 及玻尔兹曼常数测定 实验设计
廖艺光 黄宝亢 杨晓良 杨家欣 指导老师: 周党培
研究现状:
研 究 现 状 与 目 的
《大学物理实验》现有的实验项目: (1)一定温度下PN结的伏安特性。 (2)PN结正向电压降随温度的变化。
二、玻尔兹曼常数测定数据处理及分析
实 验 结 果 与 分 析
大学物理实验:PN结
三 、实 验 装 置 实
PN结样品架 1、PN结样品架
A为样品室,是一个可 为样品室, 卸的筒状金属容器, 卸的筒状金属容器, 筒盖内设橡皮圈盖与 筒套具相应的螺纹, 筒套具相应的螺纹, 可使两者旋紧保持密 封。 待测PN PN结样管采用 待测PN结样管采用 3DG6晶体管 3DG6晶体管
P1
P2
其中C是一个与结面积、掺杂浓度等有关的常数, 其中 C 是一个与结面积 、掺杂浓度等有关的常数 , r 也 是常数,Vg(0 为绝对零度时PN PN结材料的导带底和价带顶 是常数, Vg(0)为绝对零度时PN 结材料的导带底和价带顶 的电势差。 的电势差。 式代入( 两边取对数可得: 将(2)式代入(1)式,两边取对数可得:
3ቤተ መጻሕፍቲ ባይዱ
浙江大学物理实验中心
随着半导体器件工艺技术的提高以 及人们不断的探索, PN结以及在此基 及人们不断的探索, PN结以及在此基 础上发展起来的晶体管系列温度传感 巳经成为一种新的测温技术, 器,巳经成为一种新的测温技术,广 泛被应用在各个领域。 泛被应用在各个领域。 据实际应用,PN结作为温度传感器 据实际应用,PN结作为温度传感器 具有灵敏度高、 线性好、 具有灵敏度高、 线性好、热电效应快 和体积小等优点, 和体积小等优点,尤其是在温度数字 化、温度控制及用微机进行温度实时 讯号处理与控制等方面, 讯号处理与控制等方面,都是其它温 度传感器所不能相比的优越性。 度传感器所不能相比的优越性。
一、实 验 目 的
1、了解PN结测温基本原理和应 了解PN结测温基本原理和应 PN 用 。 2、验证PN结正向压降随温度升 验证PN结正向压降随温度升 PN 高而降低的特性。 高而降低的特性。 3、学会使用PN结温度传感器测 学会使用PN结温度传感器测 PN 试仪。 试仪。
大学物理实验PN结正向压降温度特性的研究实验报告
实验题目: PN 结正向压降温度特性的研究实验目的:1.了解PN 结正向压降随温度变化的基本关系式。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.学习用PN 结测温的方法。
实验原理:理想PN 结的正向电流S I 和压降F V 存在如下近似关系)exp(kTqV I I FS F = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;S I 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT I g r S -= (2)其中C 是与结面积、掺质浓度等有关的常数;r 也是常数;)0(g V 为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKT V T IcIn q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令=F I 常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项1V 外还包含非线性项1n V 项所引起的线性误差。
设温度由1T 变为T 时,正向电压由1F V 变为F V ,由(3)式可得[]rF g g F T T Ln q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=111)0()0( (4) 按理想的线性温度影响,F V 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5)TV F ∂∂1等于1T 温度时的T V F ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()rT T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7) 由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 (8)设K T 3001=,K T 310=,取4.3=r ,由(8)式可得mV 048.0=∆,而相应的F V 的改变量约mV 20,相比之下误差甚小。
大学物理-温度传感技术 实验报告
大连理工大学大 学 物 理 实 验 报告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 温度传感技术教师评语实验目的与要求:(1) 了解P-N 结和AD590温度传感器的电路结构及工作原理。
(2) 学会测量P-N 结和AD590温度传感器的温度特性。
实验原理和内容:1. P-N 结测温元件工作原理及温度特性测试电路根据半导体物理的理论, 流过晶体管P-N 结的电流I 和其两端的电压V 满足一下指数关系]1)/[ex p(0-=kT qV I I式中, q 为电子电量; k 为波尔兹曼常量; T 是结温(用热力学温标), 因此晶体管P-N 结伏安特性随温度变化如下图所示:成 绩教师签字(1) P-N 结伏安特性测试电路。
如图2 所示, 图中所示V 1 即为作用在P-N 结两端的电压值,V 0 值除以取样电阻R f (1KΩ)后得到流经PN 的电流大小。
(2) P-N 结温度特性测试电路。
即P-N 结电压随温度变化的电压跟随器 电路如图3 所示。
当把一个阻值为R c 的负载电阻与P-N 结串联后, 接至电压值为V c 的外加电压时, P-N 结的电压随温度的变化情况就可由P-N 结伏安特性和与R 有关的负载线的交点对应的电压值所确定。
2. AD590 集成温度传感器工作原理及温度特性测试电路AD590 是一种输出电流与温度成正比的集成温度传感器, 其内部电路结构复杂, 故此略去 根据参考文献推导, 在电源电压的作用下, 该电路总的工作电流I 0 为)(8ln 3560R R q kT I -=式中, k 为波尔兹曼常量, q 为电子电量, T 为被测温度(绝对温度值), 在制作过程中, 精确控制R 5 和 R 6 的阻值, 可使上式转化为T K I 00=式中, K0 为测温灵敏度常数,一般为/1A μ℃不同温度下 AD590 的伏安特性如图5 所示, 从该图可知, 对于某一确定的温度, 当电源电压大于某一值以后, 可使输出电流几乎不变(或变化极其微小) (1) AD590伏安特性、温度-电流特性测试电路如图6 所示,在图中将 AD590 置于恒温条件下(如冰点或室温), 调节电路中“负压调节”旋钮并测出AD590在不同工作电压下的V 0 值(输出电流为f R V I /00=, R f 为取样电阻), 便可得到元件在这一温度下的伏安特性的实验数据。
大学物理实验报告 PN结的温度特性的研究及应用
大学物理实验报告 PN结的温度特性的研究及应用得分教师签名批改日期深圳大学实验报告课程名称: 大学物理实验(三)实验名称: pn结的温度特性的研究及应用学院:组号指导教师:报告人: 学号: 班级:实验地点实验时间:实验报告提交时间:1一、实验设计方案1、实验目的了解PN结正向压降随温度变化的基本关系式。
在工作电流恒定的情况下,测绘PN结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN结材料的禁带宽度。
设计用PN结测温的方法。
2、实验原理2.1 、PN结正向压降和工作电流、及所处的温度的关系:PN 结正向压降和工作电流、及所处的温度的基本函数关系如下:,,KcKT, ----------(1) 0lnlnVVTTVV,,,,,,,,,,,FgLNLqIqF,,其中: 导带,19q,,1.610C,为电子的电荷。
禁带EeV,gF-23-1,K=1.38×10JK,为玻尔兹曼常数,价带T――绝对温度。
图1 半导体的能带结I――PN结中正向电流。
f构γ 是热学中的比热容比,是常数。
V(0)是绝对零度时PN结材料的导带底和价带顶的电势差。
(半导体材料的能带理论中,把未g排满电子的能量区域称作价带,空着的能量区域叫导带,不能排列电子的能量区域叫禁带,如图1所示。
E叫禁带宽度.) g,,KTKc,,lnVT 其中,是线性项。
是非线性相。
0lnVVT,,,,,,NL,,LgqqIF,,非线性项较小,(常温下)可忽略其影响,在恒流供电条件下PN结的V对T的依赖关系F取决线性项,即正向压降几乎随温度升高而线性下降。
2.2、PN结测温的方法如果PN结正向压降在某一温度区域和温度变化恒定电流I F成线性关系,就可以利用这一特性将它作为温度传感器的转换探头,原理如图2所示。
将PN结做成的温度探头放在待温度显示结电压V F测环境中,通以恒定电流,温度变化可以引起结电压变化,图2 PN结测温原理测量结电压,将它转换成温度显示,从而达到测量温度的目的。
实验 17 半导体 PN结伏安特性和温度特性研究
常数。 但对任意一对 V 和 I 来说, 其比值仍表示对应的电阻值。 在图 17-2 中, A 点 RA=
U be , I be源自- 98 -B 点 RB=
U be ,显然它们是不相等的。这里的电阻应理解为静态电阻。A 点或 B 点为某 PN I be
结的直流偏置点(或叫工作点) 。 在 A 点或 B 点左右电压 V 有△V 变化时,就必然引起电流 I 有Δ I 的变化,△V 和△I 之比 V 即为在工作点 A 或 B 处的动态电阻,由图中可见,静态电阻 RA= A 为 A 点与原点直线斜率 IA V 的倒数,动态电阻 RA′= A 则为通过 A 点的切线斜率的倒数。 I A 对于 PN 结或更为复杂的电子元件如运算放大器等电子元件, 用静态参数描述其电气特性 已经不方便、不全面了,一般采用特征参数和特性曲线结合来描述其电气特性。 对于给定的 PN 结,在给定温度 T 下,PN 结电压 Ube 与 PN 结电流 Ibe 的关系曲线为该 PN 结在该温度下的伏安特性曲线; 在给定电流 Ibe 的情况下,PN 结电压 Ube 与温度 T 的关系为该 PN 结在该恒定电流情况 下的温度特性曲线; 伏安特性曲线和温度特性曲线是两种最常用的 PN 结特性曲线,同样我们还能测定 PN 结 的其它特性曲线。
半导体 PN 结伏安特性和温度特性研究
河海大学物理实验中心
目 的 1. 学习掌握测定 PN 结电气特性的方法; 2. 测定半导体 PN 结(晶体三极管)伏安特性曲线; 3. 测定半导体 PN 结(晶体三极管)温度特性曲线,测定 PN 结温度系数; 4. 学习掌握用特性曲线描述元件电气性能的方法,掌握实验作图法; 原 理 当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。 一般金属导体电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线, 如图 17-1。从图上看出,直线通过一、三象限,它表明当调换电阻两端电压的极性时,电流 换向,而电阻始终为一定值,等于直线斜率的倒数 tg = I = 1 。所以,R= V =常数,斜
大学物理实验实验21 PN结正向压降与温度的关系
−20
−40
−60
−80
−120
−140
−160
… … …
7
注意事项
① 打开电源,在测量前先预热几分钟后再进行测量。
② 在整个实验过程中,升温速率要慢。
思考题
① 在测量PN结正向压降和温度的变化关系时,温度高时UF −T 线性好,还是温度低时好? ② 测量时,为什么温度必须在−50℃~150℃范围内?
pn结正向压降与温度的关系物理实验教学中心实验背景采用不同的掺杂工艺将p型半导体与n型半导体制作在同一块半导体基片上在它们的交界面就形成空间电荷区称为pn结pn结具有单向导电性
PN结正向压降与温度的关系
物理实验教学中心
实验背景
采用不同的掺杂工艺,将P型半导体与N型半导体制作在同一块半导体基 片上,在它们的交界面就形成空间电荷区,称为PN结,PN结具有单向导电 性。 一块单晶半导体中,一部分掺有受主杂质的是P型半导体,另一部分掺 有施主杂质的是N型半导体,P型半导体和N型半导体的交界面附近的过渡区 域即PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的PN结 叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。制造 PN结的方法有合金法、扩散法、离子注入法和外延生长法等。制造异质结通 常采用外延生长法。 P型半导体:由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半 导体内部形成带正电的空穴。 N型半导体:由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半 导体内部形成带负电的自由电子。
项U1,即正向压降几乎随温度升高而线性下降,这就是PN结测 温的依据。
实验内容与步骤
6ห้องสมุดไป่ตู้
实验内容与步骤
⑦数据记录 实验起始温度 Ts=_______℃;工作电流 IF=________A; 起始温度Ts时的正向压降 UF(Ts)=________mV; 控温电流=________A。 填写下表