函数的周期性及其应用解题方法
函数的周期性及其应用解题方法

函数的周期性及其应用解题方法方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f(x+T)=f(x),由函数周期性的定义可知T是函数的一个周期;(2)若满足f(x+a)=-f(x),则f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),所以2a是函数的一个周期;(3)若满足f(x+a)=1/f(x),则f(x+2a)=f[(x+a)+a]=1/f(x+a)=f(x),所以2a是函数的一个周期;(4)若函数满足f(x+a)=-1/f(x),同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x +kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-7/3≤x≤5.v1.0 可编辑可修改分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3.由f(3x+1)+f(2x-6)≤3,变形为f[(3x+1)(2x-6)]≤f(64).(*)∵f(x)为偶函数,∴f(-x)=f(x)=f(|x|).∴不等式(*)等价于f[|(3x+1)(2x-6)|]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴|(3x+1)(2x-6)|≤64,且(3x+1)(2x-6)≠0.解得-7/3≤x<-1/3或-1/3<x<3或3<x≤5.∴x的取值范围是答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M”等价于“N”、“M”变形为“N”.(2)要写明转化的条件.如本例中:∵f(x)为偶函数,∴不等式(*)等价于f[|(3x+1)(2x -6)|]≤f(64).(3)转化的结果要等价.如本例:由于f[|(3x+1)(2x-6)|]≤f(64) |(3x+1)(2x -6)|≤64,且(3x+1)(2x-6)≠0.若漏掉(3x+1)(2x-6)≠0,则这个转化就不等价了.。
高中数学函数的周期性

高中数学函数的周期性一、函数周期性的认识周期性是函数的一个重要性质,指的是函数在一定的时间间隔内重复出现的规律性。
在函数图像上,这种周期性表现为函数图像的重复形状或模式。
函数周期性的理解对于解决与函数相关的数学问题有着重要的意义。
二、函数周期性的判断判断函数是否具有周期性,可以通过以下步骤进行:1、观察函数的图像,看是否存在重复的模式或形状;2、计算函数值之间的差值,看是否存在固定的差值;3、确定函数的定义域,看是否具有周期性;4、根据函数的性质,确定函数的周期。
三、函数周期性的应用函数周期性在数学中有着广泛的应用。
例如,在三角函数中,正弦函数和余弦函数都是具有周期性的函数,它们的周期与角度有关。
函数周期性在信号处理、图像处理等领域也有着广泛的应用。
四、函数周期性的意义函数周期性是数学中一个重要的概念,它反映了函数变化的规律性。
通过对函数周期性的理解和应用,我们可以更好地理解函数的性质和变化规律,为解决与函数相关的数学问题提供帮助。
函数周期性的概念也渗透到了自然科学和社会科学的各个领域,对于这些领域的研究和发展也有着重要的意义。
高中数学函数的周期性是一个非常重要的概念,对于我们理解函数的性质和解决与函数相关的数学问题都有着重要的作用。
在未来的学习和研究中,我们还需要进一步深入理解和应用函数周期性的概念。
原函数与导函数周期性和奇偶性联系的探究标题:原函数与导函数周期性和奇偶性的探究一、引言在数学分析中,函数的周期性和奇偶性是两个非常重要的性质。
对于一个函数来说,如果其值在每隔一定的区间内重复出现,那么这个函数就被称为具有周期性。
而如果一个函数在与其原点的对称点处的值相等,那么这个函数就被称为具有奇偶性。
这两个性质在很多领域都有广泛的应用,包括物理学、工程学、经济学等。
对于周期函数和奇偶函数,其原函数和导函数之间存在一些有趣的和相互影响。
本文将对此进行深入的探究和分析。
二、原函数与导函数的周期性首先,我们观察一个函数与其导函数之间的周期性关系。
求函数f(x)周期的几种常见方法解读

求函数f(x)周期的几种常见方法函数的周期性是函数的一个重要性质.对一般函数f(x)的周期,不少中学生往往不知从何入手去求.为了加深对函数f(x)周期概念的理解,本文以实例来说明求函数f(x)周期的几种常见方法,供读者参考.1 定义法根据周期函数的定义以及题设中f(x)本身的性质推导出函数的周期的方法称为定义法.(1)∴f(x)为周期函数,且2a是它的一个周期.注:如果题设函数方程中只有一边含有不为零的常数a,另一边与a无关,这时周期T应取决于a,假设T能被a整除,就分别试算f(x+2a),f(x+3a),f(x+4a),…,当出现f(x+T)=f(x)(T≠0)的形式时,就可知T是f(x)的周期.周期函数,若是,求出它的周期;若不是,说明理由.(1)∴f(x+2a)=f[(x+a)+a](2)∴f(x)为周期函数,3a是它的周期.2 特殊值法当题设条件中有f(m)=n(m,n为常数)时,常常以此条件为突破口,采用特殊值法解即可奏效.f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.∴f(x)为周期函数,2π是它的一个周期.3 变量代换法例4设函数f(x)在R上有定义,且对于任意x都有f(x+1995)=f(x+1994)+f(x+1996),试判断f(x)是否周期函数.若是,求出它的一个周期;若不是,说明理由.解在f(x+1995)=f(x+1994)+f(x+1996) (x∈R)中,以x代x +1995,得f(x)=f(x-1)+f(x+1);(1)在(1)中以x+1代x,得f(x+1)=f(x)+f(x+2).(2)(1)+(2),得f(x-1)+f(x+2)=0,∴f(x-1)=-f(x+2).(3)在(3)中以x+1代x,得f(x)=-f(x+3);(4)在(4)中以x+3代x,得f(x+3)=-f(x+6).(5)将(5)代入(4),得f(x+6)=f(x).∴f(x)为周期函数,6是它的一个周期.4 递推法f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.(1)在(1)中以x+2代x,得f(x+4)=f(x+6)+f(x+2).(2)(1)+(2),得f(x)+f(x+6)=0,∴f(x)=-f(x+6).(3)在(3)中以x+6代x,得f(x+6)=-f(x+12).(4)(4)代入(3),得f(x+12)=f(x).∴f(x)为周期函数,12是它的一个周期.5 消去法例6若函数f(x)定义在R上,且对一切实数x,都有f (5+x)=f (5-x),f (7+x)=f (7-x),试判断f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.解在f(5+x)=f(5-x)中以5-x代x,得f(x)=f(10-x);(1)在f(7+x)=f(7-x)中以7-x代x,得f(x)=f(14-x).(2)由(1)和(2),得f(10-x)=f(14-x).(3)在(3)中以10-x代x,得f(x+4)=f(x).∴f(x)是周期函数,4为它的一个周期.6 结构类比法f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.解:可视sinx为本题中f(x)的一个实例,由此可设想f(x)为周期函数,且2π是它的一个周期.下面进行证明:于是f(x+2π)=f[(x+π)+π]=-f(x+π)=f(x).∴f(x)为周期函数,2π是它的一个周期.7 公式法例8已知y=f(x)(x∈R)的图象是连续的曲线,且f(x)不为常数,f(x)的图象关于直线x=a和直线x=b对称(a<b).(1)求证:f(x)=f(2a-x),f(x)=f(2b-x);(2)求证f(x)是周期函数,并求出它的一个正周期.证明(1)∵ f(x)的图象关于直线x=a对称,且图象连续,不是平行于x轴的直线,∴设P(x,y)为曲线上任一点,点P关于x=a的对称点P'的坐标为P'(x',y'),同理可证 f(x)=f(2b-x).解(2)由(1)可知,f(x)=f(2a-x)=f(2b-x),∴f(2a-x)=f(2b-x),以x代2a-x,得f[x+(2b-2a)]=f(x).∵a<b,2b-2a>0且为常数,∴f(x)是周期函数,2b-2a为它的周期.由例8可得到如下的定理若函数y=f(x)(x∈R)的图象关于直线x=a和直线x=b(a<b)对称,且在这两条直线之间再无对称轴,那么f(x)是周期函数,2b -2a为它的周期.此定理可当作一个公式用,如例6中函数f(x)的周期为2.7-2.5=4.。
初三数学函数的周期性分析方法

初三数学函数的周期性分析方法对于初三学生来说,数学函数的周期性是一个重要的概念。
在学习函数的过程中,了解函数的周期性对于分析函数的特点和行为很有帮助。
本文将介绍一些初三数学中常用的函数周期性分析方法。
一、使用图像分析函数的周期性图像是我们理解函数特性的有力工具之一。
通过观察函数的图像,我们可以初步了解其周期性。
1. 观察图像中的重复模式首先,我们需要在坐标系中绘制函数的图像。
然后,我们观察图像是否有明显的重复模式。
如果图像有明显的重复形状,那么函数就是周期函数。
我们可以通过计算重复的次数来确定函数的周期。
2. 确定图像的横向移动有时,函数的图像可能会发生横向平移。
当函数图像发生平移时,重复模式仍然存在,但位置发生了改变。
在这种情况下,我们需要确定函数图像的横向移动距离。
横向移动的距离就是函数的周期。
3. 判断是否存在周期的变化有些函数图像可能在不同的区间内具有不同的周期。
在这种情况下,我们需要在每个区间内进行观察,确定不同的周期。
如果函数图像可以分成几个部分,每个部分的周期性都相同,则这个函数是周期函数。
二、代入数值进行周期性分析除了通过图像,我们还可以通过代入数值的方法来分析函数的周期性。
1. 代入周期性函数值对于周期性函数,我们可以将不同的周期性值代入函数进行计算。
如果函数在不同的周期性值上具有相同的函数值,那么这个值就是函数的周期。
我们可以通过多次代入数值并观察函数值的变化来确定周期性。
2. 判断函数值是否重复另一种方法是观察函数在不同数值上的重复性。
如果函数在不同的数值上具有相同的函数值,那么这个函数就是周期函数。
我们可以选择多个不同的数值进行代入,并观察函数值是否重复。
三、利用函数公式进行周期性分析某些函数具有明确的函数公式,我们可以通过函数公式来分析函数的周期性。
1. 常见周期函数对于常用的周期函数,我们可以利用已知的函数公式来确定函数的周期。
例如,正弦和余弦函数的周期都是2π。
其他函数如正切、指数函数等也有固定的周期。
《函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用》

备战高考数学“棘手”问题培优专题讲座---函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用一.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)即可.(2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期.函数y=f(x)满足:(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)若f(x+a)=1f(x),则函数的周期为2a;(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(6)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(7)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|;(8)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;(9)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.【方法点拨】1.函数奇偶性、对称性间关系:(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;一般的,若对于R上的任意x都有f(a-x)=f(a+x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (-x +a )+f (x +a )=2b , 则y =f (x )的图象关于点(a ,b )中心对称.2. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍, 为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍. (注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)3. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】例1.已知函数f (x )对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________.【分析】由f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12对称,由函数f (x +1)是奇函数,f (x )关于点(1,0)中心对称,根据函数对称性、周期性间关系,知函数f (x )的周期为2,作出函数f (x )的图象即可.【解析】因为函数f (x +1)是奇函数,所以f (-x +1)=-f (x +1),又因为f ⎝ ⎛⎭⎪⎫12+x = f ⎝ ⎛⎭⎪⎫12-x ,所以f (1-x )=f (x ),所以f (x +1)=-f (x ),即f (x +2)=-f (x +1)=f (x ), 所以 函数f (x )的周期为2,且图象关于直线x =12对称.作出函数f (x )的图象如图所示,由图象可得f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4.【答案】4 二、典型例题1.奇偶性与周期性的综合问题1.已知偶函数y =f (x )(x ∈R)在区间[-1,0]上单调递增,且满足f (1-x )+f (1+x )=0,给出下列判断:①f (5)=0; ②f (x )在[1,2]上是减函数; ③函数f (x )没有最小值; ④函数f (x )在x =0处取得最大值; ⑤f (x )的图象关于直线x =1对称. 其中正确的序号是________.解:因为f (1-x )+f (1+x )=0,所以f (1+x )=-f (1-x )=-f (x -1),所以f (2+x )=-f (x ),所以f (x +4)=f (x ),即函数f (x )是周期为4的周期函数.由题意知,函数y =f (x )(x ∈R)关于点(1,0)对称,画出满足条件的图象如图所示,结合图象可知①②④正确.答案:①②④2. 已知定义在R 上的偶函数()f x 满足:当(]1,0x ∈-时,()2x f x =,且()1f x +的图像关于原点对称,则20192f ⎛⎫= ⎪⎝⎭( )A .2B C .2-D .【解题思路】根据偶函数及()1f x +的图像关于原点对称可知,函数的周期;根据周期性及()1f x +为奇函数,可得20192f ⎛⎫⎪⎝⎭的值.解:由题可知函数()f x 的图像关于直线0x =和点()1,0对称,所以函数()f x 的周期为4,则12201933114252222222f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==-=--=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 答案:C3.已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1,则( )A .f (-3)<f (2)<f ⎝⎛⎭⎫52B .f ⎝⎛⎭⎫52<f (-3)<f (2)C .f (2)<f (-3)<f ⎝⎛⎭⎫52D .f (2)<f ⎝⎛⎭⎫52<f (-3) 解: ∵f (x -1)=f (x +1),则函数f (x )的周期T =2.当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1=x ·e x-1e x +1,则f (-x )=-x ·e -x -1e -x +1=-x ·1-e x 1+e x =x ·e x -1e x +1=f (x ),则函数f (x )为偶函数,因此f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12,f (-3)=f (-1)=f (1),f (2)=f (0). 当0 ≤x ≤1时,函数y =x 与y =1-2e x +1均为增函数且都不小于0, 所以f (x )=x ⎝⎛⎭⎫1-2e x +1在区间[0,1]上是增函数,∴f (1)>f ⎝⎛⎭⎫12>f (0),即f (-3)>f ⎝⎛⎭⎫52>f (2). 答案:D4.(2018年全国2卷)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.【答案】C点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5. 已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0192=( )A.3+1B.3-1 C .-3-1D .-3+1解:由题可知f (x +2)=f (x )=-f (-x ),所以f ⎝⎛⎭⎫2 0192=f ⎝⎛⎭⎫1 008+32=f ⎝⎛⎭⎫32=-f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫12. 又当x ∈(0,1)时,f (x )=3x -1,所以f ⎝⎛⎭⎫12=3-1,则f ⎝⎛⎭⎫2 0192=-f ⎝⎛⎭⎫12=-3+1. 答案:D奇偶性与周期性综合问题的解题策略函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6. 已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______ 解:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 答案:(-1,4)7. 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解:∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12, 又∵当-1≤x <0时,f (x )=-4x 2+2, ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:18. 若函数f (x )(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 解:由于函数f (x )是周期为4的奇函数,所以f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫2×4-34+f ⎝⎛⎭⎫2×4-76=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76 =-316+sin π6=516.答案:5169.已知f (x )是定义在R 上的偶函数,且f (x +2)=-f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解:由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以函数f (x )的周期为4,∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5)=2.5. 答案:2.510.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________. 解:由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1.答案:-111.已知定义在R 上的函数f (x )满足f (2)=15,且对任意的x 都有f (x +3)=-1f (x ),则f (8)=________;f (2 015)=________. 解:由f (x +3)=-1f (x ),得f (x +6)=-1f (x +3)=f (x ), 故函数f (x )是周期为6的周期函数.故f (8)=f (2)=15,f (2 015)=f (6×335+5)=f (5)=-1f (2)=-115=-5.答案:15;-513.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.解:函数f (x )是奇函数,则f (0)=0,由f (x )=2x -x 2,x ∈[0,2]知f (1)=1,f (2)=0,又f (x )的周期为4,所以f (2 018)+f (2 019)+f (2 020)=f (2)+f (3)+f (0)=f (3)=f (-1)=-f (1)=-1. 答案:-114.已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.解:由函数f (x )是周期为2的奇函数得f ⎝⎛⎭⎫2 0165=f ⎝⎛⎭⎫65=f ⎝⎛⎭⎫-45=-f ⎝⎛⎭⎫45, 又当x ∈[0,1)时,f (x )=lg(x +1), 所以f ⎝⎛⎭⎫2 0165=-f ⎝⎛⎭⎫45=-lg 95=lg 59, 故f ⎝⎛⎭⎫2 0165+lg 18=lg 59+lg 18=lg 10=1. 答案:115.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1.则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 答案: 216.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.解:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1, 即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22, 即b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10. 答案:-1017.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为________.解:因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,所以f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为7. 答案:718.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.解:在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,根据函数的奇偶性知,f (x )在[-1,0]上是减函数,根据函数的周期性知, 函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f (x )在[0,2]上的最大值f (x )max =f (1)=2,f (x )的最小值f (x )min =f (0)=f (2)=20=1, 且f (x )是周期为2的周期函数.∴f (x )的最大值是2,最小值是1,故③错误. 答案:①②1. 已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝⎛⎭⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.a >b =c B.b >a =c C.b >c >a D.a >c >b解:依题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的函数,f (2)=f (0)=0,又f (3)=-f (2)=0,且f (x )在[0,1)上是增函数, 于是有f ⎝⎛⎭⎫12>f (0)=f (2)=f (3),即a >b =c . 答案:A2.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2解:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1),∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1), 即f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ), 则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.3. 已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f (x ),若f (x )在[-1,0]上是减函数, 那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数 解:由题意知f (x +2)=1f (x +1)=f (x ),所以f (x )的周期为2, 又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数, 则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数.选A7.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解:∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π,又∵当0≤x <π时,f (x )=0, ∴f ⎝⎛⎭⎫5π6=0,∴f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12. 故选A. 8.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16解:由题可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f(x+12)=f[(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,∴f(2 014)=f(167×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4,故选B.9.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有f(x+4)=f(x)+f(2),则f(2 014)等于( )A.0B.3C.4D.6解:依题意,得f(-2+4)=f(-2)+f(2)=f(2),即2f(2)=f(2),f(2)=0,f(x+4)=f(x),f(x)是以4为周期的周期函数,又2014=4×503+2,所以f(2014)=f(2)=0.故选A.答案:A11.奇函数f(x)的定义域为R. 若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2 B.-1 C.0 D.1解:因为f(x)为R上的奇函数,所以f(-x)=-f(x),f(0)=0.因为f(x+2)为偶函数,所以f(x+2)=f(-x+2),所以f(x+4)=f(-x)=-f(x),所以f(x+8)=f(x),即函数f(x)的周期为8,故f(8)+f(9)=f(0)+f(1)=1. 故选D12.f(x)是R上的偶函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x2,则函数y=f(x)-|log5x|的零点个数为( )A.4 B.5 C.8 D.10解:由零点的定义可得f(x)=|log5x|,两个函数图象如图,总共有5个交点,所以共有5个零点。
函数周期性的题型和解题方法

函数周期性的题型和解题方法在高一数学教材中,函数的基本性质重点讲了函数的单调性和奇偶性,对于函数的另一个重要性质——周期性却基本没怎么涉及,但是不管是平时考试还是高考,函数周期性都是非常重要的考点,并且以不同方式告诉函数的周期。
在函数周期性的学习中,我们首先要能快速识别给出的函数是否是周期函数,其次需要学会利用函数周期性来解题。
一、判断周期函数若f(x+T)=f(x),那么f(x)就是以T为周期的周期函数。
在学习过程中,需要重点掌握以下几个函数的周期:①f(x+a)=f(x+b),T=|a-b|;特别地,f(x+a)=f(x-a),T=|2a|;②f(x+a)=-f(x),T=|2a|;③f(x+a)=±1/f(x),T=|2a|;④若f(x)的图像有两条对称轴x=a和x=b,那么f(x)的一个周期为T=2|a-b|;⑤若f(x)的图像有两个对称中心(x1,y1)和(x2,y2),那么f(x)的一个周期为T=2|x1-x2|;⑥若f(x)的图像既是轴对称又是中心对称图形,若对称轴是x=a,对称中心是(b,c),则T=4|a-b|。
二、求值利用函数周期性求函数值,通常会告诉函数在某个区间上的解析式,但是所求的函数值是在已知区间外的,此时需要利用周期性将所求函数值转换到已知的区间内。
比如上面的例题,利用周期性将f(-6)转化为f(0),将f(6)转化为-f(-1)的值。
三、求周期求函数的周期,除了掌握周期性的定义以及(一)中所讲的几种基本类型外,作出函数也是一个非常重要的方法。
作出图像后,直接在图像上找到图像循环部分对应点的横坐标之间的最小距离就是该函数的最小正周期,也是解题中最常用到的周期值。
四、周期性+奇偶性本题中,先根据关系式f(x-4)=-f(x)算出f(x)的周期为T=8,再根据单调性和奇偶性作出满足要求的一个函数图像,并根据函数图像分析解决问题。
如果f(x)的对称轴是直线x=a,其图像与直线y=b相交于x1,x2两点,那么必有x1+x2=2a。
函数的周期性的知识点总结

函数的周期性的知识点总结一、周期函数的定义周期函数是指具有周期性的函数,即在一定的区间内,函数的数值在一定的时间间隔内重复出现。
更具体地说,对于函数f(x)来说,如果存在一个常数T>0,使得对任意的x,有f(x+T)=f(x),那么函数f(x)就是周期函数,而这个常数T被称为函数的周期。
二、周期函数的性质1. 周期函数的性质:周期函数的周期T是一个正数,且函数的周期性对于所有的自变量都成立,即对于任意的x,有f(x+T)=f(x)成立。
2. 周期函数的图像性质:周期函数的图像通常具有重复出现的特点,这使得它在图像上形成规律的波形。
3. 周期函数的特殊性质:有些周期函数具有特殊的对称性,比如正弦函数、余弦函数等。
三、周期函数的分类1. 固定周期函数:在一个确定的周期内,函数的数值是固定的,比如正弦函数、余弦函数等。
2. 变周期函数:在一个周期内,函数的数值是变化的,比如三角函数的变型函数、指数函数、对数函数等。
四、周期的求法对于周期函数,我们通常需要求解它的周期T,有以下几种方法:1. 观察法:通过观察函数的图像特征,找到函数的周期性。
2. 公式法:对于一些已知的周期函数,可以直接利用其性质和公式来求解周期。
3. 方程求解法:将周期函数的周期T代入函数的周期性公式中,得到关于T的方程,然后求解方程得到周期T。
五、周期函数的图像特征1. 周期函数的波形特点:周期函数的图像通常呈现出规律性的波形,如正弦函数、余弦函数的波形特点。
2. 周期函数的振幅:周期函数的振幅代表了波形的最大振幅,它决定了函数波形的高低。
3. 周期函数的相位:周期函数的相位代表了波形的平移特征,它决定了函数波形的水平位置。
六、周期函数的应用周期函数在很多领域都有重要的应用,如物理、工程、经济等,常见的应用包括:1. 物理波动:周期函数常常用于描述物理中的波动现象,如声波、光波等。
2. 电路分析:在电路分析中,周期函数可用于描述电流、电压的周期性变化。
抽象函数解题方法与技巧

抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=fx ,满足fx+a=fx -a 或fx -2a=fxa >0恒成立,则y=fx 是周期为2a 的周期函数;2、若y=fx 的图像关于直线x=a 和x=b 对称,则函数y=fx 是周期为2|a -b|的周期函数;3、若y=fx 的图像关于点a,0和b,0对称,则函数y=fx 是周期为2|a -b|的周期函数;4、若y=fx 的图像有一个对称中心Aa,0和一条对称轴x=ba ≠b ,则函数y=fx 是周期为4|a -b|的周期函数;5、若函数y=fx 满足fa+x=fa -x ,其中a>0,且如果y=fx 为奇函数,则其周期为4a ;如果y=fx 为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=fx ,满足fx+a=-fx ()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=fx 是周期为2|a|的周期函数;7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为2a 的周期函数;7、8应掌握具体推导方法,如7 函数图像的对称性:1、若函数y=fx 满足fa+x=fb -x ,则函数y=fx 的图像关于直线2a b x +=对称;2、若函数y=fx 满足fx=f2a -x 或fx+a=fa -x ,则函数y=fx 的图像关于直线x=a 对称;3、若函数y=fx 满足fa+x+fb -x=c ,则y=fx 的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线fx,y=0关于点a,b 的对称曲线的方程为f2a -x,2b -y=0; 5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 ()()()()()()()1111212112()()11f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=fx 定义在实数集上,则y=fx+a 与y=fb -x 的图像关于直线2b a x -=对称;7、若函数y=fx 有反函数,则y=fa+x 和y=f -1x+a 的图像关于直线y=x+a 对称;一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f1+sinx=2+sinx+cos 2x , 求fx二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;例2..232|)(:|,)1(2)(),)(,(≥=-=x f x x f x f x f x f(x)y 求证且为实数即是实数函数设三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题; 例3.已知fx 是二次函数,且fx+1+fx -1=2x 2-4x ,求fx .四、赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决; 例4.对任意实数x,y ,均满足fx+y 2=fx+2fy 2且f1≠0,则f2001=_______. 例5.已知fx 是定义在R 上的不恒为零的函数,且对于任意的实数a,b 都满足 fab=afb+bfa. 1求f0,f1的值;2判断fx 的奇偶性,并证明你的结论;五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例6.设函数fx 对任意实数x,y ,都有fx+y=fx+fy ,若x>0时fx<0,且f1= -2, 求fx 在-3,3上的最大值和最小值;例7.定义在R +上的函数fx 满足: ①对任意实数m ,fx m =mfx ; ②f2=1. 1求证:fxy=fx+fy 对任意正数x,y 都成立; 2证明fx 是R +上的单调增函数; 3若fx+fx -3≤2,求x 的取值范围;六、递推法 对于定义在正整数集N 上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解.例8.已知fx 是定义在R 上的函数,f1=1,且对任意x ∈R 都有fx+5≥fx+5,fx+1≤fx+1;若gx=fx+1-x ,则g2002=_________.模型法模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法; 应掌握下面常见的特殊模型:=_____________ 例11.设定义在R 上的函数fx ,满足当x>0时,fx>1,且对任意x,y ∈R ,有fx+y=fxfy,f1=2 1解不等式f3x -x 2>4;2解方程fx 2+12fx+3=f2+1 例12.已知函数fx 对任何正数x,y 都有fxy=fxfy ,且fx ≠0,当x>1时,fx<1;试判断fx 在0,+∞上的单调性,并说明理由;函数性质练习1. 已知函数为偶函数,则的值是A. B. C. D.2. 若偶函数在上是增函数,则下列关系式中成立的是)127()2()1()(22+-+-+-=m m x m x m x f m 1234)(x f (]1,-∞-A. B.C. D.3. 如果奇函数在区间 上是增函数且最大值为,那么在区间上是A. 增函数且最小值是B. 增函数且最大值是C. 减函数且最大值是D. 减函数且最小值是4. 设是定义在上的一个函数,则函数在上一定是 A. 奇函数 B. 偶函数 C. 既是奇函数又是偶函数 D. 非奇非偶函数5. 下列函数中,在区间上是增函数的是A. B. C. D. 6. 函数是A. 是奇函数又是减函数B. 是奇函数但不是减函数C. 是减函数但不是奇函数D. 不是奇函数也不是减函数7. 设奇函数的定义域为,若当时,的图象如右图,则不等式的解是8. 函数________________.9. 已知,则函数的值域是.10. 若函数是偶函数,则的递减区间是 .11. 下列四个命题 1; 2函数是其定义域到值域的映射;)2()1()23(f f f <-<-)2()23()1(f f f <-<-)23()1()2(-<-<f f f )1()23()2(-<-<f f f )(x f [3,7]5)(x f []3,7--5-5-5-5-)(x f R )()()(x f x f x F --=R ()0,1x y =x y -=3xy 1=42+-=x y )11()(+--=x x x x f )(x f []5,5-[0,5]x ∈)(x f ()0f x <2y x =+[0,1]x ∈y =2()(2)(1)3f x k x k x =-+-+)(x f ()f x =3函数的图象是一直线;4函数的图象是抛物线,其中正确的命题个数是____________.12. 已知函数的定义域为,且同时满足下列条件:1是奇函数;2在定义域上单调递减;3求的取值范围.抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=fx ,满足fx+a=fx -a 或fx -2a=fxa >0恒成立,则y=fx 是周期为2a 的周期函数;2、若y=fx 的图像关于直线x=a 和x=b 对称,则函数y=fx 是周期为2|a -b|的周期函数;3、若y=fx 的图像关于点a,0和b,0对称,则函数y=fx 是周期为2|a -b|的周期函数;4、若y=fx 的图像有一个对称中心Aa,0和一条对称轴x=ba ≠b ,则函数y=fx 是周期为4|a -b|的周期函数;5、若函数y=fx 满足fa+x=fa -x ,其中a>0,且如果y=fx 为奇函数,则其周期为4a ;如果y=fx 为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=fx ,满足fx+a=-fx ()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=fx 是周期为2|a|的周期函数;7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为2a 的周期函数;7、8应掌握具体推导方法,如7 函数图像的对称性:1、若函数y=fx 满足fa+x=fb -x ,则函数y=fx 的图像关于直线2a b x +=对称;2、若函数y=fx 满足fx=f2a -x 或fx+a=fa -x ,则函数y=fx 的图像关于直线x=a 对称;2()y x x N =∈22,0,0x x y x x ⎧≥⎪=⎨-<⎪⎩()f x ()1,1-()f x ()f x 2(1)(1)0,f a f a -+-<a ()()()()()()()1111212112()()11f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++3、若函数y=fx 满足fa+x+fb -x=c ,则y=fx 的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线fx,y=0关于点a,b 的对称曲线的方程为f2a -x,2b -y=0; 5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=fx 定义在实数集上,则y=fx+a 与y=fb -x 的图像关于直线2b a x -=对称;7、若函数y=fx 有反函数,则y=fa+x 和y=f -1x+a 的图像关于直线y=x+a 对称;二、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例2. 已知f1+sinx=2+sinx+cos 2x , 求fx解:令u=1+sinx ,则sinx=u -1 0≤u ≤2,则fu=-u 2+3u+1 0≤u ≤2 故fx=-x 2+3x+1 0≤x ≤2二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;例2..232|)(:|,)1(2)(),)(,(≥=-=x f x x f x f x f x f(x)y 求证且为实数即是实数函数设解:xx x f x x f x f x x 323)(,1)(2)1(,1--==-联立方程组,得得代换用三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题; 例3.已知fx 是多项式函数,且fx+1+fx -1=2x 2-4x ,求fx . 解:由已知得fx 是二次多项式,设fx=ax 2+bx+c a≠0 代入fx+1=ax+12+bx+1+c=ax 2+2a+bx+a+b+c fx -1= ax -12+bx -1+c=ax 2+ b -2ax+a -b+c∴fx+1+ fx -1=2ax 2+2bx+2a+2c=2x 2-4x比较系数得:a=1,b= -2,c= -1 , fx=x 2-2x -1.四、赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决; 例4.对任意实数x,y ,均满足fx+y 2=fx+2fy 2且f1≠0,则f2001=_______. 解:令x=y=0,得:f0=0,令x=0,y=1,得f0+12=f0+2f12,∵f1≠0 ∴f1= . 令x=n,y=1,得fn+1=fn+2f12=fn+ 即fn+1-fn = 12,故fn = 2n ,f2001= 20012例5.已知fx 是定义在R 上的不恒为零的函数,且对于任意的实数a,b 都满足 fab=afb+bfa. 1求f0,f1的值;2判断fx 的奇偶性,并证明你的结论; 3若f2=2,u n =f2n n ∈N ,求证:u n+1>u n n ∈N . 解:1令a=b=0,得f0=0,令a=b=1,得f1=0.2fx 是奇函数;因为:令a=b=-1,得f -1-1=-f -1-f -1,f -1=0, 故f -x=f -1x= -fx+xf -1= -fx ,故fx 为奇函数. 3先用数学归纳法证明:u n =f2n >0 n ∈N 略五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例6.设函数fx 对任意实数x,y ,都有fx+y=fx+fy ,若x>0时fx<0,且f1= -2,求fx 在-3,3上的最大值和最小值;解:令x=y=0,得f0=0,令y=-x ,得f -x+fx=f0=0,即fx 为奇函数. 设x 1<x 2,则x 2-x 1>0,由已知得fx 2-x 1<0,故fx 2=fx 2-x 1+x 1=fx 2-x 1+fx 1< fx 1 所以fx 是R 上的减函数,又f3=f1+f2=3f1=-6,f -3=6 故fx 在-3,3上的最大值为6,最小值为-6.例7.定义在R +上的函数fx 满足: ①对任意实数m ,fx m =mfx ; ②f2=1. 1求证:fxy=fx+fy 对任意正数x,y 都成立; 2证明fx 是R +上的单调增函数; 3若fx+fx -3≤2,求x 的取值范围;解:1令x=2m ,y=2n ,其中m,n 为实数,则fxy=f2m+n =m+nf2=m+n .1212又fx+fy=f2m +f2n =mf2+nf2=m+n ,所以fxy=fx+fy 2证明:设0<x 1<x 2,可令m<n 且使x 1=2m ,x 2=2n 由1得fx 1-fx 2=12x f x ⎛⎫ ⎪⎝⎭=f2m -n=m -nf2=m -n<0故fx 1<fx 2,即fx 是R +上的增函数;3由fx+fx -3≤2及fx 的性质,得fxx -3≤2f2=f4 解得 3<x ≤4;六、递推法 对于定义在正整数集N 上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解.例8.已知fx 是定义在R 上的函数,f1=1,且对任意x ∈R 都有fx+5≥fx+5,fx+1≤fx+1;若gx=fx+1-x ,则g2002=_________.解:由fx+1≤fx+1得fx+5≤fx+4+1≤fx+3+2≤fx+2+3≤fx+1+4 又∵fx+5≥fx+5 ∴fx+5≤fx+1+4 ∴fx+1≤fx+1 又∵fx+1≤fx+1 ∴fx+1=fx+1又∵f1=1 ∴fx=x gx=fx+1-x=1,故g2002=1;模型法模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法; 应掌握下面常见的特殊模型:=_____________ 分析:因为函数fx 恒满足f2+x= f2-x ,方程fx=0有5个实根,可以将该函数看成是类似于二次函数y=kx -22为模型引出解题思路,即函数的对称轴是x=2,并且函数在f2=0,其余的四个实数根关于x=2对称 解:因为实数集上的函数fx 恒满足f2+x= f2-x ,方程fx=0有5个实根,所以函数关于直线x=2对称,所以方程的五个实数根也关于直线x=2对称,其中有一个实数根为2,其它四个实数根位于直线x=2两侧,关于直线x=2对称,则这5个根之和为10;例11.设定义在R 上的函数fx ,满足当x>0时,fx>1,且对任意x,y ∈R ,有fx+y=fxfy,f1=2 1解不等式f3x -x 2>4;2解方程fx 2+12fx+3=f2+1 分析:可联想指数函数fx=a x ;解:1先证fx>0,且单调递增,因为fx=fx+0=fxf0,x>0时fx>1,所以f0=1 对于任意x<0,则-x>0,fxf -x=fx -x=f0=1,∴fx=()1f x - ∵-x>0,f -x>1 ∴0<fx<1 综上所述 fx>0 任取x 1,x 2∈R 且x 1<x 2,则x 2-x 1>0,fx 2-x 1>1, 所以fx 1-fx 2=fx 2-x 1+x 1-fx 1=fx 2-x 1fx 1-fx 1=fx 1fx 2-x 1-1>0 所以x ∈R 时,fx 为增函数;不等式f3x -x 2>4可化为3x -x 2>2 解得:{x|1<x<2}2f1=2,f2=4,f3=8,原方程可化为:fx 2+4fx -5=0,解得fx=1或fx=-5舍 由1得x=0;例12.已知函数fx 对任何正数x,y 都有fxy=fxfy ,且fx ≠0,当x>1时,fx<1;试判断fx 在0,+∞上的单调性,并说明理由;分析:可联想幂函数 fx=x n 解:对x ∈R +,有fx=20ff =≥,又fx ≠0,故fx>0设x 1,x 2∈R +,且x 1<x 2,则211x x >,则()()()()()2211211211111x x f x f f x f x x x x f f x f x f x x ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭===< ⎪⎝⎭所以fx 1>fx 2,故fx 在R +上为减函数;函数性质答案1. B 奇次项系数为2. D3. A 奇函数关于原点对称,左右两边有相同的单调性4. A5. A 在上递减,在上递减,在上递减,6. A为奇函数,而为减函数. 7. 奇函数关于原点对称,补足左边的图象8. 是的增函数,当时,9. 该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大10.11. 1,不存在;2函数是特殊的映射;3该图象是由离散的点组成的;4两个不同的抛物线的两部分组成的,不是抛物线.12. 解:,则,0,20,2m m -==3(2)(2),212f f =--<-<-()()()()F x f x f x F x -=--=-3y x =-R 1y x=(0,)+∞24y x =-+(0,)+∞()(11)(11)()f x x x x x x x f x -=----+=+--=-222,12,01(),2,102,1x x x x f x x x x x -≥⎧⎪-≤<⎪=⎨-≤<⎪⎪<-⎩(](2,0)2,5-[2,)-+∞1,x y ≥-x 1x =-min 2y =-[)0,+∞210,1,()3k k f x x -===-+121x x ≥≤且22(1)(1)(1)f a f a f a -<--=-2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩∴01a <<。
函数周期性的判断及应用

函数周期性的判断及应用函数的周期性是指函数在某一范围内呈现出重复的规律性。
周期性的判断主要通过函数的图像或者函数的表达式进行分析。
在数学中,周期性函数是一类非常重要的函数,它们在各个领域有着广泛的应用。
首先我们来讨论如何判断一个函数是否是周期性函数。
一个函数f(x)的周期性可以由以下两种方法进行判断:1. 通过观察函数图像:根据函数图像的规律来判断函数是否具有周期性。
如果函数图像在某一范围内呈现出重复的规律性,则说明函数是周期性函数。
例如,正弦函数sin(x)和余弦函数cos(x)具有周期性,它们的图像在任意区间长度为2π的范围内都重复。
同样的道理,周期为T的函数可以通过观察函数图像在T范围内是否重复来判断。
2. 通过函数表达式:根据函数的表达式来推测函数的周期性。
一些特定的函数在函数表达式中就包含周期性的特征,如三角函数、指数函数和对数函数等。
这些函数具有明确的周期性。
例如,sin(x)和cos(x)的周期都是2π,可以在函数表达式中直接看出。
对数函数ln(x)的周期为e,指数函数e^x的周期为ln(a),其中a是正实数。
除了以上两种方法之外,还可以通过计算周期性函数的周期来判断。
周期性函数的周期可以通过函数图像上两个相邻波峰或者波谷的横坐标差得出。
接下来我们来讨论周期性函数的应用。
周期性函数在各个领域都有广泛的应用,其中包括:1. 信号处理:在电信号处理中,周期性函数被广泛用于信号的表示和分析。
例如,正弦函数和余弦函数可以用来表示周期性电信号的波形。
傅里叶变换是一种常用的信号处理方法,它可以将任意信号分解成不同频率的正弦波的叠加。
周期性函数在傅里叶变换中发挥着重要的作用。
2. 振动和波动现象:周期性函数在物理学中的振动和波动现象的描述中发挥着重要的作用。
例如,弹簧振子的运动可以通过正弦函数来描述。
波动现象如水波、光波以及声波等,也可以通过周期性函数进行描述和分析。
3. 经济学和金融学:周期性函数在经济学和金融学中有很多应用。
函数的周期性和对称性(解析版)

专题二:函数的周期性和对称性【高考地位】函数的周期性和对称性是函数的两个基本性质。
在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。
因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。
【方法点评】一、函数的周期性求法 使用情景:几类特殊函数类型解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题. 例1 (1) 函数)(x f 对于任意实数x 满足条件)(1)2(x f x f =+,若5)1(-=f ,则=))5((f f ( ) A .5- B .5 C .51 D .51- 【答案】D考点:函数的周期性.(2) 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2,则()=2016f ( )A 、-12B 、-16C 、-20D 、0 【答案】A试题分析:因为()()5f x f x +=-,所以()()()105f x f x f x +=-+=,()f x 的周期为10,因此()()()()20164416412f f f =-=-=--=-,故选A .考点:1、函数的奇偶性;2、函数的解析式及单调性.【点评】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)求函数周期的方法【变式演练1】已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B【变式演练2】定义在R 上的函数()f x 满足()()[)20,0,2f x f x x ++=∈时,()31xf x =-,则()2015f 的值为( )A.-2B.0C.2D.8 【答案】A试题分析: 由已知可得⇒=+-=+)()2()4(x f x f x f ()f x 的周期⇒=4T ()2015f ==)3(f2)1(-=-f ,故选A.考点:函数的周期性.【变式演练3】定义在R 上的偶函数()y f x =满足(2)()f x f x +=-,且在[2,0]x ∈-上为增函数,3()2a f =,7()2b f =,12(log 8)c f =,则下列不等式成立的是( )A .a b c >>B .b c a >>C .b a c >>D .c a b >> 【答案】B试题分析:因为定义在R 上的偶函数()y f x =在[2,0]x ∈-上为增函数,所以在[0,2]x ∈上单调递减,又(4)()f x f x +=,所以()()1271(),(log 8)3122b f f c f f f ⎛⎫====-= ⎪⎝⎭,又13122<<,所以b c a >>.考点:1.偶函数的性质;2.函数的周期性. 二、函数的对称性问题 使用情景:几类特殊函数类型 解题模板:记住常见的几种对称结论:第一类 函数)(x f 满足()()f x a f b x +=-时,函数()y f x =的图像关于直线2a bx +=对称; 第二类 函数)(x f 满足()()c f x a f b x ++-=时,函数()y f x =的图像关于点(,)22a b c+对称;第三类 函数()y f x a =+的图像与函数()y f b x =-的图像关于直线2b ax -=对称.例2 .(从对称性思考)已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B【易错点晴】函数()f x 满足),(-)-(x f x f =则函数关于),(00中心对称,(3)()f x f x -=,则函数关于32=x 轴对称,常用结论:若在R 上的函数()f x 满足)()(),()(x b f x b f x a f x a f +-=+-=+,则函数)(x f 以||4b a -为周期.本题中,利用此结论可得周期为632-04=⨯,进而(2019)(3)f f =,)3(f 需要回到本题利用题干条件赋值即可. 例3 已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+ ⎪⎝⎭,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( )A .669B .670C .2008D .1 【答案】D试题分析:由()32f x f x ⎛⎫=-+⎪⎝⎭得()()3f x f x =+,又()()11,02f f -==-, (1)(13)(2)f f f ∴-=-+=,(0)(3)f f =,()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,所以()1131()()(1),(1)(2)(3)0222f f f f f f f -=--=-+=∴++=,由()()3f x f x =+可得()()()()()()()123...2008669(123)(1)(1)(1)1f f f f f f f f f f ++++=⨯+++==-=,故选D.考点:函数的周期性;函数的对称性. 例4 已知函数21()(,g x a xx e e e=-≤≤为自然对数的底数)与()2ln h x x =的图像上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .21[1,2]e + B .2[1,2]e - C .221[2,2]e e +-D .2[2,)e -+∞ 【答案】B考点:利用导数研究函数的极值;方程的有解问题.【变式演练4】定义在R 上的奇函数)(x f ,对于R x ∈∀,都有)43()43(x f x f -=+,且满足2)4(->f ,m f 3)2(-=,则实数m 的取值范围是 .试题分析:由33()()44f x f x +=-,因此函数()f x 图象关于直线34x =对称,又()f x 是奇函数,因此它也是周期函数,且3434T =⨯=,∵(4)2f >-,∴(4)(4)2f f -=-<,∴(2)(232)(4)f f f =-⨯=-,即32m m-<,解得103x x <-<<或.考点:函数的奇偶性、周期性.【高考再现】1. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C.考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.2. 【2016高考山东理数】已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2【答案】D考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5()(1)2f f -+= .【答案】-2考点:函数的奇偶性和周期性.【名师点睛】本题考查函数的奇偶性,周期性,属于基本题,在求值时,只要把5()2f -和(1)f ,利用奇偶性与周期性化为(0,1)上的函数值即可.5. 【2016高考江苏卷】设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是 .【答案】25-【解析】51911123()()()()22222255f f f f a a -=-==⇒-+=-⇒=,因此32(5)(3)(1)(1)155f a f f f ===-=-+=-考点:分段函数,周期性质【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值. 【反馈练习】1. 【2016届云南昆明一中高三仿真模拟七数学,理4】设函数()y f x =定义在实数集R 上,则函数()y f a x =-与()y f x a =-的图象( )A .关于直线0y =对称B .关于直线0x =对称C .关于直线y a =对称D .关于直线x a =对称 【答案】D满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()2015f =( )A .-2B .2C .-98D .98 【答案】A试题分析:由()()4f x f x +=得()f x 的周期⇒=4T ()2015(3)(1)(1)2f f f f ==-=-=-,故选A. 考点:1、函数的奇偶性;2、函数的周期性.3. 【2017届河南新乡一中高三9月月考数学,文8】定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f <<C .(64)(49)(81)f f f <<D .(64)(81)(49)f f f << 【答案】A 【解析】试题分析:因为(3)()f x f x -=-,所以()(6)(3)f x f x f x -=--=,及()f x 是周期为6的函数,结合()f x 是偶函数可得,()()()()()(49)1,(64)22,(81)33f f f f f f f f ==-==-=,再由12,[0,3]x x ∀∈且12x x ≠,1212()()0f x f x x x ->-得()f x 在[0,3]上递增,因此(1)(2)(3)f f f <<,即(49)(64)(81)f f f <<,故选A .考点:1、函数的周期性;2、奇偶性与单调性的综合.4. 【2017届安徽合肥一中高三上学期月考一数学试卷,文12】已知定义在R 上的函数()f x 满足:(1)y f x =-的图象关于(1,0)点对称,且当0x ≥时恒有31()()22f x f x -=+,当[0,2)x ∈时,()1xf x e =-,则(2016)(2015)f f +-=( )A .1e -B .1e -C .1e --D .1e + 【答案】A试题分析:(1)y f x =-的图象关于(1,0)点对称,则()f x 关于原点对称. 当0x ≥时恒有31()()22f x f x -=+即函数()f x 的周期为2.所以()()(2016)(2015)011f f f f e +-=-=-. 考点:函数的单调性、周期性与奇偶性,分段函数.5. 【2016-2017学年贵州遵义四中高一上月考一数学试卷,理11】已知函数2()(12)f x a x x =-≤≤与()2g x x =+的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .9[,)4-+∞ B .9[,0]4- C .[2,0]- D .[2,4]【解析】考点:构造函数法求方程的解及参数范围.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】若对正常数m 和任意实数x ,等式1()()1()f x f x m f x ++=-成立,则下列说法正确的是( )A .函数()f x 是周期函数,最小正周期为2mB .函数()f x 是奇函数,但不是周期函数C .函数()f x 是周期函数,最小正周期为4mD .函数()f x 是偶函数,但不是周期函数 【答案】C考点:函数的周期性.7. 【2017届四川成都七中高三10月段测数学试卷,文10】 函数()f x 的定义域为R ,以下命题正确的是( ) ①同一坐标系中,函数(1)y f x =-与函数(1)y f x =-的图象关于直线1x =对称;②函数()f x 的图象既关于点3(,0)4-成中心对称,对于任意x ,又有3()()2f x f x +=-,则()f x 的图象关于直线32x =对称; ③函数()f x 对于任意x ,满足关系式(2)(4)f x f x +=--+,则函数(3)y f x =+是奇函数. A .①② B .①③ C .②③ D .①②③ 【答案】D 【解析】①正确,因为函数()x f y =与()x f y -=关于y 轴对称,而()1-=x f y 和()x f y -=1都是()x f y =与()x f y -=向右平移1个单位得到的,所以关于直线1=x 对称; ②正确,因为函数关于点⎪⎭⎫ ⎝⎛043-,成中心对称,所以()x f x f -=⎪⎭⎫⎝⎛--23,而3()()2f x f x +=-,所以⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛--x f x f 2323,即()()x f x f =-,又根据3()()2f x f x +=-,可得函数的周期3=T ,又有()()x f x f =-,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+232323x f x f x f ,所以函数关于直线23-=x 对称;③正确,因为()()3242=+-++x x ,所以函数()x f 关于点()0,3对称,而函数()3+=x f y 是函数()x f y =向左平移3个单位得到,所以函数()3+=x f y 是奇函数.故3个命题都正确,故选D. 考点:抽象函数的性质8. 【2015-2016学年东北育才学校高二下段考二试数学,文12】函数⎪⎩⎪⎨⎧≥<++=)0(e 2)0(142)(x2x x x x x f 的图像上关于原点对称的点有( )对A. 0B. 2C. 3D. 无数个 【答案】B试题分析:作出函数⎪⎩⎪⎨⎧≥<++=)0(e2)0(142)(x 2x x x x x f 的图象如图所示,再作出2241y x x =++关于原点对称的图象,记为曲线C .容易发现与曲线C 有且只有两个不同的交点,所以满足条件的对称点有两对,即图中的,A B 就是符合题意考点:函数的图象与性质及应用.9. 【2015-2016学年东北育才学校高二下段考二试数学,文7】定义在实数集R 上的函数()f x 满足()()20f x f x ++=,(4)()f x f x -=.现有以下三种叙述:①8是函数()f x 的一个周期;②()f x 的图象关于直线2x =对称;③()f x 是偶函数.其中正确的是( )A .②③ B. ①② C .①③ D. ①②③ 【答案】D考点:函数周期性、对称性和奇偶性.。
【高中数学函数专题】函数的周期性(解析版)

函数的周期专题六性1.周期函数的定义对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x );如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.函数周期性常用的结论结论1:若f (x +a )=f (x -a ),则f (x )的一个周期为2a ;结论2:若f (x +a )=-f (x ),则f (x )的一个周期为2a ;结论3:若f (x +a )+f (x )=c (a ≠0),则f (x )的一个周期为2a ;结论4:若f (x )=f (x +a )+f (x -a )(a ≠0),则f (x )的一个周期为6a ;结论5:若f (x +a )=1f (x ),则f (x )的一个周期为2a ;结论6:若f (x +a )=-1f (x ),则f (x )的一个周期为2a ;结论7:若函数f (x )关于直线x =a 与x =b 对称,则f (x )的一个周期为2|b -a |.结论8:若函数f (x )关于点(a ,0)对称,又关于点(b ,0)对称,则f (x )的一个周期为2|b -a |.结论9:若函数f (x )关于直线x =a 对称,又关于点(b ,0)对称,则f (x )的一个周期为4|b -a |.结论7—结论9的记忆:两次对称成周期,两轴两心二倍差,一轴一心四倍差.总规律:在函数的奇偶性、对称性、周期性中,知二断一.即这三条性质中,只要已知两条,则第三条一定成立.考点一已知函数的周期性(显性的),求函数值【方法总结】利用函数的周期性,可将其他区间上的求值等问题,转化到已知区间上,进而解决问题.【例题选讲】[例1](1)若f (x )是R 上周期为2的函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=__________.答案-1解析由f (x +2)=f (x )可得f (3)-f (4)=f (1)-f (2)=1-2=-1.(2)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )x 2-2,-2≤x ≤0,,0<x <1,则=________.答案14解析由题意可得-2=14,=14.(3)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )+a ,-1≤x <0,|25-x|,0≤x <1,其中a ∈R .若5(2f -=9(2f ,则f (5a )的值是________.答案-25解析:由题意可得5()2f -==-12+a,9()2f =|25-12|=110,则-12+a =110,a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.【高中数学函数专题】(4)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)cosπx2,0<x≤2,x+12|,-2<x≤0,则f(f(15))的值为________.答案22解析由函数f(x)满足f(x+4)=f(x)(x∈R),可知函数f(x)的周期是4,所以f(15)=f(-1)=|-1+12|=12,所以f(f(15))=cosπ4=22.(5)定义在R上的函数f(x),满足f(x+5)=f(x),当x∈(-3,0]时,f(x)=-x-1,当x∈(0,2]时,f(x)=log2x,则f(1)+f(2)+f(3)+…+f(2019)的值等于()A.403B.405C.806D.809答案B解析定义在R上的函数f(x),满足f(x+5)=f(x),即函数f(x)的周期为5.又当x∈(0,2]时,f(x)=log2x,所以f(1)=log21=0,f(2)=log22=1.当x∈(-3,0]时,f(x)=-x-1,所以f(3)=f(-2)=1,f(4)=f(-1)=0,f(5)=f(0)=-1.故f(1)+f(2)+f(3)+…+f(2019)=403×[f(1)+f(2)+f(3)+f(4)+f(5)]+f(2016)+f(2017)+f(2018)+f(2019)=403×1+f(1)+f(2)+f(3)+f(4)=403+0+1+1+0=405.【对点训练】1.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.1.答案7解析因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,∴f(3)=f(5)=f(1)=0,故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.2.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)1≤x<0,0≤x≤1,其中a,b∈R.若=a+3b的值为________.2.答案-10解析因为f(x)是定义在R上且周期为2的函数,所以f f(-1)=f(1),故=,从而12b+212+1=-12a+1,即3a+2b=-2,①.由f(-1)=f(1),得-a+1=b+22,即b=-2a,②.由①②得a=2,b=-4,从而a+3b=-10.3.已知函数f(x)(1-x),0≤x≤1,-1,1<x≤2,如果对任意的n∈N*,定义f n(x)={[()]}n ff f f x⋅⋅⋅个,那么f2019(2)的值为()A.0B.1C.2D.33.答案C解析∵f1(2)=f(2)=1,f2(2)=f(1)=0,f3(2)=f(0)=2,f4(2)=f(2)=1,∴f n(2)的值具有周期性,且周期为3,∴f2019(2)=f3×673(2)=f3(2)=2,故选C.4.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2022)=__________.4.答案337解析由f(x+6)=f(x)可知,函数f(x)的周期为6,由已知条件可得f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以在一个周期内有f(1)+f(2)+f(3)+…+f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+…+f(2022)=337×1=337.5.已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,f(6)=()A.-2B.-1C.0D.25.答案D解析当x>12时,由可得当x>0时,f(x)=f(x+1),所以f(6)=f(1),而f(1)=-f(-1),f(-1)=(-1)3-1=-2,所以f(6)=f(1)=2,故选D.6.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2019)+f(2020)=()A.0B.2C.3D.46.答案B解析∵y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数.令x=-1,则f(-1+2)-f(-1)=2f(1),即f(1)-f(1)=2f(1)=0,即f(1)=0.则f(x+2)-f(x)=2f(1)=0,即f(x+2)=f(x),即函数的周期是2,又f(0)=2,则f(2019)+f(2020)=f(1)+f(0)=0+2=2,故选B.考点二已知函数的周期性(隐性1),求函数值【方法总结】已知函数的周期性(隐性1),可利用周期性的性质结论1到结论6,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例2](1)已知定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x),-1<x≤0,1,0<x≤1,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)答案D解析由f(x+1)=-f(x)知f(x+2)=-f(x+1)=f(x),于是f(x)是以2为周期的周期函数,从而f(2.5)=f(0.5)=-1,f(f(2.5))=f(-1)=f(1)=-1,f(f(1.5))=f(f(-0.5))=f(1)=-1,f(2)=f(0)=1,故选D.(2)已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2018)的值为()A.2018B.-2018C.0D.4答案C解析依题意得,函数y=f(x)的图象关于直线x=0对称,因此函数y=f(x)是偶函数,且f(-2+4)=f(-2)+f(2),即f(2)=f(2)+f(2),所以f(2)=0,所以f(x+4)=f(x),即函数y=f(x)是以4为周期的函数,f(2018)=f(4×504+2)=f(2)=0.(3)已知f(x)是定义在R上的函数,并且f(x+2)=1f(x),当2≤x≤3时,f(x)=x,则f(2022)=__________.答案2解析由f(x+2)=1f(x)得f(x+4)=1f(x+2)=f(x),所以T=4,f(2022)=f(4×505+2)=f(2)=2.(4)已知定义在R上的函数f(x)满足f(2)=2-3,且对任意的x都有f(x+2)=1-f(x),则f(2020)=________.答案-2-3解析由f(x+2)=1-f(x),得f(x+4)=1-f(x+2)=f(x),所以函数f(x)的周期为4,所以f (2020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2020)=-2-3.(5)已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (1)+f (2)+f (3)+…+f (2018)的值为________.答案1348解析∵f (x +2)=-1f (x ),∴f (x +4)=-1f (x +2)=f (x ),∴函数y =f (x )的周期T =4.又x ∈(0,2]时,f (x )=2x -1,∴f (1)=1,f (2)=3,f (3)=-1f (1)=-1,f (4)=-1f (2)=-13.∴f (1)+f (2)+f (3)+…+f (2018)=504[f (1)+f (2)+f (3)+f (4)]+f (504×4+1)+f (504×4+2)=+3-11+3=1348.【对点训练】7.函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则5(2f 的值为()A .12B .14C .-14D .-127.答案A解析由f (x +1)=-f (x )得f (x +2)=f (x ),即函数f (x )的周期为2,则5()2f =2×12×=12,故选A .8.已知f (x )是定义在R 上的函数,且f (x +2)=-f (x ).当x ∈(0,2)时,f (x )=2x 2,则f (7)=()A .-2B .2C .-98D .988.答案A解析由f (x +2)=-f (x ),得f (7)=-f (5)=f (3)=-f (1)=-2.故选A .9.已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2019)=()A .5B .12C .2D .-29.答案D解析由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.10.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2014)=()A .0B .-4C .-8D .-1610.答案B解析由题意可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f (x +12)=f [(x +6)+6]=-f (x +6)=f (x ),∴函数f (x )的周期T =12.把y =f (x -1)的图象向左平移1个单位得y =f (x -1+1)=f (x )的图象,关于点(0,0)对称,因此函数f (x )为奇函数,∴f (2014)=f (167×12+10)=f (10)=f (10-12)=f (-2)=-f (2)=-4.故选B .11.已知定义在R 上的函数f (x )满足f (4)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2018)=()A .-2-3B .-2+3C .2-3D .2+311.答案A解析由f (x +2)=1-f (x )得f (x +4)=f (x ).所以函数f (x )的周期为4,所以f (2018)=f (2).又f (4)=f (2+2)=1-f (2)=2-3,所以-f (2)=12-3=2+3,即f (2)=-2-3,故选A .12.已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则________.12.答案52解析∵f (x +2)=-1f (x ),∴f (x +4)=f (x ),∴2≤x ≤3时,f (x )=x ,∴=52,∴=52.考点三已知函数的周期性(隐性2),求函数值【方法总结】已知函数的周期性(隐性2),可利用周期性的性质结论7到结论9,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例3](1)已知函数y =f (x )满足y =f (-x )和y =f (x +2)是偶函数,且f (1)=π3,设F (x )=f (x )+f (-x ),则F (3)=()A .π3B .2π3C .πD .4π3答案B解析由y =f (-x )和y =f (x +2)是偶函数知f (-x )=f (x ),且f (x +2)=f (-x +2),则f (x +2)=f (x -2).∴f (x +4)=f (x ),则y =f (x )的周期为4.所以F (3)=f (3)+f (-3)=2f (3)=2f (-1)=2f (1)=2π3.(2)函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f (0.5)=9,则f (8.5)等于()A .-9B .9C .-3D .0答案B解析因为f (x -1)是奇函数,所以f (-x -1)=-f (x -1),即f (-x )=-f (x -2).又因为f (x )是偶函数,所以f (x )=-f (x -2)=f (x -4),故f (x )的周期为4,所以f (0.5)=f (8.5)=9.故选B .(3)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为()A .2B .1C .-1D .-2解析:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1).∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A .(4)已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,则f (1)+f (2)+f (3)+f (4)+…+f (2020)=________.答案解析因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x+2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (4)=f (0)=0,f (3)=f (-1)=-f (1).在f (x +1)=f (-x +1)中,令x =1,可得f (2)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,所以f (1)+f (2)+f (3)+f (4)+…+f (2020)=0.(5)设函数f (x )是定义在R 上的奇函数,对任意实数x 有33()()22f x f x +=--成立.若f (1)=2,则f (2)+f (3)=________.答案-2解析由33()()22f x f x +=--,且f (-x )=-f (x ),知f (3+x )=f 32+-f 32-=-f (-x )=f (x ),所以y =f (x )是周期函数,且T =3是其一个周期.因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(6)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f(50)等于()A.-50B.0C.2D.50答案C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x -1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2,故选C.【对点训练】13.定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3-2x),则()A.12B.-12C.-1D.113.答案C解析∵y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(-x+1)=f(x+1)=-f(x-1),f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),则f(x)的周期是4,∴f-12=-=-12·(3-1)=-1,故选C.14.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为() A.-3B.-2C.2D.314.答案D解析因为f(x-1)是奇函数,所以f(-x-1)=-f(x-1),即f(-x)=-f(x-2).又因为f(x)是偶函数,所以f(x)=-f(x-2)=f(x-4),故f(x)的周期为4,所以f(5)+f(6)=f(1)+f(2)=0+3=3.选D.15.偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.15.答案3解析解析:因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x).又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.16.已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=________.16.答案2解析根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x),又由函数为奇函数,则f(-x)=-f(x),则有f(x)=-f(6-x)=f(x-12),则f(x)的最小正周期是12,故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.17.已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1-x),且f(1)=a,则f(2)+f(3)+f(4)=() A.0B.-a C.a D.3a17.答案B解析因为函数f(x)满足f(1+x)=f(1-x),所以f(x)关于直线x=1对称,所以f(2)=f(0),f(3)=f(-1),又f(x)是定义在R上的奇函数,所以f(0)=0,又由f(1+x)=f(1-x)可得f(x+1)=f(1-x)=-f(x-1),所以f(x+2)=-f(x),故f(x+4)=-f(x+2)=f(x),因此,函数f(x)是以4为周期的周期函数,所以f(4)=f(0),又f(1)=a,因此f(2)+f(3)+f(4)=f(0)+f(-1)+f(0)=-f(1)=-a.故选B.18.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为________.18.答案4解析∵函数y=f(x-1)的图象关于点(1,0)对称,∴f(x)是R上的奇函数,又f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),故f(x)的周期为4,∴f(2017)=f(504×4+1)=f(1)=4,∴f(2016)+f(2018)=f(2016)+f(2016+2)=f(2016)-f(2016)=0,∴f(2016)+f(2017)+f(2018)=4.。
高中数学函数周期题解题方法

高中数学函数周期题解题方法高中数学中,函数周期题是一个常见的考点。
解决这类题目需要掌握一些基本的方法和技巧。
本文将针对高中数学函数周期题解题方法进行详细的讲解,并通过具体的例子来说明。
函数周期题的一般形式为:已知函数f(x)的周期为T,求函数f(x)在某个区间的取值范围。
解决这类题目的关键是找到函数的周期T,并确定函数在一个周期内的取值范围。
首先,我们来看一个简单的例子。
已知函数f(x)的周期为π,求函数f(x)在区间[0, 3π]内的取值范围。
解题思路如下:1. 确定函数的周期T为π,即f(x+π) = f(x)。
2. 找到一个周期内的取值范围。
可以通过绘制函数图像来观察,也可以通过计算来确定。
例如,我们可以计算出f(0)、f(π)、f(2π)、f(3π)的值,然后观察它们的关系。
假设f(0) = a,那么f(π) = f(0+π) = f(π) = a,同理可得f(2π) = a,f(3π) = a。
由此可知,在一个周期内,函数f(x)的取值范围为[a, a],即函数f(x)在区间[0, 3π]内的取值范围为[a, a]。
通过这个例子,我们可以总结出解决函数周期题的一般方法:1. 确定函数的周期T。
2. 找到一个周期内的取值范围。
3. 根据给定的区间,确定函数在该区间内的取值范围。
接下来,我们来看一个稍微复杂一些的例子。
已知函数f(x)的周期为2,求函数f(x)在区间[-3, 5]内的取值范围。
解题思路如下:1. 确定函数的周期T为2,即f(x+2) = f(x)。
2. 找到一个周期内的取值范围。
可以通过绘制函数图像来观察,也可以通过计算来确定。
假设f(0) = a,那么f(2) = f(0+2) = f(2) = a,同理可得f(4) = a。
由此可知,在一个周期内,函数f(x)的取值范围为[a, a]。
3. 根据给定的区间[-3, 5],确定函数在该区间内的取值范围。
首先,我们可以计算出f(-3)、f(-1)、f(1)、f(3)、f(5)的值,然后观察它们的关系。
2020届高中数学:函数的奇偶性与周期性、对称性解题方法总结

2020届高中数学 第 1 页 共 1 页 2020届高中数学:函数的奇偶性与周期性、对称性解题方法总结1.判断函数的奇偶性时,首先要确定函数的定义域(函数的定义域关于原点对称是函数具有奇偶性的必要条件,如果函数定义域不关于原点对称,那么它不具有奇偶性),若定义域关于原点对称,再判断f (-x )与f (x )的关系,从而确定函数的奇偶性.2.奇、偶函数的定义是判断函数奇偶性的主要依据,为了方便判断函数的奇偶性,有时需要将函数进行化简,或应用定义的等价形式:f (-x )=±f (x )⇔f (-x )∓f (x )=0⇔f (-x )f (x )=±1(f (x )≠0)进行判断.3.判断函数奇偶性的方法通常有(1)定义法:根据定义判断.(2)图象法:函数的图象能够直观地反映函数的奇偶性,f (x )为奇函数的充要条件是函数f (x )的图象关于原点对称;f (x )为偶函数的充要条件是函数f (x )的图象关于y 轴对称.(3)运用奇、偶函数的运算结论.要注意定义域应为两个函数定义域的交集.4.判断周期函数的一般方法(1)定义法:应用定义法判断或证明函数是否具有周期性的关键是从函数周期的定义出发,充分挖掘隐含条件,合理赋值,巧妙转化.运用“考点梳理”栏目中有关周期的结论可简化运算.(2)公式法:若函数f (x )是周期函数,且周期为T ,则函数f (ax +b )(a ≠0)也为周期函数,且周期T ′=T |a |. 5.函数奇偶性和周期性的应用已知奇(偶)函数或周期函数在定义域的某一区间内的解析式,求函数在另一区间或整体定义域内的解析式时,一定要注意区间的转换.如:若x >0,则-x <0;若1<x <2,则3<x +2<4等.如果要研究其值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.6.解题中要注意以下性质的灵活运用(1)f (x )为偶函数⇔f (x )=f (|x |);(2)若奇函数f (x )在x =0处有定义,则f (0)=0;(3)若f (x )既是奇函数,又是偶函数,则它的图象一定在x 轴上.。
函数的奇偶性与周期性函数的奇偶性和周期性的判断与应用

函数的奇偶性与周期性函数的奇偶性和周期性的判断与应用函数是数学中的重要概念之一,它描述了不同数值之间的关系。
在研究函数时,我们可以通过判断其奇偶性和周期性来更深入地了解其性质和应用。
本文将探讨函数的奇偶性与周期性以及判断和应用的方法。
一、函数的奇偶性在数学中,一个函数被称为奇函数,当且仅当对于任意x的取值,f(-x) = -f(x)。
换句话说,奇函数在坐标原点(0,0)处对称。
而如果一个函数满足对于任意x的取值,f(-x) = f(x),则被称为偶函数。
换句话说,偶函数关于坐标原点(0,0)对称。
如何判断一个函数的奇偶性呢?我们可以采取以下方法:1. 利用函数的表达式来判断。
如果函数表达式中的x为奇次幂的情况下,其对应的系数均为负号,那么该函数就是奇函数;如果函数表达式中的x为偶次幂的情况下,其对应的系数均为正号,那么该函数就是偶函数。
例如,函数f(x) = x^3满足f(-x) = -f(x),因此是奇函数。
而函数g(x) = x^2则满足f(-x) = f(x),因此是偶函数。
2. 利用函数的图像来判断。
对于奇函数,其图像是关于原点对称的,也就是左右对称;而对于偶函数,其图像是关于y轴对称的,也就是上下对称。
通过观察函数的图像,我们可以判断其奇偶性。
函数的奇偶性在实际应用中具有重要作用。
例如,奇函数的性质使得在计算积分时,可以简化计算过程。
而偶函数在对称性的应用中,可以帮助我们更好地理解函数的行为。
二、周期性函数的奇偶性和周期性判断与应用周期性函数在数学和自然科学中广泛应用。
周期性函数是指函数在某个区间内满足f(x) = f(x+T),其中T为正常数,称为函数的周期。
对于周期性函数,我们可以利用奇偶性和图像的规律来进行判断和应用。
1. 奇偶性的判断:对于周期性函数,如果其满足f(x) = f(-x),那么它是偶函数;如果其满足f(x) = -f(-x),那么它是奇函数。
2. 周期性的判断:对于周期性函数,我们可以通过观察函数的图像来确定其周期。
函数的周期性极其解题研究

函数的周期性极其解题研究陕西省西安中学 王 扬摘要:本文就有关函数周期性问题,从它给出的形式上做了五个方面的归纳总结,并以实例介绍了处理各种类型问题的一些常用方法。
近年来,有关函数周期性的问题在数学竞赛试题及一些刊物的问题征解中屡次出现,因其问题的表现形式具有较高的抽象性、综合性,故使一般学生不易入手,在此,我们拟从问题的给出形式上作以归纳总结,同时介绍处理这类问题的一些常用方法,不妥之处请同行不吝赐教。
1. 以几何性质给出问题有些代数问题往往以函数的几何性质来刻画题目的结构,然后让学生判断该函数的周期性或再据此来解决相关问题。
例1. 若函数)(x f 在R 上有定义,且对一切实数x ,满足 )2()2(x f x f -=+,)7()7(x f x f -=+设 0)(=x f 的一个根是x=0,记0)(=x f 在区间]1000,1000[-中根的个数为N ,求N 的最小值。
(第2届美国数学邀请赛试题之一)解:∵ )2()2(+-=+x f x f ; (1) )7()7(x f x f -=+; (2)∴ )())2(2())2(2()4())3(7())3(7()10(x f x f x f x f x f x f x f =+-=-+=-=+-=++=+ ∴ 函数 )(x f y =是以10为周期的周期函数。
又 0))(0()22()22()4(==-=+=已知f f f f0)0()22()22()4()37()37()10(==-=+==-=+=f f f f f f f即 )(x f y =在(0,10)上至少有两个根,从而,)(x f y =在]1000,1000[-上至少有401个根。
本题蕴涵了如下一个一般化形式的结论:若函数)(x f y =(x ∈R )的图象关于二直线 )(,a b b x a x >==皆对称,则函数)(x f y =是以)(2a b -为周期的周期函数。
初三数学函数的周期性判断方法

初三数学函数的周期性判断方法函数是数学中的重要概念之一,而函数的周期性则是数学函数中一个重要的性质。
对于初三的学生来说,掌握函数的周期性判断方法对于解题和应用都起到了关键作用。
本文将介绍几种常见的函数周期性判断方法,帮助初三学生更好地理解和应用函数的周期性。
1. 函数的周期性概念函数的周期性是指函数图像在横轴方向上的重复性。
如果存在一个正数T,对于函数f(x)的所有x值,满足f(x+T) = f(x),则函数f(x)是周期函数,其周期为T。
2. 正弦函数和余弦函数的周期性判断正弦函数和余弦函数是初中阶段最常见的周期函数。
对于正弦函数sin(x)和余弦函数cos(x),它们的周期都是2π。
因此,只需将给定函数和sin(x)或cos(x)进行比较,若满足f(x+2π) = f(x),则函数具有周期性。
3. 多项式函数的周期性判断多项式函数是初中阶段学习的另一类常见函数。
对于多项式函数f(x),我们可以根据其次数和系数判断其周期性。
a. 若f(x)为零次函数(常数函数),即f(x) = a(a为常数),则该函数是周期函数。
由于常数函数的图像是一条水平直线,其重复周期为无穷大。
b. 若f(x)为一次函数,即f(x) = ax + b(a和b为常数),则函数f(x)是非周期函数,其图像是一条直线。
c. 若f(x)为二次及以上次数的多项式函数,即f(x) = ax^n + bx^(n-1) +...+ c(a,b,c为常数,n≥2),则函数f(x)是非周期函数。
由于二次及以上次数的多项式函数的图像通常是曲线,除非具有特殊性质,否则不具有周期性。
4. 指数函数和对数函数的周期性判断指数函数和对数函数也是初中阶段涉及的常见函数类型。
对于指数函数f(x) = a^x(a>0,a≠1),其没有周期性,即不是周期函数。
5. 反比例函数的周期性判断反比例函数也是初中阶段学习的一种函数类型。
对于反比例函数f(x) = k/x(k≠0),其没有周期性,即不是周期函数。
函数周期性在解题中的应用

函数周期性在解题中的应用函数的周期性是新教材第四章中的难点,也是高考常考的内容之一,一些学生对解周期性的问题无从下手、无所适从。
根据笔者近几年的教学实践,现将函数周期性问题的解法归纳总结如下。
解决函数周期性问题的要点是通过代换、变形,使f(x+T)=f(x)成立(其中T≠0为常数),借此确定函数的周期,然后再通过函数的其他性质去解决问题。
一、在求函数周期上的应用例1.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),则函数f(x)的一个周期是______。
解:∵ f(x+2)=-f(x),∴作代换将x换为x+2,得f[(x+2)+2]=-f(x+2),即f(x+4)=-f (x+2)=f(x),∴函数f(x)的一个周期是4。
二、在求函数值上的应用例2.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(π)=______。
解:∵x∈(-∞,+∞),f(x+2)=-f(x),故将x换为x+2得f(x+4)=-f(x+2)=f(x),∴函数f(x)是以4为周期的奇函数,∴f(π)=f(-1×4+π)= f(π-4)= f[-(4-π)]=- f(4-π)。
而4-π∈[0,1]且x∈ [0,1]时f(x)=x,∴f(π)=- f(4-π)=-(4-π)=π-4。
三、在求函数解析式上的应用例3.设奇函数f(x)是定义在R上的周期为4的周期函数,当x∈[0,2] 时,f(x)=2x-x2。
当x∈[2,4]时,求f(x)的解析式。
分析:要求x∈[2,4]时f(x)的解析式,须将x换为x+2k(k∈Z),且使x+2k∈[0,2],则可由已知条件求得f(x)的解析式。
解:∵ x∈[2,4],∴ -x∈[-4,-2], ∴4-x∈[0,2];又∵x∈[0,2] 时, f(x)=2x-x2 ∴f(4-x)=2(4-x)-(4-x)2=-x2+6x-8;又∵ f(4-x)=f(-x)=-f(x),∴-f(x) =-x2+6x-8,即 f(x)=x2-6x+8,x∈[2,4]。
高中数学解题技巧之函数周期性分析

高中数学解题技巧之函数周期性分析在高中数学中,函数周期性分析是一个重要的解题技巧,它能够帮助我们更好地理解和解决与函数周期性相关的问题。
本文将通过具体的例子,详细说明函数周期性分析的考点和应用方法,并给出一些解题技巧,希望能对高中学生和他们的父母有所帮助。
首先,我们来看一个例子。
假设有一个函数f(x),它的图像在区间[0, 2π]上呈现周期性,且满足f(x + π) = -f(x)。
我们需要分析函数f(x)的周期和性质。
首先,我们注意到f(x + π) = -f(x)这个条件,这意味着函数f(x)在每个周期内的对称轴是x = π/2。
根据这个条件,我们可以推断出函数f(x)的周期是2π。
接下来,我们可以进一步分析函数f(x)的性质。
由于函数f(x)的周期是2π,我们只需要在一个周期内进行分析即可。
我们选择[0, 2π]这个周期进行分析。
首先,我们可以找到函数f(x)的最小正周期。
最小正周期是指函数f(x)在一个周期内最小的正数值。
在本例中,函数f(x)在[0, 2π]内的最小正周期是π。
因为当x = 0时,f(x) = f(0) = 0;当x = π/2时,f(x) = f(π/2) = -f(0) = 0。
这说明函数f(x)在[0, 2π]内的最小正周期是π。
接下来,我们可以观察函数f(x)在一个周期内的变化规律。
我们可以选择一些特殊的x值进行计算,以便更好地理解函数f(x)的性质。
首先,我们计算x = 0、x = π/4、x = π/2这三个点的函数值。
当x = 0时,f(x) = f(0) = 0;当x = π/4时,f(x) = f(π/4) = -f(0) = 0;当x = π/2时,f(x) = f(π/2) = -f(0) = 0。
这说明函数f(x)在[0, 2π]内的这三个点上的函数值都是0。
接下来,我们计算x = π/8、x = 3π/8、x = 5π/8这三个点的函数值。
当x = π/8时,f(x) = f(π/8) = -f(0) = 0;当x = 3π/8时,f(x) = f(3π/8) = -f(π/4) = 0;当x = 5π/8时,f(x) = f(5π/8) = -f(π/2) = 0。
函数周期性规律及公式

函数周期性规律及公式函数是数学中的一个重要概念,它描述了一种输入输出的关系。
在实际问题中,很多现象具有一定的周期性规律,而函数周期性规律及公式恰好可以描述这种周期性。
本文将介绍函数的周期性规律以及常见的周期性函数的公式。
一、函数的周期性规律函数的周期性是指函数图像在一定区间内重复出现相同的模式。
具体来说,对于一个周期为T的函数,当自变量x从一个周期的起点变化到终点时,函数的取值会出现一个循环,然后再从起点开始重新循环。
周期性是一种重复性,可以将函数图像想象成一个周期性图像,不断重复。
函数的周期性规律可以由函数的公式来确定。
实际上,函数的周期性规律与函数的周期相关。
周期是函数重复性的基本特征,同时也决定了函数的重复间隔。
对于周期性函数来说,周期性规律可以表达成数学公式,这些公式可以用来描述函数图像的重复性。
二、常见的周期性函数公式1. 正弦函数(Sine Function)正弦函数是最常见的周期性函数之一。
它的图像可以描述成一条连续的曲线,沿着x轴周期性地上下振动。
正弦函数的周期是2π,公式为:y = A * sin(B * x + C) + D其中,A代表振幅(即最大纵向距离),B代表频率(即单位区间内的周期数),C代表相位偏移(即图像的水平位移),D代表垂直位移(即图像在y轴上的位置)。
2. 余弦函数(Cosine Function)余弦函数与正弦函数非常相似,只是相位偏移不同。
余弦函数的周期也是2π,公式为:y = A * cos(B * x + C) + D其中,A、B、C和D的含义与正弦函数相同。
3. 正切函数(Tangent Function)正切函数是另一种常见的周期性函数。
它的图像具有一系列无限多个垂直渐近线,周期为π,公式为:y = A * tan(B * x + C) + D同样,A、B、C和D分别代表振幅、频率、相位偏移和垂直位移。
除了上述三个函数以外,还有很多其他的周期性函数,如指数函数、对数函数等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的周期性及其应用解题方法
方法提炼
抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:
(1)若函数满足f(x+T)=f(x),由函数周期性的定义可知T是函数的一个周期;
(2)若满足f(x+a)=-f(x),则f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),所以2a是函数的一个周期;
!
(3)若满足f(x+a)=1/f(x),则f(x+2a)=f[(x+a)+a]=1/f(x+a)=f(x),所以2a是函数的一个周期;
(4)若函数满足f(x+a)=-1/f(x),同理可得2a是函数的一个周期;
(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);
②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.
没有等价变形而致误
'
【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性,并证明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.
>
(2)f(x)为偶函数,证明如下:
令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.
令x1=-1,x2=x,有f(-x)=f(-1)+f(x),
∴f(-x)=f(x).∴f(x)为偶函数.
(3)f(4×4)=f(4)+f(4)=2,
》
f(16×4)=f(16)+f(4)=3,
由f(3x+1)+f(2x-6)≤3,
得f[(3x+1)(2x-6)]≤f(64).
又∵f(x)在(0,+∞)上是增函数,
∴(3x+1)(2x-6)≤64.
《
∴-7/3≤x≤5.
分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,
有f(1×1)=f(1)+f(1),解得f(1)=0.
(2)f(x)为偶函数,证明如下:
…
令x1=x2=-1,
有f[(-1)×(-1)]=f(-1)+f(-1),
解得f(-1)=0.
令x1=-1,x2=x,有f(-x)=f(-1)+f(x),
∴f(-x)=f(x).∴f(x)为偶函数.
~
(3)f(4×4)=f(4)+f(4)=2,
f(16×4)=f(16)+f(4)=3.
由f(3x+1)+f(2x-6)≤3,
变形为f[(3x+1)(2x-6)]≤f(64).(*)
∵f(x)为偶函数,∴f(-x)=f(x)=f(|x|).
!
∴不等式(*)等价于f[|(3x+1)(2x-6)|]≤f(64).
又∵f(x)在(0,+∞)上是增函数,
∴|(3x+1)(2x-6)|≤64,且(3x+1)(2x-6)≠0.
解得-7/3≤x<-1/3或-1/3<x<3或3<x≤5.
∴x的取值范围是
答题指导:
等价转化要做到规范,应注意以下几点:
(1)要有明确的语言表示.如“M”等价于“N”、“M”变形为“N”.
(2)要写明转化的条件.如本例中:∵f(x)为偶函数,∴不等式(*)等价于f[|(3x+1)(2x -6)|]≤f(64).
(3)转化的结果要等价.如本例:由于f[|(3x+1)(2x-6)|]≤f(64) |(3x+1)(2x-6)|≤64,且(3x+1)(2x-6)≠0.若漏掉(3x+1)(2x-6)≠0,则这个转化就不等价了.。