2020-2021上海上海外国语大学附属浦东外国语学校初三数学上期末第一次模拟试卷附答案

合集下载

2020-2021学年上海市浦东新区九年级(上)期末数学试卷(一模)-解析版

2020-2021学年上海市浦东新区九年级(上)期末数学试卷(一模)-解析版

2020-2021学年上海市浦东新区九年级(上)期末数学试卷(一模)一、选择题(本大题共6小题,共24.0分)1.A、B两地的实际距离AB=250米,如果画在地图上的距离A′B′=5厘米,那么地图上的距离与实际距离的比为()A. 1:500B. 1:5000C. 500:1D. 5000:12.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A. 2sinαB. 2sinα C. 2cosαD. 2cosα3.下列y关于x的函数中,一定是二次函数的是()A. y=(k−1)x2+3B. y=1x2+1C. y=(x+1)(x−2)−x2D. y=2x2−7x4.已知一个单位向量e⃗,设a⃗、b⃗ 是非零向量,那么下列等式中正确的是()A. |e⃗|a⃗=a⃗B. |b⃗ |e⃗=b⃗C. 1|a⃗ |a⃗=e⃗ D. 1|a⃗ |a⃗=1|b⃗|b⃗5.如图,在△ABC中,点D、F是边AB上的点,点E是边AC上的点,如果∠ACD=∠B,DE//BC,EF//CD,下列结论不成立的是()A. AE2=AF⋅ADB. AC2=AD⋅ABC. AF2=AE⋅ACD. AD2=AF⋅AB6.已知点A(1,2)、B(2,3)、C(2,1),那么抛物线y=ax2+bx+1可以经过的点是()A. 点A、B、CB. 点A、BC. 点A、CD. 点B、C二、填空题(本大题共12小题,共48.0分)7.如果线段a、b满足ab =52,那么a−bb的值等于______ .8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是______ .9.计算:2sin30°−tan45°=______ .10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是______ 度.12. 如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA ⃗⃗⃗⃗⃗ =a ⃗ ,OB ⃗⃗⃗⃗⃗⃗ =b ⃗ ,那么向量AB ⃗⃗⃗⃗⃗ 关于a ⃗ 、b ⃗ 的分解式为______ .13. 如果抛物线y =(m +4)x 2+m 经过原点,那么该抛物线的开口方向______ .(填“向上”或“向下”)14. 如果(2,y 1)(3,y 2)是抛物线y =(x +1)2上两点,那么y 1 ______ y 2.(填“>”或“<”)15. 如图,矩形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC 长60厘米,高AH 为40厘米,如果DE =2DG ,那么DG = ______ 厘米.16. 秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt △ABC 中,∠C =90°,AC =12,BC =5,AD ⊥AB ,AD =0.4,过点D 作DE//AB 交CB 的延长线于点E ,过点B 作BF ⊥CE 交DE 于点F ,那么BF = ______ .17. 如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线C 1:y =(x −1)2−1向右平移得到新抛物线C 2,如果“平衡点”为(3,3),那么新抛物线C 2的表达式为______ .18. 如图,△ABC 中,AB =10,BC =12,AC =8,点D 是边BC 上一点,且BD :CD =2:1,联结AD ,过AD 中点M 的直线将△ABC 分成周长相等的两部分,这条直线分别与边BC 、AC 相交于点E 、F ,那么线段BE 的长为______ .三、解答题(本大题共7小题,共78.0分)19. 已知向量关系式12(a ⃗ −x ⃗ )=b ⃗ +3x ⃗ ,试用向量a ⃗ 、b ⃗ 表示向量x⃗ .20.已知抛物线y=x2+2x+m−3的顶点在第二象限,求m的取值范围.21.如图,已知AD//BE//CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB=6,BC=8.(1)求DE的值;DF(2)当AD=5,CF=19时,求BE的长.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)23.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE⋅CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图象的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP相似时,求点M的坐标.25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cos B的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.答案和解析1.【答案】B【解析】解:取米作为共同的长度单位,那么AB=250米,A′B′=5厘米=0.05米,所以A′B′AB =0.05250=15000,所以地图上的距离与实际距离的比为1:5000.故选:B.地图上的距离与实际距离的比就是在地图上的距离A′B′与实际距离250米的比值.本题考查了比例尺.注意求距离的比时,首先要把单位统一.2.【答案】A【解析】解:∵sinB=sinα=ACAB,AC=2,∴AB=ACsinα=2sinα,故选:A.根据锐角三角函数的意义即可得出答案.本题考查锐角三角函数的定义,理解锐角三角函数的意义是解决问题的前提.3.【答案】D【解析】解:A、当k=1时,不是二次函数,故此选项不合题意;B、含有分式,不是二次函数,故此选项不合题意;C、化简后y=−x−2,不是二次函数,故此选项不合题意;D、是二次函数,故此选项符合题意;故选:D.利用二次函数定义进行分析即可.此题主要考查了二次函数,关键是掌握判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.4.【答案】A【解析】解:A、|e⃗|a⃗=a⃗计算正确,故本选项符合题意.B、|b⃗ |e⃗与b⃗ 的模相等,方向不一定相同,故本选项不符合题意.C、1|a⃗ |a⃗与e⃗的模相等,方向不一定相同,故本选项不符合题意.D、1|a⃗ |a⃗与1|b⃗|b⃗ 的模相等,方向不一定相同,故错误.故选:A.根据平面向量的性质一一判断即可.本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】C【解析】解:∵DE//BC,EF//CD,∴∠AEF=∠ACD,∠ADE=∠B,又∵∠ACD=∠B,∴∠AEF=∠ADE,∴△AEF∽△ADE,∴AEAD =AFAE,∴AE2=AF⋅AD,故选项A不合题意;∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴ACAD =ABAC,∴AC2=AB⋅AD,故选项B不合题意;∵DE//BC,EF//CD,∴AEAC =AFAD,AEAC=ADAB,∴AFAD =ADAB,∴AD2=AB⋅AF,故选项D不合题意;由题意无法证明AF2=AE⋅AC,故选项C符合题意,故选:C.由相似三角形的判定和性质依次判断可求解.本题考查了相似三角形判定和性质,掌握相似三角形的判定定理是本题的关键.6.【答案】C【解析】解:∵B 、C 两点的横坐标相同,∴抛物线y =ax 2+bx +1只能经过A ,C 两点或A 、B 两点, 把A(1,2),C(2,1),代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1.解得,{a =−1b =2;把A(1,2),B(2,3),代入y =ax 2+bx +1得{a +b +1=24a +2b +1=3.解得,{a =0b =1(不合题意); ∴抛物线y =ax 2+bx +1可以经过的A ,C 两点, 故选:C .根据图象上点的坐标特征进行判断.本题主要考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式.7.【答案】32【解析】解:∵ab =52, ∴可设a =5k ,则b =2k , ∴a−b b=5k−2k 2k =32. 故答案为:32.由ab =52,可设a =5k ,则b =2k ,代入a−b b,计算即可.本题考查了比例线段,利用设k 法是解题的关键.8.【答案】2√5−2【解析】解:∵线段MN 的长为4,点P 是线段MN 的黄金分割点,MP >NP , ∴MP =√5−12MN =√5−12×4=2√5−2,故答案为:2√5−2.根据黄金分割的概念得到MP =√5−12MN ,把MN =4代入计算即可.本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的√5−12倍.【解析】解:原式=2×12−1=0. 根据特殊角的三角函数值计算.本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=12,cos30°=√32,tan30°=√33,cot30°=√3;sin45°=√22,cos45°=√22,tan45°=1,cot45°=1;sin60°=√32,cos60°=12,tan60°=√3,cot60°=√33. 10.【答案】36【解析】解:如图所示: ∵甲处看乙处为俯角36°,∴乙处看甲处为:仰角为36°, 故答案为:36.根据仰角以及俯角的定义,画出图形进而求出即可.此题主要考查了仰角与俯角的定义,仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.11.【答案】2【解析】解:连接DE , ∵AD 、BE 是△ABC 的中线, ∴DE 是△ABC 的中位线, ∴DE =12AB ,DE//AB , ∴△AFB∽△DFE ,∵AD =3, ∴AF =2, 故答案为:2.连接DE ,根据三角形中位线定理得到DE =12AB ,DE//AB ,证明△AFB∽△DFE ,根据相似三角形的性质解答即可.本题考查的是相似三角形的判定和性质、三角形中位线定理、三角形的中线的概念,掌握相似三角形的判定定理和性质定理是解题的关键.12.【答案】b ⃗ −a ⃗【解析】解:如图所示,OA ⃗⃗⃗⃗⃗ =a ⃗ ,OB ⃗⃗⃗⃗⃗⃗ =b ⃗ ,则AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =b ⃗ −a ⃗ .故答案是:b ⃗ −a ⃗ .由三角形法则可求得向量AB ⃗⃗⃗⃗⃗ 关于a ⃗ 、b ⃗ 的分解式.此题考查了平面向量的知识.注意掌握三角形法则的应用.13.【答案】向上【解析】解:∵抛物线y =(m +4)x 2+m 经过原点, ∴m =0, ∴a =4>0,∴该抛物线的开口方向向上. 故答案为:向上.根据抛物线y =(m +4)x 2+m 经过原点,可得m =0,进而可得结论.本题考查了二次函数的性质,二次函数图象上点的坐标特征,解决本题的关键是掌握二次函数的性质.14.【答案】<【解析】解:∵y =(x +1)2, ∴a =1>0, ∴抛物线开口向上,故答案为<.根据二次函数的性质得到抛物线y=(x+1)2的开口向上,对称轴为直线x=−1,则在对称轴右侧,y随x的增大而增大.本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.15.【答案】15【解析】解:∵四边形DEFG是矩形,∴DG//BC,AH⊥BC,DG=EF,∴AP⊥DG.设DG=EF=x,则GF=DE=2x,∵DG//BC,∴△ADG∽△ABC,∴APAH =DGBC,∵AH=40厘米,BC=60厘米,∴40−2 x40=x60,解得x=15.∴DG=15厘米,故答案为:15.设DG=EF=x,则GF=DE=2x,根据相似三角形对应高的比等于相似比即可求出DG的长.本题考查了相似三角形的判定与性质,矩形的性质,解决本题的关键是掌握相似三角形的判定与性质.16.【答案】2625【解析】解:如图,作CH⊥AB,BG⊥DE于点H,G,∴BG⊥AB,∵AD⊥AB,∴∠DAB=∠ABG=∠BGD=90°,∴四边形ADGB是矩形,∴BG=AD=0.4,在Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB=√AC2+BC2=√122+52=13,∵S△ABC=12×BC⋅AC=12×AB⋅CH,∴CH=BC⋅ACAB =5×1213=6013,∵DE//AB,∴∠E=∠ABC,∵∠FBE=∠ACB=90°,∴△FBE∽△ACB,∵CH⊥AB,BG⊥DE,∴BFAC =BGCH,∴BF12=0.46013,∴BF=2625.故答案为:2625.作CH⊥AB,BG⊥DE于点H,G,根据已知条件证明四边形ADGB是矩形,再根据等面积法求出CH,证明△FBE∽△ACB,利用对应高的比等于相似比即可求出BF的长.本题考查了相似三角形的判定与性质,矩形的判定与性质,等面积法,解决本题的关键是综合运用以上知识.17.【答案】y=(x−3)2−1或y=(x−7)2−1【解析】解:设将抛物线C1:y=(x−1)2−1向右平移m个单位,则平移后的抛物线解析式是y=(x−1−m)2−1,将(3,3)代入,得(3−1−m)2−1=3.整理,得4−m=±2解得m1=2,m2=6.故新抛物线C2的表达式为y=(x−3)2−1或y=(x−7)2−1.故答案是:y=(x−3)2−1或y=(x−7)2−1.设将抛物线C1:y=(x−1)2−1向右平移m个单位,则平移后的抛物线解析式是y= (x−1−m)2−1,然后将(3,3)代入得到关于m的方程,通过解方程求得m的值即可.本题主要考查了二次函数图象与几何变换,二次函数图象上点的坐标特征以及待定系数法确定函数关系式,解题的关键是理解“平衡点”的含义.18.【答案】2【解析】解:如图,∵点D是BC的中点,BC=12,∴BD:CD=2:1,∴BD=8,CD=4,过点M作MH//AC交CD于H,∴△DHM∽△DAC,∴MHAC =DHCD=DMAD,∴点M是AD的中点,∴AD=2DM,∵AC=8,∴MH8=DH4=12,∴MH=4,DH=2,过点M作MG//AB交BD于G,同理得,BG=DE=4,∵AB=10,BC=12,AC=8,∴△ABC的周长为10+12+8=30,∵过AD中点M的直线将△ABC分成周长相等的两部分,∴CE+CF=15,设BE=x,则CE=12−x,∴CF=15−(12−x)=3+x,EH=CE−CH=CE−(CD−DH)=12−x−2= 10−x,∵MH//AC,∴△EHM∽△ECF,∴MHCF =EHCE,∴43+x =10−x12−x,∴x=2或x=9,当x=9时,CF=12>AC,点F不在边AC上,此种情况不符合题意,即BD=x=2,故答案为:2.先求出BD=8,CD=4,再求出MH=4,DH=2,设BE=x,得出CE=12−x,CF= 3+x,EH=10−x,再判断出△EHM∽△ECF,得出比例式,建立方程求解,即可得出结论.此题主要考查了相似三角形的判定和性质,构造出相似三角形是解本题的关键.19.【答案】解:由12(a⃗−x⃗ )=b⃗ +3x⃗ ,得a⃗−x⃗ =2b⃗ +6x⃗ ,所以7x⃗ =a⃗−2b⃗ .所以x⃗ =17(a⃗−2b⃗ ).【解析】在已知关系式中,求出x即可解决问题.本题考查平面向量,解题的关键是理解题意,灵活运用所学知识解决问题.20.【答案】解:∵y=x2+2x+m−3=(x+1)2+m−4,∴抛物线的顶点坐标为(−1,m−4),∵抛物线y=x2+2x+m−3顶点在第二象限,∴m−4>0,∴m>4.故m的取值范围为m>4.【解析】先利用配方法得到抛物线的顶点坐标为(−1,m−4),再利用第二象限点的坐标特征得到m−4>0,然后解不等式即可.本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−b2a ,4ac−b24a).21.【答案】解:(1)∵AD//BE//CF,∴DEDF =ABAC=66+8=37;(2)过D点作DM//AC交CF于M,交BE于N,如图,∵AD//BN//CM,AC//DM,∴四边形ABND 和四边形ACMD 都是平行四边形,∴BN =AD =5,CM =AD =5,∴MF =CF −CM =19−5=14,∵NF//MF , ∴NE MF =DE DF =37, ∴NE =37MF =37×14=6,∴BE =BN +NE =5+6=11.【解析】(1)直接根据平行线分线段成比例定理求解;(2)过D 点作DM//AC 交CF 于M ,交BE 于N ,如图,易得四边形ABND 和四边形ACMD 都是平行四边形,所以BN =CM =AD =5,则MF =14,再利用NF//MF ,所以NE MF =DEDF =37,然后利用比例的性质计算出NE ,最后计算BN +NE 即可. 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 22.【答案】解:如图,过点B 作BG ⊥DE 于G ,过点C 作CH ⊥AD 于H .∵四边形ABCD 是等腰梯形,∴AB =DC ,∠BAD =∠CDA ,∴∠BAG =∠CDH ,∵∠BGA =∠CHD =90°,∴△BGA≌△CHD(AAS),∴AG =DH ,设AG =DH =x 毫米,CH =y 毫米,则有{y180+x =0.50yx =1.40, 解得{x =100y =140, ∴BC =GH =AG +AD +DH =100+180+100=380(毫米).【解析】如图,过点B作BG⊥DE于G,过点C作CH⊥AD于H.证明△BGA≌△CHD(AAS),推出AG=DH,设AG=DH=x毫米,CH=y毫米,构建方程组求解即可.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程组解决问题.23.【答案】证明:(1)∵DE⊥AB,∴∠EDB=∠ACB=90°,∴∠A+∠B=90°=∠B+∠DEB,∴∠A=∠DEB,∵CA=CD,∴∠A=∠CDA,∴∠CDA=∠DEB,∴∠CDB=∠CED,又∵∠DCE=∠DCB,∴△DCE∽△BCD,∴DCBC =CECD,∴CD2=CE⋅CB,∴CA2=CE⋅CB;(2)如图,∵∠ACE是直角三角形,点M是AE中点,∴AM=ME=CM,∴∠MCE=∠MEC,∵∠ACB=∠ADE=90°,∴点A,点C,点E,点D四点共圆,∴∠AEC=∠ADC,∴∠AEC=∠MCE=∠ADC=∠CAD,又∵∠MCE+∠ACH=90°,∴∠CAD+∠ACH=90°,∴CH ⊥AB .【解析】(1)通过证明△DCE∽△BCD ,可得DC BC =CE CD ,可得结论; (2)由直角三角形的性质可得AM =ME =CM ,进而可得∠MCE =∠MEC ,通过证明点A ,点C ,点E ,点D 四点共圆,可得∠AEC =∠ADC ,由余角的性质可得结论.本题考查了相似三角形的判定和性质,等腰三角形的性质,掌握相似三角形的判定定理是本题的关键. 24.【答案】解:(1)二次函数y =ax 2+bx +c(a ≠0)的图象经过点B(5,0)和O(0,0), ∴设二次函数的解析式为y =ax(x −5),将点A(2,4)代入y =ax(x −5)中,得4=a ×2(2−5),∴a =−23,∴二次函数的解析式为y =−23x(x −5)=−23x 2+103x ;(2)如图1,连接OP ,过点P 作PD ⊥x 轴于D ,∴∠ODP =90°,∵A(2,4)、B(5,0)和O(0,0),∴OB =5,AB =√(5−2)2+42=5,∴OB =AB ,∵BC ⊥OA ,∴AC =OC ,∠OBC =∠ABC ,∵BP =BP ,∴△OBP≌△ABP(SAS),∴∠BOP =∠BAP ,∵AC =OC ,A(2,4),∴点C(1,2),∴直线BC 的解析式为y =−12x +52①,由(1)知,二次函数的解析式为y =−23x 2+103x②,联立①②解得,{x =5y =0或{x =34y =178, ∴P(34,178),∴OD =34,PD =178, ∴cot∠BAP =cot∠BOP =PD OD =17834=176;(3)设M(2,m),∵A(2,4),B(5,0),P(34,178), ∴AM =|m −4|.OA =2√5,AB =5,BP =√(5−34)2+(0−178)2=17√58, ∵BC ⊥OA ,∴∠ACP =∠BCP =90°,∴∠ABP <90°,∠APC <90°,∵∠BOP <90°,∴∠BAP <90°,∴△ABP 是锐角三角形,∵△AMO 与△ABP 相似,∴△AMO 为锐角三角形,∴点M 在点A 的下方,∴AM =4−m ,如图2,AM 与x 轴的交点记作点E ,与BC 的交点记作点F ,∵AM ⊥x 轴,∴∠AEB =90°,∴∠OBP +∠BFE =90°,∵∠AFP =∠BFE ,∴∠OBP +∠AFP =90°,∵BC ⊥OA ,∴∠AFP +∠OAE =90°,∴∠OAE =∠OBP ,由(2)知,∠OBP =∠ABP ,∴∠OAE =∠ABP ,∵△AMO 与△ABP 相似,∴①当△OAM∽△ABP 时,∴OA AB =AM BP , ∴2√55=17√58, ∴m =−14,∴M(2,−14), ②当△MAO∽△ABP 时, ∴OA BP =AM AB , ∴√517√58=4−m 5,∴m =−1217, ∴M(2,−1217),即满足条件的点M 的坐标为(2,−14)或(2,−1217).【解析】(1)利用待定系数法,即可得出结论;(2)先判断出OB =AB ,进而判断出∠OBP =∠ABP ,进而判断出△OBP≌△ABP ,得出∠BOP =∠BAP ,再求出直线BC 的解析式,求出点P 的坐标,构造直角三角形,即可得出结论;(3)先判断出点M 在点A 的下方,再判断出∠AOM =∠ABP ,再分两种情况,利用相似比建立方程求解,即可得出结论.此题是二次函数综合题,主要考查了待定系数法,等腰三角形的判定和性质,全等三角形的判定和性质,相似三角形的性质,锐角三角函数,利用方程的思想解决问题是解本题的关键. 25.【答案】解:(1)∵四边形ABCD 是菱形,∠B =90°,∴四边形ABCD 是正方形,∴∠B =∠C =90°,∵EF ⊥AE ,∴∠AEB +∠CEF =∠AEB +∠BAE =90°,∴∠BAE =∠CEF ,∴△ABE≌△CEF ,∴BECF =ABEC , ∵EC =3CF ,设CF=x,AB=a,则EC=3x,BE=a−3x,∴a−3xx =a3x,解得,a=4.5x,∴S△ABES△ECF =(ABEC)2=(4.5x3x)2=94;(2)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图2,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB//CD,∴∠B=∠FCN,设CF=x,则CE=3x,∵E是BC的中点,∴BE=CE=3x,AB=BC=2CE=6x,∴BM=AB⋅cosB=6xcosB,AM=AB⋅sinB=6xsinB,CN=CF⋅cos∠FCN=xcosB,FN=CF⋅sin∠FCN=xsinB,∴ME=BE−BM=3x−6xcosB,EN=EC+CN=3x+xcosB,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴AMEN =MENF,即6xsinB3x+xcosB =3x−6xcosBxsinB,即2sinB3+cosB=1−2cosBsinB,整理得,2sin2B=3−5cosB−2cos2B,∴2=3−5cosB,∴cosB=15;(3)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图3,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB//CD,∴∠B=∠FCN,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴AMEN =MENF=AEEF,∵∠AFE=∠B,tanB=AMBM ,tan∠AFE=AEEF,∴AMBM =AEEF,∴AMBM =AMEN,∴BM=EN,设菱形ABCD的边长为a,则AB=BC=a,∴BM=acosB,CN=CF⋅cos∠FCN=CF⋅cosB,∴acosB=EC+CF⋅cosB,∵CF=2,EC=3CF,∴EC=6,∴acosB=6+2cosB,∴cosB=6a−2,∵AMEN =MENF,AM=AB⋅sinB=asinB,EN=6+2cosB,ME=a−acosB−6,NF=CF⋅sin∠FCN=2sinB,∴asinB6+2cosB =a−acosB−62sinB,化简得,2a(sin2B+cos2B)=6a−4acosB−12cosB−36,2a=6a−4acosB−12cosB−36,a−acosB−3cosB−9=0,∵cosB=6a−2,∴a−6aa−2−18a−2−9=0,解得,a=17,或a=0(舍),∴菱形的边长为17.【解析】(1)证明四边形ABCD是正方形,再证明△ABE≌△CEF,设CF=x,AB=a,运用相似三角形的相似比求得a与x的关系,进而根据相似三角形的性质求得面积比;(2)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,证明△AME∽△ENF,设CF=x,用x与∠B的正、余弦值表示AM、ME、EN、NF,进而根据相似三角形的性质列出比例式,整理比例式便可得出结果;(3)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,由∠B=∠AFE,得AMBM =AEEF,再证明△AME∽△ENF,得出BM=EN,设菱形ABCD的边长为a,由BM=EN,得到用cos B的代数式表示a,再结合△AME∽△ENF的比例线段求得a的值便可.本题是四边形的综合题,主要考查了菱形的性质,正方形的性质,相似三角形的性质与判定,解直角三角形,关键是构造相似三角形.难度较大.。

2020-2021上海上海外国语大学附属浦东外国语学校初三数学上期中第一次模拟试卷附答案

2020-2021上海上海外国语大学附属浦东外国语学校初三数学上期中第一次模拟试卷附答案

2020-2021上海上海外国语大学附属浦东外国语学校初三数学上期中第一次模拟试卷附答案一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°2.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .343.下列交通标志是中心对称图形的为( )A .B .C .D .4.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .25.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )A .55°B .110°C .120°D .125°6.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3D .k≤4且k≠3 8.若关于x 的一元二次方程ax 2+bx ﹣1=0(a ≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( )A .12019B .2020C .2019D .20189.在Rt ABC ∆中,90ABC ∠=︒,:BC 2:3=AB , 5AC =,则AB =( ). A .52 B .10C .5D .15 10.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .211.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ).A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球 12.如果反比例函数2a y x-=(a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a<0B .a>0C .a<2D .a>2 二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.请你写出一个二次函数,其图象满足条件:①开口向下;②与y 轴的交点坐标为(0,3).此二次函数的解析式可以是______________16.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;17.要为一幅矩形照片配一个镜框,如图,要求镜框的四条边宽度都相等,且镜框所占面积是照片本身面积的四分之一,已知照片的长为21cm ,宽为10cm ,求镜框的宽度.设镜框的宽度为xcm ,依题意列方程,化成一般式为_____.18.关于x 的方程的260x x m -+=有两个相等的实数根,则m 的值为________.19.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是 .20.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .三、解答题21.如图,AB 是O e 的直径,点C D 、在O e 上,且四边形AOCD 是平行四边形,过点D 作O e 的切线,分别交OA 的延长线与OC 的延长线于点E F 、,连接BF 。

2020-2021上海上海外国语大学附属双语学校初三数学上期末试卷含答案

2020-2021上海上海外国语大学附属双语学校初三数学上期末试卷含答案

【考点】圆周角定理.
3.B
解析:B 【解析】 试题解析:连接 AD,
∵BC 是切线,点 D 是切点, ∴AD⊥BC, ∴∠EAF=2∠EPF=80°,
∴S 扇形 AEF= 80?22 8 , 360 9
S△ABC= 1 AD•BC= 1 ×2×4=4,
2
2
∴S 阴影部分=S△ABC-S 扇形 AEF=4- 8 π. 9
A. 1 5
B. 2 5
C. 3 5
D. 4 5
8.二次函数 y (x 3)2 2 图象的开口方向、对称轴和顶点坐标分别为 ( )
A.向下,直线 x 3 , 3, 2
B.向下,直线 x 3 , 3, 2
C.向上,直线 x 3 , 3, 2
D.向下,直线 x 3 , 3, 2
9.以 x 3 9 4c 为根的一元二次方程可能是(
D.“概率为 1 的事件”是必然事件 6.分别写有数字 0,﹣1,﹣2,1,3 的五张卡片,除数字不同外其他均相同,从中任抽一 张,那么抽到负数的概率是( )
A. 1 5
B. 2 5
C. 3 5
D. 4 5
7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影 部分构成轴对称图形的概率是( )
4.如图,点 O 是△ABC 的内切圆的圆心,若∠A=80°,则∠BOC 为( )
A.100° C.50° 5.下列说法正确的是( )
B.130° D.65°
A.“任意画出一个等边三角形,它是轴对称图形”是随机事件
B.某种彩票的中奖率为 1 ,说明每买 1000 张彩票,一定有一张中奖 1000
C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为 1 3

2020-2021上海上海外国语大学附属大境初级中学初三数学上期末一模试卷带答案

2020-2021上海上海外国语大学附属大境初级中学初三数学上期末一模试卷带答案

2020-2021上海上海外国语大学附属大境初级中学初三数学上期末一模试卷带答案一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在的圆的圆心为图中的( )A .MB .PC .QD .R2.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 3.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )A .正三角形B .矩形C .正八边形D .正六边形4.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=5.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-=6.下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰7.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -38.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦10.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2 11.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A .74- B .3或3- C .2或3- D .2或3-或74- 12.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( ) A .2017 B .2018 C .2019 D .2020二、填空题13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.14.直线y=kx +6k 交x 轴于点A ,交y 轴于点B ,以原点O 为圆心,3为半径的⊙O 与l 相交,则k 的取值范围为_____________.15.抛物线y=2(x −3)2+4的顶点坐标是__________________.16.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.17.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米精确到1米18.若二次函数y =x 2﹣3x +3﹣m 的图象经过原点,则m =_____.19.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.20.如图,在平面直角坐标系中,二次函数y=ax 2+c (a≠0)的图象过正方形ABOC 的三个顶点A ,B ,C ,则ac 的值是________.三、解答题21.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.22.石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件. (1)设每件童装降价x 元时,每天可销售______ 件,每件盈利______ 元;(用x 的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.23.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m 2,求小路的宽.24.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?25.已知抛物线2y x bx c =++经过()()1,0,3,0A B -两点.(1)求抛物线的解析式和顶点坐标;(2)设点P 为抛物线上一点,若6PAB S ∆=,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB ,BC 的垂直平分线即可得到答案.【详解】解:作AB 的垂直平分线,作BC 的垂直平分线,如图,它们都经过Q ,所以点Q 为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.3.C解析:C【解析】因为正八边形的每个内角为135︒,不能整除360度,故选C.4.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x,依题意得:()2+=4001640x故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 5.C解析:C【解析】【分析】快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A 、是必然事件,故选项错误;B 、是随机事件,故选项错误;C 、是随机事件,故选项错误;D 、是不可能事件,故选项正确.故选D .【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.B解析:B【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误;故选B.8.B解析:B【解析】【分析】【详解】当函数值y >0时,自变量x 的取值范围是:﹣2<x <4.故选B .9.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.10.D解析:D【解析】【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x 轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.11.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=74,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=③当m >1时,x=1时二次函数有最大值,此时,﹣(1﹣m )2+m 2+1=4,解得m=2,综上所述,m 的值为2或﹣故选C .12.D解析:D【解析】【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a 是方程2320170x x +-=的实数根,可得2320170a a +-=,据此求出232017a a +=,利用根与系数关系得:+a b =-3,22a a b +- 变形为(2a 3a +)-(+a b ),代入即可得到答案.【详解】解:∵a 、b 是方程2320170x x +-=的两个实数根,∴+a b =-3;又∵2320170a a +-=,∴232017a a +=,∴22a a b +-=(2a 3a +)-(+a b )=2017-(-3)=2020即22a a b +-的值为2020.故选:D .【点睛】本题考查了根与系数的关系与一元二次方程的解,把22a a b +-化成(2a 3a +)-(+a b )是解题的关键.二、填空题13.25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷=35个所以袋中红球约为35-10=25个考点:简单事件的频率解析:25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.14.且k≠0【解析】【分析】根据直线与圆相交确定k 的取值利用面积法求出相切时k 的取值再利用相切与相交之间的关系得到k 的取值范围【详解】∵交x 轴于点A 交y 轴于点B 当故B 的坐标为(06k );当故A 的坐标为(解析:k k ≠0. 【解析】【分析】根据直线与圆相交确定k 的取值,利用面积法求出相切时k 的取值,再利用相切与相交之间的关系得到k 的取值范围.【详解】∵6y kx k =+交x 轴于点A ,交y 轴于点B ,当0,6x y k ==,故B 的坐标为(0,6k );当0,6y x ==-,故A 的坐标为(-6,0);当直线y=kx +6k 与⊙O 相交时, 设圆心到直线的距离为h,根据面积关系可得:116|6|=22k h ⨯⨯ 解得h = ;∵直线与圆相交,即,3h r r =< ,3 解得33-k 且直线中0k ≠,则k 的取值范围为:33-k ,且k ≠0.故答案为:k k ≠0. 【点睛】本题考查了直线与圆的位置关系,解题的关键在于根据相交确定圆的半径与圆心到直线距离的大小关系. 15.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质解析:(3,4)【解析】【分析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.16.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.17.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:18.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m求得m的值即可【详解】由于二次函数y=x2-3x+3-m的图象经过原点把(00)代入y=x2-3x+3-m 得:3-m=0解得:m=解析:【解析】【分析】此题可以将原点坐标(0,0)代入y=x 2-3x+3-m ,求得m 的值即可.【详解】由于二次函数y=x 2-3x+3-m 的图象经过原点,把(0,0)代入y=x 2-3x+3-m ,得:3-m=0,解得:m=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.19.(22)或(2-1)【解析】∵抛物线y=x2-4x 对称轴为直线x=-∴设点A 坐标为(2m )如图所示作AP⊥y 轴于点P 作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°解析:(2,2)或(2,-1)【解析】∵抛物线y=x 2-4x 对称轴为直线x=-422-= ∴设点A 坐标为(2,m ),如图所示,作AP ⊥y 轴于点P ,作O′Q ⊥直线x=2,∴∠APO=∠AQO ′=90°,∴∠QAO ′+∠AO ′Q=90°,∵∠QAO ′+∠OAQ=90°,∴∠AO ′Q=∠OAQ ,又∠OAQ=∠AOP ,∴∠AO ′Q=∠AOP ,在△AOP 和△AO′Q 中,APO AQO AOP AO QAO AO ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴△AOP ≌△AO ′Q (AAS ),∴AP=AQ=2,PO=QO′=m ,则点O ′坐标为(2+m ,m-2),代入y=x 2-4x 得:m-2=(2+m )2-4(2+m ),解得:m=-1或m=2,∴点A 坐标为(2,-1)或(2,2),故答案是:(2,-1)或(2,2).【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O ′的坐标是解题的关键.20.-2【解析】【分析】设正方形的对角线OA 长为2m 根据正方形的性质则可得出BC 坐标代入二次函数y=ax2+c 中即可求出a 和c 从而求积【详解】设正方形的对角线OA 长为2m 则B (﹣mm )C (mm )A (02解析:-2.【解析】【分析】设正方形的对角线OA 长为2m ,根据正方形的性质则可得出B 、C 坐标,代入二次函数y=ax 2+c 中,即可求出a 和c ,从而求积.【详解】设正方形的对角线OA 长为2m ,则B (﹣m ,m ),C (m ,m ),A (0,2m ); 把A ,C 的坐标代入解析式可得:c=2m ①,am 2+c=m ②,①代入②得:am 2+2m=m ,解得:a=-1m , 则ac=-1m⨯2m=-2. 考点:二次函数综合题.三、解答题21.(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.22.(1)(20+2x ),(40﹣x );(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x 元时,每天可销售20+2x 件,每件盈利40-x 元,故答案为(20+2x ),(40-x );(2)、根据题意可得:(20+2x)(40-x)=1200,解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.23.小路的宽为1m .【解析】【分析】如果设小路的宽度为xm ,那么整个草坪的长为(16﹣2x )m ,宽为(9﹣x )m ,根据题意即可得出方程.【详解】设小路的宽度为xm ,那么整个草坪的长为(16﹣2x )m ,宽为(9﹣x )m .根据题意得: (16﹣2x )(9﹣x )=112解得:x 1=1,x 2=16.∵16>9,∴x =16不符合题意,舍去,∴x =1.答:小路的宽为1m .【点睛】本题考查了一元二次方程的应用,弄清“整个草坪的长和宽”是解决本题的关键.24.(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.25.(1)抛物线的解析式为y=x2-2x-3,顶点坐标为(1,-4);(2)P点坐标为(13)或(1,3)或(0,-3)或(2,-3).【解析】【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点坐标;(2)设P(x,y),根据三角形的面积公式以及S△P AB=6,即可算出y的值,代入抛物线解析式即可得出点P的坐标.【详解】解:(1)把A(-1,0)、B(3,0)分别代入y=x2+bx+c中,得:10 930b cb c-+⎧⎨++⎩==,解得:23 bc=-⎧⎨=-⎩,∴抛物线的解析式为y=x2-2x-3.∵y= x2-2x-3=(x-1)2-4,∴顶点坐标为(1,-4).(2)∵A(-1,0)、B(3,0),∴AB=4.设P(x,y),则S△P AB=12AB•|y|=2|y|=6,∴|y|=3,∴y=±3.①当y=3时,x2-2x-3=3,解得:x1=1,x2=1,此时P点坐标为(13)或(1,3);②当y=-3时,x2-2x-3=-3,解得:x1=0,x2=2,此时P点坐标为(0,-3)或(2,-3).综上所述,P点坐标为(1,3)或(13)或(0,-3)或(2,-3).【点睛】本题考查了待定系数法求函数解析式、三角形的面积公式以及二次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出函数解析式;(2)设出点P的坐标,找出关于y的方程.。

2020-2021上海民办浦东交中初级中学九年级数学上期末第一次模拟试题(带答案)

2020-2021上海民办浦东交中初级中学九年级数学上期末第一次模拟试题(带答案)

2020-2021上海民办浦东交中初级中学九年级数学上期末第一次模拟试题(带答案)一、选择题1.关于x的方程(m﹣3)x2﹣4x﹣2=0有两个不相等的实数根,则实数m的取值花围是()A.m≥1B.m>1C.m≥1且m≠3D.m>1且m≠3 2.把抛物线y=2(x﹣3)2+k向下平移1个单位长度后经过点(2,3),则k的值是( )A.2B.1C.0D.﹣13.如图,Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A、C为圆心,以2AC 的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分面积为()A.(24−254π)cm2B.254πcm2C.(24−54π)cm2D.(24−256π)cm24.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540B.(32﹣x)(20﹣x)=540C.32x+20x=540D.(32﹣x)(20﹣x)+x2=5405.下列命题错误..的是 ( )A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等6.一元二次方程x 2+x ﹣14=0的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根C .无实数根D .无法确定 7.关于下列二次函数图象之间的变换,叙述错误的是( )A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象8.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1 B .k ≥﹣1 C .k >﹣1且k ≠0 D .k ≥﹣1且k ≠09.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( )A .74-B 或C .2或D .2或74- 10.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )A .14B .12C .23D .3411.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 12.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25C .35D .45二、填空题13.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了__人.14.抛物线y=2(x −3)2+4的顶点坐标是__________________.15.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.16.三角形两边长分别是4和2,第三边长是2x 2﹣9x +4=0的一个根,则三角形的周长是_____.17.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.18.一元二次方程22x 20-=的解是______.19.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 20.如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P=20°,则∠A=___________°.三、解答题21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式. (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m 的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m 2?23.如图,在ABC V 中,ACB 90∠=o ,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90o 得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD V ≌BCE V ;2()当AD BF =时,求BEF ∠的度数.24.如图,以矩形ABCD 的边CD 为直径作⊙O ,点E 是AB 的中点,连接CE 交⊙O 于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.25.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩ 解得:m>1且m ≠3.故答案为D.【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.A解析:A【解析】【分析】利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可.【详解】解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,∴10AC ===cm , 则2AC =5 cm , ∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604ππ⨯⨯⨯-=-(cm 2), 故选:A .【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.4.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x,根据题意得:(32-x)(20-x)=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.5.A解析:A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.6.A解析:A【解析】【分析】根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根.【详解】∵△=12﹣4×1×(﹣14)=2>0,∴方程x2+x﹣14=0有两个不相等的实数根.故选:A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.7.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.故选D.【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.8.C解析:C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.9.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=74,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣3,m=3(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣3.故选C.10.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是612=12,故选:B.【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11.D解析:D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C错误;D. “概率为1的事件”是必然事件,正确.故选D.12.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.二、填空题13.12【解析】【分析】【详解】解:设平均一人传染了x人x+1+(x+1)x=169x=12或x=-14(舍去)平均一人传染12人故答案为12解析:12【解析】【分析】【详解】解:设平均一人传染了x人,x+1+(x+1)x=169x=12或x=-14(舍去).平均一人传染12人.故答案为12.14.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质解析:(3,4)【解析】【分析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.15.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.16.【解析】【分析】先利用因式分解法求出方程的解再由三角形的三边关系确定出第三边最后求周长即可【详解】解:方程2x2﹣9x+4=0分解因式得:(2x ﹣1)(x ﹣4)=0解得:x =或x =4当x =时+2<4解析:【解析】【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x 2﹣9x +4=0,分解因式得:(2x ﹣1)(x ﹣4)=0,解得:x =12或x =4, 当x =12时,12+2<4,不能构成三角形,舍去; 则三角形周长为4+4+2=10.故答案为:10.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键. 17.且【解析】【分析】由关于x 的一元二次方程有两个不相等的实数根即可得判别式继而可求得a 的范围【详解】关于x 的一元二次方程有两个不相等的实数根解得:方程是一元二次方程的范围是:且故答案为:且【点睛】本题 解析:1a 4>-且a 0≠ 【解析】【分析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0V >,继而可求得a 的范围.【详解】 Q 关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>V ,解得:1a 4>-, Q 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠, 故答案为:1a 4>-且a 0≠. 【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根. 18.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.19.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

2023届上海市外国语大附属外国语学校数学九年级第一学期期末联考模拟试题含解析

2023届上海市外国语大附属外国语学校数学九年级第一学期期末联考模拟试题含解析

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题4分,共48分) 1.已知反比例函数y =﹣6x,下列结论中不正确的是( ) A .图象必经过点(﹣3,2) B .图象位于第二、四象限C .若x <﹣2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小2.如图,AB 为⊙O 的直径,点C 在⊙O 上,若50OCA ∠=︒,4AB =,则BC 的长为( )A .103π B .109π C .59πD .518π 3.二次函数y =x 2+(t ﹣1)x +2t ﹣1的对称轴是y 轴,则t 的值为( ) A .0B .12C .1D .24.在Rt △ABC 中,∠C =90°,若 1sin 2A =,则∠B 的度数是( ) A .30°B .45°C .60°D .75°5.我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是( )A .①③B .①④C .②③D .②④6.如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA=3,OC=1,分别连结AC 、BD ,则图中阴影部分的面积为( )A .12πB .C .D .7.下列四个交通标志图案中,中心对称图形共有( )A .1B .2C .3D .48.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( ) A .向左平移2个单位 B .向右平移2个单位 C .向左平移8个单位D .向右平移8个单位9.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表: 选 手甲 乙 丙 丁 平均数(环)9.2 9.2 9.2 9.2 方差(环2)0.0350.0150.0250.027则这四人中成绩发挥最稳定的是( ) A .甲B .乙C .丙D .丁10.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是( )A .B .C .D .11.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒12.质检部门对某酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸(单位:片)分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为 ( ) A .95%B .97%C .92%D .98%二、填空题(每题4分,共24分)13.五角星是我们生活中常见的一种图形,如图五角星中,点C ,D 分别为线段AB 的右侧和左侧的黄金分割点,已知黄金比为512-,且AB =2,则图中五边形CDEFG 的周长为________.14.如图,矩形ABCD 中,6AB =,8BC =,M 是AD 边上的一点,且2AM =,点P 在矩形ABCD 所在的平面中,且90BPD ∠=︒,则PM 的最大值是_________.15.若3a =4b (b ≠0),则a bb-=_____. 16.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 17.如图,在ABC ∆中,90ACB ∠=︒,3sin 5B =,将ABC ∆绕顶点C 顺时针旋转,得到11A B C ∆,点A 、B 分别与点1A 、1B 对应,边11A B 分别交边AB 、BC 于点D 、E ,如果点E 是边11A B 的中点,那么1:A D DB =______.18.函数y=31x x -+的自变量x 的取值范围是_______________. 三、解答题(共78分)19.(8分)(1)解方程:x 2﹣4x ﹣3=0 (2)计算:018tan 30(4)16π︒++--20.(8分)中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.21.(8分)如图1,抛物线y=-x 2+bx +c 的顶点为Q ,与x 轴交于A (-1,0)、B(5,0)两点,与y 轴交于点C . (1)求抛物线的解析式及其顶点Q 的坐标;(2)在该抛物线的对称轴上求一点P ,使得△PAC 的周长最小,请在图中画出点P 的位置,并求点P 的坐标; (3)如图2,若点D 是第一象限抛物线上的一个动点,过D 作DE ⊥x 轴,垂足为E .①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q 与x 轴相距最远,所以当点D 运动至点Q 时,折线D -E -O 的长度最长”,这个同学的说法正确吗?请说明理由.②若DE 与直线BC 交于点F .试探究:四边形DCEB 能否为平行四边形?若能,请直接写出点D 的坐标;若不能,请简要说明理由.22.(10分)在平面直角坐标系xOy 中,抛物线2258y ax ax a =-++(0a ≠).(1)写出抛物线顶点的纵坐标 (用含a 的代数式表示);(2)若该抛物线与x 轴的两个交点分别为点A 和点B ,且点A 在点B 的左侧,AB =1. ①求a 的值;②记二次函数图象在点 A ,B 之间的部分为W (含 点A 和点B ),若直线 y kx b =+(0k ≠)经过(1,-1),且与 图形W 有公共点,结合函数图象,求 b 的取值范围.23.(10分)如图,在ABC ∆中,点D 在边AB 上,且BD DC AC ==,已知108ACE ∠=︒,2BC =. (1)求B 的度数;(2)我们把有一个内角等于36︒的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比512-. ①写出图中所有的黄金三角形,选一个说明理由; ②求AD 的长.24.(10分)已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD . (1)求证:AB=AF ;(2)若AG=AB ,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.25.(12分)如图,直线y=﹣12x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.26.解方程:(1)2x2+3x﹣1=0(2)1122xx x-=+-参考答案一、选择题(每题4分,共48分)1、D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】A、∵(﹣3)×2=﹣6,∴图象必经过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C、∵x=-2时,y=3且y随x的增大而而增大,∴x<﹣2时,0<y<3,故本选项正确;D、函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选D.【点睛】本题考查的是反比例函数的性质,在解答此类题目时要注意其增减性限制在每一象限内,不要一概而论.2、B【分析】直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案.【详解】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=2∠A=100°,∵AB=4,∴BO=2,∴BC的长为:10021819ππ⨯=故选B.【点睛】此题主要考查了弧长公式应用以及圆周角定理,正确得出∠BOC的度数是解题关键.3、C【解析】根据二次函数的对称轴方程计算.【详解】解:∵二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,∴﹣12t-=0,解得,t=1,故选:C.【点睛】本题考查二次函数对称轴性质,熟练掌握对称轴的公式是解题的关键.4、C【分析】根据特殊角的函数值1sin302=可得∠A度数,进一步利用两个锐角互余求得∠B度数.【详解】解:∵1 sin302,∴∠A=30°,∵∠C=90°,∴∠B=90°-∠A=60°故选:C.【点睛】此题主要考查了特殊角的函数值,以及直角三角形两个锐角互余,熟练掌握特殊角函数值是解题的关键.5、D【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】解:①不是中心对称图形,故本选项不合题意;②是中心对称图形,故本选项符合题意;③不是中心对称图形,故本选项不合题意;④是中心对称图形,故本选项符合题意;故选:D.【点睛】本题考查了中心对称图形的定义,熟悉掌握概念是解题的关键6、C【详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=14π×(9-1)=2π.故选C.7、B【分析】根据中心对称的概念和各图形的特点即可求解.【详解】∵中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合,∴第一个和第二个都不符合;第三个和第四个图形是中心对称图形,∴中心对称图形共有2个.故选:B.【点睛】本题主要考查中心对称图形的概念,掌握中心对称图形的概念和特点,是解题的关键.8、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.9、B【解析】在平均数相同时方差越小则数据波动越小说明数据越稳定,10、D【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.11、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=172362︒⨯=︒,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.12、C【分析】随机调查1包餐纸的合格率作为该酒店的餐纸的合格率,即用样本估计总体.【详解】解:1包(每包1片)共21片,1包中合格餐纸的合格率4545592%25++++==.故选:C . 【点睛】本题考查用样本估计整体,注意1包中的总数是21,不是1.二、填空题(每题4分,共24分)13、20【分析】根据点C ,D 分别为线段AB 的右侧和左侧的黄金分割点,可得AB ,,再根据CD=BD-BC 求出CD 的长度,然后乘以5即可求解.【详解】∵点C ,D 分别为线段AB 的右侧和左侧的黄金分割点,∴AB 1,3=∴CD =BD ﹣BC 1)﹣(3-4,∴五边形CDEFG 的周长=5(4)=1.故答案为:1. 【点睛】本题考查了黄金分割的定义:线段上一点把线段分为较长线段和较短线段,若较长线段是较短线段和整个线段的比例中项,则这个点叫这条线段的黄金分割点.14、【分析】由四边形是矩形得到内接于O ,利用勾股定理求出直径BD 的长,由90BPD ∠=︒确定点P 在O 上,连接MO 并延长,交O 于一点即为点P ,此时PM 最长,利用勾股定理求出OM ,再加上OP 即可得到PM 的最大值.【详解】连接BD , ∵四边形ABCD 是矩形,∴∠BAD=∠BCD=90︒,AD=BC=8, ∴BD=10,以BD 的中点O 为圆心5为半径作O ,∵90BPD ∠=︒, ∴点P 在O 上,连接MO并延长,交O于一点即为点P,此时PM最长,且OP=5,过点O作OH⊥AD于点H,∴AH=12AD=4,∵AM=2,∴MH=2,∵点O、H分别为BD、AD的中点,∴OH为△ABD的中位线,∴OH=12AB=3,∴OM=22222313MH OH+=+=,∴PM=OP+OM=5+13.故答案为:5+13.【点睛】此题考查矩形的性质,勾股定理,圆内接四边形的性质,确定PM的位置是重点,再分段求出OM及OP的长,即可进行计算.15、1 3【分析】依据3a=4b,即可得到a=43b,代入代数式进行计算即可.【详解】解:∵3a=4b,∴a=43b,∴a bb-=43b bb-=13bb=13.故答案为:13.【点睛】本题主要考查了比例的性质,求出a =43b 是解题的关键. 16、2π 【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.17、512【分析】设AC =3x ,AB =5x ,可求BC =4x ,由旋转的性质可得CB 1=BC =4x ,A 1B 1=5x ,∠ACB =∠A 1CB 1,由题意可证△CEB 1∽△DEB ,可得11 1.53=2.55BD BE DE x B C B E CE x ===,即可表示出BD,DE ,再得到A 1D 的长,故可求解. 【详解】∵∠ACB =90°,sin B =35AC AB =, ∴设AC =3x ,AB =5x ,∴BC4x ,∵将△ABC 绕顶点C 顺时针旋转,得到△A 1B 1C ,∴CB 1=BC =4x ,A 1B 1=5x ,∠ACB =∠A 1CB 1,∵点E 是A 1B 1的中点,∴CE =12A 1B 1=2.5x =B 1E=A 1E , ∴BE =BC−CE =1.5x ,∵∠B =∠B 1,∠CEB 1=∠BED∴△CEB 1∽△DEB ∴11 1.53=2.55BD BE DE x B C B E CE x === ∴BD=125x ,DE=1.5x, ∴A 1D= A 1E- DE=x, 则1:A D DB =x:125x =512 故答案为:512. 【点睛】本题考查了旋转的性质,解直角三角形,相似三角形的判定和性质,证△CEB 1∽△DEB 是本题的关键.18、x ≥3【分析】分式有意义,分母不为0;二次根式的被开方数是非负数.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】根据二次根式有意义,分式有意义得:x-3≥0且x+1≠0,解得:x ≥3故答案为x ≥3【点睛】本题考查函数自变量的取值范围,基础知识扎实是解题关键三、解答题(共78分)19、(1)x 1=,x 2=2;(2)1【分析】(1)方程利用配方法求出解即可;(2)原式利用二次根式性质,绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可求出值.【详解】(1)方程整理得:x 2﹣4x =3,配方得:x 2﹣4x +4=3+4,即(x ﹣2)2=7,开方得:x ﹣,解得:x 1x 2=2;(2) 030(4)1π︒++-11=--=1.【点睛】 本题考查了利用配方法求一元二次方程的解以及实数的混合运算,涉及了:零指数、二次根式以及特殊角的三角函数值.解题的关键是熟练运用一元二次方程的解法以及特殊角的锐角三角函数的值.20、(1)14;(2)16【分析】(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可; (2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读, 则他选中《九章算术》的概率为14.故答案为14;(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:第1部第2部A B C DA BA CA DAB AB CB DBC AC BC DCD AD BD CD由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即DB,BD,∴P(M)=21= 126.方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即BD,DB,∴P(M)=21= 126.故答案为:1 6 .【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作图见解析;(3)①不正确,理由见解析;②不能,理由见解析. 【分析】(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中即可确定b、c的值,然后配方后即可确定其顶点坐标;(2)连接BC ,交对称轴于点P ,连接AP 、AC .求得C 点的坐标后然后确定直线BC 的解析式,最后求得其与x=2与直线BC 的交点坐标即为点P 的坐标;(3)①设D (t ,-t 2+4t+1),设折线D-E-O 的长度为L ,求得L 的最大值后与当点D 与Q 重合时L=9+2=11<454相比较即可得到答案;②假设四边形DCEB 为平行四边形,则可得到EF=DF ,CF=BF .然后根据DE ∥y 轴求得DF ,得到DF >EF ,这与EF=DF 相矛盾,从而否定是平行四边形.【详解】解:(1)将A (-1,0)、B (1,0)分别代入y=-x2+bx+c 中,得 102550b c b c --+=⎧⎨-++=⎩,解得45b c =⎧⎨=⎩ ∴y=-x 2+4x+1.∵y=-x 2+4x+1=-(x-2)2+9,∴Q (2,9).(2)如图1,连接BC ,交对称轴于点P ,连接AP 、AC .∵AC 长为定值,∴要使△PAC 的周长最小,只需PA+PC 最小.∵点A 关于对称轴x=2的对称点是点B (1,0),抛物线y=-x2+4x+1与y 轴交点C 的坐标为(0,1).∴由几何知识可知,PA+PC=PB+PC 为最小.设直线BC 的解析式为y=kx+1,将B (1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴当x=2时,y=3,∴点P 的坐标为(2,3).(3)①这个同学的说法不正确.∵设D (t ,-t 2+4t+1),设折线D-E-O 的长度为L ,则L=−t 2+4t+1+t=−t 2+1t+1=−(t−52)2+454, ∵a <0,∴当t=52时,L 最大值=454. 而当点D 与Q 重合时,L=9+2=11<454, ∴该该同学的说法不正确.②四边形DCEB 不能为平行四边形.如图2,若四边形DCEB 为平行四边形,则EF=DF ,CF=BF .∵DE ∥y 轴, ∴1OE CF EB BF==,即OE=BE=2.1. 当xF=2.1时,yF=-2.1+1=2.1,即EF=2.1;当xD=2.1时,yD=−(2.1−2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF >EF ,这与EF=DF 相矛盾,∴四边形DCEB 不能为平行四边形.【点睛】本题考查二次函数及四边形的综合,难度较大.22、(1)1a +8;(2)①a=-1;②12b ≥-或12b ≥-或32b ≤- 【分析】(1)将原表达式变为顶点式,即可得到答案;(2)①根据顶点式可得抛物线的对称轴是x=1 ,再根据已知条件得到A 、B 两点的坐标,将坐标代入2258y ax ax a =-++,即可得到a 的值;②分情况讨论,当 y kx b =+(0k ≠)经过(1,-1)和A (-1,0)时,以及当 y kx b =+(0k ≠)经过(1,-1)和B (3,0)时,代入解析式即可求出答案.【详解】(1)2258y ax ax a =-++=()2258a x x a -++=()2148a x a -++ 所以顶点坐标为(1,1a+8),则纵坐标为1a+8.(2)①解:∵原解析式变形为:y=()2148a x a -++∴抛物线的对称轴是x=1又∵ 抛物线与x 轴的两个交点分别为点A 和点B ,AB=1∴ 点A 和点B 各距离对称轴2个单位∵ 点A 在点B 的左侧∴A (-1,0),B (3,0)∴将B (3,0)代入2258y ax ax a =-++∴9a-6a+5a+8=0a=-1②当 y kx b =+(0k ≠)经过(1,-1)和A (-1,0)时10k b k b +=-⎧⎨-+=⎩,12b =- 当 y kx b =+(0k ≠)经过(1,-1)和B (3,0)时130k b k b +=-⎧⎨+=⎩,32b =- ∴12b ≥-或12b ≥-或32b ≤-【点睛】本题考查了二次函数、一次函数的综合性题目,数形结合是解答此题的关键.23、(1)36︒;(2)①有三个:,,BDC ADC BAC ∆∆∆,理由见解析;②35【分析】(1)设B x ∠=,根据题意得到,2DCB x CDA A x ∠=∠=∠=,由三角形的外角性质,即可求出x 的值,从而得到答案;(2)①根据黄金三角形的定义,即可得到答案;②由①可知,BAC ∆是黄金三角形,则根据比例关系,求出51BD AC ==,然后求出AD 的长度. 【详解】解:(1)BD DC AC ==, 则,B DCB CDA A ∠=∠∠=∠, 设B x ∠=,则,2DCB x CDA A x ∠=∠=∠=,又108ACE ∠=︒,108B A ︒∴∠+∠=,2108x x ∴+=,解得:36x ︒=,36B ︒∴∠=;(2)①有三个:,,BDC ADC BAC ∆∆∆,36DB DC B ︒=∠=DBC ∴∆是黄金三角形;或,18036CD CA ACD CDA A =∠=︒-∠-∠=︒,CDA ∆∴是黄金三角形;或108ACE ︒∠=,72ACB ︒∴∠=,又272A x ∠==︒,A ACB ∴∠=∠,BA BC ∴=,BAC ∆∴是黄金三角形;②∵BAC ∆是黄金三角形,AC 1BC 2∴=, 2BC =,1AC ∴=,2,1BA BC BD AC ====,21)3AD BA BD ∴=-=-=-【点睛】本题考查了等腰三角形的性质以及黄金三角形的定义,三角形的内角和定理以及三角形的外角性质,解题的关键是熟练掌握等腰三角形的性质,三角形的外角性质.24、(1)证明见解析;(2)结论:四边形ACDF 是矩形.理由见解析.【分析】(1)只要证明AB=CD ,AF=CD 即可解决问题;(2)结论:四边形ACDF 是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∴∠AFC=∠DCG ,∵GA=GD ,∠AGF=∠CGD ,∴△AGF ≌△DGC ,∴AF=CD ,∴AB=AF .(2)解:结论:四边形ACDF 是矩形.理由:∵AF=CD ,AF ∥CD ,∴四边形ACDF 是平行四边形,∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF ,∴△AFG 是等边三角形,∴AG=GF ,∵△AGF ≌△DGC ,∴FG=CG ,∵AG=GD ,∴AD=CF ,∴四边形ACDF 是矩形.【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25、(1)y =12x 2+2x +1;(2);(3)M (52,﹣14)或(﹣152,194) 【分析】(1)先求出点B 坐标,再将点D ,B 代入抛物线的顶点式即可;(2)如图1,过点C 作CH ⊥y 轴于点H ,先求出点F 的坐标,点C 的坐标,再求出直线CM 的解析式,最后可求出两个交点及交点间的距离;(3)设M (m ,﹣12m +1),如图2,取PQ 的中点N ,连接MN ,证点P ,M ,Q 同在以PQ 为直径的圆上,所以∠PMQ =90°,利用勾股定理即可求出点M 的坐标. 【详解】解:(1)在y =﹣12x +1中, 当x =0时,y =1,∴B (0,1),∵抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1),∴可设抛物线解析式为y=a(x+2)2﹣1,将点B(0,1)代入,得,a=12,∴抛物线的解析式为:y=12(x+2)2﹣1=12x2+2x+1;(2)联立21212112y x xy x⎧=++⎪⎪⎨⎪=+⎪⎩,解得,1xy=⎧⎨=⎩或572xy=-⎧⎪⎨=⎪⎩,∴F(﹣5,72),∵点C是BF的中点,∴x C=502-+=﹣52,y C=7122+=94,∴C(﹣52,94),如图1,过点C作CH⊥y轴于点H,则∠HCB+∠CBH=90°,又∵∠MCH+∠HCB=90°,∴∠CBH=∠MCH,又∠CHB=∠MHC=90°,∴△CHB∽△MHC,∴CHMH=HBHC,即52HM=91452-,解得,HM=5,∴OM=OH+MH=94+5=294,∴M (0,294), 设直线CM 的解析式为y =kx +294, 将C (﹣52,94)代入, 得,k =2,∴y CM =2x +294, 联立2x +294=12x 2+2x +1,解得,x 1=2,x 2=﹣2,∴P (2,+294),Q (﹣2,﹣+294),∴PQ ;(3)∵点M 在直线AB 上,∴设M (m ,﹣12m +1), 如图2,取PQ 的中点N ,连接MN ,∵PQ =2MN ,∴NM =NP =NQ ,∴点P ,M ,Q 同在以PQ 为直径的圆上,∴∠PMQ =90°,∴MP 2+MQ 2=PQ 2,∴222911242m m ⎛⎫⎛⎫-++- ⎪ ⎪ ⎪⎝⎭⎝⎭+221291224m m ⎛⎫⎛⎫--+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭ =()2, 解得,m 1=52,m 2=﹣152, ∴M (52,﹣14)或(﹣152,194).【点睛】本题考查了待定系数法求解析式,两点间的距离,勾股定理等,解题关键是需要有较强的计算能力.26、(1)x1317-+,x2317--(2)x=23【分析】(1)将方程化为一般形式a x2+b x+c=0确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解;(2)最简公分母是(x+2)(x﹣2),去分母,转化为整式方程求解,需检验结果是否为原方程的解;【详解】解:(1)∵a=2,b=3,c=-1,∴∆=b2﹣4ac=32﹣4×2×(﹣1)=17>0,∴x=-b-3172a∆±,∴x1317-+,x2317--;(2)方程两边都乘以(x+2)(x﹣2)得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=23,检验:当x=23时,(x+2)(x﹣2)≠0,所以x=23是原方程的解;【点睛】本题主要考查了解一元二次方程-公式法,解分式方程,掌握解一元二次方程-公式法,解分式方程是解题的关键.。

2020-2021学年上海外国语大学附属外国语学校九年级(上)月考数学试卷(10月份)

2020-2021学年上海外国语大学附属外国语学校九年级(上)月考数学试卷(10月份)

2020-2021学年上海外国语大学附属外国语学校九年级(上)月考数学试卷(10月份)一、填空(2×21=42)1.(3分)若△ABC的边长分别为a、b、c,△A1B1C1的长分别为、、,则△ABC 与△A1B1C1(选填“一定”、“不一定”、“一定不”)相似.2.(3分)已知abc≠0,且,则的值是或.3.(3分)已知线段AB的长度是a,且满足点P是线段AB上一点,AP2=AB•PB,则BP =.4.(3分)△ABC中,点B和点C分别在AD,AE上,且AB=2BD,AC=2BD,AC=2CE,则BC:DE=.5.(3分)如图,在梯形ABCD中,AD∥BC、AD=3,BC=5,E,F是两腰上的点,且EF ∥AD,AE:EB=1:2,则EF=.6.(3分)如图,在△ABC中,D是BC边上的一点,BD:DC=4:1,G为AD的中点,联结BG并延长交AC于点E,则EG:GB=.7.(3分)已知直角三角形斜边上的高为12,并且斜边上的高把斜边分成3:4两段,那么斜边上的中线长是.8.(3分)一个斜坡长70米,高5米,把重物从坡底沿着斜坡推进20米后停下,此时物体的高度是米.9.(3分)如图,在△ABC中,AB>AC,BC边上的高AD和中线AE及∠BAC的平分线AF 将∠BAC四等分,则∠EAD=.10.(3分)如图,已知在正方形ABCD中,M为AD中点,以M为顶点作∠BMN=∠MBC,MN交CD于点N,则=.11.(3分)如图,已知在△ABC中,∠CAB=60°,P为△ABC内一点且∠APB=∠APC =120°,AP=3,BP=2,则CP=.12.(3分)如图,P是△ABC内一点,过点P分别作直线平行于△ABC各边,形成三个小三角形面积分别为S1=3,S2=12,S3=27,则S△ABC=.13.(3分)如图,G是△ABC的重心,延长BG交AC于点D,延长CG交AB于点E,P,Q分别是△BCE和△BCD的重心,则=.14.(3分)直角梯形ABCD中,BC∥AD,∠BAD=90°,AC⊥BD,已知,则=.15.(3分)一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第张.16.(3分)如图所示,在△ABC中,AB=8cm,BC=16cm.点P从点A出发沿AB向点B 以2cm/s的速度运动,点Q从点B出发沿BC向点C以4cm/s的速度运动.如果点P,Q 分别从点A,B同时出发,则秒钟后△PBQ与△ABC相似?17.(3分)已知在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,点M,N分别在边AC、AB上,将△ABC沿直线MN对折后,点A正好落在对边BC上,且折痕MN截△ABC所祝老师136****8895成的小三角形(即对折后的重叠部分)与△ABC相似,则折痕MN=cm.18.(3分)已知A(3,2)是平面直角坐标系中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D点的坐标,那么D点的坐标是.19.(3分)如图,四边形ABCD,CDFE,EFHG是三个正方形,∠1+∠2+∠3=.20.(3分)如图,E、F为△ABC的BC边上的点、且BE:EF:FC=1:2:3,中线BD被AE、AF截得的三线段为x,y,z,则x:y:z=.21.(3分)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则=.二、选择题:(每小题3分,共计30分)22.(3分)如图,已知在△ABC中,AD⊥BC于点D,且具有下列条件之一,其中一定能够判定△ABC是直角三角形的共有()①∠B+∠DAC=90°;②∠B=∠DAC;③;④AB2=BD•BC.A.1个B.2个C.3个D.4个23.(3分)P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt △ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?()A.1条B.2条C.3条D.4条24.(3分)如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD 的各边上,EF∥AC∥HG,EH∥BD∥FG,则四边形EFGH的周长是()A.B.C.2D.225.(3分)如图,在Rt△ABC内有边长分别为a,b,c的三个正方形,则a,b,c满足的关系式是()A.b=a+c B.b=ac C.b2=a2+c2D.b=2a=2c26.(3分)如图,在梯形ABCD中,AB∥CD,AD⊥AB,已知DC=4,AD=12,AB=8,E是AD上的一个动点,如果E,C,B为顶点构成的三角形是直角三角形,则DE长为()①4;②6;③8;④.A.①②B.①③C.①③④D.①②③三、计算题27.解方程.28..29.解方程:.30..四、解答题31.已知:如图,△ABC中,点D、E分别在边AB、AC上,且DE∥BC,BE与CD交于点S,AS与BC交于点M.求证:点M是线段BC的中点.32.在△ABC中,∠ACB=90°,AC=BC,AM为BC边上的中线,CD⊥AM于点D,CD 的延长线交于点,求的值.33.已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA=DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.34.如图.已知在△ABC中.∠ACB=90°,AB=5,BC=3,点D是边AB上任意一点.连接DC,过点C作CE⊥CD,垂足为点C,连接DE,使得∠EDC=∠A,连接BE.(1)求证:AC•BE=BC•AD.(2)设AD=x,四边形BDCE的面积为S,求S关于x的函数解析式及x的取值范围=,求CD的值.(3)当S△BDE。

沪教版2020-2021学年度九年级数学第一学期期末模拟测试卷A卷(附答案)

沪教版2020-2021学年度九年级数学第一学期期末模拟测试卷A卷(附答案)

沪教版2020-2021学年度九年级数学第一学期期末模拟测试卷A 卷(附答案)一、单选题1.已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的点的个数为m ,给出下列命题:①若d >5,则m =0;②若d =5,则m =1;③若1<d <5,则m =3;④若d =1,则m =2;⑤若d <1,则m =4. 其中正确命题的个数是( ) A .1 B .2 C .3 D .52.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 181 186 181 186 方差3.53.56.57.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A .甲B .乙C .丙D .丁3.如图是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7天中,日温差最大的一天是( )A .5月1日B .5月2日C .5月3日D .5月5日4.飞人刘翔伤愈归来,在恢复训练中,大家十分关注他的训练成绩是否稳定,为此对他训练中的10次110米栏成绩进行统计分析,下列数据中最能反映成绩是否稳定的是( )A .众数B .中位数C .平均数D .方差5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )6.有一组数据16,x,19,19,它们的平均数比众数小1,则这组数据的平均数和中位数分别是()A.18,17.5 B.18,19 C.19,18 D.18,18.5 7.以下问题不适合采用全面调查的是( )A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查某电视节目的收视率D.调查某校篮球队员的身高8.把二次函数y=4x2﹣4x+4的图象,先向左平移1个单位,再向上平移1个单位,平移后的二次函数解析式为( )A.y=22x+4 B.y=42x+4x+5 C.y=42x﹣4x+5 D.y=42x+4x+49.在△ABC中,∠C=90°,1cos2A ,那么∠B的度数为()A.60°B.45°C.30°D.30°或60°10.如图,在RtΔABC中∠C=90°,AC=6,BC=8,则sin∠A的值()A.35B.45C.34D.53二、填空题11.在直角三角形ABC中,角C为直角,锐角A的余弦函数定义为_____,写出sin70º、cos40º、cos50º的大小关系__________.12.已知⊙O的半径为6 cm,直线l上有P、Q、R三点,OA⊥l,A为垂足,若OA = 4 cm,PA = 5 cm,QA = 4 cm,RA = 25,则点P在圆_______,点Q在圆_______,点R在圆________.13.两条弧所含的度数相等, 叫等弧.(____)14.如图,P为⊙O的弦AB上的点,P A=6,PB=2,⊙O的半径为5,则OP=______.16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5:2:3的比例来计算平均成绩,则小亮的平均成绩是_____分.17.如图,直线AB 与⊙O 切于点A ,⊙O 的半径为2,若∠OBA =30°,则AB 的长为_______.18.如图,AD ∥EF ∥BC ,则图的相似三角形共有_____对.19.某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9 5.5x ≤<这个范围的频率为______. 视力x频数 4.0 4.3x ≤<20 4.3 4.6x ≤< 40 4.6 4.9x ≤<70 4.9 5.2x ≤≤60 5.2 5.5x ≤<1020.甲、乙、丙三人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是S 2=0.90,S 乙2=1.22,S 丙2=0.43,在本次射击测试中,成绩最稳定的是 . 三、解答题21.鄂北公司以10元/千克的价格收购一批产品进行销售,为了得到日销售量y (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如表: 销售价格x (元/千克)1015202530日销售量y (千克) 30022515075(1)请你根据表中的数据确定y 与x 之间的函数表达式;(2)鄂北公司应该如何确定这批产品的销售价格,才能使日销售利润W 1元最大? (3)若鄂北公司每销售1千克这种产品需支出a 元(a >0)的相关费用,当20≤x≤25时,鄂北公司的日获利W 2元的最大值为1215元,求a 的值.22.图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少m(取1.41,结果精确到0.1m)?23.已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.24.今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是.(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角是度.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.25.体育委员统计了全班同学60秒跳绳的次数,绘制出频数分布表和部分频数分布直方图,如图所示.请根据以下信息,解答下列问题:次数x 频数60≤x<80 280≤x<100 4100≤x<120 20120≤x<140 12140≤x<160 8160≤x<180 3180≤x<200 1(Ⅰ)补全直方图;(Ⅱ)全班有学生______名,频数分布表的组距是_______,组数是_______;(Ⅲ)求跳绳次数x在100≤x<140范围内的学生有多少?占全班学生的百分之几?26.运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL号约多少件比较合适,请计算说明.27.为了了解成都市初中学生“数学核心素养”的掌握情况,教育科学院命题教师赴某校初三年级进行调 研,命题教师将随机抽取的部分学生成绩(得分为整数,满分 160 分)分为 5 组:第一组 85~100;第二组100~115;第三组 115~130;第四组 130~145;第五组 145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生? (2)针对考试成绩情况,现各组分别派出1名代表(分别用 A 、B 、C 、D 、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率. 28.(1)计算;20)21()2(60sin 4-12-︒+++π; (2) 解方程:24111x x x -=+-. 29.某公司销售人员15人,销售经理为了制定某种商品的月销售定额,统计了这15人某月的销售量如表所示:每人销售量/件 1800 510 250 210 150 120 人数 113532(1)这15位营销人员该月销售量的中位数是______,众数是______;(2)假设销售部负责人把每位销售人员的月销售额定为210件,你认为是否合理?如不合理,请你制定一个较为合理的销售定额,并说明理由. 30.(本题满分8分)解方程:(1)计算:03cos303tan 452018︒+︒-; (2)解方程:.参考答案1.C 【解析】试题分析:①若d >5时,直线与圆相离,则m=0,正确; ②若d=5时,直线与圆相切,则m=1,故正确; ③若1<d <5,则m=3,正确;④若d=1时,直线与圆相交,则m=2正确; ⑤若d <1时,直线与圆相交,则m=2,故错误. 故选C .考点:1.直线与圆的位置关系2.命题与定理. 2.B 【解析】 【分析】根据平均数与方差的意义解答即可. 【详解】 解:=x x x x <=甲乙丁丙,∴乙与丁二选一,又22s s <乙丁,∴选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键. 3.D 【解析】试题解析:在图中,从5月1日至5月7日找出实线与虚线差距最大的一天,为5月5日; 故选D . 4.D【解析】由于方差反映数据的波动情况,故最能反映成绩是否稳定的量是方差.故选D 5.A 【解析】 【分析】根据垂径定理可得出CE 的长度,在Rt △OCE 中,利用勾股定理可得出OE 的长度,再利用AE=AO+OE 即可得出AE 的长度. 【详解】∵弦CD ⊥AB 于点E ,CD=8cm , ∴CE=12CD=4cm . 在Rt △OCE 中,OC=5cm ,CE=4cm ,∴=3cm , ∴AE=AO+OE=5+3=8cm . 故选A . 【点睛】本题考查了垂径定理以及勾股定理,利用垂径定理结合勾股定理求出OE 的长度是解题的关键. 6.D 【解析】 【分析】先求出x 值,分两种情况讨论:众数是19时和众数是16时,再根据平均数和中位数的概念求解. 【详解】因为数据16,x ,19,19的平均数比众数小1, 所以当众数是19时,平均数为18, 则有(161919)418,x +++÷=18x =;当众数是16时,此时这组数据有两一些人众数16和19,平均数也有两个,故这种情况不存在.故这组数据按从小到大的顺序排列为16,18,19,19,中位数是(1819)218.5+÷=.故选D.【点睛】本题考查中平均数和中位数的意义.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.7.C【解析】电视节目的收视率调查范围太大,不适合采用全面调查.故选C.8.B【解析】【分析】先将二次函数化成顶点式,利用平移的规律“左加右减,上加下减”可得到答案.【详解】解:∵y=4x2﹣4x+4=21432x⎛⎫-+⎪⎝⎭,∴把二次函数y=4x2﹣4x+4的图象,先向左平移1个单位,再向上平移1个单位,其解析式为:y=4211312x⎛⎫-+++⎪⎝⎭,即y=4x2+4x+5.故选:B.【点睛】本题主要考查二次函数图象的平移,掌握平移的规律“左加右减,上加下减”是解题的关键.9.C【解析】【分析】根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可. 【详解】解:∵1 cos2A=,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.10.B【解析】【分析】由勾股定理可求得AB的长度,再根据锐角三角函数的定义式求得sin∠A的值.【详解】∵AC=6,BC=8,∴10=,∴sin∠A=84105 BCAB==.故选B.【点睛】本题考查勾股定理和锐角三角函数的综合应用,根据求得的直角三角形的边长利用锐角三角函数的定义求值是解题关键.11.ACcos A=ABsin70º>cos40 º>cos50 º【解析】【分析】根据余弦的定义即可确定答案;根据sin70°=cos20°且正弦随角度的增大而增大,余弦随角度的增大而减小即可确定大小关系.【详解】解:∵直角三角形ABC中,角C为直角∴BC为斜边,AC为直角边且为∠A的一边∴余弦的定义为AC cos A=AB;∵sin70°=cos20°且正弦在锐角范围内随角度的增大而增大,余弦在锐角范围内随角度的增∴sin70º==cos20 º>cos40º,cos40 º>cos50 º∴sin70º>cos40 º>cos50 º.故答案为ACcos A=AB,sin70º>cos40 º>cos50 º.【点睛】本题考查了余弦函数的定义和正弦、余弦函数的增减性,掌握正弦在锐角范围内为增函数、余弦在锐角范围内为减函数是解答本题的关键.12.外,内,上.【解析】【分析】如图,根据题意作图,根据勾股定理求出AB= 25= RA,故点R在圆上,再根据PA,QA 与AB的长度大小即可知点P,Q的位置.【详解】如图,∵OA⊥l,OA = 4 cm,OB=6cm,∴AB=22OB OA-=2264-=25,∵PA=5cm,QA=4cm,RA=25cm,∴PA>AB,QA<AB,RA= AB,∴点P在圆外,点Q在圆内,点R在圆上.【点睛】此题主要考查点与圆的位置关系,解题的关键是找到点在圆上时的条件.13.错误【解析】根据“在同圆或等圆中,所对的圆心角相等的两段弧是等弧”进行判断即可.【详解】在同圆或等圆中,所对的圆心角相等的两段弧是等弧.故答案为:错误.【点睛】本题考查等弧的定义:在同圆或等圆中,所对的圆心角相等的两段弧是等弧.14.13【解析】【分析】连接OA,过点O作OC⊥AB,垂足为C,由垂径定理求得AC,再由勾股定理求得OC,再在直角三角形OPC中,利用勾股定理求得OP即可.【详解】解:如图,连接OA,过点O作OC⊥AB,垂足为C,∵PA=6,PB=2,∴AC=4,∴PC=2,∵OA=5,∴由勾股定理得:OC=22-=3,54∴OP=223213+=,故答案为:13.【点睛】本题考查了勾股定理和垂径定理,解此类题目要注意将圆的问题转化成三角形的问题再进行计算.15 【解析】根据特殊角的三角函数值,直接计算即可得tan60°﹣cos30°2=2.16.83【解析】【分析】 利用加权平均数的算法进行计算即可.【详解】 解:90585270383523⨯+⨯+⨯=++(分). 故答案为:83.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,数量掌握加权平均数是解题的关键.17.【解析】【分析】根据切线的性质可得∠OAB=90°,根据30°所对的直角边是斜边的一半即可求出OB ,利用勾股定理即可求出结论.【详解】解:∵直线AB 与⊙O 切于点A ,∴∠OAB=90°在Rt △OAB 中,∠OBA =30°,半径OA=2∴OB=2OA=4∴=故答案为:23.【点睛】此题考查的是切线的性质和直角三角形的性质,掌握切线的性质、30°所对的直角边是斜边的一半和勾股定理是解题关键.18.3【解析】本题主要考查了相似三角形的判定定理.根据平行于三角形一边的直线和其他两边相交所构成的三角形与原三角形相似可判断相似三角形的对数.解:∵AD∥EF∥BC,∴△AEF∽△ABC,△AFD∽△CFB,△BEF∽△BAD,∴共3对.19.0.35【解析】【分析】直接利用频数÷总数=频率进而得出答案.【详解】解:∵视力在4.9≤x<5.5这个范围的频数为:60+10=70,∴视力在4.9≤x<5.5这个范围的频率为:70=0.35.2040706010++++故答案为:0.35.【点睛】此题主要考查了频率求法,正确把握频率的定义是解题关键.20.丙【解析】试题分析:方差的意义:方差反映的是一组数据的波动情况,方差越小,成绩越稳定.∵∴成绩最稳定的是丙.考点:方差的意义点评:本题属于基础应用题,只需学生熟练掌握方差的意义,即可完成.21.(1)y =﹣15x+450;(2)这批产品的销售价格定为20元,才能使日销售利润最大;(3)a 的值为2【解析】【分析】(1)由表格数据变化规律可知:y 是x 的一次函数,然后利用待定系数法求一次函数解析式即可;(2)根据“总利润=每千克利润×千克数”即可求出W 1与x 的函数关系式,然后利用二次函数求最值即可;(3)根据“总利润=每千克利润×千克数”即可求出W 2与x 的函数关系式,然后根据对称轴的位置分类讨论,分别求出最值,然后列出方程即可求出结论.【详解】解:(1)由表格可知: x 每增加5,y 都下降75∴y 是x 的一次函数设y 与x 之间的函数表达式为y =kx+b ,则1030015225k b k b +=⎧⎨+=⎩, 解得:k =﹣15,b =450,∴y 与x 之间的函数表达式为:y =﹣15x+450;(2)设日销售利润W 1=y (x ﹣10)=(﹣15x+450)(x ﹣10)即W 1=﹣15x 2+600x ﹣4500∵150,=-<a∴当x =﹣6002(15)⨯-=20时,W 1有最大值1500元, 答:这批产品的销售价格定为20元,才能使日销售利润最大;(3)日获利W 2=y (x ﹣10﹣a )=(﹣15x+450)(x ﹣10﹣a ),即W 2=﹣15x 2+(600+15a )x ﹣(450a+4500),则对称轴为x =20+12a ①若20+12a ≥25,即a≥10时,则当x =25时,W 2有最大值,即W2=1125﹣75a<1215(不合题意);②若20<20+12a <25,即0<a<10时,则当x=20+12a时,W2有最大值,将x=20+12a代入,可得W2=154a2﹣150a+1500,当W2=1215时,154a2﹣150a+1500=1215,解得a1=2,a2=38(舍去),综上所述,a的值为2【点睛】此题考查的是一次函数和二次函数的应用,掌握实际问题中的等量关系、利用待定系数法求一次函数的解析式和利用二次函数求最值是解决此题的关键.22.(1)点P的坐标为.(2)2.8m.【解析】【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【详解】(1)如图,过点P作PB⊥OA,垂足为B.设点P的坐标为(x,y).在Rt△POB中,∵tanα=,∴OB==2y.在Rt△P AB中,∵tanβ=,∴AB=y.∵OA=OB+AB,即2y+y=4,∴y=.∴x=2×=3.∴点P的坐标为(3,).(2)设这条抛物线表示的二次函数的表达式为y=ax2+bx,由函数图象经过(4,0),(3,)两点,可得解方程组,得,∴这条抛物线表示的二次函数的表达式为y=-x2+2x.当水面上升1 m 时,水面的纵坐标为1,即-x2+2x=1,解得x1=2-,x2=2+,∴x2-x1=2+-(2-)=2≈2.8.因此,若水面上升1 m,则水面宽约2.8 m.【点睛】本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.23.k<5;k=5.【解析】试题分析:(1)、当抛物线与x轴有两个不同的交点,则△>0,从而求出k的取值范围;(2)、顶点在x轴上则说明顶点的纵坐标为0.试题解析:(1)、∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,即16-4k+4>0.解得k<5.(2)、∵抛物线的顶点在x轴上,∴顶点纵坐标为0,即244ac ba=0.解得k=5.考点:二次函数的顶点24.(1)150 (2)图见解析(3)108 (4)9600【解析】【分析】【详解】试题分析:(1)利用日人均阅读时间在0~0.5小时的人数除以所占的比例可得本次抽样调查的样本容量;(2)求出日人均阅读时间在0.5~1小时的人数即可;(3)人均阅读时间在1~1.5小时对应的圆心角度数=360°×所占比例;(4)日人均阅读时间在0.5~1.5小时的人数=12000×后两组所占的比例和.试题解析:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150-30-45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×45150=108°;(4)12000×7545150=9600(人).考点:1.用样本估计总体;2. 条形统计图;3. 扇形统计图.25.(Ⅰ)补全直方图见解析;4,8;(Ⅱ)50,20,7;(Ⅲ)跳绳次数x在100≤x<140范围内的学生有32人,占全班学生人数的64%.【解析】【分析】(1)根据表格的数据找到相关数据即可;(2)把所有人数加起来就是总人数,每一组两个数之间的差距即可得到结果;根据表格的组数可以得到数据;(3)先算出在100≤x<140范围内的学生人数,再除以总人数即可.【详解】(Ⅰ)补全直方图:在80≤x<100范围的频数4,在140≤x<160范围内的频数是8;(Ⅱ)总人数=2+4+20+12+8+3+1=50,因为每一组数据的差距是20,所以组距是20,根据表格的数据可得到总共分成7组,故答案是50,2,7.(Ⅲ)20+12=32人,32100%64% 50⨯=.∴跳绳次数x在100≤x<140范围内的学生有32人,占全班学生人数的64%.【点睛】本题主要考查了数据分析的应用,准确根据表格分析数据是解题的关键.26.(1)20%;(2)详见解析;(3)96.【解析】【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用样本估计总体的思想解决问题即可;【详解】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点睛】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.27.(1)本次调查的学生总数为50(名),成绩在第5组的学生人数为4(人);(2)所选两名同学刚好来自第一、五组的概率为1 10.【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50-4-8-20-14=4(名);即可补全统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名同学刚好来自第一、五组的情况,再利用概率公式求解即可求得答案.解:(1)本次调查的学生总数为20÷40%=50(名),成绩在第5组的学生人数为50﹣(4+8+20+14)=4(人);(2)画树状图如下:由树状图知,共有20种等可能结果,其中所选两名同学刚好来自第一、五组的情况有2种结果,所以所选两名同学刚好来自第一、五组的概率为.28.(1) 5 (2) x=-3【解析】试题分析:首先将各式进行计算,然后进行求和;首先进行去分母,将分式方程转化为整式方程,然后进行求解,最后需要验根.试题解析:(1)原式(2)去分母得:x (x -1)-4=2x -1 解得:x=-3. 经检验:x=-3是原方程的解. 考点:实数的计算、解分式方程.29.(1)210,210;(2)合理,理由见解析【解析】【分析】(1)根据中位数和众数的定义求解;(2)先观察出能销售210件的人数为能达到大多数人的水平即合理.【详解】解:(1)按大小数序排列这组数据,第7个数为210,则中位数为210;210出现的次数最多,则众数为210;故答案为:210,210;(2)合理;因为销售210件的人数有5人,210是众数也是中位数,能代表大多数人的销售水平,所以售部负责人把每位销售人员的月销售额定为210件是合理的.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.30.(1)72;(2)11x =21x =【解析】试题分析:(1)第一、二项按照特殊角的三角函数解答,第三项非零数的零次方等于1;(2)先把-2移到右边,然后两边都加上一次项系数一半的平方,把左边配成完全平方的形式,然后开平方即可..(1)原式311+⨯-=72 (2)配方得:()213x -=直接开平方得:1211x x ==点睛:本题主要考查了特殊角的三角函数值及配方法解一元二次方程方程,熟练掌握特殊角的三角函数值及配方的方法是解答本题的关键.。

2020-2021上海市外国语大学附属实验初三数学上期末第一次模拟试题带答案

2020-2021上海市外国语大学附属实验初三数学上期末第一次模拟试题带答案

2020-2021上海市外国语大学附属实验初三数学上期末第一次模拟试题带答案一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒ 3.下列图形中既是轴对称图形又是中心对称图形的是( ) A .正三角形B .平行四边形C .正五边形D .正六边形 4.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣15.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点6.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .59B .49C .56D .137.下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰8.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-9.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >410.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦11.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④ 12.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 二、填空题13.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .14.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.15.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.16.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.17.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.18.一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=_____.(只需填一个).19.如图,如果一只蚂蚁从圆锥底面上的点B 出发,沿表面爬到母线AC 的中点D 处,则最短路线长为_____.20.如图,在平面直角坐标系中,二次函数y=ax 2+c (a≠0)的图象过正方形ABOC 的三个顶点A ,B ,C ,则ac 的值是________.三、解答题21.关于x 的一元二次方程x 2﹣x ﹣(m +2)=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m为符合条件的最小整数,求此方程的根.22.在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.(1)画树状图或列表,写出点P所有可能的坐标;(2)求出点P在以原点为圆心,5为半径的圆上的概率.23.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 24.某商场今年“十一”期间举行购物摸奖活动,摸奖箱里有四个标号分别为1,2,3,4的质地,大小都相同的小球,任意摸出一个小球,记下小球标号后,放回箱里并摇匀,再摸出一个小球,再记下小球标号.商场规定:两次摸出的小球之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.25.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC 于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.C解析:C【解析】【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可.【详解】解:∵AC 是⊙O 的切线∴∠CAB=90︒,又∵50C ∠=︒∴∠ABC=90︒-50︒=40︒又∵OD=OB∴∠BDO=∠ABC=40︒又∵∠AOD=∠OBD+∠OBD∴∠AOD=40︒+40︒=80︒故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.3.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形, 轴对称图形,解题的关键是熟练的掌握中心对称图形, 轴对称图形.4.B解析:B【解析】【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B .【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.5.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 6.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.7.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.C解析:C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.9.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.11.D解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.12.C解析:C【解析】【分析】由题意使x=0,求出相应的y 的值即可求解.【详解】∵y=3(x ﹣2)2﹣5, ∴当x=0时,y=7, ∴二次函数y=3(x ﹣2)2﹣5与y 轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式. 二、填空题13.1【解析】【分析】(1)根据求出扇形弧长即圆锥底面周长;(2)根据即求圆锥底面半径【详解】该圆锥的底面半径=故答案为:1【点睛】圆锥的侧面展开图是扇形解题关键是理解扇形弧长就是圆锥底面周长解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】 该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长. 14.5【解析】【分析】连接OD 根据垂径定理求出DE 根据勾股定理求出OD 即可【详解】解:连接OD∵CD⊥AB 于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O 的半径为5故答案为:解析:5【解析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.15.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y>0时x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1解析:-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.16.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==解析:3 8【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)=3 53 +=38.17.π﹣2【解析】【分析】连接CD作DM⊥BCDN⊥AC证明△DMG≌△DNH则S 四边形DGCH=S四边形DMCN求得扇形FDE的面积则阴影部分的面积即可求得【详解】连接CD作DM⊥BCDN⊥AC∵CA解析:π﹣2.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=2,四边形DMCN是正方形,DM=2.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=2.则阴影部分的面积是:π﹣2.故答案为π﹣2.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.18.123456中的任何一个数【解析】【分析】【详解】解:∵一元二次方程有两个不相等的实数根∴△=解得∵c是整数∴c=123456故答案为123456中的任何一个数【点睛】本题考查根的判别式;根与系数的解析:1,2,3,4,5,6中的任何一个数.【解析】【分析】【详解】解:∵一元二次方程250x x c -+=有两个不相等的实数根,∴△=2(5)40c -->,解得254c <, ∵125x x +=,120x x c =>,c 是整数,∴c=1,2,3,4,5,6.故答案为1,2,3,4,5,6中的任何一个数.【点睛】本题考查根的判别式;根与系数的关系;开放型.19.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF 为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=解析:3【解析】【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB ′,则线段BF 为所求的最短路线.设∠BAB ′=n °.∵64180n ππ⋅=, ∴n =120,即∠BAB ′=120°.∵E 为弧BB ′中点,∴∠AFB =90°,∠BAF =60°,Rt △AFB 中,∠ABF =30°,AB =6∴AF=3,BF=,∴最短路线长为.故答案为:【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.20.-2【解析】【分析】设正方形的对角线OA长为2m根据正方形的性质则可得出BC坐标代入二次函数y=ax2+c中即可求出a和c从而求积【详解】设正方形的对角线OA长为2m则B(﹣mm)C(mm)A(02解析:-2.【解析】【分析】设正方形的对角线OA长为2m,根据正方形的性质则可得出B、C坐标,代入二次函数y=ax2+c中,即可求出a和c,从而求积.【详解】设正方形的对角线OA长为2m,则B(﹣m,m),C(m,m),A(0,2m);把A,C的坐标代入解析式可得:c=2m①,am2+c=m②,①代入②得:am2+2m=m,解得:a=-1m,则ac=-1m⨯2m=-2.考点:二次函数综合题.三、解答题21.(1)m>94-;(2)x1=0,x2=1.【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m>0即可求出m的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m+2)=9+4m>0∴94 m>-.(2)∵m为符合条件的最小整数,∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.22.(1)列表见解析,P 所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);(2)18【解析】【分析】(1)用列表法列举出所有可能出现的情况,注意每一种情况出现的可能性是均等的, (2)点P 在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),由概率公式即可得出答案.【详解】(1)由列表法列举所有可能出现的情况:因此点P 所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种. (2)点P 在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3), ∴点P 在以原点为圆心,5为半径的圆上的概率为21168=. 【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,利用这种方法注意每一种情况出现的可能性是均等的.23.10%;3327.5万元.【解析】试题分析:(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x )万元,在2015年的基础上再增长x ,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.试题解析:(1)设增长率为x ,根据题意2015年为2500(1+x )万元,2016年为2500(1+x )(1+x )万元.则2500(1+x )(1+x )=3025,解得x =0.1=10%,或x =﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费3327.5万元.24.“树状图法”或“列表法”见解析,1 4【解析】【分析】列举出所有情况,让两次摸出的小球的标号之和为“8”或“6”的情况数除以总情况数即为所求的概率.【详解】解:解法一:列树状图得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164=.解法二:列表得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164=.【点睛】此题考查的是用列表法或用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.25.(1)相切,理由见解析;(2)DE=125. 【解析】【分析】 (1)连接AD ,OD ,根据已知条件证得OD ⊥DE 即可;(2)根据勾股定理计算即可. 【详解】解:(1)相切,理由如下:连接AD ,OD ,∵AB 为⊙O 的直径,∴∠ADB=90°.∴AD ⊥BC .∵AB=AC ,∴CD=BD=12BC . ∵OA=OB ,∴OD ∥AC .∴∠ODE=∠CED .∵DE ⊥AC , ∴∠ODE=∠CED=90°. ∴OD ⊥DE .∴DE 与⊙O 相切.(2)由(1)知∠ADC=90°,∴在Rt △ADC 中,由勾股定理得, 222211()5(6)22AC BC -=-⨯=4. ∵S ACD =12AD•CD=12AC•DE , ∴12×4×3=12×5DE . ∴DE=125. 【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.。

{3套试卷汇总}2020-2021上海市浦东新区九年级上学期期末(一模)数学试题

{3套试卷汇总}2020-2021上海市浦东新区九年级上学期期末(一模)数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为12,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【答案】D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.2.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)【答案】A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.3.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元【答案】D【解析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.4.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )A.40°B.50°C.60°D.70°【答案】B【解析】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.5.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A.3B.23C.332D.233【答案】C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°=332.故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.6.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=12∠BOD C.∠C=∠B D.∠A=∠B0D【答案】B【解析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=12∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD =弧BD , ∴∠C=12∠BOD . 故选B . 【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 7.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >4【答案】C【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0), ∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4, 故选C . 【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.8.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ) A .0.7×10﹣8 B .7×10﹣8C .7×10﹣9D .7×10﹣10【答案】C【解析】本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a×10n (1≤|a|≤10且n 为整数),因此0.000000007用科学记数法法可表示为7×910﹣, 故选C. 【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.9.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .4【答案】C【解析】∵∠ACD=∠B ,∠A=∠A , ∴△ACD ∽△ABC , ∴12AC AD AB AC ==, ∴2ACD ABCS AD SAC ⎛⎫= ⎪⎝⎭, ∴2112ABCS⎛⎫= ⎪⎝⎭, ∴S △ABC =4,∴S △BCD = S △ABC - S △ACD =4-1=1. 故选C考点:相似三角形的判定与性质.10.下列图形中,周长不是32 m 的图形是( )A .B .C .D .【答案】B【解析】根据所给图形,分别计算出它们的周长,然后判断各选项即可. 【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32. 采用排除法即可选出B 故选B. 【点睛】此题考查多边形的周长,解题在于掌握计算公式. 二、填空题(本题包括8个小题)11.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.【答案】(6053,2).【解析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P 1(5,2),第二次P 2(8,1),第三次P 3(10,1),第四次P 4(13,1),第五次P 5(17,2),…发现点P 的位置4次一个循环, ∵2017÷4=504余1,P 2017的纵坐标与P 1相同为2,横坐标为5+3×2016=6053, ∴P 2017(6053,2), 故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.12.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___. 【答案】x 2+7x-4【解析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A ,则根据题目信息可得22(53)(221),A x x x x =-+-++- 2253221,x x x x =-+-++- 27 4.x x =+-他所捂的多项式为27 4.x x +- 故答案为27 4.x x +- 【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算; 13.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________. 【答案】0<x<4【解析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【详解】由表可知,二次函数的对称轴为直线x=2, 所以,x=4时,y=5,所以,y<5时,x 的取值范围为0<x<4. 故答案为0<x<4. 【点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.14.已知抛物线y=ax 2+bx+c=0(a≠0) 与 x 轴交于 A ,B 两点,若点 A 的坐标为 ()2,0-,线段 AB 的长为8,则抛物线的对称轴为直线 ________________. 【答案】2x =或x=-1【解析】由点A 的坐标及AB 的长度可得出点B 的坐标,由抛物线的对称性可求出抛物线的对称轴. 【详解】∵点A 的坐标为(-2,0),线段AB 的长为8, ∴点B 的坐标为(1,0)或(-10,0).∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于A 、B 两点, ∴抛物线的对称轴为直线x=262-+=2或x=2102--=-1. 故答案为x=2或x=-1. 【点睛】本题考查了抛物线与x 轴的交点以及二次函数的性质,由抛物线与x 轴的交点坐标找出抛物线的对称轴是解题的关键.15.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.【答案】1【解析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.16.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为cm.【答案】1【解析】过点O 作OM ⊥EF 于点M ,反向延长OM 交BC 于点N ,连接OF ,设OF=r ,则OM=80-r ,MF=40,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】过点O 作OM ⊥EF 于点M ,反向延长OM 交BC 于点N ,连接OF ,设OF=x ,则OM=80﹣r ,MF=40,在Rt △OMF 中, ∵OM 2+MF 2=OF 2,即(80﹣r )2+402=r 2,解得:r=1cm . 故答案为1.17.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)ky k x=≠的图象恰好经过点A′,B ,则的值为_________.43【解析】解:∵四边形ABCO 是矩形,AB=1, ∴设B (m ,1), ∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称, ∴OA′=OA=m ,∠A′OD=∠AOD=30°, ∴∠A′OA=60°, 过A′作A′E ⊥OA 于E , ∴OE=12m ,3, ∴A′(12m ,32m ),∵反比例函数y=kx(k≠0)的图象恰好经过点A′,B,∴12m•32m=m,∴m=433,∴k=433.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.18.如图,点A,B在反比例函数kyx(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.【答案】【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC=2BD ,∴OD=2OC .∵CD=k ,∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92,∴==. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键.三、解答题(本题包括8个小题)19.计算:2344(1)11x x x x x ++-+÷++. 【答案】22x x -+ 【解析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式=()22311112x x x x x ⎛⎫-+-⨯ ⎪+++⎝⎭ =()()()2x 22112x x x x +-+⨯++ =22x x -+. 【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.20.现种植A 、B 、C 三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A 种树苗8棵;或植B 种树苗6棵,或植C 种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A 种树苗的工人为x 名,种植B 种树苗的工人为y 名.求y 与x 之间的函数关系式;设种植的总成本为w 元,①求w 与x 之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C 种树苗工人的概率.【答案】(1)803y x =-;(2)①165760w x =-+;②14 【解析】(1)先求出种植C 种树苗的人数,根据现种植A 、B 、C 三种树苗一共480棵,可以列出等量关系,解出y 与x 之间的关系;(2)①分别求出种植A ,B ,C 三种树苗的成本,然后相加即可;②求出种植C 种树苗工人的人数,然后用种植C 种树苗工人的人数÷总人数即可求出概率.【详解】解:(1)设种植A 种树苗的工人为x 名,种植B 种树苗的工人为y 名,则种植C 种树苗的人数为(80-x-y )人,根据题意,得:8x+6y+5(80-x-y )=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y )=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②种植的总成本为5600元时,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即种植A 种树苗的工人为10名,种植B 种树苗的工人为50名,种植B 种树苗的工人为:80-10-50=20名.采访到种植C 种树苗工人的概率为:2080=14. 【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.21.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.【答案】 (1)见解析;(2)13. 【解析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.22.如图,已知点D 在反比例函数a y x =的图象上,过点D 作DB y ⊥轴,垂足为(0,3)B ,直线y kx b =+经过点(5,0)A ,与y 轴交于点C ,且BD OC =,:2:5OC OA =.求反比例函数a y x=和一次函数y kx b =+的表达式;直接写出关于x 的不等式a kxb x>+的解集. 【答案】(1)y=-6x .y=25x-1.(1)x <2. 【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1)∵BD OC =,:2:5OC OA =, 点A (5,2),点B (2,3),∴523OA OC BD OB ====,,,又∵点C 在y 轴负半轴,点D 在第二象限,∴点C 的坐标为(2,-1),点D 的坐标为(-1,3).∵点()23D -,在反比例函数y=a x 的图象上, ∴236a =-⨯=-,∴反比例函数的表达式为6y x=-将A (5,2)、B (2,-1)代入y=kx+b ,502k b b +⎧⎨-⎩==,解得:252k b ⎧⎪⎨⎪-⎩== ∴一次函数的表达式为2y x 25=-. (1)将2y x 25=-代入6y x =-,整理得: 222605x x -+=, ∵()2228246055=--⨯⨯=-<, ∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x <2时,反比例函数图象在一次函数图象上方,∴不等式a x>kx+b 的解集为x <2. 点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23.如图,在ABC 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O 交BC 于点G ,交AB 于点F ,FB 恰为O 的直径.求证:AE 与O 相切;当14cos 3BC C ==,时,求O 的半径. 【答案】 (1)证明见解析;(2)32. 【解析】(1)连接OM ,证明OM ∥BE ,再结合等腰三角形的性质说明AE ⊥BE ,进而证明OM ⊥AE ;(2)结合已知求出AB ,再证明△AOM ∽△ABE ,利用相似三角形的性质计算.【详解】(1)连接OM ,则OM=OB ,∴∠1=∠2,∵BM 平分∠ABC ,∴∠1=∠3,∴∠2=∠3,∴OM ∥BC ,∴∠AMO=∠AEB ,在△ABC 中,AB=AC ,AE 是角平分线,∴AE ⊥BC ,∴∠AEB=90°,∴∠AMO=90°,∴OM ⊥AE ,∵点M 在圆O 上,∴AE 与⊙O 相切;(2)在△ABC 中,AB=AC ,AE 是角平分线,∴BE=12BC ,∠ABC=∠C , ∵BC=4,cosC=13∴BE=2,cos ∠ABC=13, 在△ABE 中,∠AEB=90°,∴AB=cos BE ABC∠=6, 设⊙O 的半径为r ,则AO=6-r ,∵OM ∥BC ,∴△AOM ∽△ABE ,∴∴OM AO BE AB=, ∴626r r -=, 解得32r =, ∴O 的半径为32. 【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.24.如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20m y m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -. 求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.【答案】 (1) 3y x=,2y x =-;(2)10x -<<或3x >. 【解析】(1)把点A 坐标代入()m y m 0x=≠可求出m 的值即可得反比例函数解析式;把点A 、点C 代入()1y kx b k 0=+≠可求出k 、b 的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B 的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x 的取值范围即可.【详解】(1)把()A 3,1代入()m y m 0x =≠得m 3=. ∴反比例函数的表达式为3y x= 把()A 3,1和()B 0,2-代入y kx b =+得132k b b =+⎧⎨-=⎩, 解得12k b =⎧⎨=-⎩∴一次函数的表达式为y x 2=-.(2)由3x 2y y x ⎧=⎪⎨⎪=-⎩得()B 1,3--∴当1x 0-<<或x 3>时,12y y >.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.25.如下表所示,有A 、B 两组数:(1)A 组第4个数是 ;用含n 的代数式表示B 组第n 个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.【答案】(1)3;(2)32n -,理由见解析;理由见解析(3)不存在,理由见解析【解析】(1)将n=4代入n 2-2n-5中即可求解;(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n 个数是3n-2;(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n 2-2n-5=3n-2有无正整数解的问题.【详解】解:(1))∵A 组第n 个数为n 2-2n-5,∴A 组第4个数是42-2×4-5=3,故答案为3;(2)第n 个数是32n -.理由如下:∵第1个数为1,可写成3×1-2;第2个数为4,可写成3×2-2;第3个数为7,可写成3×3-2;第4个数为10,可写成3×4-2;……第9个数为25,可写成3×9-2;∴第n 个数为3n-2;故答案为3n-2;(3)不存在同一位置上存在两个数据相等;由题意得,22532n n n --=-, 解之得,537n ±= 由于n 是正整数,所以不存在列上两个数相等.【点睛】本题考查了数字的变化类,正确的找出规律是解题的关键.26.如图,△ABC 中,CD 是边AB 上的高,且AD CD CD BD=. 求证:△ACD ∽△CBD ;求∠ACB 的大小.【答案】(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD 是边AB 上的高,∴∠ADC=∠CDB=90°,∵AD CD.CD BD∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC【答案】C 【解析】根据旋转的性质得,∠ABD =∠CBE=60°, ∠E =∠C,则△ABD 为等边三角形,即 AD =AB=BD,得∠ADB=60°因为∠ABD =∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD ,得AD ∥BC.故选C.2.反比例函数y=a x (a >0,a 为常数)和y=2x在第一象限内的图象如图所示,点M 在y=a x 的图象上,MC ⊥x 轴于点C ,交y=2x 的图象于点A ;MD ⊥y 轴于点D ,交y=2x 的图象于点B ,当点M 在y=a x 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3【答案】D 【解析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a ,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确;考点:反比例系数的几何意义.3.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 【答案】A【解析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确; B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.4.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D,E 分别在边AB,AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2= ( )A .70°B .110°C .130°D .140°【答案】D 【解析】∵四边形ADA'E 的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED ,∠ADE=∠A'DE ,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE )=140°.5.若函数2m y x +=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2B .m <﹣2C .m >2D .m <2【解析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.6.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.7.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.24【答案】D【解析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.8.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元【答案】D【解析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.9.下列事件中,属于必然事件的是()A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )A .8B .4C .12D .16【答案】A 【解析】∵AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,∴DA=DB ,EA=EC ,则△ADE 的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A .二、填空题(本题包括8个小题)11.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.【答案】16【解析】设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+53a=83a,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答.【详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=53a,m=a+b= a+53a=83a,因为1020m<<,所以10<83a<20,解得:154<a<152,又因为小长方形的边长为整数,a=4、5、6、7,因为b=53a,所以5a是3的倍数,即a=6,b=53a=10,m= a+b=16.故答案为:16.【点睛】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.12.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.【答案】2【解析】设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.【详解】作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴当10-1x=0,即x=2时,y1最小值=12,∴y最小值=2.即MN的最小值为2;。

2020-2021上海上海外国语大学附属浦东外国语学校高中必修一数学上期末第一次模拟试卷附答案

2020-2021上海上海外国语大学附属浦东外国语学校高中必修一数学上期末第一次模拟试卷附答案

2020-2021上海上海外国语大学附属浦东外国语学校高中必修一数学上期末第一次模拟试卷附答案一、选择题1.已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b << B .b c a <<C .c a b <<D .c b a <<2.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞3.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( )A .4B .3C .2D .14.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)5.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦6.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<7.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( ) A .278-B .18-C .18D .2788.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}9.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃10.已知01a <<,则方程log xa a x =根的个数为( ) A .1个B .2个C .3个D .1个或2个或3根11.函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( ) A .()1,3B .()1,1-C .()()1,01,3-UD .()()1,00,1-U12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________14.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________.15.设是两个非空集合,定义运算.已知,,则________.16.已知f (x )是定义域在R 上的偶函数,且f (x )在[0,+∞)上是减函数,如果f (m ﹣2)>f (2m ﹣3),那么实数m 的取值范围是_____.17.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.18.2()2f x x x =+(0x ≥)的反函数1()f x -=________19.已知函数()211x x xf -=-的图象与直线2y kx =+恰有两个交点,则实数k 的取值范围是________.20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34xf f x ⎡⎤-=⎣⎦,则()4f =______. 三、解答题21.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .22.已知函数22()log (3)log (1)f x x x =-++. (1)求该函数的定义域;(2)若函数()y f x m =-仅存在两个零点12,x x ,试比较12x x +与m 的大小关系.23.已知全集U =R ,集合{|25},{|121}M x x N x a x a =-=++剟剟. (Ⅰ)若1a =,求()R M N I ð;(Ⅱ)M N M ⋃=,求实数a 的取值范围.24.已知函数2()(,)1ax bf x a b x +=∈+R 为在R 上的奇函数,且(1)1f =. (1)用定义证明()f x 在(1,)+∞的单调性;(2)解不等式()()2341xxf f +≤+.25.已知函数()()20f x ax bx c a =++≠,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)当[]1,2x ∈-时,求函数的最大值和最小值.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用指数函数2xy =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<Q ,c a b ∴<<.故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.2.B解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <„,341x x =g ,从而得解【详解】 解:因为22log ,0()2,0.x x fx x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题3.D解析:D 【解析】【分析】令()3g x ax bx =+,则()g x 是R 上的奇函数,利用函数的奇偶性可以推得(2)f -的值.【详解】令3()g x ax bx =+ ,则()g x 是R 上的奇函数,又(2)3f =,所以(2)35g +=, 所以(2)2g =,()22g -=-,所以(2)(2)3231f g -=-+=-+=,故选D. 【点睛】本题主要考查函数的奇偶性的应用,属于中档题.4.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.5.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.6.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.7.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322f f 骣骣琪琪=琪琪桫桫18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可. 【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②;在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭ 11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭Q 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭, 答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题8.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.9.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 10.B解析:B 【解析】【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.11.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--Q (),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图,若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<,若10x -≤≤ ,则不等式0xf x ()>等价为0f x ()< ,此时1x -<<0 ,综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题13.1【解析】【分析】根据二次函数的值域为结合二次函数的性质列出不等式组即可求解【详解】由题意函数的值域为所以满足解得即实数的值为1故答案为:1【点睛】本题主要考查了二次函数的图象与性质的应用其中解答中解析:1 【解析】 【分析】根据二次函数的值域为[0,)+∞,结合二次函数的性质,列出不等式组,即可求解. 【详解】由题意,函数()22f x mx x m =-+的值域为[0,)+∞,所以满足2440m m ⎧∆=-=⎨>⎩,解得1m =.即实数m 的值为1. 故答案为:1. 【点睛】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质是解答的关键,着重考查了推理与计算能力,属于基础题.14.2【解析】【分析】利用分段函数分段定义域的解析式直接代入即可求出实数的值【详解】由题意得:所以由解得故答案为:2【点睛】本题考查了由分段函数解析式求复合函数值得问题属于一般难度的题解析:2 【解析】 【分析】利用分段函数分段定义域的解析式,直接代入即可求出实数a 的值. 【详解】由题意得:()00323f =+=,()23331103f a a =-+=-,所以由()()01032ff a a =-=, 解得2a =.故答案为:2. 【点睛】本题考查了由分段函数解析式求复合函数值得问题,属于一般难度的题.15.01∪2+∞【解析】【分析】分别确定集合AB 然后求解A×B 即可【详解】求解函数y=2x-x2的定义域可得:A=x|0≤x≤2求解函数y=2xx>0的值域可得B=x|x>1则A ∪B=x|x≥0A∩B= 解析:【解析】 【分析】分别确定集合A ,B ,然后求解即可.【详解】 求解函数的定义域可得:,求解函数的值域可得,则,结合新定义的运算可知:,表示为区间形式即.【点睛】本题主要考查集合的表示及其应用,新定义知识的应用等知识,意在考查学生的转化能力和计算求解能力.16.(﹣∞1)(+∞)【解析】【分析】因为先根据f (x )是定义域在R 上的偶函数将f (m ﹣2)>f (2m ﹣3)转化为再利用f (x )在区间0+∞)上是减函数求解【详解】因为f (x )是定义域在R 上的偶函数且f解析:(﹣∞,1)U (53,+∞) 【解析】 【分析】因为先根据f (x )是定义域在R 上的偶函数,将 f (m ﹣2)>f (2m ﹣3),转化为()()223f m f m ->-,再利用f (x )在区间[0,+∞)上是减函数求解.【详解】因为f (x )是定义域在R 上的偶函数,且 f (m ﹣2)>f (2m ﹣3),所以()()223f m f m ->- ,又因为f (x )在区间[0,+∞)上是减函数,所以|m ﹣2|<|2m ﹣3|,所以3m 2﹣8m +5>0,所以(m ﹣1)(3m ﹣5)>0,解得m <1或m 53>, 故答案为:(﹣∞,1)U (53,+∞). 【点睛】本题主要考查了函数的单调性与奇偶性的综合应用,还考查了转化化归的思想和运算求解的能力,属于中档题.17.或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与 解析:1-或2.【解析】【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解.【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+, 对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即2110,2a a a +--==(舍去),或12a -=(舍去); 当1a ≥时,max ()(1)2f x f a ===,综上1a =-或2a =.故答案为:1-或2.【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题.18.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对1(0x ≥)【解析】【分析】设()22f x y x x ==+(0x ≥),求出x =()1f x -.【详解】设()22f x y x x ==+(0x ≥),所以2+20,x x y x -=∴=±因为x≥0,所以x =()11fx -=.因为x≥0,所以y≥0,所以反函数()11fx -=,0x ()≥.1,0x ()≥【点睛】 本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19.【解析】【分析】根据函数解析式分类讨论即可确定解析式画出函数图像由直线所过定点结合图像即可求得的取值范围【详解】函数定义域为当时当时当时画出函数图像如下图所示:直线过定点由图像可知当时与和两部分图像 解析:(4,1)(1,0)--⋃-【解析】【分析】根据函数解析式,分类讨论即可确定解析式.画出函数图像,由直线所过定点,结合图像即可求得k 的取值范围.【详解】函数()211x x x f -=-定义域为{}1x x ≠ 当1x ≤-时,()2111x x xf x -==--- 当11x -<<时,()2111x x xf x -==+- 当1x <时,()2111x x xf x -==--- 画出函数图像如下图所示:直线2y kx =+过定点()0,2由图像可知,当10k -<<时,与1x ≤-和11x -<<两部分图像各有一个交点;当41-<<-k 时,与11x -<<和1x <两部分图像各有一个交点.综上可知,当()()4,11,0k ∈--⋃-时与函数有两个交点故答案为:()()4,11,0--⋃-【点睛】本题考查了分段函数解析式及图像画法,直线过定点及交点个数的求法,属于中档题.20.【解析】【分析】采用换元法结合函数的单调性计算出的解析式从而即可求解出的值【详解】令所以又因为所以又因为是上的增函数且所以所以所以故答案为:【点睛】本题考查用换元法求解函数的解析式并求值难度一般已知 解析:82【解析】【分析】采用换元法结合函数的单调性计算出()f x 的解析式,从而即可求解出()4f 的值.【详解】令()3x f x t -=,所以()3xf x t =+, 又因为()4f t =,所以34t t +=,又因为34ty t =+-是R 上的增函数且1314+=,所以1t =,所以()31x f x =+,所以()443182f =+=. 故答案为:82.【点睛】本题考查用换元法求解函数的解析式并求值,难度一般.已知()()f g x 的解析式,可考虑用换元的方法(令()g x t =)求解出()f x 的解析式. 三、解答题21.(1)2a =(2)17,8⎛⎫-∞-⎪⎝⎭【解析】【分析】(1)依题意代数求值即可; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论.【详解】(1)()32f =-Q , ()12log 1032a ∴-=-, 即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭, 题设不等式可转化为()g x m >在[]3,4x ∈上恒成立, ()g x Q 在[]3,4上为增函数,()31min2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭, 178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭. 【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.22.(1)(1,3)- (2)12x x m +>【解析】【分析】(1)根据对数真数大于零列不等式组,解不等式组求得函数的定义域.(2)化简()f x 表达式为对数函数与二次函数结合的形式,结合二次函数的性质,求得12x x +以及m 的取值范围,从而比较出12x x +与m 的大小关系.【详解】(1)依题意可知301310x x x ->⎧⇒-<<⎨+>⎩,故该函数的定义域为(1,3)-; (2)2222()log (23)log ((1)4)f x x x x =-++=--+,故函数关于直线1x =成轴对称且最大值为2log 42=,∴122x x +=,2m <,∴12x x m +>.【点睛】本小题主要考查函数定义域的求法,考查对数型复合函数对称性和最值,属于基础题.23.(Ⅰ)(){|22R M C N x x =-≤<I 或35}x <≤(Ⅱ)2a ≤【解析】【分析】(Ⅰ)1a =时,化简集合B ,根据集合交集补集运算即可(Ⅱ)由M N M ⋃=可知N M ⊆,分类讨论N =∅,N ≠∅即可求解.【详解】(Ⅰ)当1a =时,{}|23N x x =≤≤ ,{|2R C N x x =<或}3x > .故 (){|22R M C N x x =-≤<I 或35}x <≤.(Ⅱ),M N M ⋃=QN M ∴⊆当N =∅时,121a a +>+,即0a <;当N ≠∅时,即0a ≥.N M ⊆Q ,12215a a +≥-⎧∴⎨+≤⎩解得02a ≤≤.综上:2a ≤.【点睛】本题主要考查了集合的交集,补集运算,子集的概念,分类讨论,属于中档题.24.(1)证明见解析;(2){|1}x x ≤.【解析】【分析】(1)根据函数为定义在R 上的奇函数得(0)0f =,结合(1)1f =求得()f x 的解析式,再利用单调性的定义进行证明;(2)因为231x +>,411x +>,由(1)可得2341x x +≥+,解指数不等式即可得答案.【详解】(1)因为函数2()(,)1ax b f x a b x +=∈+R 为在R 上的奇函数,所以(0)0f =则有0001111b a b +⎧=⎪⎪+⎨+⎪=⎪+⎩ 解得20a b =⎧⎨=⎩,即22()1x f x x =+ 12,(1,)x x ∀∈+∞,且12x x <()()()()()()2212211212222212122121221111x x x x x x f x f x x x x x +-+-=-=++++ ()()()()122122122111x x x x x x --=++因为12,(1,)x x ∀∈+∞,且12x x <,所以()()2212110x x ++>,1210x x ->,210x x -> 所以()()120f x f x ->即()()12f x f x > ,所以()f x 在(1,)+∞上单调递减 .(2)因为231x +>,411x +>,由(1)可得2341x x +≥+不等式可化为22220x x x ⋅--≤,即(()()21220x x +-≤解得22x ≤,即1x ≤所以不等式的解集为{|1}x x ≤【点睛】本题考查奇函数的应用、单调性的定义证明、利用单调性解不等式,考查函数与方程思想,考查逻辑推理能力和运算求解能力,求解时注意不等式的解集要写成集合的形式.25.(1)()222f x x x =-+;(2)增区间为()1,+∞,减区间为(),1-∞;(3)最小值为1,最大值为5.【解析】【分析】(1)利用已知条件列出方程组,即可求函数()f x 的解析式;(2)利用二次函数的对称轴,看看方向即可求函数()f x 的单调区间;(3)利用函数的对称轴与[]1,2x ∈-,直接求解函数的最大值和最小值.【详解】(1)由()02f =,得2c =,又()()121f x f x x +-=-,得221ax a b x ++=-, 故221a ab =⎧⎨+=-⎩ 解得:1a =,2b =-.所以()222f x x x =-+;(2)函数()()222211f x x x x =-+=-+图象的对称轴为1x =,且开口向上, 所以,函数()f x 单调递增区间为()1,+∞,单调递减区间为(),1-∞;(3)()()222211f x x x x =-+=-+,对称轴为[]11,2x =∈-,故()()min 11f x f ==,又()15f -=,()22f =,所以,()()max 15f x f =-=.【点睛】本题考查二次函数解析式的求解,同时也考查了二次函数单调区间与最值的求解,解题时要结合二次函数图象的开口方向与对称轴来进行分析,考查分析问题和解决问题的能力,属于中等题.26.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A ∪B ={x |2<x <7},A ∩B ={x |3≤x <6}.∴∁R (A ∪B )={x |x ≤2或x ≥7},∁R (A ∩B )={x |x ≥6或x <3}.又∵∁R A ={x |x <3或x ≥7},∴(∁R A )∩B ={x |2<x <3}.又∵∁R B ={x |x ≤2或x ≥6},∴A ∪(∁R B )={x |x ≤2或x ≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B ,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。

2020-2021上海市初三数学上期末模拟试题(附答案)

2020-2021上海市初三数学上期末模拟试题(附答案)

2020-2021上海市初三数学上期末模拟试题(附答案)一、选择题1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒ 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2 B .1C .0D .﹣13.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣14.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=3005.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个6.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+B .()2313y x =---C .()2313y x =-++ D .()2313y x =-+-7.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形B .矩形C .正八边形D .正六边形8.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件9.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )A .AC BCAB AC= B .2·BC AB BC = C .512AC AB -=D .0.618≈BCAC10.下列函数中是二次函数的为( ) A .y =3x -1 B .y =3x 2-1 C .y =(x +1)2-x 2 D .y =x 3+2x -311.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2 12.若关于x 的方程x 2﹣2x +m =0的一个根为﹣1,则另一个根为( )A .﹣3B .﹣1C .1D .3二、填空题13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.14.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.15.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.16.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.17.已知二次函数,当x _______________时,随的增大而减小.18.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.19.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.20.如图,已知O e 的半径为2,ABC ∆内接于O e ,135ACB ∠=o ,则AB =__________.三、解答题21.请你依据下面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图(或表格)表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.22.如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.23.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.24.某商场今年“十一”期间举行购物摸奖活动,摸奖箱里有四个标号分别为1,2,3,4的质地,大小都相同的小球,任意摸出一个小球,记下小球标号后,放回箱里并摇匀,再摸出一个小球,再记下小球标号.商场规定:两次摸出的小球之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可. 【详解】解:∵AC 是⊙O 的切线 ∴∠CAB=90︒, 又∵50C ∠=︒ ∴∠ABC=90︒-50︒=40︒ 又∵OD=OB∴∠BDO=∠ABC=40︒ 又∵∠AOD=∠OBD+∠OBD ∴∠AOD=40︒+40︒=80︒ 故答案为C. 【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.2.A解析:A 【解析】 【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论. 【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1, ∴k=2, 故选A . 【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.B解析:B 【解析】 【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1, 故选B . 【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.4.A解析:A 【解析】 【分析】设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可. 【详解】设扩大后的正方形绿地边长为xm , 根据题意得x (x-20)=300, 故选A . 【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.5.B解析:B 【解析】 【分析】 【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x =﹣2ba=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.A解析:A 【解析】 【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.7.C解析:C 【解析】因为正八边形的每个内角为135︒,不能整除360度,故选C.8.D解析:D 【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误; B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确. 故选D.9.B解析:B 【解析】 【详解】 ∵AC >BC , ∴AC 是较长的线段,根据黄金分割的定义可知:AC BC AB AC =≈0.618, 故A 、C 、D 正确,不符合题意; AC 2=AB •BC ,故B 错误,符合题意; 故选B .10.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.11.D解析:D【解析】【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x 轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.12.D解析:D【解析】【分析】设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.故选:D.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba,x1•x2=ca.二、填空题13.25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷=35个所以袋中红球约为35-10=25个考点:简单事件的频率解析:25【解析】 【分析】 【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.14.6【解析】【分析】【详解】解:设方程另一根为x1把x =-2代入方程得(-2)2+2a -3a =0解得a =4∴原方程化为x2-4x -12=0∵x1+(-2)=4∴x 1=6故答案为6点睛:本题考查了一元二解析:6 【解析】 【分析】 【详解】解:设方程另一根为x 1,把x =-2代入方程得(-2)2+2a -3a =0, 解得a =4,∴原方程化为x 2-4x -12=0, ∵x 1+(-2)=4, ∴x 1=6. 故答案为6.点睛:本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+ x 2=b a,x 1·x 2=ca.也考查了一元二次方程的解. 15.4【解析】【分析】由S 阴影部分图形=S 四边形BDFE =BD×OE 即可求解【详解】令y =0则:x =±1令x =0则y =2则:OB =1BD =2OB =2S 阴影部分图形=S 四边形BDFE =BD×OE=2×2=解析:4 【解析】 【分析】由S 阴影部分图形=S 四边形BDFE =BD×OE ,即可求解. 【详解】令y =0,则:x =±1,令x =0,则y =2, 则:OB =1,BD =2,OB =2,S 阴影部分图形=S 四边形BDFE =BD×OE =2×2=4. 故:答案为4. 【点睛】本题考查的是抛物线性质的综合运用,确定S 阴影部分图形=S 四边形BDFE 是本题的关键.16.5【解析】【分析】过点M 作ME⊥x 轴于点EME 与抛物线交于点P′由点P′在抛物线上可得出P′F=P′E结合点到直线之间垂线段最短及MF为定值即可得出当点P运动到点P′时△PMF周长取最小值【详解】解解析:5【解析】【分析】过点M作ME⊥x轴于点E,ME与抛物线交于点P′,由点P′在抛物线上可得出P′F=P′E,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值.【详解】解:过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示.∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,22(30)(32)-+-=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.故答案为5.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键.17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质18.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==解析:3 8【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)=3 53+=38.19.π﹣2【解析】【分析】连接CD作DM⊥BCDN⊥AC证明△DMG≌△DNH则S 四边形DGCH=S四边形DMCN求得扇形FDE的面积则阴影部分的面积即可求得【详解】连接CD作DM⊥BCDN⊥AC∵CA解析:π﹣2.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=2,四边形DMCN是正方形,DM=2.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=2.则阴影部分的面积是:π﹣2.故答案为π﹣2.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=22,故答案为:22.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题21.(1)答案见解析;(2)1 6【解析】【分析】列举出所有情况,让寻宝游戏中胜出的情况数除以总情况数即为所求的概率.【详解】(1)树状图如下:(2)由(1)中的树状图可知:P(胜出)【点睛】本题考查的是用画树状图法求概率,解答本题的关键是熟练掌握概率=所求情况数与总情况数之比.同时熟记用树状图或表格表达事件出现的可能性是求解概率的常用方法22.∠P=50°【解析】【分析】根据切线性质得出PA=PB ,∠PAO=90°,求出∠PAB 的度数,得出∠PAB=∠PBA ,根据三角形的内角和定理求出即可.【详解】∵PA 、PB 是⊙O 的切线,∴PA=PB ,∴∠PAB=∠PBA ,∵AC 是⊙O 的直径,PA 是⊙O 的切线,∴AC ⊥AP ,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.23.(1)60,10;(2)96°;(3)1020;(4)23 【解析】【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人),故答案为:1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种,∴恰好抽到1名男生和1名女生的概率为82 123=.【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.24.“树状图法”或“列表法”见解析,1 4【解析】【分析】列举出所有情况,让两次摸出的小球的标号之和为“8”或“6”的情况数除以总情况数即为所求的概率.【详解】解:解法一:列树状图得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164=.解法二:列表得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164.【点睛】此题考查的是用列表法或用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.25.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.。

2020-2021上海上海外国语大学西外外国语学校初三数学上期末模拟试卷及答案

2020-2021上海上海外国语大学西外外国语学校初三数学上期末模拟试卷及答案
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
24.解下列方程3(x-2)2=x(x-2).
∴∠BOC=360°÷6=60°,
∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,
∴n=360°÷30°=12;
故选:D.
【点睛】
本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.
8.D
解析:D
【解析】
【分析】
根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.
(1)如图1,若BC=4m,则S=_____m2.
(2)如图2,现考虑在(1)中矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为____m.
三、解答题
21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).
将k=36代入原方程,
得:x2-12x+36=0
解得:x=6
3,6,6能够组成三角形,符合题意.
故k的值为36.
故选B.
考点:1.等腰三角形的性质;2.一元二次方程的解.
5.C
解析:C
【解析】
试题分析:如图,连接OC.
∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.B
解析:B 【解析】 【分析】 先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等
于原来的宽减去路宽,然后再根据矩形面积公式计算.
【详解】 利用图形平移可将原图转化为下图,设道路的宽为 x, 根据题意得:(32-x)(20-x)=540.
故选 B. 【点睛】
本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解 决问题的关键.
示.对于此抛物线有如下四个结论:① abc <0; ② 2a b 0 ;③9a-3b+c=0;④若
m n 0 ,则 x m 1时的函数值小于 x n 1时的函数值.其中正确结论的序号是
()
A.①③
B.②④
C.②③
D.③④
8.如图,点 C 是线段 AB 的黄金分割点(AC>BC),下列结论错误的是( )
a , b 是方程 x2 x 3 0 的两个实数根, ∴ b 3 b2 , a b 1, ab -3,
∴ a2 b 2019 a2 3 b2 2019 a b2 2ab 2016 1 6 2016 2023;
故选 A. 【点睛】 本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入 是解题的关键.
∴图中阴影部分的面积是:S 扇形 EBF-S△ABD= 60 22 1 2 3 360 2
= 2 3 . 3
故选 B.
7.D
解析:D 【解析】 【分析】 ①根据抛物线开口方向、对称轴、与 y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断; ③根据抛物线 y=ax2+bx+c 经过点(1,0),且对称轴为直线 x=﹣1 可得抛物线与 x 轴的 另一个交点坐标为(﹣3,0),即可判断; ④根据 m>n>0,得出 m﹣1 和 n﹣1 的大小及其与﹣1 的关系,利用二次函数的性质即可 判断. 【详解】 解:①观察图象可知: a<0,b<0,c>0,∴abc>0, 所以①错误; ②∵对称轴为直线 x=﹣1,
6.B
解析:B 【解析】 【分析】 根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出 △ABG≌△DBH,得出四边形 GBHD 的面积等于△ABD 的面积,进而求出即可. 【详解】 连接 BD,
∵四边形 ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB=2,
A.2
B.1
C.0
D.﹣1
3.如图,在宽为 20 米、长为 32 米的矩形地面上修筑同样宽的道路(图中阴影部分),余
下部分种植草坪.要使草坪的面积为 540 平方米,设道路的宽 x 米.则可列方程为
()
A.32×20﹣32x﹣20x=540
B.(32﹣x)(20﹣x)=540
C.32x+20x=540
23.石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为 80 元,销售价为 120 元 时,每天可售出 20 件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大 销售量,增加利润,经市场调查发现,如果每件童装降价 1 元,那么平均可多售出 2 件. (1)设每件童装降价 x 元时,每天可销售______ 件,每件盈利______ 元;(用 x 的代数 式表示) (2)每件童装降价多少元时,平均每天赢利 1200 元. (3)要想平均每天赢利 2000 元,可能吗?请说明理由. 24.某商场要经营一种新上市的文具,进价为 20 元,试营销阶段发现:当销售单价是 25 元时,每天的销售量为 250 件,销售单价每上涨 1 元,每天的销售量就减少 10 件 (1)写出商场销售这种文具,每天所得的销售利润 (元)与销售单价 (元)之间的 函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大; (3)商场的营销部结合上述情况,提出了 A、B 两种营销方案 方案 A:该文具的销售单价高于进价且不超过 30 元; 方案 B:每天销售量不少于 10 件,且每件文具的利润至少为 25 元 请比较哪种方案的最大利润更高,并说明理由 25.将图中的 A 型、B 型、C 型矩形纸片分别放在 3 个盒子中,盒子的形状、大小、质地 都相同,再将这 3 个盒子装入一只不透明的袋子中.
D.(32﹣x)(20﹣x)+x2=540
4.如图,点 O 是△ABC 的内切圆的圆心,若∠A=80°,则∠BOC 为( )
A.100°
B.130°
C.50°
D.65°
5.若⊙O 的半径为 5cm,点 A 到圆心 O 的距离为 4cm,那么点 A 与⊙O 的位置关系是
A.点 A 在圆外
B.点 A 在圆上
三、解答题 21.如图, AB 是 O 的直径, AC 是上半圆的弦,过点 C 作 O 的切线 DE 交 AB 的延 长线于点 E ,过点 A 作切线 DE 的垂线,垂足为 D ,且与 O 交于点 F ,设 DAC , CEA 的度数分别是 a、 .
1 用含 a 的代数式表示 ,并直接写出 a 的取值范围;
A. abc 0
B. 2a b 0
C. 3a c 0
D. ax2 bx c 3 0 有两个不相等的实数根
二、填空题
13.直线 y=kx+6k 交 x 轴于点 A,交 y 轴于点 B,以原点 O 为圆心,3 为半径的⊙O 与 l 相
交,则 k 的取值范围为_____________. 14.如图,抛物线 y=﹣2x2+2 与 x 轴交于点 A、B,其顶点为 E.把这条抛物线在 x 轴及 其上方的部分记为 C1,将 C1 向右平移得到 C2,C2 与 x 轴交于点 B、D,C2 的顶点为 F,连
2.A
解析:A 【解析】 【分析】 把点坐标代入 y=2(x-3)2+k-1 解方程即可得到结论. 【详解】 解:设抛物线 y=2(x-3)2+k 向下平移 1 个单位长度后的解析式为 y=2(x-3)2+k-1,把点 (2,3)代入 y=2(x-3)2+k-1 得,3=2(2-3)2+k-1, ∴k=2, 故选 A. 【点睛】 本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.
结 EF.则图中阴影部分图形的面积为______.
15.如图, AB 为 O 的直径,弦 CD AB 于点 E ,已知 CD 8 , OE 3,则 O 的
半径为______.
16.已知如图所示的图形的面积为 24,根据图中的条件,可列出方程:_______.
17.△ABC 中,∠A=90°,AB=AC,以 A 为圆心的圆切 BC 于点 D,若 BC=12cm,则 ⊙A 的半径为_____cm. 18.一元二次方程 x2﹣2x﹣3=0 的解是 x1、x2(x1<x2),则 x1﹣x2=_____. 19.已知在同一坐标系中,抛物线 y1=ax2 的开口向上,且它的开口比抛物线 y2=3x2+2 的 开口小,请你写出一个满足条件的 a 值:_____. 20.飞机着陆后滑行的距离 s(单位:m)关于滑行的时间 t(单位:s)的函数解析式是 s =60t﹣1.5t2,飞机着陆后滑行_____米才能停下来.
2020-2021 上海上海外国语大学附属浦东外国语学校初三数学上期末第一次模 拟试卷附答案
一、选择题
1.已知 a , b 是方程 x2 x 3 0 的两个实数根,则 a2 b 2019 的值是( )
A.2023
B.2021
C.2020
D.2019
2.把抛物线 y=2(x﹣3)2+k 向下平移 1 个单位长度后经过点(2,3),则 k 的值是( )
2 连接 OF 与 AC 交于点 O ' ,当点 O ' 是 AC 的中点时,求 a、 的值.
22.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件) 与销售单价 x(元)之间满足一次函数关系,其图象如图所示. (1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式; (2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销 售该商品每天获得的利润 w(元)最大?最大利润是多少? (3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少 件?
A. AC BC AB AC
B. BC2 AB·BC C. AC 5 1 AB 2
D. BC 0.618 AC
9.用配方法解方程 x2+2x﹣5=0 时,原方程应变形为( )
A.(x﹣1)2=6
B.(x+1)2=6

C.(x+2)2=9
D.(x﹣2)2=9
10.下列对一元二次方程 x2+x﹣3=0 根的情况的判断,正确的是( )
4.B
解析:B 【解析】
【分析】
根据三角形的内切圆得出∠OBC= 1 ∠ABC,∠OCB= 1 ∠ACB,根据三角形的内角和定理
2
2
求出∠ABC+∠ACB 的度数,进一步求出∠OBC+∠OCB 的度数,根据三角形的内角和定理
求出即可.
【详解】
∵点 O 是△ABC 的内切圆的圆心,∴∠OBC= 1 ∠ABC,∠OCB= 1 ∠ACB.
求出∠OBC+∠OCB 的度数是解答此题的关键.
5.C
解析:C 【解析】
【分析】 要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用 d>r 时,点 在圆外;当 d=r 时,点在圆上;当 d<r 时,点在圆内判断出即可. 【详解】 解:∵⊙O 的半径为 5cm,点 A 到圆心 O 的距离为 4cm, ∴d<r, ∴点 A 与⊙O 的位置关系是:点 A 在圆内, 故选 C.
∴△ABD 的高为 3 ,
∵扇形 BEF 的半径为 2,圆心角为 60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4, 设 AD、BE 相交于点 G,设 BF、DC 相交于点 H, 在△ABG 和△DBH 中,
相关文档
最新文档