化工 板式塔设计
化工原理课程设计-板式精馏塔设计资料教程
umax C
L V V
umax — 最 大 空 塔 气 速 , m / s
L、V — 分 别 为 液 相 与 气 相 密 度 , kg m 3
负荷系数
C
C
20
20
0 .2
( C20 值 可 由 S m i t h 关 联 图 求 取 )
( 3) 加 料 板 位 置 的 确 定
求 出 精 馏 段 操 作 线 和 提 馏 段 操 作 线 的 交 点 x q 、 y q , 并 以x q 为 分
界线,当交替使用操作线方程和相平衡关系逐板往下计算到
xn xq 且 xn1 xq 时 , 就 以 第 n 块 板 为 进 料 板 。
( 4) 实 际 板 数 的 确 定
对高发泡系统及高压操作的塔,停留时间应加长些。
故在求得降液管的截面积之后,应按下式验算液体在降液管内的
停留时间,即
A f H T LS
5.注意事项: 写出详细计算步骤,并注明选用数据的来源; 每项设计结束后,列出计算结果明细表; 设计说明书要求字迹工整,装订成册上交。
第二部分:筛板式精馏塔设计方法
一. 工艺计算 二. 设备计算 三. 辅助设备计算 四. 塔体结构 五. 带控制点工艺流程图
一.工艺计算
主要内容是(1)物料衡算 (2)确定回流比 (3)确定理论板数 和实际板数 (4)塔的气液负荷计算 (5)热量衡算
(1).堰 长 lW : 依 据 溢 流 型 式 及 液 体 负 荷 决 定 堰 长 , 单 溢 流 型 塔 板 堰
长 lW 一 般 取 为 ( 0 . 6 ~ 0 . 8 ) D ; 双 溢 流 型 塔 板 , 两 侧 堰 长 取 为 ( 0 . 5 ~
化工原理板式塔设计
化⼯原理板式塔设计⽬录第⼀章板式精馏塔的设计1.1概述 (1)1.2板式精馏塔的设计原则与步骤 (1)1.3理论塔板数的确定 (3)1.4塔板效率和实际塔板数 (7)1.5板式精馏塔的结构设计 (8)1.6 板式精馏塔⾼度及其辅助设备 (27)1.7 板式精馏塔的计算机设计 (31)第⼆章板式精馏塔设计举例2.1苯-甲苯板式精馏塔设计 (33)2.2⼄醇—⽔板式精馏塔设计 (47)2.3 甲醇—⽔板式精馏塔设计 (66)第三章塔设备的机械计算3.1 塔体及裙座的强度计算 (86)3.2 塔盘板及其⽀撑梁的强度、挠度计算 (104)3.3 塔盘技术条件 (105)3.4 塔盘⽀撑件的尺⼨公差 (109)附录 (111)第⼀章板式精馏塔的设计1.1概述蒸馏是利⽤液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的⽅法。
蒸馏操作在化⼯、⽯油化⼯、轻⼯等⼯业⽣产中中占有重要的地位。
为此,掌握⽓液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是⾮常重要的。
蒸馏过程按操作⽅式可分为间歇蒸馏和连续蒸馏。
间歇蒸馏是⼀种不稳态操作,主要应⽤于批量⽣产或某些有特殊要求的场合;连续蒸馏为稳态的连续过程,是化⼯⽣产常⽤的⽅法。
蒸馏过程按蒸馏⽅式可分为简单蒸馏、平衡蒸馏、精馏和特殊精馏等。
简单蒸馏是⼀种单级蒸馏操作,常以间歇⽅式进⾏。
平衡蒸馏⼜称闪蒸,也是⼀种单级蒸馏操作,常以连续⽅式进⾏。
简单蒸馏和平衡蒸馏⼀般⽤于较易分离的体系或分离要求不⾼的体系。
对于较难分离的体系可采⽤精馏,⽤普通精馏不能分离体系则可采⽤特殊精馏。
特殊精馏是在物系中加⼊第三组分,改变被分离组分的活度系数,增⼤组分间的相对挥发度,达到有效分离的⽬的。
特殊精馏有萃取精馏、恒沸精馏和盐溶精馏等。
精馏过程按操作压强可分为常压精馏、加压精馏和减压精馏。
⼀般说来,当总压强增⼤时,平衡时⽓相浓度与液相浓度接近,对分离不利,但对在常压下为⽓态的混合物,可采⽤加压精馏;沸点⾼⼜是热敏性的混合液,可采⽤减压精馏。
板式塔的设计
泡罩实物
泡罩塔板 a.操作示意图;b.塔板平面图;c.圆形泡罩
一、塔板的类型
泡罩塔板的优缺点 优点
操作弹性大 塔板不易堵塞
缺点
生产能力及板效率较低 结构复杂、造价高
一、塔板的类型
(2)筛孔塔板
筛孔塔板简称筛板,1830年问世,其结构特 点是在塔板上开有许多均匀小孔,孔径一般为3~ 8mm。筛孔在塔板上为正三角形排列。塔板上设 置溢流堰,使板上能保持一定厚度的液层。
浮阀实物
浮阀塔板 a.F1 型浮阀;b. V-4 型浮阀;c. T 型浮阀
V-V塔板
梯形导向浮阀塔板
新型浮阀塔板
一、塔板的类型
浮阀塔板的优缺点 优点
结构简单、造价低 操作弹性大 生产能力大 塔板效率较高
缺点
处理易结焦、高黏度物料阀片易与塔板粘结 操作时阀片易脱落或卡死
喷射接触状态
五、板式塔的流体力学性能
2. 塔板压降 气体通过塔板需克服一定的阻力塔板压降。 干板阻力 板上各部件所造成的局部阻力。 塔板 充气液层阻力 阻力 板上充气液层的静压力形成的阻力。 表面张力阻力 液体表面张力形成的阻力。 塔板压降=干板压降+充气液层压降+表面张力压降
五、板式塔的流体力学性能
塔板的负荷性能 用负荷性能图表 示
操 作 点
操作线
2
5
雾沫夹 带线
液泛线
液 相 负 荷 下 限 线
qV ,V1 qV ,V
3
4
1
qV ,L1 qV , L
液 相 负 荷 上 限 线 漏液线
塔板的负荷性能图
六、板式塔的操作特性
(1)漏液线
漏液线气相负荷下限线
板式塔设计课程设计
化工单元与操作课程设计题目:板式塔的设计学院: 轻纺工程专业: 应用化工年级: 14 化一学号: 1431020133姓名: 王家琳指导老师: 陈晓玲目录绪论 (03)第一章板式塔课程设计任务书 (06)1.1课程名称 (06)1.2设计条件(原始数据) (06)第二章设计计算...................................................................................错误!未定义书签。
2.1设计方案的确定 (07)2.2设计基础数据 (07)2.3精馏塔的物料衡算 (09)2.4塔板数的确定 (10)精馏塔的工艺条件及有关物性数据的计算 (12)精馏塔的塔体工艺尺寸计算 (20)塔板主要工艺尺寸的计算 (22)筛板的流体力学验算 (25)塔板负荷性能图 (29)第三章板式塔设计计算结果 (35)第四章参考文献 (36)概述板式塔板式塔是一类用于气液或液液系统的分级接触传质设备,由圆筒形塔体和按一定间距水平装置在塔内的若干塔板组成。
广泛应用于精馏和吸收,有些类型(如筛板塔)也用于萃取,还可作为反应器用于气液相反应过程。
操作时(以气液系统为例),液体在重力作用下,自上而下依次流过各层塔板,至塔底排出;气体在压力差推动下,自下而上依次穿过各层塔板,至塔顶排出。
每块塔板上保持着一定深度的液层,气体通过塔板分散到液层中去,进行相际接触传质。
沿革工业上最早出现的板式塔是筛板塔和泡罩塔。
筛板塔出现于1830年,很长一段时间内被认为难以操作而未得到重视。
泡罩塔结构复杂,但容易操作,自1854年应用于工业生产以后,很快得到推广,直到20世纪50年代初,它始终处于主导地位。
第二次世界大战后,炼油和化学工业发展迅速,泡罩塔结构复杂、造价高的缺点日益突出,而结构简单的筛板塔重新受到重视。
通过大量的实验研究和工业实践,逐步掌握了筛板塔的操作规律和正确设计方法,还开发了大孔径筛板,解决了筛孔容易堵塞的问题。
(整理)板式塔设计指导书
化工原理课程设计指导书–––––板式精馏塔的设计黄文焕目录绪论 (4)第一节概述 (8)1.1精馏操作对塔设备的要求 (8)1.2板式塔类型 (8)1.2.1筛板塔 (9)1.2.2浮阀塔 (9)1.3精馏塔的设计步骤 (9)第二节设计方案的确定 (10)2.1操作条件的确定 (10)2.1.1操作压力 (10)2.1.2 进料状态 (10)2.1.3加热方式 (10)2.1.4冷却剂与出口温度 (11)2.1.5热能的利用 (11)2.2确定设计方案的原则 (11)第三节板式精馏塔的工艺计算 (12)3.1 物料衡算与操作线方程 (12)3.1.1 常规塔 (12)3.1.2 直接蒸汽加热 (13)第四节板式塔主要尺寸的设计计算 (14)4.1 塔的有效高度计算 (15)4.2 板式塔的塔板工艺尺寸计算 (18)4.2.1 溢流装置的设计 (18)4.2.2 塔板设计 (25)4.2.3 塔板的流体力学计算 (28)4.2.4 塔板的负荷性能图 (34)第五节板式塔的结构 (34)5.1塔的总体结构 (34)5.2 塔体总高度 (34)5.2.1塔顶空间H D (35)5.2.2人孔数目 (35)5.2.3塔底空间H B (37)5.3塔板结构 (37)5.3.1整块式塔板结构 (37)第六节精馏装置的附属设备 (37)6.1 回流冷凝器 (37)6.2管壳式换热器的设计与选型 (38)6.2.1流体流动阻力(压强降)的计算 (38)6.2.2管壳式换热器的选型和设计计算步骤 (39)6.3 再沸器 (40)6.4接管直径 (41)6.4加热蒸气鼓泡管 (42)6.5离心泵的选择 (42)附:浮阀精馏塔设计实例 (43)附1 化工原理课程设计任务书 (43)附2 塔板的工艺设计 (43)附3 塔板的流体力学计算 (58)附4 塔附件设计 (65)附5 塔总体高度的设计 (68)附6 附属设备设计(略) (68)绪论一、化工原理课程设计的目的和要求课程设计是《化工原理》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。
《化工原理》电子教案-板式塔及其设计计算
欢迎来到《化工原理》电子教案系列!在本节课中,我们将介绍板式塔及其 设计计算,帮助您深入了解这一关键概念,提升化工工程技能!
什么是板式塔
板式塔是化工工程中常用的分离设备,用于将混合物分离为不同组分。它结 构紧凑,高效可靠,广泛应用于石油、化工、制药等行业。
板式塔的结构和原理
通过分Байду номын сангаас混合物的组分、物理性质和工作条件,确定板式塔的输入和输出条 件。这对于塔设计的准确性和性能优化非常重要。
理论计算与模拟软件的应用
利用化学工程原理和计算方法,进行板式塔的理论计算。同时,计算软件如 Aspen Plus等也为塔设计和优化提供了强大的工具。
实际案例分析
通过实际案例的分析,深入了解板式塔设计和操作中的挑战和解决方案。这 将帮助您应对实际工程中的各种情况。
板式塔由一系列水平放置的平板组成,通过不同级别的填料和板间的液体-气体接触,实现物质的分离。 它运用传质和传质过程来促进组分之间的分离。
板式塔设计计算的基本步骤
板式塔的设计计算包括确定输入和输出条件、理论计算和模拟软件的应用。 了解这些步骤可以帮助您更好地设计和优化板式塔的操作。
确定输入和输出条件
总结和展望
在本节课中,我们回顾了板式塔的概念、结构、工作原理以及设计计算的基本步骤。接下来,我们将进 一步探索相关的研究和最新进展。
化工原理课程设计《板式塔课程设计》省名师优质课赛课获奖课件市赛课一等奖课件
塔
高
加料口板间距加大,设测试
口;
塔釜空间=1-3m,设人孔、测试口;
裙座=2m,设人孔两个。
绘图
➢物料流程图: 只标设备名称,物料构成、流量。
➢塔板构造图: 塔板分块、孔旳排列、降液管旳尺寸;
➢塔体工艺图: 总高、管口位置、板间距、管口方位、 管口表、技术特征表。
河北科技大学
设计 制图 审核 批准
D圆整 初选塔径 1米下列100
进制
构造参数旳设计
hw , ho ,Ws ,Ws' ,Wc ,do , t
how
hn
溢流强度 i= Lh < 3.5 ~ 4.5
hw
LW
计算hOW
hw 20 ~ 50mm
hw hL - how
ho 20 ~ 25mm hw
hL = 60mm
降液管、受液盘旳构造及尺寸
进料管:泵加料 u= 1-3m/s;高位槽进料u= 0.5-1m/s
回流液管:泵回流 u= 1.5-3m/s;重力回流u= 0.5-1m/s
(3)冷却剂、加热剂用量
Qc Vrc WcC p t2 t1
QB VrB W蒸汽 r蒸汽
t2 400C ~ 450C
冷却剂用量 加热剂用量
将工艺计算成果列表
用途
塔顶蒸汽管 排空管 回流管 进料管
塔底蒸进口管 热电阻接口 压力计接口 液位计接口
塔底液体出口管 人孔
河北科技大学
设计 制图 审核 批准
浮阀精馏塔 工艺条件图
图号
材料 比例
1:50
数量 第 1 页共
重量 1页
5、设计阐明书内容
每项单独一页 正文
每项单独一页
《化工原理》电子教案 板式塔及其工艺设计计算
《化工原理》电子教案板式塔及其工艺设计计算一、教学目标1. 理解板式塔的基本概念和工作原理。
2. 掌握板式塔的工艺设计计算方法。
3. 能够应用板式塔的设计计算方法解决实际工程问题。
二、教学内容1. 板式塔的分类和结构填料塔、板式塔的分类塔盘的结构和工作原理2. 板式塔的性能评价塔盘效率的计算塔盘压降的计算3. 板式塔的工艺设计计算设计计算的基本步骤设计计算的参数选择设计计算的公式和计算方法4. 板式塔的优化设计塔盘类型的选择塔盘布置的优化5. 板式塔的设计计算案例分析案例一:简单蒸馏塔的设计计算案例二:吸收塔的设计计算三、教学方法1. 讲授法:讲解板式塔的基本概念、工作原理和设计计算方法。
2. 案例分析法:分析实际工程案例,加深学生对板式塔设计计算的理解。
3. 互动教学法:引导学生提问和讨论,提高学生的参与度和思考能力。
四、教学资源1. 教材:《化工原理》相关章节。
2. 课件:板式塔的图片、示意图和设计计算公式。
3. 案例资料:实际工程案例的数据和计算结果。
五、教学评价1. 课堂参与度:学生提问、回答问题和参与讨论的情况。
2. 作业完成情况:学生完成作业的正确率和完整性。
3. 考核成绩:学生的考试成绩和设计计算案例的分析能力。
六、教学重点与难点1. 教学重点:板式塔的分类和结构特点板式塔的性能评价方法板式塔的工艺设计计算流程板式塔的优化设计方法2. 教学难点:板式塔设计计算公式的推导和应用板式塔优化设计中的参数选择和分析实际工程案例中板式塔设计计算的灵活运用七、教学进程安排1. 第一课时:板式塔的分类和结构介绍,理解填料塔与板式塔的区别。
2. 第二课时:板式塔的性能评价方法讲解,学习塔盘效率和压降的计算。
3. 第三课时:板式塔的工艺设计计算流程学习,了解设计计算的基本步骤。
4. 第四课时:板式塔优化设计的内容讲解,学习塔盘类型选择和布置优化。
5. 第五课时:板式塔设计计算案例分析,通过案例一和案例二加深理解。
化工原理课程设计精馏板式塔的设计
确保停留时间大于或等于3~5s,这样使得溢流中的泡沫有足够的时间在降
液管中分离。
(27)
⑤ 降液管底隙高度hb:
(28)
• 采用合适的回流比; • 蒸馏系统的合理设置,如采用中间再沸器和中间 冷凝器的流程,可以提高精馏塔的热力学效率。
3.板式精馏塔的工艺计算
釜。 (1) (2)
得出:
3.1物料衡算及操作线方程
• 常规塔:一处进料和塔顶、塔底各有一个产品,塔釜间接蒸汽加热的精馏
(3)
(4)
式中:F、D、W——分别为原料液、馏出液和釜残液流量,kmol/h;
2.2进料状态的选择
• • • • • • •
进料状态以进料热状态参数q表示,有五种进料状态; q>1.0时,为低于泡点温度的冷液进料; q=1.0时,为泡点下饱和液体; q=0时,为露点下的饱和蒸气; 1>q>0时,为介于泡点和露点间的气液混合物; q<0时,为高于露点的过热蒸气进料。 为使塔的操作稳定,免受季节气温影响,精、提馏段采 用相同塔径以便于制造,则采用饱和液体(泡点)进料, 但需增设原料预热器。
• 4、塔的负荷性能图(放在说明书的流体力学验算后、用 标准坐标纸绘制)
2.设计方案的确定
2.1操作压力
精馏操作可以在常压、减压和加压下进行。
除热敏性物料外,凡通过常压精馏即可实现分离要 求,并能用江河水或循环水将馏出物冷凝下来的 系统,都采用常压精馏;
对热敏性物料或混合物沸点过高的系统,宜采用减 压精馏; 常压下成气态的物料必须采用加压精馏。
化工设计课件板式塔设计
•常压、减压塔:Ф=10%~14% 加压塔:<10%
n和Ф的初步确定:选取阀孔动能因子F0=8—12 用下式计算u0等参数
n
4
d
2 0
D2
n
d02 D2
4
u0
F0
(V )0.5
n
VS
4
d 02u0
•注意:分块式塔板(0.8---0.9m整)
先要d排阀,最后确定u0、Ф
七、塔板的校核 对初步设计的结果进行调整和修正
F1
VS
V L V
0.78AT KCF
•取以上计算值的大者 做判断 •超过允许值,应调整 塔板间距或 塔径
2、塔板阻力的计算和校核 塔板阻力: 清液柱高度
hf
m(p液f 柱)
Lg
塔板阻力 hf :
(1)干板阻力 h0—气体通过板上孔的阻力(设无液体时) (2) 液层阻力 hl —气体通过液层阻力 (3) 克服液体表面张力阻力 hσ—孔口处表面张力
C
C20
0.2
20
选定HT ,计算出 FLV 及 C,可计算液泛气速 uf
uf C
2、选取设计气速 u
L V V
选取泛点率: u / uf
一般液体,0.6 -- 0.8 易起泡液体,0.5 -- 0.6
设计气速 u = 泛点率 ×uf
所需气体流通截面积
A Vs u
塔截面积 AT = 气体流通截面积 A - 降液管面积 Ad
ev
1
WL WV
1
Ls L Vs v
七、校核
• 筛板塔: 方法一,查Fair图(教材72页),可求Ψ 方法二,用Hunt公式:
ev
5.7 103
9-1板式塔
西北大学化工原理课件
八、塔板类型
评价塔设备性能的指标
① 生产能力大 即:单位塔截面能处理的气液负荷高; ② 塔板效率高 ③ 板压降低,两相流动阻力小 ④ 操作弹性大 即:上、下操作极限通过的气量之比大; ⑤ 满足工业对生产设备的一般要求 结构简单、造价低、安装维修方便等。
15
西北大学化工原理课件
2
hl = β ( h w + how )
由表面张力引起的压降值一般可忽略,故主要由前两项 组成,即:
h f = hd + hl
25
西北大学化工原理课件
5. 筛板的几个操作极限
① 漏液点:漏液点气速 u0´:发生严重漏液时筛孔气速。
u0 稳定系数: k = u ′ 0
⎞ 5.7 × 10 ⎛ u ev = ⎜ ⎟ ⎜ ⎟ σ ⎝ HT − H f ⎠
xn* xn xn-1
指气相或液相经过某板前后的实际组成 变化与经该板的理论组成变化之间的比值, 包括气、液相的莫弗里板效率Emv与EmL。
10
西北大学化工原理课件
例9-1 用一个蒸馏釜和一层实际板组成的精馏塔分离二元理想溶液。组成为0.2的 料液在泡点温度下由塔顶连续加入,系统的相对挥发度α= 2.5。若使塔顶轻组分 的回收率为80%,并要求塔顶产品组成为0.28,试求: ① 塔釜残液组成xW; F xF D xD ② 该层塔板的液相默弗里板效率EmL。 x0 y1 解: ① 由题意,塔顶易挥发组分回收率为:
3. 漏液
当气体孔速u0过小或气体分布不均匀时,使一些筛孔无气体 通过,从而造成液体短路,大量液体由筛孔漏下的操作现象。
工作录像
9
西北大学化工原理课件
六、板效率的表示与应用
板式塔的设计
塔径的估算
塔径的大小取决于上升的蒸汽流量和空塔气速
适宜的空塔气速与流体的物理性质、塔板结 构、流体力学等情况有关。计算时 u=(0.6~0.8)umax
D= 4Vs πu
最大空塔气速umax 根据液滴在沉降过程中 受力情况导出,其中气体负荷系数C值由图 1~7查出 . 塔径 D(按标准GB9019-88圆整)
精馏方案的选定
1.操作压力(常压,加压,减压)-----设计压力一般指塔顶压力
沸点低,常压下为气态的物料 沸点低 常压下为气态的物料-----加压操作, 加压操作 常压下为气态的物料
加压可提高操作的平均温度,有利于塔顶蒸气冷凝热的利用或可使用较便宜 的冷却剂,减少冷凝,冷却的费用.在相同的塔径下,适当提高操作压力,还可提 高塔的处理能力.但P提高,再沸器的T提高,相对挥发度下降.
溢流装置 的结构尺寸
弓型降液管宽度Wd及面积Af
– 对降液管的要求:液体中的泡沫有足够的时间在降 液管中进行分离。 – 确定降液管的尺寸后,还要检验降液管的容积。通 常保持降液管中的液体停留时间τ 〉3~5秒。 – 停留时间τ=AfHT/LS>3~5S or u= LS/Af<0.1m/s
进口堰及受液盘
卧式热虹吸再沸器的主要特点: 卧式热虹吸再沸器的主要特点 可用低裙座,但占地面积大,出
塔产品缓冲容积较大,故流动稳定,在加热段停留时间短,不容易结垢, 可以使用较脏的加热介质.
立式和卧式强制循环再沸器的共同特点:适应于高粘度液体
和热敏性物料,因为强制循环流速高,停留时间短,有利于工艺流体循 环流量的控制和调节.
塔板负荷性能图
雾沫夹带线
u h =19 0 .9 c ρ L
0175 .
化工课程设计板式塔
化工课程设计板式塔化工课程设计板式塔是指在化工过程中用于分离或提取物质的设备,本文将从定义、组成、工作原理、设计要点、操作维护等方面进行详细介绍。
一、定义板式塔是指利用板式结构实现液相和气相交换、物质分离或应用的一种装置。
也可称为板塔、塔板或塔盘。
二、组成板塔的主要组成部分为塔壳、进出口管路、塔板和填料层。
1. 塔壳:塔壳是板塔的外壳,可以由钢板、不锈钢或玻璃钢制成,但需要满足工作压力和温度的需求。
2. 进出口管路:进出口管路是塔体内部进出液体、气体的通道。
3. 塔板:塔板是板塔的关键部分,由网格、滴板、方格或管道组成。
不同类型的塔板具有不同的分离效率和流体力学性能。
4. 填料层:填料层是用于增加化学反应表面积和触点数的分散剂,在分离和转化反应过程中起到重要的作用,能够提高反应的效率。
三、工作原理板塔的工作原理是利用板式结构制造液相和气相间的联系界面,在板内形成液滴和气泡着,并在板上提供一个平衡的场所以实现物质的分离。
当气体从塔底进入塔体时,经过填料层形成气泡,与从塔顶倾倒而下的液体形成液滴。
气泡和液滴在塔板上相互接触并进行质量交换。
气体中的揮发性组分就在接触面借助蒸汽能量与液体相互传递,使液滴中的揮发性组分从液相向气相转移。
非揮发性组分则从气相传到液相。
这样,在塔板的作用下,相互传递和交换的物质逐渐分离和进一步分级。
四、设计要点板式塔的设计是根据不同的物理、化学或生物反应过程,选择塔内填充材料、塔板类型和填料高度等参数,使塔的运行能够实现预期的生产效果。
下面是板式塔设计的主要要点:1. 填料的类型和表面积。
不同填料的表面积不同,因此要根据化学反应和环境要求来选择不同类型的填料。
一般而言,比表面积越大、填料容纳性越强的填料能使反应更为高效。
2. 填料的高度。
填料高度极大影响了反应的效率,过低的填料会导致反应不足,而过高的填料会降低实际分离效果。
因此,填料高度是根据实际生产过程来制定的。
3. 塔板的选择和设计。
板式塔(筛板塔)的设计
L D yn 1 xn x D V V
提馏段:
L W yn1 xn xW V V
3.2 回流比的选定
选择原则:使塔的设备费用和操作费用的总和最低,
同时应考虑到操作时的调节弹性。
选择方法:
(1) 参考生产现场所提供的回流比数据; (2) 回流比取最小回流比Rmin的1.2~2倍; (3) 先求最少理论板数 Nmin , 以理论板数为Nmin 的两倍求取回流比R; (4) 作出回流比R和理论板数N的曲线图,在曲线 图上确定合适的回流比R。
∴QB=1.1(Qv+Qw-QL-QF)
塔顶冷凝器带走的热量 塔顶产品带走的热量 冷凝器热量衡算 塔顶冷凝器冷却负荷
QC QD = DID QV = QC+QD+QL QC = QV-QD-QL
若为恒摩尔流,塔顶全凝,泡点回流且热损失很 小,则可化简计算: QB V r QC = Vrc
b
式中rc — Байду номын сангаас成为 x D 的混合液的平均气化热 rb — 组成为 x W 的混合液的平均气化热。
钢塔板取3~4mm;合
金钢板取2~2.5 mm do —— 孔径
开孔截面积 塔截面积 降液区面积
图 5 干板孔流系数
(2) 液层阻力
hl hw how
2/3
式中堰上液高 how 2.84 103 E Lh l w
β为液层充气系数,可由 图 7 求取
Ls L eV 1 Vs V
若算出的ev > 0.1kg液体/kg干气,可增大塔径或 板间距使ev下降。
三、溢流液泛条件的校核 为避免发生溢流液泛,必须满足
H fd
化工原理-板式塔及其设计计算
塔板间距 HT,m 0.2-0.3
0.3-0.35
0.35-0.45 0.45-0.6
0.5-0.8
≥0.6
(2)塔径 确定原则: 防止过量液沫夹带液泛 步骤: 先确定液泛气速 uf (m/s);
然后选设计气速 u; 最后计算塔径 D。
① 液泛气速
uf C
L V V
C
C20
20
0.2
C:气体负荷因子,与 HT、 液体表面张力和两相接触状况有关。
②不均匀流动 液面落差(水力坡度):引起塔板上气速不均; 塔壁作用(阻力):引起塔板上液速不均,中间 > 近壁;
后果:使塔板上气液接触不充分,板效率降低。
3.3 塔内气、液两相异常流动
(1)液泛 如果由于某种原因,使得气、液两相流动不畅,使板上液
层迅速积累,以致充满整个空间,破坏塔的正常操作,称此现 象为液泛。
缺点:浮阀易脱落或损坏。
(4)多降液管(MD)塔板 优点:提高允许液体流量
3.5筛板塔化工设计计算
(1)塔的有效高度 Z 已知:实际塔板数 NP ; 选取塔板间距 HT;
有效塔高: ZHT Np
理论塔板数计算
塔体高度:有效高+顶部+底部+ 其它 选取塔板间距 HT :
塔板间距和塔径的经验关系
塔.8-1.6 1.6-2.0 2.0-2.4 >2.4
化工原理-板式塔及其设计计 算
3.1概述
高径比很大的设备称为塔 1.塔设备的基本功能和性能评价指标 ①使汽液两相充分接触,适当湍动,提供尽
可能大的传质面积和传质系数,接触后两 相又能及时完善分离 ②在塔内使汽、液两相具有最大限度的接近 逆流,以提供最大的传质推动力
化工原理课程设计说明书--板式精馏塔设计
前言化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。
生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。
精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。
精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。
实现原料混合物中各组成分离该过程是同时进行传质传热的过程。
本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。
板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。
与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%-—50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。
化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。
在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。
在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。
节省能源,综合利用余热。
经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。
另一方面影响到所需传热面积的大小.即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题.本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。
【精馏塔设计任务书】一设计题目精馏塔及其主要附属设备设计二工艺条件生产能力:10吨每小时(料液)年工作日:自定原料组成:34%的二硫化碳和66%的四氯化碳(摩尔分率,下同)产品组成:馏出液 97%的二硫化碳,釜液5%的二硫化碳操作压力:塔顶压强为常压进料温度:58℃进料状况:自定加热方式:直接蒸汽加热回流比:自选三设计内容1 确定精馏装置流程;2 工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。
化工原理课程设计苯甲苯板式精馏塔
化工原理课程设计——苯-甲苯连续精馏筛板塔的设计学院:生命科学学院专业年级:姓名:指导老师:目录一、序言 (2)二、设计任务 (2)三、设计条件 (2)四、设计方案 (2)五、工艺计算 (3)1、设计方案的选定及基础数据的搜集 (5)2、精馏塔的物料衡算 (6)3、精馏塔的工艺条件及有关物性数据的计算 (10)4、精馏塔的塔体工艺尺寸计算 (15)5、塔板主要工艺尺寸的计算 (16)6、筛板的流体力学验算 (19)7、塔板负荷性能图 (22)六、设计结果一览表 (27)七、参考书目 (28)八、心得体会 (28)九、附录 (29)一、序言化工原理课程设计是综合运用化工原理课程和有关先修课程物理化学,化工制图等所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用;通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等;精馏是分离液体混合物含可液化的气体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用;精馏过程在能量剂驱动下有时加质量剂,使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离;根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离;本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离;二、设计任务1原料液中苯含量:质量分率=75%质量,其余为甲苯;2塔顶产品中苯含量不得低于98%质量;3残液中苯含量不得高于%质量;4生产能力:90000 t/y苯产品,年开工310天;三、设计条件1精馏塔顶压强:表压2进料热状态:自选3回流比:自选;4单板压降压:≯四、设计方案1设计方案的确定及流程说明2塔的工艺计算3塔和塔板主要工艺尺寸的设计4塔高、塔径以及塔板结构尺寸的确定;塔板的流体力学验算;5编制设计结果概要或设计一览表6辅助设备选型与计算7绘制塔设备结构图五、工艺计算1、设计方案的选定及基础数据的搜集本设计任务为分离苯一甲苯混合物;由于对物料没有特殊的要求,可以在常压下操作;对于二元混合物的分离,应采用连续精馏流程;设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内;塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐;该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的倍;塔底设置再沸器采用间接蒸汽加热,塔底产品经冷却后送至储罐;其中由于蒸馏过程的原理是多次进行部分汽化和冷凝,热效率比较低,但塔顶冷凝器放出的热量很多,但其能量品位较低,不能直接用于塔釜的热源,在本次设计中设计把其热量作为低温热源产生低压蒸汽作为原料预热器的热源之一,充分利用了能量;塔板的类型为筛板塔精馏,筛板塔塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排列;筛板塔也是传质过程常用的塔设备,它的主要优点有:1结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右;2处理能力大,比同塔径的泡罩塔可增加10~15%;3塔板效率高,比泡罩塔高15%左右;4压降较低,每板压力比泡罩塔约低30%左右;筛板塔的缺点是:1塔板安装的水平度要求较高,否则气液接触不匀;2操作弹性较小约2~3;3小孔筛板容易堵塞;下图是板式塔的简略图:82、精馏塔的物料衡算1 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量甲苯的摩尔质量 kmol kg M B /13.92=780.013.92/25.011.78/75.011.78/75.0x F =+= 2原料液及塔顶、塔底产品的平均摩尔质量)/(kg 0.2813.192)780.01(11.78780.0kmol M F =⨯-+⨯=3物料衡算原料处理量)/(1049.12431020.81900000002h kmol F ⨯=⨯⨯= 总物料衡算 21094.1W D ⨯=+苯物料衡算 W D F 099.0983.0780.0+=联立解得式中 F------原料液流量 D------塔顶产品量 W------塔底产品量 塔板数的确定1理论板层数NT 的求取苯一甲苯属理想物系,可采逐板计算求理论板层数;①求最小回流比及操作回流比; 采用恩特伍德方程求最小回流比; 解得,最小回流比73.0=m R 取操作回流比为②求精馏塔的气、液相负荷 )/(89.15511931.1h kmol RD L =⨯==)/(89.27411931.2)1()1('h kmol F q D R V =⨯=--+= 泡点进料:q=1③求操作线方程 精馏段操作线方程为 提馏段操作线方程为 2逐板法求理论板又根据min (1)1[]11d D F fx x R x x α-=-α-- 可解得 α=相平衡方程 2.4751(1)1 1.475x xy x xαα==+-+解得 x x y 47.1147.2+=变形得y y x 47.147.2-=用精馏段操作线和相平衡方程进行逐板计算1D y x = = , 1111111(1) 2.475(1)y y x y y y y ==+α-+-=970.0426.0567.012=+=x y ,959.047.147.22=-=y yx953.0426.0567.023=+=x y ,891.047.147.233=-=y yx931.0426.0567.034=+=x y ,845.047.147.244=-=y yx905.0426.0567.045=+=x y ,795.047.147.255=-=y yx 877.0426.0567.056=+=x y ,742.047.147.266=-=y yx因为,故精馏段理论板 n=5,用提留段操作线和相平衡方程继续逐板计算811.0426.0567.067=+=x y ,635.047.147.277=-=y yx693.0426.0567.078=+=x y ,478.047.147.288=-=y yx519.0426.0567.089=+=x y ,304.047.147.299=-=y yx326.0426.0567.0910=+=x y ,164.047.147.21010=-=y yx 171.0426.0567.01011=+=x y ,077.047.147.21111=-=y yx因为,所以提留段理论板 n=5不包括塔釜 3全塔效率的计算查温度组成图得到,塔顶温度TD=℃,塔釜温度TW=105℃,全塔平均温度Tm =℃; 分别查得苯、甲苯在平均温度下的粘度)(272.0s mPa A ⋅=μ,)(279.0s mPa B ⋅=μ 平均粘度由公式,得 全塔效率E T 4求实际板数 精馏段实际板层数 提馏段实际板层数 进料板在第11块板;3、精馏塔的工艺条件及有关物性数据的计算1操作压力计算 塔顶操作压力P =4+ kPa每层塔板压降 △P = kPa 进料板压力F P =+×10= kPa塔底操作压力w P = kPa精馏段平均压力 P m1 =+/2= kPa 提馏段平均压力P m2 =+/2 = kPa 2操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中苯、甲苯的饱和蒸气压由 安托尼方程计算,计算过程略;计算结果如下: 塔顶温度0.980t =D ℃ 进料板温度F t =℃塔底温度w t =℃精馏段平均温度m t = .+/2 = ℃提馏段平均温度m t =+/2 =℃ 3平均摩尔质量计算 塔顶平均摩尔质量计算由x D=y 1=,代入相平衡方程得x 1= 进料板平均摩尔质量计算由上面理论板的算法,得F y =, F x =)/(73.8113.92)742.01(11.78742.0m ,kmol kg M F L =⨯-+⨯=塔底平均摩尔质量计算由xw=,由相平衡方程,得yw=)/(05.9113.92)077.01(11.78077.0m ,kmol kg M W L =⨯-+⨯=精馏段平均摩尔质量提馏段平均摩尔质量 (4)平均密度计算(5)①气相平均密度计算 由理想气体状态方程计算,精馏段的平均气相密度即)/(90.2)15.27324.83(314.809.798.1083m kg RT PV m M Vm =+⨯⨯==ρ提馏段的平均气相密度 ②液相平均密度计算 液相平均密度依下式计算,即塔顶液相平均密度的计算 由t D =℃,查手册得)/(1.809);/(0.81433m kg m kg B A ==ρρ 塔顶液相的质量分率98.0=a a 求得)(得3m ,m,/kg 9.813;1.80902.00.81498.01m D L D L =+=ρρ进料板液相平均密度的计算 由t F =℃,查手册得)/(36.804);/(6.80833m kg m kg B A ==ρρ进料板液相的质量分率 71.013.92)742.01(11.78742.011.78742.0=⨯-+⨯⨯=A α塔底液相平均密度的计算 由t w =℃,查手册得)/(3.785);/(4.78633m kg m kg B A ==ρρ 塔底液相的质量分率066.013.92)077.01(11.78077.011.78077.0=⨯-+⨯⨯=A a)(得3m ,m,/kg 9.784;3.785934.04.786066.01m W L W L =+=ρρ精馏段液相平均密度为6.81024.8079.813=+=Lm ρ提馏段液相平均密度为)(3/kg 15.79629.7844.807m Lm =+=ρ5 液体平均表面张力计算液相平均表面张力依下式计算,即塔顶液相平均表面张力的计算由 t D =℃,查手册得 )/(59.21);/(25.21m mN m mN B A ==σσ 进料板液相平均表面张力的计算由t F=℃,查手册得 )/(72.2008.21258.060.20742.0)/(08.21);/(60.21,m mN m mN m mN Fm L B A =⨯+⨯===σσσ塔底液相平均表面张力的计算 由 t W =℃,查手册得)/(50.2118.19923.026.18077.0)/(18.19);/(26.18,m mN m mN m mN Wm L B A =⨯+⨯===σσσ精馏段液相平均表面张力为)/(99.20272.2026.21m mN Lm =+=σ提馏段液相平均表面张力为)/(11.21272.2050.21m mN Lm =+=σ6 液体平均粘度计算液相平均粘度依下式计算,即 μLm=Σxi μi塔顶液相平均粘度的计算由 t D=℃,查手册得 )(311.0309.0017.0305.0983.0)(309.0);(305.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ进料板液相平均粘度的计算由t F=℃,查手册得 )(294.0297.0258.0292.0742.0)(297.0);(292.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ塔底液相平均粘度的计算由tw =℃,查手册得 )(258.0259.0923.0244.0077.0)(259.0);(244.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ精馏段液相平均粘度为)(303.02294.0311.0,s mPa m L ⋅=+=μ提馏段液相平均粘度为7气液负荷计算 精馏段: 提馏段:4 精馏塔的塔体工艺尺寸计算1 塔径的计算塔板间距H T 的选定很重要,它与塔高、塔径、物系性质、分离效率、塔的操作弹性,以及塔的安装、检修等都有关;可参照下表所示经验关系选取;表7 板间距与塔径关系塔径D T ,m ~ ~ ~ ~ ~ 板间距H T ,mm 200~300 250~350 300~450 350~600 400~600对精馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=, 故0.400.060.34T L H h m -=-=;查史密斯关联图 得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C校正物系表面张力为)/m (99.20m N 时2020.980.0720.07132020C C σ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭可取安全系数为,则安全系数—,故按标准,塔径圆整为,则空塔气速s; 对提馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=,故0.400.060.34T L H h m -=-=;11220.0075783.40.0901.372.90S Lm S vm L V ρρ⎛⎫⎛⎫⎛⎫=⨯= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭查2:165P 图3—8得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C =校正物系表面张力为19.58/mN m 时 按标准,塔径圆整为,则空塔气速s;将精馏段和提溜段相比较可以知道二者的塔径不一致,根据塔径的选择规定,对于相差不大的二塔径取二者中较大的,因此在设计塔的时候塔径取;5、塔板主要工艺尺寸的计算(1) 溢流装置计算 精馏段因塔径D =,可选用单溢流弓形降液管,采用平行受液盘;对精馏段各项计算如下: a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×= b 出口堰高W h :OW L W h h h -= 故)(044.0016.006.0h m w =-=c 降液管的宽度d W 与降液管的面积f A :由66.0/=D l w 查2:170P 图3—13得124.0/=D W d ,0722.0/=T f A A故0.1240.124 1.60.198d W D m ==⨯=,2223.140.07220.0722 1.60.145244f A D m π=⨯=⨯⨯= 利用2:170P 式3—10计算液体在降液管中停留时间以检验降液管面积, 即0.14520.4015.700.0037f T sA H s L τ⨯===大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ=依2:171P 式3—11:'0.00370.0351.060.09s o w o L h m l μ===⨯⨯符合00.006w h h =- e 受液盘采用平行形受液盘,不设进堰口,深度为60mm 同理可以算出提溜段相关数据如下:a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×=b 出口堰高W h :OW L W h h h -=由/0.8W l D = 2.5/23.34h W L l m =查知E=,依式232.841000h ow w L h E l ⎛⎫=⎪⎝⎭可得232.840.0261000h OW W L h E m l ⎛⎫== ⎪⎝⎭故0.060.0260.034w h m =-=c 降液管的宽度d W 与降液管的面积f A : 由60.0/=D l W查图得, 052.0,100.0==T f dA A D w 故计算液体在降液管中停留时间以检验降液管面积, 即11.6f T sA H s L τ==大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ=s '0.032so w oL h m l μ==⨯m 符合00.006w h h =- 2 塔板布置精馏段①塔板的分块因D ≥800mm,故塔板采用分块式;塔极分为4块;对精馏段: a)取边缘区宽度 安定区宽度b ⎥⎦⎤⎢⎣⎡+-=-R x R x R x A a 1222sin 1802π计算开空区面积 )(96.004.012m w D R c =-=-=,)(73.0)07.02.0(1)(2m w w Dx s d =--=+-=解得,c 筛孔数n 与开孔率ϕ:取筛空的孔径0d 为mm 5,正三角形排列,一般碳的板厚为mm 3,取0.3/0=d t ,故孔中心距t 0.1550.3=⨯=5×5= 筛孔数则每层板上的开孔面积0A 为 气体通过筛孔的气速为6、筛板的流体力学验算塔板的流体力学计算,目的在于验算预选的塔板参数是否能维持塔的正常操作,以便决定对有关塔板参数进行必要的调整,最后还要作出塔板负荷性能图; 1 气体通过筛板压强相当的液柱高度计算 精馏段:a)干板压降相当的液柱高度c h :依67.13/5/0==σd ,查干筛孔的流量系数图得,C 0=由式 b 气体穿过板上液层压降相当的液柱高度l h :()()s m fT s A A V a /70.014.3052.0108.2===⨯--μ,19.190.27.0=⨯==v a a e u F由o ε与a F 关联图查得板上液层充气系数o ε=,依式()()0396.0016.0044.066.000=+⨯=+==ow w L l h h h h εεc 克服液体表面张力压降相当的液柱高度σh : 依式00211.01099.2043-40=⨯⨯==∂gd e l h σ, 故0744.00327.00396.000211.0=++=p h则单板压强:()()p p g e h p l p p 7000.5918.965.8100744.0≤=⨯⨯==∆(2) 液面落差(3) 对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 雾沫夹带()()水液水液kg kg kg kg e fT a h H u v /1.0/1032.732.306.05.24.07.01099.20107.52.3107.5366≤⨯=⨯==-⨯-⨯⨯-⨯---σ故在设计负荷下不会发生过量雾沫夹带;4 漏液由式()()σμh h e e c L v l oow -+=13.00056.0/4.4筛板的稳定性系数5.171.157.624.110>===OW U U K ,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ依式d l p d h h h H ++=, 而32201052.1036.02.10043.0153.0153.0-⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛•⨯=h L L h W S d取5.0=φ,则()()785.017.14.05.0=+⨯=+Φw T h H故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为精馏段塔径及各项工艺尺寸是适合的; 同精馏段公式计算,提溜段各参数计算如下:1 气体通过筛板压强相当的液柱高度计算 a)干板压降相当的液柱高度:b 气体穿过板上液层压降相当的液柱高度:679.0163.014.302.2=-=-'='f T S aA A V u , 22.121.3679.0=⨯=''=V aa u F ρ由o ε与a F 关联图查得板上液层充气系数o ε=,依式039.006.065.01=⨯='h c 克服液体表面张力压降相当的液柱高度:()m gd h L 00216.01058.94.7961011.2144330=⨯⨯⨯⨯⨯=='--ρσσ, 故)(0758.000216.0039.00346.0m h p =++='则单板压降:)(7.0591.08.94.7960758.0kPa p <=⨯⨯='∆ 2液面落差对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 液沫夹带故在设计负荷下不会发生过量雾沫夹带; 4 漏液查得:84.00=c ()()5.69.26.8100021.006.013.00056.084.4.4/13.00056.04.40=÷⨯-⨯+⨯⨯=-+='o h hL c u vL owρρσ筛板的稳定性系数5.171.157.624.11>===ow o u u K ,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ依式d l p d h h h H ++=, 而32201052.1036.02.10043.0153.0153.0-⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛•⨯=h L L h W S d取5.0=φ,则()()785.017.14.05.0=+⨯=+Φw T h H故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为提馏段塔径及各项工艺尺寸是适合的;7、塔板负荷性能图精馏段: 1 雾沫夹带线雾沫夹带量2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Tav hH u e σ取气)液kg kg e v /(1.0=,前面求得m mN m /99.20,=精σ,代入2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Tav hH u e σ,整理得:s s L V 3205.2911.5-=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-19;表8由上表数据即可作出雾沫夹带线; 2 液泛线 由E=,l W =得:已算出)(1011.23m h -⨯=σ,3322311011.2405.0029.010555.7--⨯+++⨯=++=ssc p L V h h h h σm H T 4.0=,m h w 044.0=,5.0=Φ代入()dow w p w T h h h h h H +++=+Φ,整理得:2432210085.1878.134443.19s ssL L V ⨯--=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-20; 表10由上表数据即可作出液泛线2; 3 液相负荷上限线以θ=4s 作为液体在降液管中停留时间的下限,)/(0163.04163.04.03m ax ,s m A H L fT s =⨯==τ据此可作出与气体流量无关的垂直液相负荷上限线m 3/s; 4 漏液线由32614.0044.0sow w L L h h h +=+=和0min ,A V u s ow =,代入()VLL ow h h C U ρρσ-+=13.00056.04.40得:整理得:32min ,314.22574.2684.0ss LV +⨯=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-21; 表11由上表数据即可作出液泛线4; 5 液相负荷下限线对于平直堰,取堰上液层高度h OW =作为最小液体负荷标准;E=sm L s /10167.334min ,-⨯=据此可作出与气体流量无关的垂直液相负荷下限线5;sm A H L fT s /013.05163.04.03max ,=⨯==τ根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;图1 精馏段筛板负荷性能图在负荷性能图上,作出操作点P,连接OP,即作出操作线;由图可看出,该筛板的操作上限为液泛控制,下限为漏液控制; 同精馏段,得出提馏段的各曲线为:(1) 雾沫夹带线2.36107.5e ⎪⎪⎭⎫⎝⎛+⨯=-f TaLv hH u σ整理得:3207.1352.5ss L V -=(2) 液泛线()dow w p w T h h h h h H +++=+Φ已知E= lw=,同理精馏段得: 由此可作出精馏段液泛线2;3 漏液线 32628.00325.0h sow w L l h h +=+= 整理得:3225.2090.1688.0V min ,s s l += 据此可作出漏液线3; 4 液相负荷上限线以θ=5s 作为液体在降液管中停留时间的下限,)/(013.05163.04.0L 3max ,s m A H fT s =⨯==τ据此可作出与气体流量元关的垂直液相负荷上限线; 5 液相负荷下限线以h ow =5s 作为液体在降液管中停留时间的下限,32min ,2.1360006.1100084.2⎪⎪⎭⎫ ⎝⎛⨯⨯⨯=s ow L h 整理得:)/(1073.934min ,s m L s -⨯=由此可作出液相负荷下限线5; 根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;六、设计结果一览表七、设计心得体会本次课程设计通过给定的生产操作工艺条件自行设计一套苯-甲苯物系的分离的塔板式连续精馏塔设备;通过近两周的团队努力,反经过复杂的计算和优化,我们三人组终于设计出一套较为完善的塔板式连续精馏塔设备;其各项操作性能指标均能符合工艺生产技术要求,而且操作弹性大,生产能力强,达到了预期的目的;通过这次课程设计我经历并学到了很多知识,熟悉了大量课程内容,懂得了许多做事方法,可谓是我从中受益匪浅,我想这也许就是这门课程的最初本意;从接到课题并完成分组的那一刻起我们就立志要尽最大努力把它做全做好;首先,我们去图书馆借阅了大量有关书籍,并从设计书上了解熟悉了设计的流程和方法;通过查阅资料我们从对设计一无所知变得初晓门路,而进一步的学习和讨论使我们使我们具备了完成设计的知识和方法,这使我们对设计有了极大的信心,我们确定了设计方案和具体流程及设计时间表,然后就进入了正是的设计工作当中;八、参考文献1 张浩勤,陆美娟.化工原理第二版上下册. 北京:化学工业出版社,2006.2 路秀林,王者相. 化工设备设计全书塔设备M. 北京:化学工业出版社,2004.3 姚玉英.天津大学出版社上下册,2003.4 王志魁. 化工原理第四版M. 北京:化学工业出版社,2010.5 王为国. 化工原理课程设计M. 北京:化学工业出版社,2010.6 马沛生. 化工数据. 北京:中国石化出版社,2003.。
化工课程设计-苯-氯苯分离过程板式精馏塔设计
提馏段操作线:
提馏段操作线为过 和 两点的直线。
图3-2 苯-氯苯物系精馏分离理论塔板数的图解
图解得 -1=10块(不含釜)。其中,精馏段 块,提馏段 块,第4块为加料板位置。
3.2.2实际塔板数
1.全塔效率
选用 公式计算。该式适用于液相粘度为0.07~1.4mPa·s的烃类物系,式中的 为全塔平均温度下以进料组成表示的平均粘度。
温度,(℃)
8
0
130
苯
817
8
757
氯苯
1
1008
997
985
纯组分在任何温度下的密度可由下式计算
苯 :
氯苯 :
式中的t为温度,℃
塔顶: kg/m3
kg/m3
kg/m3
进料板: kg/m3
kg/m3
kg/m3
塔底: kg/m3
kg/m3
kg/m3
精馏段: kg/m3
提馏段: kg/m3
2.气相平均密度
(三)平均分子量
塔顶: , (查相平衡图)
=80.1455kg/kmol
加料板: , (查相平衡图)
kg/kmol
kg/kmol
塔底: ,
kg/kmol
kg/kmol
精馏段: kg/kmol
kg/kmol
提馏段: kg/kmol
kg/kmol
(四)平均密度
1.液相平均密度
表4-1 组分的液相密度 (kg/m3)
板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,板式精馏塔具有下列优点:生产能力(20%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。
化工原理课程设计—板式精馏塔的设计
板式精馏塔的设计1.1 概述塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。
板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。
填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。
工业上对塔设备的主要要求是:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。
此外,还要求不易堵塞、耐腐蚀等。
板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。
工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。
(一)泡罩塔泡罩塔是最早使用的板式塔,是Celler于1813年提出的,其主要构件是泡罩、升气管及降液管。
泡罩的种类很多,国内应用较多的是圆形泡罩。
泡罩塔的主要优点是:因升气管高出液层,不易发生漏液现象,操作弹性较大,液气比范围大,适用多种介质,操作稳定可靠,塔板不易堵塞,适于处理各种物料;但其结构复杂,造价高、安装维修不便,板上液层厚,气体流径曲折,塔板压降大,因雾沫夹带现象较严重,限制了起诉的提高。
现虽已为其他新型塔板代替,但鉴于其某些优点,仍有沿用。
(a b)图1 泡罩塔(二)浮阀塔浮阀塔广泛用于精馏、吸收和解吸等过程。
其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平地进入塔板上液层进行两相接触。
浮阀可根据气体流量的大小而上下浮动,自行调节。
浮阀有盘式、条式等多种,国内多用盘式浮阀,此型又分为F-1型(V-1型)、V-4型、十字架型、和A型,其中F-1型浮阀结构较简单、节省材料,制造方便,性能良好,故在化工及炼油生产中普遍应用,已列入部颁标准(JB-1118-81)。
板式塔的设计
8、初估冷凝器和再沸器的传热面积
传热面积A可由传热方程计算,即 Q A (15) K t m 式中:Q—热负荷。
K—传热系数。
t m—冷热流体平均温度差。
对于低沸点烃类,冷凝介质为水时,传热系数
m 2· ℃)。加热介质为水蒸汽 为390~980(千卡/ 时·
时,再沸器的传热系数为390~880(千卡
塔顶压力等于冷凝器压力加上蒸汽从塔顶至冷凝器的流动阻力塔釜压力等于塔顶压力加上全塔板阻力阻力塔等于塔板阻力乘实际板数即塔板阻力通常为35mm汞柱在确定了操作压力之后塔顶温度可由式5确定塔釜温度由式6确定
精馏装置的设计
精馏装置设计的内容与步骤大致如下:
1、收集基础数据 设计所需的基础数据包括: ①进料流量及组成。
分物料平衡有:
qn , D qn ,W qn , F (1) qn , D xD qn ,W xW qn , F xF
根据进料流量qn,F及组成xF,分离要求,解方程组 (1)即可求得馏出液流率qn,D及残液流率qn,W。
5
4、确定操作条件(压力、温度) 精馏操作最好在常压下进行,不能在常压下进行时, 可根据下述因素考虑加压或减压操作。 (1)对热敏性物质,为降低操作温度,可考虑减压操作。
K x
i 1 i
c
Di
1
7
式中 K i —平衡指数。烃类 K i 可由资料查得。
(3)确定塔顶和塔釜压力。 塔顶压力 P顶等于冷凝器压力 P冷 加上蒸汽从塔顶至冷凝 器的流动阻力 P顶冷凝器 ,即
P顶 P冷 P顶冷凝器
(3)
塔釜压力 P底 等于塔顶压力加上全塔板阻力 P 塔。全塔 阻力 P塔等于塔板阻力乘实际板数,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
促进两相传质。
Ⅱ
α=
50
Ⅲ Ⅰ三面切口舌片; Ⅱ拱形舌片; Ⅲ50×50mm定向舌片的尺寸和倾角
斜孔塔板:
10
4.7 5.7
15
8 11 15
受 液 区
液 体 分 30 布 区
液流方向
20
安定区 塔 板 连 接 区
降 液 管
20
3
导向孔
溢流堰
(a) 斜孔结构之一
(b )塔板布置
斜 孔 塔 板
网孔塔板:
A A 1 d AT
选取 Ad / AT ,计算塔径 D
D
4 AT π
A
D Ad
说明:计算塔径需圆整。 系列化标准: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0m 等
选取 Ad / AT原则
单流型弓形降液管: 0.06 ~ 0.12
(3)加热剂及加热方法
加热剂——饱和水蒸气、热水、热工艺物流、热油等 加热方法——间接加热、直接加热 (4)冷却剂 冷却水—— 5~10℃温升,出口小于50 ℃。
高品位冷剂 —— 液氨
(5)回流比
1.3 精馏过程的模拟计算
(1)塔分离计算
注意:相对挥发度的确定 (2)物料及热量衡算 =KA/KB
塔板是气液两相接触传质的场所,为提高塔板性能,采用各 种形式塔板。 (1)泡罩塔 组成:升气管和泡罩
优点:塔板操作弹性大,塔效率也比较高,不易堵。 缺点:结构复杂,制造成本高,塔板阻力大但生产能力不大。
圆形泡罩
泡罩塔
条形泡罩
(2)筛板塔板
塔板上开圆孔,孔径:3 ~ 8 mm,大孔径筛板:12 ~ 25 mm。
创造了良好条件。是工业上
重要的接触状态之一。
② 喷射状态
从筛孔或阀孔中吹出的高
速气流将液相分散成高度湍 动的液滴群,液相由连续相 转变为分散相,两相间传质 面为液滴群表面。由于液体 横向流经塔板时将多次分散 和凝聚,表面不断更新,为 传质创造了良好的条件,是
工业塔板上另一重要的气、
液接触状态。
2.4 常用塔板的类型
化工原理课程设计
一、 精馏过程工艺设计
1. 概述
1.1 精馏过程工艺设计的基本内容 (1)确定精馏过程工艺流程方案 精馏过程、操作条件、辅助设备 (2)精馏塔设备设计
塔形式、塔高、塔径、塔盘设计 —— 核心
(3)辅助设备设计 再沸器、冷凝器、贮罐、预热器、冷却器 (4)管路设计及泵的选择 管路阻力计算、选泵的类型
bc
bs
1
r x lW
Aa 2( x r x r sin
双流型弓形降液管塔板:
2
2
2
x ) r
bd
(5)筛孔的尺寸和排列
x x Aa 2( x r 2 x 2 r 2 sin1 ) 2( x1 r 2 x12 r 2 sin1 1 ) r r
筛孔: 有效传质区内,常按正三角形排列。 筛板开孔率 :
(2)塔径
溢流型式的选择 依据:塔径 、流量; 型式:单流型、U 形流型、双流型、阶梯流型等。
溢流堰板上的流型
液流型式选取参考表
塔径 m 1.0 1.4 2.0 3.0 4.0 5.0 6.0 液 体 流 量 m3/h U 型流型 单流型 双流型 阶梯流型 <7 <9 <11 <11 <11 <11 <11 <45 <70 <90 <110 <110 <110 <110 90-160 110-200 200-300 110-230 230-350 110-250 250-400 110-250 250-450
② 溢流堰(出口堰)
作用:维持塔板上一定液层,使液体均匀横向流过。
型式:平直堰、溢流辅堰、三角形齿堰及栅栏堰。
平流堰
溢流辅堰
三角形齿堰
栅栏堰
堰高 hW:直接影响塔板上液层厚度
过小,相际传质面积过小; 过大,塔板阻力大,效率低。 常、加压塔:40 ~ 80 mm ; 减压塔:25 mm 左右。 堰长 lW :影响液层高度 (P205)。
(2)板式塔性能要求 ① 生产能力大; ② 塔板效率高; ③ 具有适当的操作弹性;
④ 塔板阻力小;
⑤ 塔结构简单,易于加工制造,维修保养。 (3)设计的基本任务 设计分为两个阶段:基础设计(初步设计);
详细设计(施工设计)。
基础设计阶段的设计任务: ① 根据精馏过程严格的分离计算获得塔设计的基础数据;
l W D f Ad AT
单流型: lW D 0.6 0.75 双流型:
l W D 0.5 0.7
或:
l W D f bd D
说明:通常应使溢流强度qVLh/lW 不大于100~130 m3/(mh)。
堰上方液头高度 hOW :
how
q Lh 2.84 10 E l W
塔板间距和塔径的经验关系
塔径 D,m 0.3-0.5 0.5-0.8 0.8-1.6 1.6-2.0 2.0-2.4 >3-0.35 0.35-0.45 0.45-0.6 0.5-0.8 ≥0.6 距 HT,m
说明:工业塔中,板间距范围200 ~ 900 mm
② 根据体系性质、气液流量以及操作条件选择适宜的塔型;
③ 根据基础数据确定塔径、塔盘间距、液流形式及塔盘设计;
④ 塔盘水力学性能校核。
详细设计阶段的设计任务: 按基础设计提供的工艺尺寸进行具体布置和安排,即对塔体、 塔板用材的选择,机械强度和结构的设计,精馏塔进料、回流、 采出等物流管线的配管设计,以及人孔、扶梯平台等辅助配件 的设计。
A
A
降液管
进口堰
压延金属板 A-A 剖视图
网 孔 塔 板
垂直筛板:
泡罩 气相
塔板
液相
垂直筛板
(5)多降液管(MD)塔板
优点:提高允许液体流量
(6)林德筛板(导向筛板)
应用:用于减压塔的低阻力、高效率塔板。 斜台:抵消液面落差的影响。 导向孔:使气、液流向一致,减小液面落差。
液流
(a)斜台装置
林德筛板
(5)控制方案
主要控制点的控制方案 (6)设计结果 设计说明书、带控制点的工艺流程图、主体设备工艺条件图 1.2 设计方案 (1)工艺流程确定
分离序列、能量利用、辅助设备、控制方案
(2)操作条件的选择 操作压力 —— 加压、常压、减压 进料状态 —— 过冷液体、饱和液体、汽液混合、饱和蒸 汽、过热蒸汽
塔径确定
确定原则: 防止过量液沫夹带液泛
步骤: 先确定液泛气速 uf (m/s);
然后选设计气速 u; 最后计算塔径 D。
① 液泛气速
L V uf C V
C:气体负荷因子,与 HT、 液体表面张力和两相接触状况有关。 两相流动参数 FLV:
FLV
qVLs qVVs
qmL L V qmV
3
2/3
其中, E:液流收缩系数,一般可近似取 E =1。 要求: hOW 6mm (4) 塔板及其布置
bc
① 受液区和降液区
一般两区面积相等。 ② 入口安定区和出口安定区
bs
r x lW
50 100mm bs bs
③ 边缘区: bc 50mm
bd
④ 有效传质区: 单流型弓形降液管塔板:
1.4 实际塔板数及塔高
(1)实际塔板数
NT NP ET
注意:NT不包括塔釜 (2)塔高 塔高=有效高度+塔顶空间高度+塔底空间高度+塔底裙座高度
2 板式塔 2.1 板式塔结构及性能
(1) 板式塔结构
塔顶气相
回流液 进料
塔底液相
塔板结构 ① 气体通道
形式很多,如筛板、浮阀、泡
罩等,对塔板性能影响很大。
② 降液管(液体通道)
液体流通通道,多为弓形。 ③ 受液盘 塔板上接受液体的部分。 ④ 溢流堰 使塔板上维持一定高度的 液层,保证两相充分接触。
汽、液两相接触方式
全塔:逆流接触
塔板上:错流接触
两相流动的推动力
液体:重力
气体:压力差
塔板结构
①
气体通道
形式很多,如筛板、浮阀、泡罩等,对塔板性能影响很大。 ② 降液管(液体通道) 浮阀塔内部结构
液体流通通道,多为弓形。 ③ 受液盘
塔板上接受液体的部分。 ④ 溢流堰 使塔板上维持一定高度的液层,保证两相充分接触。
塔板上理想流动情况: 液体横向均匀流过塔板,气体从气体通道上升,均匀穿过液 层。气液两相接触传质,达相平衡,分离后,继续流动。 传质的非理想流动情况:
①反向流动
液沫夹带、气泡夹带 ,即:返混现象 后果:使已分离的两相又混合,板效率降低,能耗增加。 ②不均匀流动 液面落差(水力坡度):引起塔板上气速不均; 塔壁作用(阻力):引起塔板上液速不均,中间 > 近壁; 后果:使塔板上气液接触不充分,板效率降低。
优点:结构简单、造价低、塔板阻力小, 目前广泛应用的一种塔型。
筛
板
(3)浮阀塔板
浮阀塔盘
方形浮阀
圆形浮阀
条形浮阀
方形浮阀
F1型浮阀
优点:浮阀根据气体流量,自动调节开度,提高了塔板的操作弹 性、降低塔板的压降,同时具有较高塔板效率,在生产中得到广 泛的应用。 缺点:浮阀易脱落或损坏。
(4)喷射型塔板 气流方向:垂直 → 小角度倾斜, 改善液沫夹带、液面落差 。 形式:舌形塔板、浮舌塔板、斜孔塔板、垂直筛板等。 气液接触状态:喷射状态 连续相:气相;分散相:液相 缺点:气泡夹带现象比较严重。 舌形塔板: