地球物理计算常用的插值方法-克里格法
克里格插值
克里格插值什么是克里格插值?距离权重倒数插值和样条法插值被归类为确定性的插值方法,因为它们是直接基于周围已知点的值进行计算或是用指定的数学公式来决定输出表面的平滑度的插值方法。
而第二个插值方法家族包括的是一些地统计学的插值方法(如克里格插值),这些方法基于一定的包括诸如自相关(已知点间的统计关系)之类的统计模型。
因此,这些方法不仅有能力生成一个预测表面,而且还可以给出预测结果的精度或确定性的度量。
克里格插值与距离权重倒数插值相似之处在于给已知的样本点赋权重来派生出未知点的预测值。
这两种内插方法的通用公式如下,表达为数据的权重总和。
其中, Z(Si)是已测得的第i个位置的值;λi是在第i个位置上测得值的未知的权重;S0是预测的位置;N 是已知点(已测得值的点)的数目。
在距离权重倒数插值中,权重λi仅取决于距预测位置的距离。
然而,在克里格插值中,权重不仅建立在已知点和预测点位置间的距离的基础上,而且还要依据已知点的位置和已知点的值的整体的空间分布和排列。
应用权重的空间排列,空间自相关必须量化。
因此,运用普通克里格插值(Ordinary Kriging),权重λi取决于已知点的拟合模型、距预测位置的距离和预测点周围的已知点间的空间关系。
利用克里格方法进行预测,必须完成以下两个任务:(1)揭示相关性规则。
(2)进行预测。
要完成这两项任务,克里格插值方法通过以下两个步骤完成:(1)生成变异函数和协方差函数,用于估算单元值间的统计相关(也叫空间自相关),而变异函数和协方差函数也取决于自相关模型(拟合模型)。
(2)预测未知点的值。
因为前面已经说过的两个明确的任务,因此要用克里格方法对数据进行两次运算:第一次是估算这些数据的空间自相关而第二次是做出预测。
变异估计(Variography)变异估计就是拟合一个数学模型或空间模型,象已知的结构分析。
在已测点结构的空间建模中,首先得出经验半变异函数的曲线图,计算如下:半变异函数(距离h)= 0.5*均值[ (在i 位置的值-在j 位置的值)2 ]用于计算被距离h分隔的每一点对相对应的位置。
克里金(克里格)(Corigine)算法
克里格,或者说克里金插值Kriging。
法国krige名字来的。
特点是线性,无偏,方差小,适用于空间分析。
所以很适合地质学、气象学、地理学、制图学等。
相对于其他插值方法。
主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以反映速度很慢。
(当然也看你算法设计和电脑反应速度了呵呵)。
而那些趋势面法,样条函数法等。
虽然较快,但是毕竟程度和适合用范围都大受限制。
具体对比如下:方法外推能力逼近程度运算能力适用范围距离反比加权法分布均匀时好差快分布均匀最近邻点插值法不高强很快分布均匀三角网线性插值高差慢分布均匀样条函数高强快分布密集时候克里金插值高强慢均可克里格插值又分为:简单,普通,块,对数,指示性,泛,离析克里金插值等。
克里金插值的变异函数球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。
以下结合我的绘制等值线(等高线)的程序和高斯迭代解矩阵方程方法以及多元线性回归方法(此两方法实现另补充)说明克里格方法的实现:注:选择变异函数模型为球形模型,选择插值方法为普通克里金,我为了简化问题,考虑为各向同性,变差距离为固定。
int i,j,i0,i1,j0,j1,k,l,m,n,p,h;//循环变量double *r1Matrix;//系数矩阵double *r0Matrix;//已知向量double *langtaMatrix;//待求解向量double *x0;//已知点横坐标double *y0;//已知点纵坐标double * densgridz;//存储每次小方格内的已知值。
double densgridz0;//待求值int N1=0;//统计有多少个已知值double r[71],r0[71];int N[70];for(i=0;i<100;i++){for(j=0;j<100;j++){if(bdataprotected[i*100+j]) continue;//原值点不需要插值//1.遍历所有非保护网格。
克里金插值法的详细介绍。kriging。
kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。
在充分考虑观测资料之间的相互关系后,对每一个观测资料赋予一定的权重系数,加权平均得到估计值。
这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方差,其计算公式为:h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。
2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。
半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。
利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状模型、指数模型、圆形模型。
----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。
3.用拟合的模型计算出三个参数。
例如球状模型中nugget为c0,range为a,sill为c。
4.利用拟合的模型估算未知点的属性值,方程为:,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的已知点的数目。
假如用三个点来估算,则有这样权重就可以求出,然后估算未知点。
(上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书)下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。
do ii=1,nxif(tgrid(ii,1)==0.)thendo i=1,dsite(ii)!首先寻找距离最近的五个已知点位置do j=1,nhif(d(mm(ii),j).ne.0.or.j==1)thenhmie(j)=d(mm(ii),j)-dgrid(i)elsehmie(j)=9999end ifhmid(j)=abs(hmie(j))end dodo j=1,nhdo k=j,nhif(hmid(j)<hmid(k))thenelsem1=hmid(j)hmid(j)=hmid(k)hmid(k)=m1end ifend doend dodo j=1,5do k=1,nhif(abs(hmie(k))==hmid(j))thenlocat(j)=kend ifend doend dodo j=1,4do k=j+1,5if(locat(j)==locat(k))thendo i3=1,nhif(abs(hmie(i3))==abs(hmie(locat(j))).and.i3.ne.locat(j))thenlocat(j)=i3exitend ifenddoendifenddoenddo!然后求各点间距离,并求半方差do j=1,5do k=1,5hij(j,k)=abs(d(mm(ii),locat(j))-d(mm(ii),locat(k)))/1000.end doend dodo j=1,5hio(j)=sqrt(hmid(j)**2+(abs(latgrid(ii)-lonlat(mm(ii),2))*llat)**2 $ +(abs(longrid(ii)-lonlat(mm(ii),1))*(1.112e5* $ cos(0.017*(latgrid(ii)+lonlat(mm(ii),2))/2)))**2)/1000.end dodo j=1,5do k=1,5if(hij(j,k).eq.0.)thenrleft(j,k)=0.elserleft(j,k)=sill*(1.5*hij(j,k)/range-0.5*hij(j,k)**3/range**3)end ifif(hio(j).eq.0.)thenrrig(1,j)=0.elserrig(1,j)=sill*(1.5*hio(j)/range-0.5*hio(j)**3/range**3)end ifend doend dorrig(1,6)=1.rleft(6,6)=0.do j=1,5rleft(6,j)=1.rleft(j,6)=1.end dotry=rleftcall brinv(rleft,nnn,lll,is,js)ty1=matmul(try,rleft)!求权重wq=matmul(rrig,rleft)!插值所有格点上t,sdo j=1,5tgrid(ii,i)=tgrid(ii,i)+wq(1,j)*t(mm(ii),locat(j)) sgrid(ii,i)=sgrid(ii,i)+wq(1,j)*s(mm(ii),locat(j))end doenddoendifenddo。
克里格估值方法(一)
克里格估值方法(一)克里格估值方法详解什么是克里格估值法?克里格估值法(Kriging)是一种通过插值方法对未知地点进行估值的统计技术。
它将已知地点上的观测值用于预测未知地点上的数值,常用于地质、地理、环境等领域的研究。
克里格估值法通过建立空间相关性模型,可以提供对未知地点上现象的可信度估计。
克里格估值法的基本原理克里格估值法的基本原理是空间相关性。
其假设对空间上相邻点之间的值存在一定的相关性,且该相关性可通过距离进行量化。
基于该假设,克里格估值法可以通过已知点与未知点之间的空间距离进行权重的计算,进而进行预测。
克里格估值法的步骤1.数据获取:克里格估值法需要已知点的观测值作为输入,可以通过采集现有数据或者实地测量获得。
2.空间相关性分析:通过观测值之间的空间相关性判断模型类型,常用的模型包括球型模型、指数模型和高斯模型等。
3.参数估计:使用已知观测值中的半方差数据,通过最小二乘法或最大似然法对模型的空间相关参数进行估计。
4.半方差图绘制:通过绘制半方差图,可以了解观测值之间的空间相关性和变化趋势。
5.克里格估值:根据已知点的观测值和模型的参数,计算未知点上的估值。
常用的克里格估值方法包括简单克里格法、普通克里格法和泛克里格法等。
6.估值验证:通过验证估值和实际值之间的误差,评估克里格估值方法的精度和可靠性。
克里格估值法的优缺点克里格估值法作为一种插值方法具有以下优点: - 利用空间相关性进行预测,能够充分利用已知数据的信息; - 通过建立空间模型,可以对估值进行可靠的分析和解释; - 适用于各种数据类型和标度水平,可用于多种研究领域。
然而,克里格估值法也存在一些缺点: - 对观测值的空间相关性要求较高,如果空间相关性较弱,克里格估值的精度可能较低; - 克里格估值法对异常值敏感,对异常值进行处理是很重要的一步; - 克里格估值法无法考虑其他外部因素的影响,如地形、土壤等因素。
克里格估值法的应用领域克里格估值法广泛应用于地理信息系统(GIS)、环境调查和资源评价等领域,常见的应用包括: - 土壤污染程度评估; - 水资源管理及水质预测; - 土地利用规划和生态环境研究; - 地质勘探和矿产资源评估。
克里金插值(kriging)(推荐完整)
则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。
E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分
xp(x)dx
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”
G. Materon(1962)
提出了“地质统计学”概念 (法文Geostatistique)
克里格插值法
克里格插值法
克里格插值法是一种被广泛应用于地球科学、环境科学与农业生
态学的数据插值方法,它通过统计分析空间距离和变量之间的关系,
构建一个反映实际数据分布规律的模型,从而在未知点处进行插值预测。
克里格插值法的主要思想是,根据各个采样点之间的空间位置关
系计算权重系数,再以这些权重为基础来对目标点的数值进行预测。
克里格插值法的实现过程主要包括:确定插值模型类型、计算空间距
离与方向、计算各采样点的权重、预测目标点的数值等几个步骤。
克里格插值法有很多优点。
首先,它不需要对大量数据进行修改
和处理,直接通过计算得到预测值,因此能够极大地提高工作效率。
其次,它可以处理不均匀分布的数据,能够更精确地反映真实的地理
表面变化。
此外,克里格插值法的错误率相对较低,能够在一定程度
上减少数据缺失所造成的影响。
当然,克里格插值法也存在一些局限性。
首先,它在计算复杂度
上相对较高,需要进行大量的计算和参数调整,因此在数据量较大时,计算量可能会较为庞大。
其次,克里格插值法只能处理各项同性的数据,对于非同性数据来说可能会存在较大的误差。
总的来说,克里格插值法是一种极为有效、实用的数据插值方法,在地球科学、环境科学与农业生态学等领域得到了广泛的应用。
虽然
它在实际应用中仍存在一些局限性,但随着科技的发展和方法的不断
完善,相信克里格插值法一定会越来越发挥出它的巨大潜力,为人类
的生产和生活带来更多、更好的效益。
kriging(克里金方法,克里金插值)
Cov(ξ,η) = σξ,η = E[ξ-E(ξ)][η-E(η)]
其简算公式为 Cov(ξ,η) = E (ξη)-E(ξ) ·E(η)
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
严格平稳
F(u1,,uK ; z1,, zK ) F(u1 h,,uK h; z1,, zK )
对于单变量而言:
P
F(u; z) F(u h; z)
可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
块金效应的尺度效应
如果品位完全是典型的随机变量,则不论 观测尺度大小,所得到的实验变差函数曲线总 是接近于纯块金效应模型。
当采样网格过大时,将掩盖小尺度的结构, 而将采样尺度内的变化均视为块金常数。这种 现象即为块金效应的尺度效应。
1
3
3
3
1
2
3
1
1
(h) = C(0) – C(h)
基台值(Sill):代表变量在空间上的总变异性大小。即为变 差函数在h大于变程时的值,为块金值c0和拱高cc之和。 拱高为在取得有效数据的尺度上,可观测得到的变异性幅 度大小。当块金值等于0时,基台值即为拱高。
克里金方法(Kriging), 是以南非矿业 工程师D.G.Krige (克里格)名字命名的一项 实用空间估计技术,是地质统计学 的重要 组成部分,也是地质统计学的核心。
python克里金插值法
python克里金插值法Python克里金插值法克里金插值法(Kriging)是一种用于空间插值的统计方法,常用于地质学、地球物理学、环境科学等领域。
它通过样本点的空间分布信息,推断未知点的值,并生成一幅连续的表面。
一、克里金插值法的原理克里金插值法的核心思想是通过已知点之间的空间相关性来估计未知点的值。
该方法基于两个假设:1)空间上相近的点具有相似的值;2)相邻点之间的差异可以通过某种函数来描述。
插值的第一步是计算已知点之间的空间相关性。
通常使用半方差函数(semivariogram)来量化相邻点之间的差异。
半方差函数表示了不同距离下的样本点间的差异,可以通过实际数据的半方差函数图来选择合适的函数模型。
插值的第二步是确定权重。
克里金插值法假设未知点的值是已知点的线性组合,权重由已知点之间的空间相关性决定。
一般来说,距离已知点越近且权重越大,距离已知点越远且权重越小。
插值的第三步是计算未知点的值。
根据已知点的值和权重,使用线性插值的方法来估计未知点的值。
这样,就可以生成一幅连续的表面,反映了未知点的分布情况。
二、克里金插值法的应用克里金插值法在地质学、地球物理学、环境科学等领域有广泛的应用。
以下是一些典型的应用案例:1. 地下水位插值地下水位的空间分布对于水资源管理和环境保护至关重要。
通过收集已知点的地下水位数据,可以利用克里金插值法推断未知点的地下水位值,从而绘制出地下水位的分布图。
2. 污染物扩散模拟污染物扩散对于环境风险评估和污染治理具有重要意义。
通过收集已知点的污染物浓度数据,可以利用克里金插值法推断未知点的污染物浓度值,从而模拟污染物的扩散情况。
3. 地震震级插值地震震级是评估地震强度的重要指标。
通过收集已知点的地震震级数据,可以利用克里金插值法推断未知点的地震震级值,从而绘制出地震震级的分布图。
4. 土壤质量评估土壤质量是农业生产和生态环境保护的关键因素。
通过收集已知点的土壤质量数据,可以利用克里金插值法推断未知点的土壤质量值,从而评估土壤质量的空间分布。
克里金插值
克里金插值克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。
克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。
该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。
它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。
但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。
克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。
常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。
块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。
按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。
在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。
克里格法Kriging——有公式版
克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
地质统计学与随机建模原理3-克里格估值
式(4)是在确保估计方差最小的前提下推导出来的,它是克里格方差,
2 故记号为 K 。其中关键的区别在于λi (i=1,2,… ,n)在两个式中的
意义不一样。
从克里格方程组解出λi 后,即得到YV的简单克里格估计量:
Z m Y m jY j m j (Z j m)
其协方差函数为: E[Y(x) · Y( y) ]=C(x, y )
对ZV的估计转化为对YV* 的估计,且有:
YV 1 V
V
Y ( x)dx
1 V
Z ( x)dx m Z
V
V
m
所用的估计量为:
Y iYi
V i 1 n
其中: Y Z i m (i 1,2,, n)
' T
(v 1 ,v n ) 1 (v 2 ,v n ) 1
(v n ,v n ) 1 1 0
2 K
M (V ,V )
'
(4)信息样品为非点承载时的普通克里格方程组与普通克里格方差 若样品的承载不能看作是点承载,而是以x i为中心,其体积为v i
在无偏性条件 数法。 令:
i 1
n
i
1 下,要使得估计方差最小,从而求得诸权
系数λ i , (i=1,2,…,n),这是一个求条件极值的问题,要用拉格朗日乘
n F 2 i 1 ,为n个权系数λ 和μ 的(n+1)元函数。 i i 1
2 E
-2 μ是拉格朗日乘数。求出F对λ i , (i=1,2,…,n)以及F对μ的偏导数,并
克里金插值方法
克里金插值方法克里金插值方法(Kriging Interpolation)是一种常用的空间插值技术,用于预测未知位置的属性值。
它是由南非地质学家克里金(Danie G. Krige)在20世纪60年代提出的。
克里金插值方法通过对已知点周围的样本点进行空间插值,推断出未知点的属性值,从而实现对空间数据的预测。
克里金插值方法的基本思想是建立一个局部的空间模型,考虑样本点之间的空间相关性,并利用这种相关性来预测未知点的属性值。
它的核心思想是将空间数据看作是一个随机场,通过对随机场的统计分析来确定未知点的属性值。
克里金插值方法的具体步骤如下:1. 数据收集:首先需要收集一定数量的已知点数据,这些数据应该包含未知点的属性值以及其空间坐标。
2. 变异函数拟合:根据已知点的属性值和空间坐标,建立变异函数模型。
变异函数描述了样本点之间的空间相关性,可以采用不同的函数形式进行拟合,如指数函数、高斯函数等。
3. 半变异函数计算:通过对已知点之间的差异进行半变异函数计算,确定样本点之间的空间相关性。
4. 克里金权重计算:根据已知点的属性值、空间坐标和半变异函数,计算未知点与已知点之间的空间权重。
5. 属性值预测:利用已知点的属性值和克里金权重,对未知点进行属性值预测。
预测值可以根据不同的权重计算方法得到,如简单克里金、普通克里金、泛克里金等。
6. 模型验证:对预测结果进行验证,可以使用交叉验证等方法评估预测的准确性。
克里金插值方法在地质学、环境科学、农业、地理信息系统等领域广泛应用。
它可以用于地下水位、气象数据、土壤污染等空间数据的插值预测。
克里金插值方法不仅可以提供对未知点的预测值,还能估计预测误差,并提供空间数据的空间分布图。
尽管克里金插值方法具有很多优点,但也存在一些限制。
首先,克里金插值方法假设样本点之间的空间相关性是平稳的,即在整个研究区域内具有一致性。
然而,在实际应用中,样本点之间的空间相关性可能会随着距离的增加而变化。
地质统计分析法(克立格法)
地质统计分析法(即克立格法)点击数:次更新日期:2009-8-19 16:32:21 中国选矿技术网我要评论( 0) 【摘要】:法国数学家G.马特龙创立并发展了一门新的边缘地质学科-地质统计学,其实质是以矿石品位和矿石储量的精确估计为目的,以矿体参数(变量),值的空间相关为基础,以区域化变量为核心,以变异函数为基本工具的数学地质方法。
文章描述了克立格法的应用条件、基本原理、实施过程和该法的主要优点。
法国数学家G.马特龙创立并发展了一门新的边缘地质学科-地质统计学,其实质是以矿石品位和矿石储量的精确估计为目的,以矿体参数(变量),值的空间相关为基础,以区域化变量为核心,以变异函数为基本工具的数学地质方法。
这种方法是南非采矿工程师D.C.克立格于一九五一年首次提出来的,故得名为克立格方法。
克立格方法是利用邻近若干个钻孔(或坑道)的样品品位来估计处于这些样品中间的某个块段(成某个点)的品位。
应用这种方法,可以根据少量样品的品位资料把一个矿床中成千上万个开采块段的品位和储量统统地计算出来。
从地质勘探的角度来看,地质统计学就是在地质变量具有二重性(随机性和规律性)变化的条件下建立起来的一套解决问题的统计方法。
它把矿床或矿体中的地质参数看成是用随机函数来描述的随机变量的空间变化,即区域化变量。
应用变差图来描述区域化变量的随机变化和规律变化,然后根据变差图所提供的矿床变化性进行克立格方法插值,从而计算出矿床中所有块段的品位和储量。
克立格法是一种无偏的、误差最小的最优化的储量计算方法,在储量计算的同时,我们可以得到一个相应的估计误差。
一、克立格法的优点应用克立格法进行储量计算,具有下列明显的优点:(一)在多数情况下,应用克立格法所计算的矿石品位和矿石储量数字要比传统的方法精确得多。
如某铜矿山,勘探资料用克立格预测的同平均品位为2.14%,而用传统方法预测的品位为2.51%~3.20%,但根据出售的铜计算的实际品位为2.04%,说明克立格法计算达到了相当精确的程度。
kriging(克里金方法_克里金插值)[1]
(h) C(0) C(h)
(二阶平稳假设条件下边查函数与写防查的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
Z*(x0)
(1)无偏条件
从本征假设出发, 可知 EZx为常数,有
EZ * x0 Zx0
E n i Z xi Z x0
i1
n i m m 0 i1
(在搜寻邻域内为 常数,不同邻域可 以有差别)
可出现E[Z(u)]不存在, 但E[Z(u)-Z(u+h)]存在并为零的情况
E[Z(u)]可以变化,但E[Z(u)-Z(u+h)]=0
② 增量[Z(u)-Z(u+h)]的方差函数 (变差函数,Variogram)
存在且平稳 (即不依赖于u),即:
Var[Z(u)-Z(u+h)] = E[Z(u)-Z(u+h)]2-{E[Z(u)-Z(u+h)]}2 = E[Z(u)-Z(u+h)]2 = 2γ(u,h) = 2γ(h),
发表了专著《应用地质统计学论》。
阐明了一整套区域化变量的理论,
为地质统计学奠定了理论基础。
1977年我国开始引入
区域化变量理论 克里金估计 随机模拟
kriging方法
kriging方法Kriging方法呢,就像是一个超级智能的“空间魔法师” ♂️。
它主要是用来做空间插值的哦。
你想啊,假如你在一片大地上测量了一些点的数据,比如说土壤的养分含量啦,或者是某个地区的气温在几个观测站的数据。
但是呢,大地那么大,你不可能每个小角落都去测量吧。
这时候Kriging方法就闪亮登场啦。
它会根据你已经测量的那些点的位置和数值,然后算出其他没测量地方的值。
它可不是随便猜的哦,它是有一套很神奇的算法在背后的。
就像是它能感知到这些测量点之间的某种神秘联系似的。
这个方法啊,在好多领域都超级有用呢。
在地质勘探方面,要是知道了几个地方的矿石含量之类的数据,就能用Kriging方法来推测其他地方可能的矿石分布啦。
就像在寻宝一样,根据一些线索(已测量点),去找到更多宝藏(推测其他点的矿石含量)。
而且在环境科学里也很厉害。
比如说研究一片湿地的水质情况,不可能把湿地每个小水洼都检测一遍水质吧。
Kriging方法就能根据有限的检测点,大致描绘出整个湿地的水质分布情况。
它的原理呢,其实有点像一群小伙伴之间的关系。
那些测量点就像是小伙伴,每个小伙伴都有自己的特点(数值),而且小伙伴之间的距离(空间位置关系)也很重要。
Kriging方法就会分析这些小伙伴之间的关系,然后根据离某个未知点最近的小伙伴们的情况,来推断这个未知点的情况。
不过呢,Kriging方法也不是完美无缺的啦。
有时候如果你的测量点分布得很奇怪,或者数据本身有很多噪声,它可能就会有点“晕头转向”,算出的结果就不是那么准确啦。
但是呢,只要我们合理地选择测量点,好好处理数据,它还是能给我们提供很多很有用的信息的呢。
Kriging方法就是一个超级有趣又很实用的空间分析小能手♂️。
克里格插值法
工程数学
提出了如下的平稳假设及内蕴假设: 提出了如下的平稳假设及内蕴假设:
{ 随机函数: 随机函数:Z (u ), u ∈ 研究范围} ,其空间分布律不因平移 而改变,即若对任一向量h, 而改变,即若对任一向量 ,关系式
F ( z1 , z2 , ⋅⋅⋅; x1 , ⋅⋅⋅) = F ( z1 , z2 , ⋅⋅⋅; x1 + h, x2 + h, ⋅⋅⋅)
D(ξ ) = Var (ξ ) = E[ξ − E (ξ )] = E (ξ ) − E (ξ )2 22来自工程数学工程数学
(3)协方差 ) 协方差是用来刻画随机变量之间协同变化程度的指标, 协方差是用来刻画随机变量之间协同变化程度的指标,其 大小反映了随机变量之间的协同变化的密切程度。 大小反映了随机变量之间的协同变化的密切程度。
σ ij = Cov(ξ1 , ξ 2 ) = E[(ξ1 − E (ξ1 ) (ξ 2 − E (ξ 2 ) ] ) )
= E (ξ1ξ 2 ) − E (ξ1 ) E (ξ 2 )
(4)相关系数 ) 协方差是有量纲的量,与随机变量分布的分散程度有关, 协方差是有量纲的量,与随机变量分布的分散程度有关,为 消除分散程度的影响,提出了相关系数这个指标。 消除分散程度的影响,提出了相关系数这个指标。
成立时,则该随机函数 成立时,则该随机函数Z(x)为平稳性随机函数。 为平稳性随机函数。 这实际上就是指,无论位移h多大,两个 维向量的随机变量 多大, 这实际上就是指,无论位移 多大 两个k维向量的随机变量
{ Z ( x1 ), Z ( x2 ),L , Z ( xk )} 和 { Z ( x1 + h), Z ( x2 + h),L , Z ( xk + h)}
kriging 方法
kriging 方法Kriging方法,又称克里格插值法,是一种常用于空间插值的统计方法。
它的主要目的是通过已知的数据点来估计未知位置的值,并给出估计值的可靠性信息。
在地理信息系统(GIS)和地质学领域,克里格插值法被广泛应用于栅格数据的插值和空间预测。
克里格插值法基于一个重要的假设,即空间上相近的点具有相似的属性值。
根据这个假设,插值方法通过计算距离权重来估计未知位置的属性值。
克里格插值法有多种变体,其中最常用的是简单克里格法和普通克里格法。
简单克里格法是克里格插值法的最简单形式,它假设空间上各点之间的距离权重与其距离成反比。
简单克里格法的估计结果仅依赖于最近邻的数据点,因此插值结果可能会出现较大的变化。
普通克里格法是一种改进的插值方法,它考虑了更多的数据点,并通过计算协方差来确定权重。
普通克里格法对距离较近的点赋予较大的权重,对距离较远的点赋予较小的权重。
通过对协方差进行插值,普通克里格法能够提供更准确的空间预测结果。
在使用克里格插值法之前,我们需要先进行数据的分析和预处理。
首先,我们要检查数据的空间分布情况,了解数据点之间的关系。
其次,我们要检查数据的属性值是否存在异常值或离群点。
如果存在异常值,需要进行数据清洗或者采用合适的处理方法。
最后,我们要选择合适的克里格插值方法和参数,以获得最佳的插值效果。
在进行克里格插值时,我们需要选择合适的变程参数和协方差函数。
变程参数决定了插值结果的平滑程度,较大的变程参数会产生较平滑的插值结果,而较小的变程参数则会产生较崎岖的插值结果。
协方差函数则用于计算不同距离下的权重,常用的协方差函数有指数型、高斯型和球型等。
除了简单克里格法和普通克里格法,还有一些改进的克里格插值方法,如克里格法的泛化版本——逆距离加权插值法(IDW)。
逆距离加权插值法通过计算数据点与插值位置之间的距离倒数来确定权重。
与克里格插值法相比,逆距离加权插值法对最近邻点赋予更高的权重,对较远的点赋予较小的权重。
克里金插值法
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域对区域化变量进行无偏最优估计的一种方法,是地统计学的主要容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1克里金插值法原理克里金插值法的适用围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n,2,1)(,(),(11niijjiniijxxCxxCλμλ,(3)式中,C(x i,x j)是Z(x i)和Z(x j)的协方差函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数
一、区域化变量
当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数
协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y 的协方差被定义为:
区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即
区域化变量Z(x) 的自协方差函数也简称为协方差函数。
一般来说,它是一个依赖于空间点x 和向量h 的函数。
< 设Z(x) 为区域化随机变量,并满足二阶平稳假设,即随机函数Z(x)的空间分布规律不因位移而改变,h为两样本点空间分隔距离
或距离滞后,Z(xi)为Z(x)在空间位置xi处的实测值,Z(xi+h)是Z(x)在x处距离偏离h的实测值,根据协方差函数的定义公式,可得到协方差函数的计算公式为:
在上面的公式中,N(h)是分隔距离为h时的样本点对的总数,和分别为和的样本平均数,即
在公式中N为样本单元数。
一般情况下(特殊情况下可以认为近似相等)。
若
(常数),协方差函数可改写为如下:
式中,m为样本平均数,可由一般算术平均数公式求得,即
三、变异函数
变异函数又称变差函数、变异矩,是地统计分析所特有的基本工具。
在一维条件下变异函数定义为,当空间点x 在一维x 轴上变化
时,区域化变量Z(x)在点x和x+h 处的值Z(x) 与Z(x+h) 差的方差的一半为区域化变量Z(x) 在x轴方向上的变异函数,记为
,即
在二阶平稳假设条件下,对任意的h有,
因此上式可以改写为:
从上式可知,变异函数依赖于两个自变量x 和h ,当变异函数仅仅依赖于距离h 而与位置x 无关时,可改写成
,即
设Z(x)是系统某属性Z在空间位置x处的值,Z(x)为一区域化随机变量,并满足二阶平稳假设,h为两样本点空间分隔距离,Z(xi) 和Z(xi+h)分别是区域化变量在空间位置xi 和xi+h 处的实测值[i=1,2,...,N(h)] ,那么根据上式的定义,变异函数
的离散公式为:
变异函数揭示了在整个尺度上的空间变异格局,而且变异函数只有在最大间隔距离1/2处才有意义。
四、克里格估计量
假设x是所研究区域内任一点,Z(x)是该点的测量值,在所研究的区域内总共有n个实测点,即x1,x2,...,xn ,那么,对于任意
待估点或待估块段V的实测值Zv(x) ,其估计值是通过该待估点或待估块段影响范围内的n个有效样本值
的线性组合来表示,即
式中,为权重系数,是各已知样本在Z(xi) 在估计时影响大小的系数,而估计的好坏主要取决于怎样计
算或选择权重系数,在求取权重系数时必须满足两个条件,一是使的估计是无偏的,即偏差的数学期望为零;二是最优的,
即使估计值和实际值Zv(x)之差的平方和最小,在数学上,这两个条件可表示为
五、普通克里格分析方法
设Z(x)为区域化变量,满足二阶平稳和本征假设,其数学期望为m ,协方差函数c(h) 及变异函数λ(h)存在。
即
对于中心位于x0 的块段为V ,其平均值为Zv(x0) 的估计值以
进行估计。
在待估区段V 的邻域内,有一组n个已知样本,,其实测值为。
克
里格方法的目标是求一组权重系数,使得加权平均值:
成为待估块段V 的平均值Zv(x0) 的线性、无偏最优估计量,即克里格估计量。
为此,要满足以下两个条件:
1、无偏性。
要使成为Zv(x) 的无偏估计量,即,当时,
也就是当时,则有,这时是
的无偏估计量。
2、最优性。
在满足无偏性条件下,估计方差为,由方差估计可知
为使估计方差最小,根据拉格朗日乘数原理,令估计
方差的公式为:,求以上公式对和的偏导数,并令其为0,得克里格方程组
,整理后得:,解上述n+1阶线性方程组,求出权重系数λi 和拉格朗日乘数μ ,并带入公式,经过计算可得克里格估计方差
,以上三个公式都是用协方差函数表示的普通克里格方程组和普通克里格方差。