九年级上册数学《二次函数》全章复习与巩固提高典型练习题及答案解析

合集下载

人教版数学九年级上学期课时练习-《二次函数》全章复习与巩固(巩固篇)(人教版)

人教版数学九年级上学期课时练习-《二次函数》全章复习与巩固(巩固篇)(人教版)

专题22.37 《二次函数》全章复习与巩固(巩固篇)(专项练习)一、单选题1.已知函数:①y =2x ﹣1;①y =﹣2x 2﹣1;①y =3x 3﹣2x 2;①y=2(x+3)2-2x 2;①y =ax 2+bx +c ,其中二次函数的个数为( )A .1B .2C .3D .42.如图,点A ,点B 的坐标分别为()1,4-,()4,4-,抛物线()2y a x h k =-+的顶点在线段AB 上运动,与x 轴交于C ,D 两点(点C 在点D 的左侧).若点D 的横坐标的最大值为6,则点C 的横坐标的最小值为( )A .52B .1C .1-D .2-3.二次函数y =﹣12(x ﹣4)2+3图象的顶点坐标是( )A .(﹣4,3)B .(﹣2,﹣3)C .(4,3)D .(2,3)4.已知点A (-3,y 1),B (0,y 2),C (3,y 3)都在二次函数y =-(x +2)2+4的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 1=y 3<y 2C .y 1<y 2<y 3D .y 1<y 3<y 25.已知二次函数2y ax bx c =++(a ,b ,c 是常数,且0a ≠)的自变量x 与函数值y 的部分对应值如下表:当12x =-时,与其对应的函数值0y >,给出下列四个结论:①0b <;①关于x 的方程2ax bx c n ++=的两个根是1-和2;①210m n +<;①()4at at b +≥-(t 为任意实数.)其中正确结论的个数是( )A .1B .2C .3D .46.如图,已知抛物线2y x bx c =++与直线y =x 交于()1,1和()3,3两点,有以下结论:①240b c ->;①3b +c +6=0;①当13x <<时,()210x b x c +-+<;①当2x >时,22x bx c x++>,其中正确的个数是( )A .1B .2C .3D .47.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,对称轴为直线1x =,与x 轴的一个交点为3,0.给出下列结论:①240b ac -<;①420a b c ++>;①图象与x 轴的另一个交点为1,0;①当0x >时,y 随x 的增大而减小;①不等式20ax bx c ++<的解集是13x .其中正确结论的个数是( )A .4个B .3个C .2个D .1个8.如图,抛物线2y ax bx c =++与直线y kx h =+交于A 、B 两点,下列是关于x 的不等式或方程,结论正确的是( )A .2()ax b k x c h +-+>的解集是24x <<B .2()ax b k x c h +-+>的解集是4x >C .2()ax b k x c h +-+>的解集是2x <D .2()ax b k x c h +-+=的解是2x =或4x = 9.已知,在菱形ABCD 中,AB =6,∠B =60°,矩形PQNM 的四个.顶点分别在菱形的四边上,则矩形PMNQ 的最大面积为( )A .B .C .D .10.如图,在平面直角坐标系中,点B 是抛物线()214y a x =-+的图象的顶点,点A ,C 的坐标分别为()0,3,()1,0,将ABC 沿y 轴向下平移使点A 平移到点O ,再绕点O 逆时针旋转90︒,若此时点B ,C 的对应点B ',C '恰好落在抛物线上,则a 的值为( )A .34-B .-1C .43-D .-2二、填空题11.当m =____________时,函数2m1y (m 1)x +=-是二次函数.12.在同一个平面直角坐标系xOy 中,二次函数211y a x =,222y a x =,233y a x 的图象如图所示,则123,,a a a 的大小关系为___________(用“>”连接).13.如图,在平面直角坐标系中,坐标原点为O ,抛物线y =a (x ﹣2)2+1(a >0)的顶点为A ,过点A 作y 轴的平行线交抛物线2124y x =--于点B ,连接AO 、BO ,则①AOB 的面积为________.14.抛物线21122y x x =+的图象如图所示,点A 1,A 2,A 3,A 4…,A 2022在抛物线第一象限的图象上,点B 1,B 2,B 3,B 4...,B 2022在y 轴的正半轴上,11OA B 、122B A B 、…、202120222022B A B 都是等腰直角三角形,则20212022B A =________.15.在平面直角坐标系xOy 中,二次函数()20y ax a =>的图象上两点A ,B 的横坐标分别为1-,2.若AOB 为直角三角形,则a 的值为______.16.如图,正方形OABC 的顶点B 在抛物线2y x 的第一象限的图象上,若点B 的横坐标与纵坐标之和等于6,则对角线AC 的长为______.17.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.18.平面直角坐标系中,将抛物线2y x =-平移得到抛物线C ,如图所示,且抛物线C 经过点()1,0A -和()0,3B ,点P 是抛物线C 上第一象限内一动点,过点P 作x 轴的垂线,垂足为Q ,则OQ PQ +的最大值为______.19.已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论中:03a >①;②是方程20ax bc c ++=的一个根;0a b c ++>③;④当1x <时,y 随x 的增大而减小;240b ac ->⑤;正确的是______(.把所有正确结论的序号都写在横线上)20.如图,抛物线221y x x =-+与图象l 关于直线y x =对称,则图象l 所对应的关于x 与y 的关系式为______.21.已知直线y 13-=x +b 经过点A (﹣1,2)和B (m ,1),则m =____,若抛物线y 12-=x 2﹣x +a 与线段AB 有交点,则a 的取值范围是____.22.如图,在ABC ∆中,30ABC ACB ∠=∠=︒,4AB AC ==,D 为边AB 上一动点(B 点除外),连接CD ,作ED CD ⊥,且ED CD =,连接BE ,则BDE ∆面积的最大值为 _________.三、解答题23.已知二次函数y =-x 2+4x.(1)用配方法把该函数化为y =a(x -h)2+k 的形式; (2)求该函数图象的对称轴和顶点坐标.24.如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式;(2)若直线y =kx 23+(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值;(3)当﹣4<x ≤m 时,y 有最大值43m,求m 的值.25.受“新冠”疫情的影响,某销售商在网上销售A 、B 两种型号的“手写板”,获利颇丰.已知A 型,B 型手写板进价、售价和每日销量如表格所示:根据市场行情,该销售商对A 手写板降价销售,同时对B 手写板提高售价,此时发现A 手写板每降低5就可多卖1,B 手写板每提高5就少卖1,要保持每天销售总量不变,设其中A 手写板每天多销售x ,每天总获利的利润为y(1)求y 、x 间的函数关系式并写出x 取值范围;(2)要使每天的利润不低于234000元,直接写出x 的取值范围;(3)该销售商决定每销售一个B 手写板,就捐a 元给)000(1a <≤因“新冠疫情”影响的困难家庭,当3040x ≤≤时,每天的最大利润为229200元,求a 的值.26.综合与探究如图1,在平面直角坐标系xOy 中,抛物线W 的函数表达式为y =﹣421x 2+1621x +4.抛物线W 与x 轴交于A ,B 两点(点B 在点A 的右侧,与y 轴交于点C ,它的对称轴与x 轴交于点D ,直线l经过C、D两点.(1)求A、B两点的坐标及直线l的函数表达式.(2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线l交于点F,当①ACF 为直角三角形时,求点F的坐标,并直接写出此时抛物线W′的函数表达式.(3)如图2,连接AC,CB,将①ACD沿x轴向右平移m个单位(0<m≤5),得到①A′C′D′.设A′C 交直线l于点M,C′D′交CB于点N,连接CC′,MN.求四边形CMNC′的面积(用含m的代数式表示).参考答案1.A【分析】根据二次函数的定义判断即可;解:y =2x ﹣1是一次函数;y =﹣2x 2﹣1是二次函数; y =3x 3﹣2x 2不是二次函数;①y=2(x+3)2-2x 2222121821218x x x x =++-=+,不是二次函数; y =ax 2+bx +c ,没告诉a 不为0,故不是二次函数; 故二次函数有1个; 故答案选A .【点拨】本题主要考查了二次函数的定义,准确判断是解题的关键. 2.C 【分析】当D 点横坐标最大值时,抛物线顶点必为(4,4)B -,可得此时抛物线的对称轴为直线4x =,求出CD 间的距离;当C 点横坐标最小时,抛物线顶点为(1,4)A -,再根据此时抛物线的对称轴及CD 的长,可判断C 点横坐标的最小值.解:当点D 横坐标为6时,抛物线顶点为(4,4)B -,①对称轴为直线4x =,4CD =;当抛物线顶点为(1,4)A -时,抛物线对称轴为直线1x =, ①11212CD-=-=-, ①(1,0)C -,①点C 的横坐标最小值为1-, 故选C .【点拨】本题考查了二次函数的性质和图象.明确CD 的长度是定长是解题的关键. 3.C 【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标. 解:①y =﹣12(x ﹣4)2+3,①此函数的顶点坐标为(4,3), 故选:C .【点拨】此题主要考查了二次函数的性质,关键是熟记:顶点式y =a (x -h )2+k ,顶点坐标是(h ,k ),对称轴是直线x =h .4.A 【分析】先确定抛物线的对称轴,然后比较三个点到对称轴的距离,再利用二次函数的性质判断对应的函数值的大小.解:二次函数y =﹣(x +2)2+4图象的对称轴为直线x =﹣2, 又①a =-1,二次函数开口向下, ①点到对称轴越近,函数值越大;①点A (﹣3,y 1)到直线x =﹣2的距离最小,点C (3,y 3)到直线x =﹣2的距离最大, ①y 3<y 2<y 1. 故选:A .【点拨】本题考查二次函数的图象及性质;理解开口向上的函数,点到对称轴距离越远,其函数值越大,反之,开口向下,点到对称轴越近,函数值越大是解题的关键.5.C 【分析】利用抛物线的图象与性质逐一判断即可.解:由表格可知,该抛物线图象经过点()()()()12021,2m n ---,,,,,,, ①该抛物线的对称轴为122b x a =-=,2c =-; ①当12x =-时,与其对应的函数值0y >, ①抛物线开口向上, ①0a >,①0b a =-<,故①正确;由图象经过的点和抛物线对称性可知,m n =,故①正确; 由当12x =-时,与其对应的函数值0y >, 得到112042a b -->①83a >,当1x =-时,222m a b a =--=-,①()2332210m n m a +==->,故①错误;由对称轴为12x =,图象开口向上可得: 2112242at bt a b +-≥+-, ①()4a t atb +≥-,故①正确;故选:C .【点拨】本题考查了抛物线的图象与性质,解题十五关键是掌握抛物线的对称轴公式以及利用抛物线的对称性进行解决问题,并能正确利用点的坐标判断代数式的取值情况.6.B【分析】由函数2y x bx c =++与x 轴无交点,可得240b c -<来判断①;当3x =时,933y b c =++=来判断①;当13x <<时,二次函数值小于一次函数值,可得2x bx c x ++<来求解①;把()11,和()3,3两点代入2y x bx c =++求出抛物线解析式进行得用抛物线与双曲线的交点坐标,分第一象限内和第三象限内来求解①.解:①函数2y x bx c =++与x 轴无交点,①240b c -<,故①不正确;当x=3时,933y b c =++=,即360b c ++=,故①正确;①当13x <<时,二次函数值小于一次函数值,①2x bx c x ++<,①()210x b x c +-+<,故①正确;把()11,和()3,3两点代入2y x bx c =++得抛物线的解析式为233y x x =-+ , 当2x =时,2331y x x =-+=,21y x==, 抛物线和双曲线的交点坐标为21(,), 第一象限内,当2x >时,22x bx c x++>; 或第三象限内,当0x <时,22x bx c x ++>,故①错误. 综上所述,正确的有①①共2个.故选:B .【点拨】本题考查了一次函数与二次函数的综合应用,注意掌握数形结合思想的应用. 7.C【分析】根据二次函数的图象与性质即可求出答案.解:①由图象可知:抛物线与x 轴有两个交点,①240b ac ∆=->,故①错误;①当2x =时,42y a b c =++,由图象可知当2x =时,0y >,①420a b c ++>,故①正确;①3,0关于直线x =1的对称点为1,0,故①正确;①当0x >时,由图象可知y 先随x 的增大而增大,再随x 的增大而减小,故①错误; ①由图象及①可知,抛物线与x 轴的交点为3,0,1,0,①当20ax bx c ++<时,1x <-可3x >,故①错误;综上,有①,①是正确的,故有2个正确的,故选:C .【点拨】本题主要考查二次函数的图象和性质,掌握抛物线的位置与系数a ,b ,c 的关系是正确判断的关键.8.D【分析】根据函数图象可知,不等式ax 2+bx +c >kx +h ,即2()ax b k x c h +-+>的解集为:x <2或>4;方程ax 2+bx +c =x +h ,即2()ax b k x c h +-+=的解为2x =或4x =.据此即可求解.解:由函数图象可得,不等式ax 2+bx +c >kx +h ,即2()ax b k x c h +-+>的解集为:x <2或>4;故A 、B 、C 不符合题意;方程ax 2+bx +c =x +h ,即2()ax b k x c h +-+=的解为2x =或4x =,故D 符合题意; 故选:D .【点拨】本题考查二次函数与不等式,方程的联系,利用图象法求解,掌握数形结合思想是解题的关键.9.D【分析】连接AC,BD,得到ΔABC为等边三角形,设AP=a,AE=CF12=a,从而求出EF=6-a,求出PQ,即可得出S与a的函数关系式,即可得到答案.解:如图:连接AC,BD交于点O,AC分别交PQ,MN于点E,F.①菱形ABCD中,AB=6,①B=60°,①①ABC是等边三角形,①ABD=30°,①AC=AB=6.①矩形MNQP,①PQ①BD,PM=EF,PQ①AC.①①APE=①ABD=30°,设AP=a,AE=CF12=a,①EF=PM=6﹣a.由勾股定理得:PE=①PQ=2PE.①S矩形PMNQ=PM•PQ=×(6﹣a)=a2+6a)=a﹣3)2①0,①当a=3时,矩形面积有最大值故选:D.【点拨】本题考查了菱形的性质,矩形的性质以及二次函数的性质,正确利用a表示出矩形PMNQ的面积是关键.10.A【分析】先根据题意确定抛物线顶点B 的坐标,过A 作AD BC ⊥于D ,得到AD ,BD 的长,再根据题意,ABC 与OB C ''△重合,进而得到B D ''和OD '的长,于是得到B '的坐标,由于B '在抛物线()214y a x =-+上,进而求解.解:过A 作AD BC ⊥于D ,如图①抛物线的解析式:()214y a x =-+,①其顶点是()1,4B ,对称轴1x =①()0,3A①1AD =,1BD BC CD =-=根据题意,ABC 与OB C ''△重合,①AD BC ⊥①OD B C '''⊥①1OD AD '==,1B D BD ''==①()1,1B '-①B ',C '在抛物线()214y a x =-+上①()21114a =--+ ①34a =- 故选:A【点拨】本题考查了二次函数与几何图形的综合,几何图形的平移与旋转的性质,掌握数形结合的思想方法和灵活运用所学知识是解本题的关键.11.-1解:试题分析:根据二次函数的定义列出方程及不等式,解之即可.解:①函数()211m y m x +=-是二次函数①212m +=且10m -≠①1m =-故答案为-1.12.321a a a >>.【分析】抛物线的开口方向由a 的符号决定,开口大小由a 的绝对值决定,绝对值越大,开口越小. 解:①二次函数y 1=a 1x 2的开口最大,二次函数y 3=a 3x 2的开口最小,而抛物线的开口都是向上的,则二次项的系数都为正数,①321a a a >>,故答案为:321a a a >>.【点拨】本题主要考查二次函数的性质,掌握抛物线的开口方向和开口大小由a 的值决定是解题的关键.13.4【分析】先求得顶点A 的坐标,然后根据题意得出B 的横坐标,把横坐标代入抛物线2124y x =--,得出B 点坐标,从而求得A 、B 间的距离,最后计算面积即可.解:设AB 交x 轴于C①抛物线线y =a (x ﹣2)2+1(a >0)的顶点为A ,①A (2,1),①过点A 作y 轴的平行线交抛物线2124y x =--于点B , ①B 的横坐标为2,OC =2把x =2代入2124y x =--得y =-3, ①B (2,-3),①AB =1+3=4,11==24=422AOB OC A S B ⋅⨯⨯. 故答案为:4.【点拨】本题考查了二次函数图象上点的坐标特征,求得A 、B 的坐标是解题的关键. 14.【分析】先设第一个等腰直角三角形的直角边长为x ,表示出点A 1的坐标,代入二次函数的解析式,求出x ;设第二个等腰直角三角形的直角边长为m ,表示出A 2的坐标,代入二次函数的解析式,求出m ,同理求出第2022个等腰直角三角形的直角边长,即可求出斜边.解:设A 1B 1=x ,①①OA 1B 1 是等腰直角三角形,①OB 1=x ,则A 1的坐标为(x ,x ),代入二次函数y =12x 2+12x ,得x =12x 2+12x ,解得x =1或x =0(舍),设A 2B 2=m ,①①B 1A 2B 2腰是等腰直角三角形,①B 1B 2=m ,①A 2的坐标为(m ,1+m ),代入二次函数y =12x 2+12x , 得12m 2+12m =1+m ,解得m =2或m =-1(舍),同理可求出A 3B 3=3,A 4B 4=4,①B 2022A 2022=2022,根据勾股定理,得B 2021A 2022=,故答案为:【点拨】本题考查了二次函数图象与规律综合题,利用等腰直角三角形的性质和二次函数的点坐标特征是解决本题的关键.15.1a =或a =【分析】分两种情况讨论,如图,当90OAB ∠=︒时,利用2222,OB OA AQ BQ -=+ 建立方程求解即可;当90,AOB ∠=︒ 利用2222,OA OB AQ BQ +=+建立方程求解即可;从而可得答案.解:如图,当90OAB ∠=︒时,222,OA AB OB ∴+=A ,B 的横坐标分别为1-,2,()()1,,2,4A a B a ∴-,2222224161153,AB OB OA a a a ∴=-=+--=+过A 作AQ BM ⊥于,M 则,3,AE QM a AQ EM ====43,BQ a a a ∴=-=222299,AB AQ BQ a ∴=+=+2215399,a a ∴+=+解得:1a = (负根舍去)当90,AOB ∠=︒同理可得:()()1,,2,4A a B a -222141699,a a a ∴+++=+解得:2a =(负根舍去)综上:1a =或a =【点拨】本题考查的是勾股定理的应用,二次函数的性质,掌握“利用勾股定理求解两点之间的距离”是解题的关键.16.【分析】根据点B 在抛物线y =x 2的第一象限部分,可设B 点坐标为(x ,x 2),则x >0.根据B 点的横坐标与纵坐标之和等于6,列出方程x +x 2=6,解方程求出x 的值,再求出OB 的长即可得到结论.解:连接OB ,如图,①正方形OABC 的顶点B 在抛物线y =x 2的第一象限部分,①可设B 点坐标为(x ,x 2),且x >0.①B 点的横坐标与纵坐标之和等于6,①x +x 2=6,解得x 1=2,x 2=-3(不合题意舍去),①B (2,4),①OB 2=22+42=20,①OB =①四边形OABC 是正方形,①AC OB ==故答案为【点拨】本题考查了二次函数的性质,二次函数图象上点的坐标特征,正方形的性质,求出B 点坐标是解题的关键.17.24【分析】根据抛物线的解析式即可确定对称轴,则可以确定AB 的长度,然后根据等边三角形的周长公式即可求解.解:抛物线2(4)y a x k =-+的对称轴是4x =过C 点作CD AB ⊥于点D ,如下图所示则4=AD ,则28AB AD ==则以AB 为边的等边ABC 的周长为2483=⨯.故答案为24.【点拨】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.18.214【分析】求得抛物线C 的解析式,设Q (x ,0),则P (x ,-x 2+2x +3),即可得出OQ +PQ ,根据二次函数的性质即可求得.解:设平移后的解析式为y =-x 2+bx +c ,①抛物线C 经过点A (-1,0)和B (0,3),①103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ①抛物线C 的解析式为y =-x 2+2x +3,设Q (x ,0),则P (x ,-x 2+2x +3),①点P 是抛物线C 上第一象限内一动点,①OQ +PQ =x +(-x 2+2x +3)=-x 2+3x +32321()24x =--+ ①OQ +PQ 的最大值为214故答案为:214 【点拨】本题考查了二次函数的性质,平移,二次函数图象与几何变换,根据题意得出OQ +PQ =-x 2+3x +3是解题的关键.19.②③⑤【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①抛物线开口向下,故0a >错误,不符合题意;②方程的一个根是1-,函数对称轴为:1x =,则3是方程20ax bc c ++=的一个根,符合题意;③当1x =时,0y a b c =++>,正确,符合题意;④当1x <时,y 随x 的增大而减小错误,不符合题意;⑤抛物线和x 轴有两个交点,故240b ac ->,符合题意;故答案为:②③⑤.【点拨】主要考查图象与二次函数系数之间的关系,会利用函数图象确定字母系数的取值范围,以及二次函数与方程之间的转换是解题的关键.20.221x y y =-+【分析】设(x ,y )是图象l 上的任意点,则它关于直线y x =的对称点一定在抛物线221y x x =-+上,因此将对称点(y ,x )代入抛物线即可.解:设(x ,y )是图象l 上的任意点,则关于直线y x =的对称点是(y ,x ),∴把(y ,x )代入221y x x =-+得221x y y =-+,故答案为:221x y y =-+.【点拨】本题主要考查了二次函数图像与几何变换的知识,明确关于y x =的对称的点的坐标特征是解题的关键.21. 2139≤a ≤5##1359a ≥≥ 【分析】将点A 坐标代入直线解析式求出b ,再将点B 坐标代入解析式求m 的值.根据抛物线解析式可得抛物线开口方向及对称轴,顶点坐标,再根据点A ,B 坐标求解即可.解:将(﹣1,2)代入y 13=-x +b 得213=+b , 解得b 53=, ①y 13=-x 53+, 把(m ,1)代入y 13=-x 53+得113=-m 53+, 解得m =2,①点B 坐标为(2,1),①y 12=-x 2﹣x +a 12=-(x +1)212++a , ①抛物线开口向下,对称轴为直线x =﹣1,顶点坐标为(﹣1,12+a ), 当抛物线经过点A 时,12+a =2, 解得a 32=, 令12-x 2﹣x +a 13=-x 53+,整理得3x 2+4x +10﹣6a =0, 当Δ=42﹣4×3(10﹣6a )≥0时,139a ≥, 把(2,1)代入y 12=-x 2﹣x +a 得1=﹣2﹣2+a , 解得a =5,当139≤a ≤5时,满足题意. 故答案为:2;139≤a ≤5. 【点拨】本题考查一次函数与二次函数图象上点的坐标特征,解题关键是掌握函数与方程的关系,掌握二次函数的性质.22.4.5【分析】过点C 作CG ①BA 于点G ,作EH ①AB 于点H ,作AM ①BC 于点M .由30ABC ACB ∠=∠=︒,AB =AC =4,可得BC =BM =CM =GB =6,设BD =x ,则DG =6−x ,证①EDH ①①DCG ,EH =DG =6−x ,求得S △BDE ,根据二次函数的性质求得最大值即可.解:过点C 作CG ①BA 于点G ,作EH ①AB 于点H ,作AM ①BC 于点M .①30ABC ACB ∠=∠=︒,4AB AC ==,①BM =CM =①GB =12AB AG AB AC +=+=6, 设BD =x ,则DG =6−x ,①ED =DC ,①EDC =90°,①EDH +①GDC =90°,①EDH +①HED =90°,①①EHD =①DGC ,①HED =①GDC ,①①EDH ①①DCG (AAS ),①EH =DG =6−x ,①S △BDE =12BD •EH =12x (6−x )=12- (x −3)2+4.5, 当x =3时,①BDE 面积的最大值为4.5.故答案为4.5.【点拨】本题考查了含30度角的直角三角形的性质,二次函数的性质以及全等三角形的判定与性质,熟练运用以上知识是解题的关键.23.(1)y=-(x -2)2+4;(2) 对称轴为直线x =2,顶点坐标为(2,4)【分析】(1)利用配方法时注意要先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,可把一般式转化为顶点式;(2)根据y =a(x -h)2+k 的形式直接得出其对称轴和顶点坐标.解:(1)y =-x 2+4x =-(x -2)2+4.(2)由(1)得,对称轴为直线x =2,顶点坐标为(2,4).【点拨】二次函数的解析式有三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x -h )2+k ;(3)交点式(与x 轴):y=a (x -x 1)(x -x 2).24.(1)()21233y x =--+;(2)1222,,3k k ==;(3)9.4m = 【分析】(1)把50,3A ⎛⎫ ⎪⎝⎭代入抛物线的解析式,解方程求解即可; (2)联立两个函数的解析式,消去,y 得:()21223,33x kx --+=+再利用根与系数的关系与()222121212210,x x x x x x +=+-=可得关于k 的方程,解方程可得答案; (3)先求解抛物线的对称轴方程,分三种情况讨论,当2,m ≤ 2<m <8, 8,m ≥ 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.解:(1)把50,3A ⎛⎫ ⎪⎝⎭代入()223y a x =-+中, 543,3a ∴+= 1,3a ∴=- ∴ 抛物线的解析式为:()212 3.3y x =--+ (2)联立一次函数与抛物线的解析式得:()2231233y kx y x ⎧=+⎪⎪⎨⎪=--+⎪⎩()21223,33x kx ∴--+=+整理得:()24330,x k x ---=121243,3,x x k x x ∴+=-=-()222121212210,x x x x x x +=+-= ()()()22432343120,k k ∴--⨯-=-+> ①x 1+x 2=4-3k ,x 1•x 2=-3,①x 12+x 22=(4-3k )2+6=10, 解得:1222,,3k k == ①1222,,3k k == (3)①函数的对称轴为直线x=2,当m <2时,当x=m 时,y 有最大值,43m =-13(m -2)2+3,解得①m=当m≥2时,当x=2时,y 有最大值, ①43m =3, ①m=94,综上所述,m 的值为94. 【点拨】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与x 轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.25.(1)210900220000y x x =-++(060x ≤≤),且x 为整数;(2)2060x ≤≤,且x 为整数;(3)a =30【分析】(1)根据题意列函数关系式和不等式组,于是得到结论;(2)根据题意列方程和不等式,于是得到结论;(3)根据题意列函数关系式,然后根据二次函数的性质即可得到结论.解:(1)由题意得,2(9006005)(200)(12008005)(400)10900220000y x x x x x x =--++-+-=-++,0,30050,4000,x x x ⎧⎪-⎨⎪-⎩解得060x ,故x 的取值范围为060x 且x 为整数;(2)x 的取值范围为2060x .理由如下:221090022000010(45)240250y x x x =-++=--+,当234000y =时,210(45)240250234000x --+=,2(45)625x -=,4525x -=±,解得:20x 或70x =.要使234000y ,得2070x ;060x ,2060x ∴;(3)设捐款后每天的利润为w 元,则2210900220000(400)10(900)220000400w x x x a x a x a =-++--=-+++-, 对称轴为900452020a a x +==+, 0100a <, ∴454520a +>, 抛物线开口向下,当3040x 时,w 随x 的增大而增大,当40x =时,w 最大,1600040(900)220000*********a a ∴-+++-=,解得30a =.【点拨】本题考查了二次函数的应用,一元一次不等式的应用,列函数关系式等等,最大销售利润的问题常利用函数的增减性来解答.26.(1)点A 坐标为(﹣3,0),点B 的坐标为(7,0),y =﹣2x +4;(2) 点F 的坐标为(5,﹣6),y =﹣421x 2+4021x ;(3) 四边形CMNC ′的面积为45m 2. 【分析】根据抛物线的解析式,令y =0即可求出两点的坐标.根据抛物线的解析式可分别求出C ,D 两点的坐标,再用待定系数法即可求出直线的表达式.根据题意,利用角的等量关系可以得到①1=①3,进而得到tan①1=tan①3,根据三角函数的计算方法列出等式,根据一次函数的解析式设点的坐标为(xF ,﹣2xF +4),将各线段的长度代入等式即可求出点F 的坐标,再根据平移的法则即可求出w ′的表达式.根据平移,可以得到点C ′,A ′,D ′的坐标,再根据待定系数法可以得到直线A ′C ′,BC ,C ′D ′的解析式,根据交点的计算方法列方程组可以求得点M ,N 的坐标,根据平移的定义和平行四边形的定义可知四边形CMNC ′是平行四边形,再根据平行四边形面积的计算方法可以得到平行四边形CMNC ′的面积.解:(1)当y =0时,﹣421x 2+1621+4=0,解得x 1=﹣3,x 2=7, ①点A 坐标为(﹣3,0),点B 的坐标为(7,0).①﹣2b a =162142()21-⨯- ①抛物线w 的对称轴为直线x =2,①点D 坐标为(2,0).当x =0时,y =4,①点C 的坐标为(0,4).设直线l 的表达式为y =kx +b ,420b k b =⎧⎨+=⎩解得k=-2b=4⎧⎨⎩①直线l 的解析式为y =﹣2x +4;(2)①抛物线w 向右平移,只有一种情况符合要求,即①F AC =90°,如图.此时抛物线w′的对称轴与x轴的交点为G,①①1+①2=90°①2+①3=90°,①①1=①3,①tan①1=tan①3,①FGAG=AOCO.设点F的坐标为(xF,﹣2xF+4),①(24)(3)FFxx---+=34,解得xF=5,﹣2xF+4=﹣6,①点F的坐标为(5,﹣6),此时抛物线w′的函数表达式为y=﹣421x2+4021x;(3)由平移可得:点C′,点A′,点D′的坐标分别为C′(m,4),A′(﹣3+m,0),D′(2+m,0),CC′①x轴,C′D′①CD,可用待定系数法求得直线A′C′的表达式为y=43x+4﹣43m,直线BC的表达式为y=﹣47x+4,直线C′D′的表达式为y=﹣2x+2m+4,分别解方程组4443324y x my x⎧=+-⎪⎨⎪=-+⎩和224447y x my x=-++⎧⎪⎨=-+⎪⎩解得25445x my m⎧=⎪⎪⎨⎪=-+⎪⎩和75445x my m⎧=⎪⎪⎨⎪=-+⎪⎩①点M的坐标为(25m,﹣45m+4),点N的坐标为(75m,﹣45m+4),①yM=yN①MN①x轴,①CC′①x轴,①CC′①MN.①C′D′①CD,①四边形CMNC′是平行四边形,①S=m[4﹣(﹣45m+4)]=45m2【点拨】本题主要考查二次函数的图象与性质、一次函数的解析式以及二次函数的应用,数形结合思想是关键.。

2024年九年级数学上册《二次函数》单元测试及答案解析

2024年九年级数学上册《二次函数》单元测试及答案解析

第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 23.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的大致图象可能是()A. B.C. D.4.坐标平面上有两个二次函数的图像,其顶点M、N皆在x轴上,且有一水平线与两图像相交于A、B、C、D四点,各点位置如图所示,若AB=12,BC=4,CD=6,则MN的长度是()A.8B.9C.10D.115.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+c =n -1有两个不相等的实数根;⑤若方程ax 2+bx +c =0的两根分别为x 1,x 2,则x 1+x 2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.437.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界8.如图,抛物线G :y 1=a (x +1)2+2与抛物线H :y 2=-(x -2)2-1交于点B (1,-2),且分别与y 轴交于点D ,E .过点B 作x 轴的平行线,交抛物线于点A ,C .则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.49.设二次函数y=a x+mx+m-k(a<0,m,k是实数),则()A.当k=2时,函数y的最大值为-4aB.当k=2时,函数y的最大值为-2aC.当k=4时,函数y的最大值为-4aD.当k=4时,函数y的最大值为-2a10.如图,已知点A-1,0,点B2,3.若抛物线y=ax2-x+2(a为常数,a≠0)与线段AB有两个不同的公共点,则a的取值范围是()A.a≥3B.a≤-3或34≤a<1C.-3<a<1或a≥3D.34≤a<1二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm3与温度t°C之间的关系满足二次函数V=18t2+104t>0,则当温度为4°C时,水的体积为cm3.12.已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P2,y1,Q3,y2在抛物线C 上,则y1y2(填“>”或“<”);13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y1=a1x2+b1x+c1,y2=a2x2+b2x+c2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y2与直线y=32x+7的交点坐标为.14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4.为顶点,且过点B2,-5(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.(1)求该函数的解析式;(2)请结合平面直角坐标系中给出的点,画出符合题意的函数图象,并写出飞机降落后滑行到停下来前进了多远?19.已知一次函数y=ax+b的图像上有两点A、B,它们的横坐标分别是2、-1,若二次函数y=x 2的图像经过A、B两点.(1)求一次函数解析式并在平面直角坐标系内画出两个函数的图像;(2)若P m,y1两点都在二次函数y=x 2的图像上,试比较y1与y2的大小. ,Q m+1,y220.在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A-1,0两点,交y轴于点C,点P m,n,B3,0在抛物线上.(1)求抛物线的表达式及顶点坐标;(2)若此抛物线点P右侧的部分(不含点P)上恰好有三个点到x轴的距离均为2,请直接写出m的取值范围.四、(本大题共3小题,每小题8分,共24分)21.如图,在平面直角坐标系xOy中,已知抛物线的解析式是y1=x2,直线l的解析式是y2=-14,点F0,1 4,点P是在该抛物线上的动点,连接PF,过P作PN⊥l.(1)求证:PF=PN;(2)设点E-2,6,求PE+PF的最小值及此时点P的坐标.22.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出,如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车,另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;在两公司租出的汽车数量相等且都为x(单位:辆,0<x≤50)的条件下,甲的利润用y1表示(单位:元),乙的利润用y2(单位:元)表示,根据上述信息,解决下列问题:(1)分别表示出甲、乙的利润,什么情况下甲、乙的利润相同?(2)甲公司最多比乙公司利润多多少元?(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且仅当两公司租出的汽车均为16辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.23.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(Ⅰ)列表:①②③④⑤⑥x023456y01 2.254 6.259(Ⅱ)描点:请将表格中的x,y描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a x-h2+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a x-h2+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax2.①此时点B 的坐标为;②将点B 坐标代入y=ax2中,解得a=;(用含m,n的式子表示)方案二:设C点坐标为h,k①此时点B的坐标为;②将点B坐标代入y=a x-h2+k中解得a=;(用含m,n的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy中有A,B两点,AB=4,且AB∥x轴,二次函数C1:y1=2x+h2+k和C2:y2=a x+h2+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之和为10,求a的值.五、(本大题共2小题,每小题12分,共24分)24.中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵位列第二,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的270C(向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy.如果她从点A3,10起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系式y=a x-h.2+k a<0(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x与竖直高度y的几组数据如下:水平距离x/m03 3.54 4.5竖直高度y/m1010k10 6.25根据上述数据,直接写出k的值为,直接写出满足的函数关系式:;(2)比赛当天的某一次跳水中,全红婵的竖直高度y与水平距离x近似满足函数关系y=-5x2+40x-68,记她训练的入水点的水平距离为d1,比赛当天入水点的水平距离为d2,请通过计算比较d1与d2的大小;(3)在(2)的情况下,全红婵起跳后到达最高点B开始计时,若点B到水平面的距离为c,则她到水面的距离y与时间t之间近似满足y=-5t2+c,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的270C动作,请通过计算说明,她当天的比赛能否成功完成此动作?25.综合与实践问题提出某兴趣小组开展综合实践活动,如图1,在正方形ABCD中,E,F分别是AB,AD上一点,且AF=2AE.点M从点E出发,沿正方形ABCD的边顺时针运动;点N同时从点F出发,沿正方形ABCD的边逆时针运动.若两动点的运动速度相同,都为每秒1个单位长度,相遇时M,N两点都停止运动,设点M运动的时间为t秒,△AMN的面积为S,探究S与t的关系.初步感知根据运动的变化,绘制了如图2所示的图象,按不同的函数解析式,图象可分为四段,还有最后一段未画出.(1)AE的长为,AB的长为.(2)a的值为,S的最大值为.延伸探究(3)请求出图2中未画出的最后一段图象对应的函数解析式,并将图象补充完整.(4)求b的值,并求出当S>3时,t的取值范围.第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米【答案】B【分析】本题考查了待定系数法求函数解析式的运用,求出函数的解析式是解答本题的关键.设y=kx2,由待定系数法就可以求出解析式,把y=3.2×105代入函数解析式就可以求出结论.【详解】解:设y=kx2,∵当x=3时,y=18,∴9k=18,k=2,∴y=2x2,当成本为3.2×105元时,有2x2=3.2×105,x2=1.6×105,x=4×102.故选:B.2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 2【答案】C【分析】本题考查了待定系数法求二次函数解析式,二次函数的图象和性质等知识点,学会根据表格中的信息求得函数的解析式是解题的关键.由表格中的几组数求得二次函数的解析式,然后通过函数的性质即可得出结果.【详解】解:设二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),由题意可知a-b+c=0c=-59a+3b+c=-8 ,解得a=1b=-4 c=-5 ,∴二次函数的解析式为y=x2-4x-5 =x-5x+1=x -2 2-9,∴函数的图象开口向上,顶点为2,-9 ,图象与x 轴的交点分别为-1,0 和5,0 ,∴图象的对称轴是x =2,函数有最小值-9,∴选项A 、B 、D 不符合题意,选项C 符合题意.故选:C .3.一次函数y =ax +b 和二次函数y =ax 2+bx 在同一平面直角坐标系中的大致图象可能是()A. B.C. D.【答案】B 【分析】本题考查抛物线和直线的性质,本题可先由一次函数y =ax +b 图象得到字母系数的正负,再与二次函数y =ax 2+bx 的图象相比是否一致.【详解】解:A 、由抛物线可知,a <0,x =-b 2a<0,得b <0,由直线可知,a >0,b >0,故本选项不符合题意;B 、由抛物线可知,a >0,x =-b 2a <0,得b >0,由直线可知,a >0,b >0,故本选项符合题意;C 、由抛物线可知,a <0,x =-b 2a <0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意;D 、由抛物线可知,a >0,x =-b 2a>0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意.故选:B4.坐标平面上有两个二次函数的图像,其顶点M 、N 皆在x 轴上,且有一水平线与两图像相交于A 、B 、C 、D 四点,各点位置如图所示,若AB =12,BC =4,CD =6,则MN 的长度是()A.8B.9C.10D.11【答案】B 【分析】本题考查了二次函数的图像与性质,线段长度的相关计算,熟练掌握以上知识点是解题的关键.由AB ,BC ,CD 的长度以及根据二次函数的对称性可以知道,M 和C ,N 和B ,C 和B 横坐标的差,从而推出M 和N 的横坐标之差,得到MN 的长度.【详解】由A、B、C、D四点在同一水平线,可以知道四点纵坐标相同∵AB=12,BC=4,CD=6,∴AC=AB+BC=16,BD=4+6=10∴x C-x M=AC2=8,x N-x B=BD2=5又∵x C-x B=BC=4∴MN=x N-x M=(x N-x B)+(x C-x M)-(x C-x B)=5+8-4=9.故选:B.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+ c=n-1有两个不相等的实数根;⑤若方程ax2+bx+c=0的两根分别为x1,x2,则x1+x2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个【答案】B【分析】本题主要考查了二次函数图象与其系数的关系,二次函数的性质等等,根据开口向下得到a<0,再根据顶点坐标结合对称轴公式得到b=-2a>0,即b+2a=0,则可判断②;由对称性可得当x=-1时,y=a-b+c>0,则可判断②;根据函数图象可知抛物线与直线y=n-1有两个交点,则可判断④;根据二次函数与一元二次方程之间的关系可判断④.【详解】解:∵抛物线开口向下,∴a<0,∵顶点坐标为1,n,∴抛物线对称轴为直线x=-b2a=1,∴b=-2a>0,即b+2a=0,∴3a+b=2a+b+a=a<0,②错误;∵当x=3时y>0,抛物线对称轴为直线x=1,∴当x=-1时,y=a-b+c>0,①正确;∵抛物线顶点纵坐标为n,∴4ac-b24a=n,∴b2=4ac-4an=4a c-n,③正确;由图象可得抛物线与直线y=n-1有两个交点,∴ax2+bx+c=n-1有两个不相等的实数根,④正确;∵抛物线对称轴为直线x=1,方程ax2+bx+c=0的两根分别为x1,x2,,∴x1+x22=1,∴x1+x2=2,⑤正确.故选:B .6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.43【答案】B【分析】本题考查二次函数与几何的综合应用,作BE ⊥x 轴,DF ⊥x 轴,证明△BEC ≌△CFD ,进而求出D 点坐标,代入解析式进行求解即可.【详解】解:如图所示,作BE ⊥x 轴,DF ⊥x 轴,则:∠BEO =∠CFD =90°,∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∴∠BCE =∠CDF =90°-∠DCF ,∴△BEC ≌△CFD ,∴CF =BE ,DF =CE ,∵点B ,C 的坐标分别是(-2,1),(2,0),∴BE =CF =1,OC =2,DF =CE =2+2=4,∴OF =3,∴D 3,4 ,∵点D 在抛物线y =13x 2+bx 的图像上,∴4=13×32+3b ,∴b =13;故选B .7.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界【答案】D【分析】本题主要考查了二次函数的实际应用.根据顶点式的特点可知球运行的最大高度为2.6m,由此即可判断A;求出当x=9时,y的值,再与2.43m进行比较即可判断B;求出当x=18时,y的值,再与0比较即可判断C、D.【详解】解:∵抛物线解析式为y=-160x-62+2.6,∴球运行的最大高度为2.6m,故A说法错误,不符合题意;在y=-160x-62+2.6中,当x=9时,y=-1609-62+2.6=2.45>2.43,∴球会过球网,故B说法错误,不符合题意;在y=-160x-62+2.6中,当x=18时,则y=-16018-62+2.6=0.2>0,∴球会过球网且会出界,故C说法错误,不符合题意,D说法正确,符合题意;故选D.8.如图,抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B(1,-2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.4【答案】C【分析】①先求抛物线G的解析式,再根据抛物线G,H的顶点坐标,判断平移方向和平移距离即可判断②;②根据非负数的相反数或者直接由图像判断即可;③先根据题意得出-3<x<1时,观察图像可知y1 >y2,然后计算y1-y2,进而根据一次函数的性质即可判断;④分别计算出A,E,C,D的坐标,根据正方形的判定定理进行判断即可.【详解】①∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B1,-2,∴x=1,y=-2,即-2=a(1+1)2+2,解得a=-1,∴抛物线G:y1=-x+12+2,∴抛物线G的顶点(-1,2),抛物线H的顶点为(2,-1),将(-1,2)向右平移3个单位,再向下平移3个单位即为(2,-1),即抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到,故①正确;②∵(x-2)2≥0,∴-(x-2)2≤0,∴y2=-x-22-1≤-1,∴无论x取何值,y2总是负数,故②正确;③∵B1,-2,∵将y=-2代入抛物线G:y1=-x+12+2,解得x1=-3,x2=1,∴A(-3,-2),将y=-2代入抛物线H:y2=-x-22-1,解得x1=3,x2=1,∴C(3,-2),∵-3<x<1,从图像可知抛物线G的图像在抛物线H图像的上方,∴y1>y2∵y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6∴当-3<x<1,随着x的增大,y1-y2的值减小,故③不正确;④设AC与y轴交于点F,∵B1,-2,∴F(0,-2),由③可知∴A(-3,-2),C(3,-2),∴AF=CF,AC=6,当x=0时,y1=1,y2=-5,即D(0,1),E(0,-5),∴DE=6,DF=EF=3,∴四边形AECD是平行四边形,∵AC=DE,AC⊥DE,∴四边形AECD是正方形,故④正确,综上所述,正确的有①②④,故选:C .【点睛】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.9.设二次函数y =a x +m x +m -k (a <0,m ,k 是实数),则()A.当k =2时,函数y 的最大值为-4aB.当k =2时,函数y 的最大值为-2aC.当k =4时,函数y 的最大值为-4aD.当k =4时,函数y 的最大值为-2a【答案】C【分析】此题考查了二次函数的图象和性质、求二次函数的最值,求出二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .得到二次函数的对称轴是直线x =-m -m +k 2=-2m +k 2.根据开口方向进一步求出最值即可.【详解】解:由题意,令y =0,∴a x +m (x +m -k )=0,∴x 1=-m ,x 2=-m +k .∴二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .∴二次函数的对称轴是:直线x =-m -m +k 2=-2m +k 2.∵a <0,∴y 有最大值.当x =-2m +k 2,y 最大,即y =a -2m +k 2+m -2m +k 2+m -k =-k 24a 当k =4时,函数y 的最大值为-4a ;当k =2时,函数y 的最大值为-a .综上,C 选项正确.故选:C .10.如图,已知点A -1,0 ,点B 2,3 .若抛物线y =ax 2-x +2(a 为常数,a ≠0)与线段AB 有两个不同的公共点,则a 的取值范围是()A.a ≥3B.a ≤-3或34≤a <1C.-3<a <1或a ≥3D.34≤a <1【答案】B【分析】本题考查了二次函数和一次函数的综合问题,先求出直线AB 的解析式,令x +1=ax 2-x +2,根据有两个交点求出a 的取值范围,再分a >0和a <0两种情况讨论即可得到答案;【详解】解:设AB 所在直线为y =kx +b ,∵A -1,0 ,B 2,3 ,∴-k +b =02k +b =3,解得:k =1b =1 ,∴y =x +1,当x +1=ax 2-x +2时,∵二次函数与线段AB 有两个不同的公共点,∴(-2)2-4a ×1>0,解得:a <1,①当0<a <1时,此时函数的开口向上,∴a ×(-1)2-(-1)+2≥0,a ×22-2+2≥3,解得:34≤a <1,②当a <0时此时函数的开口向下,∴a ×(-1)2-(-1)+2≤0,a ×22-2+2≤3,解得:a ≤-3,综上所述得:34≤a <1,a ≤-3,故选:B .二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm 3 与温度t °C 之间的关系满足二次函数V =18t 2+104t >0 ,则当温度为4°C 时,水的体积为cm 3.【答案】106【分析】本题考查二次函数的应用,细心计算是解题的关键.将t =4代入解析式求值即可.【详解】解:∵V =18t 2+104t >0 ,当t =4°C 时,V =18×42+104=106cm 3 ,∴水的体积为106cm 3.故答案为:106.12.已知二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,点P 2,y 1 ,Q 3,y 2 在抛物线C 上,则y 1y 2(填“>”或“<”);【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为y =x +1 2,再利用二次函数图象的性质可得出答案.【详解】解:y =x 2-2x +1=x -1 2,∵二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,∴抛物线C 的解析式为y =x +1 2,∴抛物线开口向上,对称轴为x =-1,∴当x >-1时,y 随x 的增大而增大,∵2<3,∴y 1<y 2,故答案为:<.13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y 1=a 1x 2+b 1x +c 1,y 2=a 2x 2+b 2x +c 2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y 2与直线y =32x +7的交点坐标为.【答案】关于点-32,0 成中心对称-1,112 ,8,19 【分析】本题主要考查了二次函数的图像和性质,以及二次函数与一次函数的交点等知识.(1)根据抛物线图像可求出y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,根据点坐标与二次函数的图像可得出答案.(2)用待定系数法求出抛物线y 2的函数解析式,再令32x +7=12x -2 2+1,进一步求解即可求出y 2与直线y =32x +7的交点坐标.【详解】解:由图象可得抛物线y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,∵点-5,-1 与点2,1 关于点-32,0对称,∴抛物线y 1与抛物线y 2关于点-32,0成中心对称.设抛物线y 2解析式为y 2=a x -2 2+1,由图象可得抛物线经过(4,3),将(4,3)代入y 2=a x -2 2+1得3=4a +1,解得a =12,∴y 2=12x -2 2+1,令32x +7=12x -2 2+1,解得x 1=-1,x 2=8,将x 1=-1代入y =32x +7得y =112,把x 2=8代入y =32x +7得y =19,∴y 2与直线y =32x +7的交点坐标为-1,112 ,8,19 ,故答案为:-1,112 ,8,19 .14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.【答案】b >134或-3<b <1【分析】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,也考查了抛物线与直线的交点问题.解决本题的关键是利用数形结合的思想的运用.通过解方程x 2-2x -3=0得到A 、B 的坐标,利用二次函数的性质得到顶点的坐标,可写出图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,然后求出直线y =x +b 与y =-x 2+2x +3-1<x <3 相切b 的值,直线y =x +b 过A 和过B 点所对应的b 的值,再利用图象可判断直线y =x +b 与此图象有且只有两个公共点时b 的取值范围.【详解】解:当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3,则A -1,0 ,B 3,0 ,y =x 2-2x -3=x -1 2-4,则顶点坐标为1,-4 ,把图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,如图,当直线y =x +b 与y =-x 2+2x +3-1<x <3 相切时,直线与新函数图象有三个交点,此时x +b =-x 2+2x +3有两个相等的实数解,方程整理得x 2-x +b -3=0,Δ=(-1)2-4(b -3)=0,解得b =134,∴当b >134时,直线y =x +b 与图像C 1恰有两个公共点,当直线y =x +b 过A -1,0 时,-1+b =0,解得b =1,当直线y =x +b 过B 3,0 时,3+b =0,解得b =-3,所以,当-3<b <1时,直线y =x +b 与此图象有且只有两个公共点.综上可知,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是b >134或-3<b <1.故答案为:b >134或-3<b <1.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.【答案】-32≤t ≤2【分析】本题考查了二次函数的性质,两点距离公式,轴对称的性质,三角形三边关系,先求出点A ,点B ,点C 坐标,分三种情况讨论,由两点间距离公式和三角形三边关系可求解.【详解】解:∵二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C 当x =0时,y =3,当y =0时,33x 2-433x +3=0,解得:x 1=1,x 2=3∴A 1,0 ,B 3,0 ,C 0,3 ,对称轴为直线x =2如图所示,∵线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等∴P A =PB 或PB =PC 或PC =P A ,∵段DE 在直线y =32上移动,∴点P 的纵坐标为32,设P x ,32①若PC =P A ,∴x 2+3-322=x -1 2+32 2解得:x =12∴P 12,32∴P A =PC =1,PC =7∵P A +PB =2<7∴不能构成三角形,舍去;②若PB =PC ,∴x 2+3-322=x -3 2+32 2解得:x =32∴P 32,32∵PB =PC =3,P A =1∴能构成三角形,③若P A =PB∴x-12+322=x-32+322解得:x=2∴P A=PB=72,PC=194∵P A+PB>PC,∴P A,PB,PC能组成三角形;∵点P在长为3的线段DE上,∴线段DE左端点D的横坐标为t的取值范围为32-3≤t≤2,即-32≤t≤2故答案为:-32≤t≤2.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4为顶点,且过点B2,-5.(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.【答案】(1)与y轴的交点坐标为(0,3);与x轴的交点坐标为(-3,0),(1,0)(2)向左平移1个单位,该函数图象恰好经过原点【分析】本题考查了二次函数的图象和性质,待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.(1)设顶点式y=a(x+1)2+4,然后把(2,-5)代入求出a的值即可得出二次函数解析式;通过解方程-(x+1)2+4=0可得抛物线与x轴的交点坐标,通过计算自变量为0时的函数值可得到抛物线与y轴的交点坐标;(2)由于抛物线与x轴的交点坐标为(-3,0),(1,0),把点(1,0)向左平移1个单位到原点,所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.【详解】(1)解:设抛物线解析式为y=a(x+1)2+4,把(2,-5)代入得9a+4=-5,解得a=-1,所以抛物线解析式为y=-(x+1)2+4;当x=0时,y=-(x+1)2+4=-1+4=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,-(x+1)2+4=0,解得x1=1,x2=-3,则抛物线与x轴的交点坐标为(-3,0),(1,0);(2)解:因为抛物线与x轴的交点坐标为(-3,0),(1,0),所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.。

二次函数全章复习与巩固—巩固练习提高-精品

二次函数全章复习与巩固—巩固练习提高-精品

《二次函数》【巩固练习】一、选择题1.已知抛物线。

:丁=/+31-10,将抛物线C平移得到抛物线若两条抛物线C、C关于直线x=l对称.则下列平移方法中,正确的是().A.将抛物线C向右平移2个单位B.将抛物线C向右平移3个单位2C.将抛的线C向右平移5个单位D.将抛物线C向右平移6个单位2.已知二次函数y=4X2+bx+c的图象如图所示,则下列5个代数式:ac,a+b+c,4a-2b+c,2a+b,2a-b中,其值大于0的个数为().A.2B.3C.4D.53.二次函数)=以2+区+。

的图象如图所示,则下列关系式不正确的是().C.a+b+c>0D. b1 -4ac > 0第2题4.在平面直角坐标系中,将抛物线y=/+2x+3绕着它与y轴的交点旋转180。

,所得抛物线的解析式是()A.j=-(x+l)2+2B.y=-(x-l)2+4C.y=-(x-l)2+2D.y=-(x+l)2+45.二次函数y=ax2+bx+c(a^0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x二-2 C.当xV,,y随x的增大而减小2D.当-1V X V2时,y>06.如图所示,老师出示了小黑板上的题后,小华说:过点(3,0);小彬说:过点(4,3)和(0,3);小明说:a=l,c=3;小颖说:抛物线被x轴截得的线段长为2.你认为四人的说法中,正确的有().A.1个B.2个C.3个D.4个已知抛物线产Q Y+B X+C与x轴交于(1,0),试添加一个条件,使它的对称轴为直线x=2.7.己知一次函数y= +的图象过点(-2,1),则关于抛物线y=一版+3的三条叙述:①过定点(2,1);②对称轴可以是直线x=L③当aVO时,其顶点的纵坐标的最小值为3・其中所有正确叙述的有().A.0个B.1个C.2个D.3个8.已知二次函数)=/—4冗+。

,下列说法错误的是().A.当xVI时,y随x的增大而减小B.若图象与x轴有交点,则aW4C.当a=3时,不等式冗2一4了+々>0的解集是1V X V3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3二、填空题9.由抛物线y=x2先向左平移2个单位,再向下平移3个单位得到的抛物线的解析式为r4 、10.已知一元二次方程笈一3=0的一根为-3.在二次函数y=x2+bx-3的图象上有三点一一,州、i5 j,yi、y?、丫3、的大小关系是11.如图,一段抛物线y=-x(x-1)(OWxWl)记为1山,它与x轴交点为0、Ai,顶点为1\;,顶点为P2;将叱绕点A2旋转180°得m3,交将n绕点A1旋转180°得叱,交x轴于点A2x轴于点A:,,顶点为P3,…,如此进行下去,直至得m>,顶点为Pm则Pi。

部编数学九年级上册 二次函数y=ax2+bx+c(a≠0)最值(巩固篇)(专项练习)(人教版)含答案

部编数学九年级上册 二次函数y=ax2+bx+c(a≠0)最值(巩固篇)(专项练习)(人教版)含答案

专题22.25 二次函数2(0)y ax bx c a =++≠最值(巩固篇)(专项练习)一、单选题1.已知实数x ,y 满足12x y +=,则2xy -的最大值为( )A .10B .22C .34D .1422.已知二次函数()220y ax ax c a =-+≠,当12x -££时,y 有最小值7,最大值11,则a c +的值为( )A .3B .9C .293D .2533.二次函数()212y x =--+,当05x ££时,y 的取值范围为( )A .83y -££-B .30y -££C .81y -££D .80y -££4.已知:二次函数2y -x +x 6=+,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数,当直线y m =与新图象有2个交点时,m 的取值范围是( )A .254m <-B .254m £-或0m =C .254m <-或0m =D .2504m -<<5.当13x ££时,二次函数223y x ax =++的最小值为-1,则a 的值为( )A .-2B .±2C .2或52D .2或1366x 取任何数总有意义,则m 的取值范围是( )A .2m >B .2m ³C .4m £且0m ≠D .4m >7.已知二次函数2243(0)=++<y mx mx m ,当时32x -££,y 的最大值与最小值的差为6,则m 的值为( )A .13-B .13C .34-D .348.已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足13x ££的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .5或1-B .3或1-C .5或3D .3或19.如图,已知抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,下列结论不正确的是( )A .抛物线的对称轴为直线2x =-B .若120x x <<,则12y y <C .y 的最大值为1 D .若CD x ∥轴交抛物线于点D ,则4CD =10.二次函数2y ax bx c =++的图象如图所示,下列说法错误的是( )A .函数的最大值为4B .函数图象关于直线1x =-对称C .当1x <-时,y 随x 的增大而减小D .x =1或3x =-是方程20ax bx c ++=的两个根11.二次函数y =ax 2+2ax +3(a 为常数,a ≠0),当a -1≤x ≤2时二次函数的函数值y 恒小于4,则a 的取值范围为( )A .18a <B .1a >-C .108a <<或0a <D .108a <<或10a -<<12.已知二次函数22y ax bx =+-(a 、b 是常数,0a ≠)的图象经过点(2,1)和(4,2)-,且当0x m ££时,函数22y ax bx =+-的最小值为2-,最大值为1,则m 的取值范围是( )A .10m -££B .23m £<C .24m ££D .2m ³二、填空题13.如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)a 的值为______,图象的顶点坐标为______;(2)若点(),Q m n 在该二次函数图象上,且点Q 到y 轴的距离小于2,则n 的取值范围为______.14.如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,则四边形OAPB 周长的最大值为______.15.如图,四边形ABCD 的两条对角线,AC BD 互相垂直,且8AC BD +=,则四边形ABCD 面积的最大值为_____.16.一个斜抛物体的水平运动距离记为x (m ),对应的高度记为y (m ),y 是关于x 的二次函数.已知当x =0时,y =0;当x =1时,y =3;当x =4时,y =0.该斜抛物体的所能达到的最大高度是_______m .17.如图,点O 是正方形ABCD 的对称中心,射线OM ,ON 分别交正方形的边AD ,CD 于E ,F 两点,连接EF ,已知2AD =,90EOF Ð=°.(1)以点E ,O ,F ,D 为顶点的图形的面积为_________;(2)线段EF 的最小值是_________.18.如图,正方形ABCD 中,AB =4,P 为对角线BD 上一动点,F 为射线AD 上一点,若AP =PF ,则△APF 的面积最大值为_______19.平面直角坐标系xOy 中,已知点2(,26)P m n -,且实数m ,n 满足240m n -+=,则点P 到原点O 的距离的最小值为______.20.已知二次函数224my x mx -=-++(m 是常数),当02x ££时,函数的最大值是2,则m 的值为________.21.如图,已知抛物线2246y x x =-++与x 轴相交于于点A ,B ,与y 轴的交于点C .点()P m n ,在平面直角坐标系第一象限内的抛物线上运动,设PBCD 的面积为S .下列结论:①4AB =;②6OC =;③274S =最大值,其中,正确结论的序号是________.(所有正确的序号都填上)22.已知抛物线2(1)23y x m x m =-+++.(1)当m =0时,点(2,4) _____(填“在”或“不在”)该抛物线上;(2)该抛物线的顶点随着m 的变化而移动,当顶点移动到最高处时,该抛物线的顶点坐标为____.23.若x +y =5,则xy +1的最大值为______.24.已知抛物线()2210y ax ax a a =-++≠过点(),2A m ,(),2B n 两点,若线段AB 的长不大于2,则代数式23a a --的最小值是________.三、解答题25.如图,抛物线2y ax bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点(3,0)A -,抛物线的对称轴是直线1x =-,连接BC 、AC .(1)用含a 的代数式求ABC S V ;(2)若6ABC S =V ,求抛物线的函数表达式:(3)在(2)的条件下,当11m x -££时,y 的最小值是-2,求m 的值.26.已知关于x 的一元二次方程222240x tx t t -+-+=,有两个不相等的实数根m ,n .(1)求t 的取值范围;(2)当3t =时,解这个方程;(3)若m ,n 是方程的两个实数根,设()()22Q m n =--,试求Q 的最小值.参考答案1.C 【分析】利用二次函数的性质求解即可.解:∵x +y =12,∴y =12-x ,∴xy -2=x (12-x )-2=-x 2+12x -2=-(x -6)2+34,∵-1<0,∴当x =6时,xy -2有最大值,最大值为34,故选:C .【点拨】本题考查二次函数的性质,会利用二次函数的性质求最值是解答的关键.2.B 【分析】先求出二次函数的对称轴为直线1x =,再分①0a >和②0a <两种情况,然后利用二次函数的性质求出最大值与最小值,据此建立方程组求出,a c 的值,由此即可得.解:二次函数222(1)y ax ax c a x a c =-+=--+的对称轴为直线1x =,①当0a >时,则当11x -££时,y 随x 的增大而减小;当12x <£时,y 随x 的增大而增大,所以当1x =时,y 取得最小值;当1x =-时,y 取得最大值,所以27211a a c a a c -+=ìí++=î,解得18a c =ìí=î,符合题设,则此时189a c +=+=;②当0a <时,则当11x -££时,y 随x 的增大而增大;当12x <£时,y 随x 的增大而减小,所以当1x =时,y 取得最大值;当1x =-时,y 取得最小值,所以21127a a c a a c -+=ìí++=î,解得110a c =-ìí=î,符合题设,则此时1109a c +=-+=;综上,a c +的值为9,故选:B .【点拨】本题考查了二次函数的性质,正确分两种情况讨论是解题关键.3.C 【分析】根据二次函数的性质先求解函数的最大值,再分别计算当0x =时,3,y =- 当5x =时,8,y =- 从而可得答案.解:二次函数()212y x =--+,10,a =-<Q 所以函数有最大值,而05x ££,当2x =时,=1,y 最大值 当0x =时,3,y =- 当5x =时,8,y =-\ y 的取值范围为8 1.y -££故选C【点拨】本题考查的是二次函数的性质,掌握“二次函数的增减性”是解本题的关键.4.C 【分析】画出翻折前后的图象,求出原图象的顶点坐标,利用翻折的性质求出原顶点翻折后对应点的坐标,上下移动y m =,观察y m =与新图象的交点情况,即可得出答案解:二次函数2y -x +x 6=+的图象及翻折后的图象如下图如所示,221256(24y x x x =-++=--+Q ,\二次函数2y -x +x 6=+图象的顶点C 的坐标为125(,)24,\翻折后顶点C 对应点C ¢的坐标为125(,24-,观察图象可知,当254m <-或0m =时,y m =与新图象有2个交点,故答案为:C .【点拨】本题考查了二次函数的图像和性质以及翻折的性质,解题的关键是求出原抛物线顶点翻折后对应点的坐标.5.A 【分析】将二次函数化成顶点式,再分类讨论求最值即可.解:y =x 2+2ax +3=(x +a )2+3-a 2.抛物线开口向上,对称轴为直线x =-a .∴当-a ≤1时,即a ≥-1,当1≤x ≤3时,y 随x 的增大而增大,当x =1时,y 有最小值=1+2a +3=4+2a ,∴4+2a =-1,∴a =-52,不合题意,舍去.当1<-a <3时,x =-a ,y 有最小值3-a 2.∴3-a 2=-1.∴a 2=4,∵1<-a <3,∴a =-2.当-a ≥3时,即a ≤-3,当1≤x ≤3,y 随x 的增大而减少.∴当x =3时,y 有最小值=9+6a +3=12+6a .∴12+6a =-1.∴a =-136.∵a ≤-3.∴不合题意,舍去.综上:a =-2.故选:A .【点拨】本题考查二次函数的最值,对a 的范围进行分类讨论是求解本题的关键.6.D 【分析】利用根号下的非负性,以及分母不为0进行求解,只需240x x m -+>恒成立,即只需函数24y x x m =-+的最小值大于0.x 总有意义,则240x x m -+>恒成立,Q 224(2)4y x x m x m =-+=-+-的最小值为4m -,\40m ->,即4m >.故选:D .【点拨】本题考查了二次函数的最值,根号下的非负性,分母不能为0,解决本题的关键是求出二次函数的最小值.7.A 【分析】将二次函数解析式配成顶点式,根据自变量的取值范围求出最大值和最小值,即可求解.解:由2243y mx mx =++,可得22(1)32y m x m =++-,∵m <0,∴当x =-1时,函数有最大值,且max 32y m =-,在32x -££范围内,函数先递增再递减,则:当x =-3时,y=3+6m ,当x =2时,y =3+16m ,∵m <0,∴函数的最小值为:min 316y m =+,∵max min 6y y -=,∴32(316)6m m --+=,∴解得13m =-,故选:A .【点拨】本题考查了根据自变量的取值范围求解二次函数的最值的问题,将二次函数的解析式配成顶点式是解答本题的关键.8.A 【分析】由解析式可知该函数在x h =时取得最小值1、x h >时,y 随x 的增大而增大、当x h <时,y 随x 的增大而减小,根据13x ……时,函数的最小值为5可分如下两种情况:①若13h x <……,1x =时,y 取得最小值5;②若13x h <……,当3x =时,y 取得最小值5,分别列出关于h 的方程求解即可.解:Q 当x h >时,y 随x 的增大而增大,当x h <时,y 随x 的增大而减小,\①若13h x <……,1x =时,y 取得最小值5,可得:2(151)-+=h ,解得:1h =-或3h =(舍);②若13x h <……,当3x =时,y 取得最小值5,可得:2(153)-+=h ,解得:5h =或1h =(舍).综上,h 的值为1-或5,故选:A .【点拨】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.9.B 【分析】从图象得到()30A -,、()1,0B -、()0,3C - ,结合抛物线对称性求对称轴、利用待定系数法求表达式、根据抛物线图象和性质逐项判定即可.解:A 、根据抛物线2y ax bx c =++与x 轴交于点()30A -,、()1,0B -,可得出对称轴3122x --==-,该选项不符合题意;B 、根据抛物线2y ax bx c =++的对称轴为2x =-,开口向下可知:当2x <-时,y 随x 增大而增大;当20x -<<时,y 随x 增大而减小,所以当120x x <<,无法判断1y 与2y 的大小,该选项符合题意;C 、根据抛物线2y ax bx c =++与x 轴交于点()30A -,、()1,0B -,可设交点式()()13y a x x =++,再根据抛物线与y 轴交于点()0,3C -,代值求解得1a =-,即抛物线表达式为()()13y x x =-++,当2x =-时,y 的最大值为1,该选项不符合题意;D 、若CD x ∥轴交抛物线于点D ,则()0,3C -、D 关于对称轴2x =-对称,从而得到()4,3D --,则4CD =,该选项不符合题意;故选:B .【点拨】本题考查二次函数的图象与性质,涉及到图象上点的对称性、待定系数法求表达式、二次函数增减性比较大小、二次函数最值等知识点,熟练掌握二次函数的图象与性质是解决问题的关键.10.C 【分析】根据二次函数的图象结合二次函数的性质即可得出0a <、二次函数对称轴为1x =-以及二次函数的顶点坐标,再逐项分析四个选项即可得出结论.解:观察二次函数图象,发现:开口向下,0a <,抛物线的顶点坐标为(1,4)-,对称轴为1x =-,与x 轴的一个交点为(1,0).A 、0a <Q ,\二次函数y 的最大值为顶点的纵坐标,即函数y 的最大值是4,选项正确,不符合题意;B 、Q 二次函数的对称轴为1x =-,\函数的图象关于直线1x =-对称,选项正确,不符合题意;C 、当1x <-时,y 随x 的增大而增大,选项错误,符合题意;D 、Q 二次函数的图象关于直线1x =-对称,且函数图象与x 轴有一个交点(1,0),\二次函数与x 轴的另一个交点为(3,0)-.\ x =1或3x =-是方程20ax bx c ++=的两个根,选项正确,不符合题意.故选:C .【点拨】本题考查了二次函数的图象以及二次函数的性质,解题的关键是根据二次函数的性质逐条分析四个选项.本题属于基础题,难度不大,解决该题型题目时,结合函数图象以及二次函数的性质求解.11.D 【分析】先求得对称轴为x =-1,再分a >0和a <0两种情况讨论,利用二次函数的性质求解即可.解:对于二次函数y =ax 2+2ax +3,其函数图象的对称轴为x =-22aa=-1,当a >0时,a -1>-1,开口向上,在对称轴的右侧,y 随x 的增大而减少,当a -1≤x ≤2时,函数y 的值在x =2时,取得最大值,∴a ×22+2a ×2+3<4,解得:a <18,∴a 的取值范围为108a <<;当a <0时,a -1<-1,开口向下,当a -1≤x ≤2时,函数y 的值在顶点时,取得最大值,∴a ×(-1)2+2a ×(-1)+3<4,解得:a >-1,∴a 的取值范围为10a -<<;综上,a 的取值范围为108a <<或10a -<<,故选:D .【点拨】本题考查了二次函数的图象和性质,利用已知条件画出函数的大致图象,结合图象利用数形结合的方法解答是解题的关键.12.C 【分析】求出二次函数的解析式,确定函数的最值,根据所给函数的取值范围,结合函数的图象与性质进行求解即可.解:Q 二次函数22y ax bx =+-(a 、b 是常数,0a ≠)的图象经过点()2,1和()4,2-,∴422116422a b a b +-=ìí+-=-î,解得:343a b ì=-ïíï=î,∴223332(2)144y x x x =-+-=--+,∴二次函数的顶点坐标为()2,1,最大值为1,∵当0x m ££时,函数22y ax bx =+-的最小值为2-,最大值为1,∴令2y =-,则233224x x -+-=-,解得:10x =,24x =,∴24m ££,故选:C .【点拨】本题考查了待定系数法求二次函数解析式,二次函数的图象与性质.解题的关键在于熟练掌握二次函数的图象与性质.13. 2a = ()1,2- 211n £<【分析】(1)把P (−2,3)代入23y x ax =++中,即可求解;(2)由|m |<2,结合二次函数的图像和性质,即可求n 的范围.解:(1)把P (−2,3)代入23y x ax =++中,得:()23223a =--+,∴a =2,∴223y x x =++=(x +1)2+2;∴图象的顶点坐标为(−1,2); (2)点Q 到y 轴的距离小于2,∴|m |<2,∴−2<m <2,∴当m =-1时,y 的最小值= 2,当m =2时,y 的最大值= 11,∴2≤n <11.【点拨】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,找到二次函数图像的对称轴,是解题的关键.14.212.【分析】设P (x ,x 2−2x −3)(0<x<3),根据矩形的周长公式得到C =−2232()x -+212.根据二次函数的性质来求最值即可.解:∵y =x 2﹣2x ﹣3,∴当y =0时,x 2﹣2x ﹣3=0即(x +1)(x -3)=0,解得 x =-1或x =3故设P (x ,y ),设P (x ,x 2﹣2x-3)(0<x <3),∵过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,∴四边形OAPB 为矩形,∴四边形OAPB 周长C =2PA +2OA =﹣2(x 2﹣2x ﹣3)+2x =﹣2x 2+6x +6=﹣2(x 2﹣3x )+6,=﹣2232(x -+212.∴当x =32时,四边形OAPB 周长有最大值,最大值为212.故答案为:212.【点拨】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.15.8【分析】设BD =x ,则AC =8-x ,而四边形的面积为S =11(8)22AC BD x x =-g ,根据二次函数的性质即可求得面积的最大值.解:如图,设AC 、BD 交于点O设BD =x ,则AC =8-x ,其中0<x <8∵1111+()2222ABD CBD S S S BD OA BD OC BD OA OC BD AC ==+=+=g g g △△∴211(8)(4)822S x x x =-=--+∵102->∴当x =4时,S 有最大值8故答案为:8【点拨】本题考查了二次函数的性质,四边形的面积,当四边形的两条对角线垂直时,其面积与菱形面积一样,等于两条对角线乘积的一半.把面积最大值转化为函数问题是关键.16.4【分析】设二次函数的解析式为2(0)y ax bx c a =++≠,根据x =0时,y =0;当x =1时,y =3;当x ﹣4时,y =0列方程组,可求出a 、b 、c 的值,可得二次函数解析式,转化为顶点式即可得答案.解:设二次函数的解析式为2(0)y ax bx c a =++≠,∵x =0时,y =0;当x =1时,y =3;当x ﹣4时,y =0,∴031640c a b c a b c =ìï++=íï++=î,解得:140a b c =-ìï=íï=î,∴二次函数的解析式为224(2)4y x x x =-+=--+,∴该斜抛物体的所能达到的最大高度是4m ,故答案为:4【点拨】本题考查二次函数的最值,利用待定系数法求出二次函数解析式,熟练掌握二次函数各种形式解析式的转化是解题关键.17. 1 【分析】(1)连接AO ,DO ,证明()AEO DFO ASA ≌△△,可得EOFD S 四边形ADO S △=,求出Δ1414ADO S =´=即可求解;(2)设AE x =,则2ED x =-,由勾股定理可得()22212EF x =-+,即可求EF 的最小值.解:(1)连接AO ,DO ,∵90EOF Ð=°,∴90EOD FOD Ð+Ð=°,∵四边形ABCD 是正方形,O 是中心,∴90AOD Ð=°,AO DO =,45EAO FDO Ð=Ð=°,∴90EOD AOE Ð+Ð=°,∴FOD AOE Ð=Ð,∴()AEO DFO ASA ≌△△,∴EOFD S 四边形ADO S △=,∵2AD =,∴Δ1414ADO S =´=,∴ 1.EOFD S =四边形故答案为:1;(2)设AE x =,则2ED x =-,Q AEO DFO ≌△△,,DF AE x \==在Rt EDF V 中,()()222222244212EF x x x x x =+-=-+=-+,∴当1x =时,EF ,.【点拨】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键.18.4【分析】作PM ⊥AD 与M ,根据正方形的性质易得PM =DM ,设PM =DM =x ,则AM =4−x ,根据等腰三角形的性质即可得出AF =2(4−x ),由三角形面积公式得出S △APF ,进而根据二次函数的性质即可求得结果.解:作PM ⊥AD 与M ,∵BD 是正方形ABCD 的对角线,∴∠ADB =45°,∴△PDM 是等腰直角三角形,∴PM =DM ,设PM =DM =x ,则AM =4−x ,∵AP =PF ,∴AM =FM =4−x ,∴AF =2(4−x ),∵S △APF =12AF •PM ,∴S △APF =12×2(4−x )•x =−x 2+4x =−(x −2)2+4,∴当x =2时,S △APF 有最大值4,故答案为:4【点拨】本题考查了正方形的性质,等腰三角形的性质,三角形的面积,二次函数的最值,熟练掌握二次函数的性质是解题的关键.19【分析】根据240m n -+=,可得24n m =+,进而可知22622n m -=+,由2(,26)P m n -,进而根据两点间距离公式进行求解即可.解:∵240m n -+=,∴24n m =+,∴22622n m -=+,∵2(,26)P m n -,∴点P 到原点距离为:=∴点P 到原点O =,.【点拨】本题考查二次函数的最值问题,点到原点的距离,能够掌握数形结合的思想是解决本题的关键.20.3或-6【分析】根据题目中的函数解析式和当0≤x ≤2时,y 的最大值是2,利用分类讨论的方法可以求得m 的值,本题得以解决.解:二次函数y =-x 2+mx +24m -=-(x -2m )2+242m m -+,当22m>时,即m >4,在0≤x ≤2时,x =2时取得最大值,则2=-22+2m +24m -,得2247m =<(舍去);当2m<0时,即m <0,在0≤x ≤2时,x =0时取得最大值,则224m-=,得60m =-<;当0≤2m≤2时,即0≤m ≤4,在0≤x ≤2时,x =2m 时取得最大值,则2422m m -+=,得13m =,22m =-(舍去),由上可得,m 的值是3或6-.故答案为:3或6-.【点拨】本题主要考查考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.21.①②③【分析】2246y x x =-++中令y =0得:22460x x -++=,得A (-1,0),B (3,0),从而判断①;2246y x x =-++中令x =0得:y =6,得C (0,6),从而判断②;过点P 作//PF y 轴,交BC 于点F ,求出BC 的函数关系式,得出点P 的坐标为2(,246)m m m -++,点F 的坐标为(,26)m m -+,再列出S 关于m 的函数关系式,最后求出其最大值,从而判断③.解:∵抛物线2246y x x =-++与x 轴相交于于点A ,B ,∴令y =0得:22460x x -++=,解得:121,3x x =-=,∴A (-1,0),B (3,0),∴AB =4故①正确;∵抛物线2246y x x =-++与y 轴相交于于点C ,∴令x =0得:y =6,∴C (0,6),∴OC =6,故②正确;过点P 作//PF y 轴,交BC 于点F ,如图1所示.设直线BC 的解析式为y kx c =+,将(3,0)B 、(0,6)C 代入y kx c =+,得306k c c +=ìí=î,解得26k c =-ìí=î,\直线BC 的解析式为26y x =-+.Q 点(,)P m n 在平面直角坐标系第一象限内的抛物线上运动,\点P 的坐标为2(,246)m m m -++,则点F 的坐标为(,26)m m -+,22246(26)26PF m m m m m \=-++--+=-+,221327393(224S PF OB m m m \=×=-+=--+,\当32m =时,PBC D 面积取最大值,最大值为274.故③正确,故答案为:①②③.【点拨】本题是二次函数综合题,考查了待定系数法求函数解析式,三角形的面积,二次函数的性质,坐标与图形的性质等知识,熟练运用方程思想及分类讨论思想是解题的关键.22. 不在 (2,5)【分析】(1)将2x =代入()2123y x m x m =-+++计算即可;(2)先用m 表示出顶点坐标,然后确定顶点坐标纵坐标的最大时m 的值,进而确定顶点坐标即可.解:(1)∵m =0,∴抛物线解析式为23y x x =-+将2x =代入23y x x =-+可得:22235y =-+=.∴当m =0时,点(2,4)不在抛物线上,故答案为:不在.(2)()2123y x m x m =-+++即22161124m m m y x +-++æö=-+ç÷èø∴抛物线的顶点坐标为:(12+m ,26114m m -++)∵当顶点移动到最高处时,即纵坐标取最大值而()2261113544m m m -++=--+.∴当m =3时,纵坐标最大,即顶点移动到了最高处,此时顶点坐标为(2,5).故答案为:(2,5)【点拨】本题主要考查了二次函数的性质、二次函数图像上点的坐标特征、二次函数的最值等知识点,确定二次函数的顶点坐标成为解答本题的关键.23.294【分析】由x +y =5得x =5-y ,代入xy +1得(5-y )y +1=-y 2+5y +1,进而求出最值.解:由x +y =5得x =5-y ,∴xy +1=(5-y )y +1=-y 2+5y +1=-(y -52)2+294,∵-1<0,∴当y =52时,xy +1有最大值,且最大值为294.故答案为:294.【点拨】本题考查一元二次方程的最值问题,用一个未知数表示另一个未知数进而求最值解决问题的关键.24.3-【分析】根据二次函数的性质求出对称轴,然后结合线段AB 的长不大于2,求出a 的取值范围,再根据23a a --的增减性,求出最小值.解:∵抛物线()2210y ax ax a a =-++≠过点(),2A m ,(),2B n 两点,∴对称轴为:2122m n aa+-=-= ,∴顶点为()1,1 ,∴由题意可知0a > ,∵线段AB 的长不大于2,∴12a +³ ,∴1a ³ ,∵当1a ³时,23a a --随着a 的增大而增大.∴当1a =时,23a a --有最小值,最小值为3-;故答案为:3-.【点拨】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据题意得出12a +³,求出a 的取值范围是解题的关键.25.(1)6ABC S a =△(2)y =x 2+2x -3(3)m 【分析】(1)将点A 的坐标代入抛物线表达式列等式,再根据对称轴列等式,依此分别把b 、c 用含a 的代数式表示,即可解答;(2)利用(1)的结果,根据面积为6,建立方程求解即可;(3)分两种情况讨论,即①当m -1≥-1时,②当m -1<-1时,分别根据二次函数的性质,结合最小值为-2,建立关于m 的方程求解,即可解答.(1)解:将点A 的坐标代入抛物线表达式得:9a -3b +c =0①,∵函数的对称轴为:12b x a=-=-,∴b =2a ②,将②代入①得c =-3a ,∴抛物线的表达式为:y =ax 2+2ax -3a ,设y =ax 2+2ax -3a =0,解得x =1或-3,∴B 的坐标为(1,0),∴AB =1-(-3)=4,∵图象的开口向上,∴a >0,当x =0时,y =-3a ,∴C (0,-3a ),∴OC =3a ,∴11·43622ABC S AB OC a a ==´´=V ;(2)解:∵66ABC S a ==△,∴a =1,∴抛物线的表达式为:y =x 2+2x -3;(3)解:①当m -1≥-1时,即m >0,函数在x = m -1 时,取得最小值,即()()212132m m -+--=- ,解得m =(负值舍去),∴m ②当m -1<-1时,即m <0,当x =-1时,函数取得最小值,而顶点的纵坐标()()2121342y =-+´--=-≠-,故此时,不存在m 的值,使得y 的最小值是-2;综上所述,m =【点拨】本题考查了二次函数的图象和性质,二次函数与面积问题,二次函数的最小值问题,解题的关键是要熟练掌握二次函数的性质.26.(1)2t >(2)1233x x =+=(3)1-【分析】(1)利用根的判别式的意义得到Δ=(-2t )2-4(t 2-2t +4)>0,然后解不等式即可;(2)当t =3时,方程化为x 2-6x +7=0,然后利用配方法解方程即可;(3)根据根与系数的关系得m +n =2t ,mn =t 2-2t +4,则Q =t 2-6t +8,配方得到Q =(t -3)2-1,利用非负数的性质得到当t =3时,Q 有最小值,最小值为-1.解:(1)根据题意得Δ=(-2t )2-4(t 2-2t +4)>0,解得t >2,即t 的取值范围为t >2;(2)当t =3时,方程化为x 2-6x +7=0,x 2-6x +9=2,(x -3)2=2,x\1233x x ==(3)根据根与系数的关系得m +n =2t ,mn =t 2-2t +4,Q =mn -2(m +n )+4=t 2-2t +4-4t +4=t 2-6t +8=(t -3)2-1,∵t >2,∴当t =3时,Q 有最小值,最小值为-1.【点拨】本题考查了一元二次方程根的判别式,解一元二次方程,一元二次方程根与系数的关系,二次函数的最值等知识,熟练掌握以上知识是解题的关键.。

九年级数学 二次函数(巩固篇)(专项练习)Word版含解析

九年级数学 二次函数(巩固篇)(专项练习)Word版含解析

专题2.3 二次函数(巩固篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.3 二次函数(巩固篇)(专项练习) 一、单选题知识点一、二次函数的判断1.下列函数:①2y x =-,①3y x=,①2y x ,①234y x x =++,y 是x 的反比例函数的个数有( ). A .1个B .2个C .3个D .4个2.下列函数中,二次函数是( ) A .y =﹣4x +5B .y =x (2x ﹣3)C .y =ax 2+bx +cD .21y x =3.设y =y 1﹣y 2,y 1与x 成正比例,y 2与x 2成正比例,则y 与x 的函数关系是( ) A .正比例函数 B .一次函数 C .二次函数D .以上均不正确4.若用(1)、(2)、(3)、(4)四幅图分别表示变量之间的关系,将下面的(a )、(b )、(c )、(d )对应的图象排序( )(1) (2) (3) (4) (a )面积为定值的矩形(矩形的相邻两边长的关系) (b )运动员推出去的铅球(铅球的高度与时间的关系)(c )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)(d )某人从A 地到B 地后,停留一段时间,然后按原速返回(离开A 地的距离与时间的关系)A .(3)(4)(1)(2)B .(3)(2)(1)(4)C .(4)(3)(1)(2)D .(3)(4)(2)(1)知识点二、根据二次函数定义求参数5.若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数,则( ) A .a ≠1B .a ≠﹣1C .a =1D .a =±16.已知函数y =ax 2+bx +c ,其中a ,b ,c 可在0,1,2,3,4五个数中取值,则不同的二次函数的个数共有( ) A .125个B .100个C .48个D .10个7.如果函数22(2)27m y m x x -=-+-是二次函数,则m 的取值范围是( ) A .2m =±B .2m =C .m =﹣2D .m 为全体实数8.若y=(m +1)265m m x --是二次函数,则m= ( )A .-1B .7C .-1或7D .以上都不对知识点三、列二次函数解析式9.下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );①圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);①物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值); ①导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值). A .1个B .2个C .3个D .4个10.用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( ) A .230(030)y x x x =-<< B .230(030)y x x x =-+< C .230(030)y x x x =-+<<D .230(030)y x x x =-+<11.二次函数2y ax c =+的图象与22y x =的图象形状相同,开口方向相反,且经过点()1,1,则该二次函数的解析式为( ) A .221y x =-B .223y x =+C .221y x =--D .223y x =-+12.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为( )A .2105607350y x x =--+B .2105607350y x x =-+-C .210350y x x =-+D .2103507350y x x =-+-二、填空题知识点一、二次函数的判断 13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)15.下列函数中属于一次函数的是_____,属于反比例函数的是______,属于二次函数的是______A. y =x(x +1)B. xy =1C. y =2x 2-2(x +1)2D. y =16.二次函数y =3x 2+5的二次项系数是_____,一次项系数是_____. 知识点二、根据二次函数定义求参数17.已知函数y =(2﹣k )x 2+kx +1是二次函数,则k 满足__. 18.若y =(m +1)x 2+mx ﹣1是关于x 的二次函数,则m 满足_____. 19.函数()21m y m x =++是关于x 的二次函数,则m=___ 20.若函数()2262mm y m x --=+是二次函数,则m =________.知识点三、列二次函数解析式21.矩形周长等于40,设矩形的一边长为x ,那么矩形面积S 与边长x 之间的函数关系式为____.22.在①ABC 中,已知BC 边长为x(x>0),BC 边上的高比它的2倍多1,则三角形的面积y 与x 之间的关系为__________.23.正方形边长为2,若边长增加x ,那么面积增加y ,则y 与x 的函数关系式是______. 24.用一根长为10m 的木条,做一个长方形的窗框,若长为xm ,则该窗户的面积y (m 2)与x (m )之间的函数表达式为_____. 三、解答题25.已知函数y=-(m+2)2-2m x (m 为常数),求当m 为何值时:(1)y 是x 的一次函数?(2)y 是x 的二次函数?并求出此时纵坐标为-8的点的坐标.26.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一条矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带BC 边长为xm ,绿化带的面积为ym2 , 求y 与x 之间的函数关系式,并写出自变量x的取值范围.27.如图2 - 4所示,长方形ABCD的长为5 cm,宽为4 cm,如果将它的长和宽都减去x(cm),那么它剩下的小长方形AB′C′D′的面积为y(cm2).(1)写出y与x的函数关系式;(2)上述函数是什么函数?(3)自变量x的取值范围是什么?28.某商场销售一批名牌衬衫,每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经市场调查发现,如果每件衬衫每降价1元,商场每天可多售出2件.()1如果每件衬衫降价5元,商场每天赢利多少元?()2如果商场每天要赢利1200元,且尽可能让顾客得到实惠,每件衬衫应降价多少元?()3用配方法说明,每件衬衫降价多少元时,商场每天赢利最多,最多是多少元?参考答案:1.A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】2y x =-是一次函数,故选项①不符合题意;3y x=是反比例函数,故选项①符合题意; 2y x 是二次函数,故选项①不符合题意;234y x x =++是二次函数,故选项①不符合题意;①y 是x 的反比例函数的个数有:1个 故选:A .【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解. 2.B【分析】根据二次函数的定义判断即可.【详解】A 、y =﹣4x+5是一次函数,故选项A 不合题意; B 、y =x (2x ﹣3)是二次函数,故选项B 符合题意;C 、当a =0时,y =ax 2+bx+c 不是二次函数,故选项C 不合题意;D 、21y x =不是二次函数,故选项D 不合题意. 故选:B .【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键. 3.C【分析】设y 1=k 1x ,y 2=k 2x 2,根据y =y 1﹣y 2得到y =k 1x ﹣k 2x 2,由此得到答案. 【详解】解:设y 1=k 1x ,y 2=k 2x 2, 则y =k 1x ﹣k 2x 2,所以y 是关于x 的二次函数, 故选:C .【点睛】此题考查列函数关系式,正确理解正比例函数的定义是解题的关键. 4.A【分析】根据每个类别的数量关系,判断函数图象的变化规律,选择正确结论.【详解】解:根据题意分析可得:(a )面积为定值的矩形,其相邻两边长的关系为反比例关系,对应图象为(3); (b )运动员推出去的铅球,铅球的高度随时间先增大再减小,对应图象为(4); (c )一个弹簧不挂重物到逐渐挂重物,弹簧长度随所挂重物质量增大而增大;对应图象为(1);(d )某人从A 地到B 地后,停留一段时间,然后按原速返回,对应图象为(2). 故选:A .【点睛】本题考查了函数图象,主要利用了反比例函数图象,抛物线,一次函数图象,分析得到各小题中的函数关系是解题的关键. 5.A【分析】利用二次函数定义进行解答即可. 【详解】解:由题意得:a ﹣1≠0, 解得:a ≠1, 故选:A .【点睛】本题主要考查了二次函数的定义,准确计算是解题的关键. 6.B【分析】根据二次函数的定义得到0a ≠,依据a 、b 、c 的选法通过计算即可得到答案 【详解】由题意0a ≠, ①a 有四种选法:1、2、3、4,①b 和c 都有五种选法:0、1、2、3、4, ①共有455⨯⨯=100种, 故选:B【点睛】此题考查二次函数的定义2(0)y ax bx c a =++≠,有理数的乘法运算,根据题意得到a 、b 、c 的选法是解题的关键. 7.C【分析】根据二次函数定义可得m -2≠0,222m -=,再解即可. 【详解】解:由题意得:m -2≠0,222m -=, 解得:m=-2, 故选:C .【点睛】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.8.B【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可.【详解】由题意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,①m=7,故选:B.【点睛】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.9.C【详解】形如y=ax2+bx+c(a、b、c是常数且a≠0)的函数是二次函数,由二次函数的定义可得①①①是二次函数,故选C.10.C【分析】由矩形另一边长为周长的一半减去已知边长求得另一边的长,进一步根据矩形的面积等于相邻两边长的积列出关系式即可.【详解】由题意得:矩形的另一边长=60÷2-x=30-x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30-x)=-x2+30x(0<x<30).故选:C.【点睛】此题考查根据实际问题列二次函数关系式,掌握矩形的边长与所给周长与另一边长的关系是解题的关键.11.D【分析】根据二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,得到a=−2,然后把点(1,1)代入y=−2x2+c求出对应的c的值,从而可得到抛物线解析式.【详解】①二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,①a=−2,①二次函数是y=−2x2+c,①二次函数y=ax2+c经过点(1,1),①1=−2+c,①c=3,①抛该二次函数的解析式为y=−2x 2+3; 故选D.【点睛】此题考查二次函数的性质,解题关键在于利用待定系数法求解. 12.B【分析】商品所赚钱=每件的利润×卖出件数,把相关数值代入即可求解. 【详解】解:每件的利润为(x -21), ①y =(x -21)(350-10x ) =-10x 2+560x -7350. 故选B .【点睛】本题考查了根据实际问题列二次函数关系式,解决本题的关键是找到总利润的等量关系,注意先求出每件商品的利润. 13.12-2x , 1【分析】函数化简为一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 【详解】①y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项 ①21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1.故答案是:12; -2x;1.【点睛】考查了二次函数的定义,二次函数的一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 14.①①①【分析】根据二次函数的定义与一般形式即可求解. 【详解】解:y 是x 的二次函数的有①,①,①. 故答案是:①,①,①.【点睛】本题考查了二次函数的定义,一般形式是y=ax 2+bx+c (a≠0,且a ,b ,c 是常数,x 是未知数). 15. C B A【详解】根据题意可知y=x (x+1)=x 2+x ,可由二次函数的定义,可知是二次函数;根据xy=1是反比例关系,所以是反比例函数;而y =2x 2-2(x +1)2= y =2x 2-2(x 2+2x+1)=-4x -2,是一次函数;函数y . 故答案为C 、B 、A. 16. 3 0【分析】根据二次函数的定义解答即可.【详解】二次函数y =3x 2+5的二次项系数是3,一次项系数是0. 故答案是:3;0.【点睛】考查二次函数的定义,是基础题,熟记概念是解题的关键,要注意没有一次项,所以一次项系数看做是0. 17.k ≠2【分析】利用二次函数定义可得2﹣k ≠0,再解不等式即可. 【详解】解:由题意得:2﹣k ≠0, 解得:k ≠2, 故答案为:k ≠2.【点睛】本题主要考查了二次函数的定义,准确分析计算是解题的关键. 18.m ≠﹣1【分析】利用二次函数定义可知m+1≠0,再解不等式即可; 【详解】解:由题意得:m+1≠0, 解得:m≠﹣1, 故答案为:m≠﹣1.【点睛】本题考查了二次函数的定义,正确掌握二次函数的定义是解题的关键; 19.2【分析】根据二次函数的定义可得220m m ⎧=⎪⎨+≠⎪⎩,求解即可.【详解】解:①函数()21my m x =++是关于x 的二次函数,①220m m ⎧=⎪⎨+≠⎪⎩,解得2m =,故答案为:2.【点睛】本题考查二次函数的定义,注意二次项系数不能为0. 20.4【分析】直接利用二次函数的定义进而分析得出答案. 【详解】由题意得:2262m m --=,且20m +≠, 解得:4m =. 故答案为:4.【点睛】本题考查了二次函数的定义,解决问题的关键是明确最高次项的次数为2,且最高次项系数不为0. 21.220S x x =-+【分析】根据矩形的周长、一边长,可得另一边长,根据矩形的面积公式,可得答案. 【详解】解:设矩形的一边长为x 米,另一边长为(20-x )米, ①由矩形的面积公式,得 2(20)20S x x x x =-=-+【点睛】本题考查了函数解析式,利用了矩形的面积公式. 22.y=x 2+12x【分析】根据已知得出三角形的高,进而利用三角形面积公式求出即可. 【详解】①BC 边长为x(x>0),BC 边上的高比它的2倍多1, ①这条边上的高为:2x+1, 根据题意得出:y=12x (2x+1)=x 2+12x . 故答案为y=x 2+12x .【点睛】此题主要考查了根据实际问题列二次函数关系式,根据三角形面积公式得出是解题关键. 23.y=x 2+4x【分析】增加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可. 【详解】新正方形的边长为2x +,原正方形的边长为2. ∴新正方形的面积为2(2)x +,原正方形的面积为4, 22(2)44y x x x ∴=+-=+,故答案为24y x x =+.【点睛】考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.24.y =﹣x 2+5x【分析】直接利用根据实际问题列二次函数解析式关系式,正确表示出长方形的宽是解题关键.【详解】设长为xm ,则宽为(5﹣x )m ,根据题意可得:y =x (5﹣x )=﹣x 2+5x .故答案是:y =﹣x 2+5x .【点睛】考查了根据实际问题列二次函数解析式,正确表示出长方形的宽是解题关键.25.(1)(2) m =2,纵坐标为-8的点的坐标是,-8),(,-8)【分析】(1)根据一次函数的定义求m 的值即可;(2)根据二次函数的定义求得m 的值,从而求得二次函数的解析式,把y =-8代入解析式,求得x 的值,即可得纵坐标为-8的点的坐标.【详解】(1)由y=-(m+2)22m x -(m 为常数),y 是x 的一次函数,得221,20,m m ⎧-=⎨+≠⎩解得 ①当y 是x 的一次函数;(2)由y=-(m+2)22m x -(m 为常数),y 是x 的二次函数,得222,20,m m ⎧-=⎨+≠⎩解得m=2,m=-2(不符合题意的要舍去),当m=2时,y 是x 的二次函数,当y=-8时,-8=-4x 2,解得故纵坐标为-8的点的坐标是-8)和(,-8).【点睛】本题考查了一次函数的定义、二次函数的定义,解题关键是掌握一次函数与二次函数的定义.26.y=﹣12x2+20x ,自变量x 的取值范围是0<x≤25.【详解】试题分析:由矩形的性质结合BC 的长度可得出AB 的长度,再根据矩形的面积公式即可找出y 与x 之间的函数关系式.试题解析:①四边形ABCD 为矩形,BC=x①AB=40-2x . 根据题意得:24012022x y BC AB x x x -⎛⎫=⨯==-+ ⎪⎝⎭,因为墙长25米,所以025x <≤. 27.(1) y =x2-9x +20;(2) 二次函数;(3) 0<x <4.【详解】试题分析:(1)根据长方形的面积公式,根据图示求解即可得到函数关系式;(2)通过二次函数的定义可判断;(3)根据x 取值不能大于原方程的长方形的宽进行分析.试题解析:(1)根据长方形的面积公式,得y =(5-x)·(4-x)=x 2-9x +20,所以y 与x 的函数关系式为y =x 2-9x +20.(2)上述函数是二次函数.(3)自变量x 的取值范围是0<x <4.点睛:此题主要考查了根据题意列函数的解析式,熟悉掌握根据题意列函数关系式是解决此题的关键.28.(1)如果每件衬衫降价5元,商场每天赢利1050元;()2每件衬衫应降价20元.()3每件衬衫降价15元时,商场平均每天盈利最多.【分析】总利润=每件利润×销售量.设每天利润为w 元,每件衬衫应降价x 元,据题意可得利润表达式,(1)把x =5代入求得相应的w 的值即可;(2)再求当w =1200时x 的值;(3)根据函数关系式,运用函数的性质求最值.【详解】(1)设每天利润为w 元,每件衬衫降价x 元,根据题意得w =(40−x )(20+2x )=−2x 2+60x +800=−2(x−15)2+1250当x =5时,w =−2(5−15)2+1250=1050(元)答:如果每件衬衫降价5元,商场每天赢利1050元;;()2当w 1200=时,22x 60x 8001200-++=,解之得1x 10=,2x 20=.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.()3商场每天盈利()()40x 202x -+22(x 15)1250=--+.所以当每件衬衫应降价15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.【点睛】本题考查了配方法的应用,一元二次方程的应用.根据题意写出利润的表达式是此题的关键.。

部编数学九年级上册22.35《二次函数》全章复习与巩固(知识讲解)(人教版)含答案

部编数学九年级上册22.35《二次函数》全章复习与巩固(知识讲解)(人教版)含答案

专题22.35 《二次函数》全章复习与巩固(知识讲解)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解.【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.特别说明:如果y=ax 2+bx+c(a,b,c 是常数,a≠0),那么y 叫做x 的二次函数.这里,当a=0时就不是二次函数了,但b 、c 可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标(轴)(0,0)(轴)(0,)(,0)(,)当时开口向上当时开口向下()2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即 、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.) (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).特别说明:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等20()y ax bx c a =++≠,,a bc 2y ax bx c =++实根; (3)当二次函数的图象与x轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解特别说明:二次函数图象与x轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式; (4)利用二次函数的图象及其性质去分析问题、解决问题.特别说明:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.如图,已知二次函数y=x2+bx+c的图象经过点A(4,5)与点B(0,﹣3),且与x轴交于点C、D.(1)求该二次函数的表达式,以及与x 轴的交点坐标.(2)若点Q (m ,n )在该二次函数图象上,①求n 的最小值;②若点Q 到x 轴的距离小于3,请结合函数图象直接写出m 的取值范围.【答案】(1)223y x x =--,与x 轴的交点坐标为(3,0)和(1,0)-(2)①-4;②1m <0或2<m <【分析】(1)利用待定系数法即可求得二次函数的解析式,令0y =,解2230x x --=即可求得交点坐标.(2)①把函数解析式变形为顶点式即可求得答案;②根据平面直角坐标系内点到x 轴的距离的特点即可求解.(1)解:将点A 、B 的坐标代入抛物线表达式得,51643b c c =++ìí=-î,解得23b c =-ìí=-î,故抛物线的表达式为223y x x =--,令y =x 2﹣2x ﹣3=0,解得3x =或1x =-,故抛物线与x 轴的交点坐标为(3,0)和(1,0)-.(2)①2223(1)44y x x x =--=--³,故n 的最小值为﹣4;②令223|3|y x x =﹣﹣=,解得0x =或2或1故m 的取值范围为:10m <<或21m <<.【点拨】本题考查了二次函数的图象及性质、利用待定系数法求函数解析式,熟练掌握二次函数的图象及性质和待定系数法是解题的关键.举一反三:【变式1】已知x 与y 之间的函数关系式为21y ax bx =++(其中a 、b 是常数),且有下列对应关系:x 1-2y-117(1)求y 与x 之间的函数关系式;(2)若点(3,)n ,点(,10)m n +均在抛物线21y ax bx =++上,求m 的值.【答案】(1)2241=-+y x x (2)14m =,22m =-.【分析】(1)利用待定系数法,将对应的x ,y 代入21y ax bx =++,解二元一次方程组即可;(2)先将3x =代入y 与x 之间的函数关系式求出n 的值,再将10y n =+代入y 与x 之间的函数关系式求出m 的值.(1)解:由题意得,1142117a b a b ++=-ìí-+=î解得,24a b =ìí=-î∴y 与x 之间的函数关系式为2241=-+y x x .(2)解:∵点(3,)n 在抛物线2241=-+y x x 上,∴2234317n =´-´+=.∴1017n +=,∵点(,10)m n +在抛物线2241=-+y x x 上,∴217241m m =-+,整理得2280m m --=,解得14m =,22m =-.【点拨】本题考查待定系数法求二次函数解析式以及二次函数图象上点的坐标的特征,难度较小,牢记二次函数图象上的点均满足函数解析式是解题的关键.【变式2】如图,在平面直角坐标系xOy中,一次函数y=x的图象与二次函数y=-x2+bx(b为常数)的图象相交于O,A两点,点A坐标为(3,m).(1)求m的值以及二次函数的表达式;(2)若点P为抛物线的顶点,连结OP,AP,求△POA的面积.【答案】(1)m的值为3,二次函数的表达式为:y=-x2+4x;(2)△POA的面积为3.【分析】(1)把点A的坐标为(3,m)代入y=x可求出m的值,然后再把A点坐标代入二次函数表达式即可解答;(2)过点P作PC⊥x轴,垂足为C,交OA于点D,然后把△OPD的面积与△APD的面积相加即可.(1)解:把点A坐标为(3,m)代入一次函数y=x中可得:m=3,∴A(3,3),把点A坐标为(3,3)代入二次函数y=-x2+bx中可得:3=-9+3b,解得:b=4,∴y=-x2+4x,答:m的值为3,二次函数的表达式为:y=-x2+4x;(2)解:过点P作PC⊥x轴,垂足为C,交OA于点D,过点A作AE⊥PC,垂足为E,∵y=-x2+4x=-(x-2)2+4,∴顶点P(2,4),把x=2代入y=x中得:y=2,∴D(2,2),∴PD=4-2=2,∵△POA 的面积=△OPD 的面积+△APD 的面积,∴△POA 的面积=12PD •OC +12PD •AE =12PD (OC +AE )=12×2×3=3,答:△POA 的面积为3.【点拨】本题考查了待定系数法求二次函数解析式,二次函数的性质,正比例函数的图象,把△POA 的面积分成△OPD 的面积与△APD 的面积之和是解题的关键.类型二、根据二次函数图象及性质判断代数式的符号2.已知二次函数2y ax bx c =++的图象如图,它与x 轴的两个交点分别为(1,0),(3,0)-,对于下列结论:①20b a -=;②0abc <;③420a b c ++<;④80a c +>.其中结论正确的个数有( )A .3个B .2个C .1个D .0个【答案】B【分析】根据开口方向确定a 的符号后再根据抛物线与x 轴的交点坐标得到对称轴,确定b 的符号,即可判断①,利用抛物线与y 轴交点位置确定c 的符号,即可判断②,令2x =即可判断③,利用根与系数的关系即可判断④.解:∵二次函数2y ax bx c =++的图象开口向上,且与x 轴的两个交点分别为(1,0),(3,0)-,∴0a >,且该图象的对称轴为12bx a=-=,∴2b a =-,∴240b a a -=-<,故①错误;由图可知,抛物线交y 轴负半轴,∴0c <,又∵0a >,20b a =-<,∴0abc >,故②错误;由图可知,当2x =时,420y a b c =++<,故③正确;∵()133ca=-´=-,∴3c a =-,∴850a c a +=>,故④正确;故选:B .【点拨】本题考查了抛物线的解析式以及它的图象与性质,解题关键是理解并掌握对称轴公式、一元二次方程根与系数的关系以及会根据点的坐标判断代数式的取值情况.举一反三:【变式1】如图,抛物线2y ax bx c =++经过点()1,0,且对称轴为直线1x =-,其部分图像如图所示.下列说法正确的个数是( ).①0ac >;②240b ac -<;③930a b c -+>;④2am bm a b +<-(其中1m ¹-)A .0B .1C .2D .3【答案】B【分析】根据抛物线的性质,对称性,抛物线与x 轴的交点,与y 轴的交点,最值去分析判断即可.解:∵ 抛物线2y ax bx c =++经过点()1,0,开口向下,与y 轴交点位于y 轴的正半轴,且对称轴为直线1x =-,∴ a <0,c >0,a +b +c =0,1112x +=-,102ba-=-<,∴ac <0,13x =-,240b ac ->,930a b c -+=,故①②③都是错误的;∵a <0,∴抛物线有最大值,且当x =-1时,取得最值,且最大值为a -b +c ,∴当m ≠-1时,2am bm c a b c ++<-+,故2am bm a b +<-,故④正确,故选B .【点拨】本题考查了抛物线的性质,对称性,最值,抛物线与坐标轴的交点,熟练掌握抛物线的性质和最值、对称性是解题的关键.【变式2】如图,已知二次函数2y ax bx c =++的图象交x 轴于()3,0-,对称轴为1x =-.则下列结论:①0abc >;②420a b c ++>;③30a c +=;④若13,2y æö-ç÷èø,21,2y æöç÷èø是图象上的两点,则12y y >;⑤若y c £,则20x -££.其中正确结论的个数是( )A .2B .3C .4D .5【答案】B【分析】由图象可知当x =0时,c <0,再根据开口向上及对称轴<02ba-,即可得a 、b 的取值范围,据此即可判定①;根据题意可求得函数图象与x 轴的另一个交点坐标,再根据二次函数的性质,即可判定②;根据对称轴所在的直线为12ba-=-,可得b =2a ,由当x =1时,a +b +c =0,即可判定③;首先可求得点13,2y æö-ç÷èø关于对称轴对称的点的坐标为11,2y æö-ç÷èø,再根据二次函数的性质,即可判定④;首先可求得点(0,c )关于对称轴对称的点的坐标为(-2,c ),再根据函数图象即可判定⑤,据此即可解答.解:由图象可知,当x =0时,y <0,∴c <0,Q 该二次函数的图象开口向上,>0a \,<02ba-Q ,>0b \ <0abc \,∴①不正确;∵对称轴为直线x =−1,二次函数2y ax bx c =++的图象交x 轴于()3,0-,∴二次函数2y ax bx c =++的图象与x 轴的另一个交点为()1,0,Q 该二次函数的图象开口向上,\当x =2时,420a b c ++>∴②正确;12ba-=-Q ,2b a \=,Q 二次函数2y ax bx c =++的图象与x 轴的另一个交点为()1,0,\当x =1时,a +b +c =0,∴a +2a +c =0,即3a +c =0,∴③正确;∵函数图象的对称轴为直线x =-1,∴点13,2y æö-ç÷èø关于对称轴对称的点的坐标为11,2y æö-ç÷èø,Q 该二次函数的图象开口向上,∴在对称轴的右侧,y 随x 的增大而增大,∴12<y y ,∴④不正确;Q 该函数图象与y 轴的交点坐标为(0,c ),\点(0,c )关于对称轴对称的点的坐标为(-2,c ),y c \£时,20x -££,∴⑤正确;故正确的有3个,故选:B .【点拨】本题考查了二次函数的图象及性质;能够从函数图象获取相关信息,采用数形结合的思想是解题的关键.类型三、二次函数与一次函数、不等式3.抛物线y =﹣x 2+bx +c 经过点A (﹣3,0)和点C (0,3).(1)求此抛物线所对应的函数解析式,并直接写出顶点D 的坐标;(2)若过顶点D 的直线将△ACD 的面积分为1:2两部分,并与x 轴交于点Q ,则点Q 的坐标为 .注:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标(24,24b ac b a a--)【答案】(1)y=-x2-2x+3,顶点D(-1,4);(2)(-1,0)或7 (,0)3-【分析】(1)利用待定系数法构建方程组即可解决问题;(2)根据点A,C的坐标,利用待定系数法可求出直线AC的函数表达式,设点E的坐标为(x,x+3)(-3<x<0),结合已知可得AE=2CE或CE=2AE,从而得出方程2(x+3)2=2或2(x+3)2=8,得出点E的坐标,再求出直线DE的解析式即可得出点Q的坐标.解:(1)∵抛物线y=-x2+bx+c与x轴交于点A(-3,0)和点B,与y轴相交于点C(0,3),∴9303b cc--+=ìí=î,解得:23bc=-ìí=î;∴抛物线的解析式为y=-x2-2x+3,∵y=-x2-2x+3=-(x+1)2+4,∴顶点D(-1,4).(2)设直线AC的函数表达式为y=kx+b(k≠0),将A(-3,0),C(0,3)代入y=kx+a,得:303k bb-+=ìí=î;解得:13kb=ìí=î,∴直线AC的函数表达式为y=x+3.设点E的坐标为(x,x+3)(-3<x<0),∵直线AC将△ADC的面积分成1:2的两部分,且△ADE和△CDE等高,∴AE=2CE或CE=2AE,∵AC=∴AE=AE=∴2(x+3)2=2或2(x+3)2=8∴x=-2或-4或-1或-5∵-3<x<0∴x=-2或-1∴点E的坐标为(-2,1)或(-1,2)当点E的坐标为(-2,1)时设直线DE的函数表达式为y=mx+n(m≠0),将E(-2,1),D(-1,4)代入y=mx+n,得:2m n1m n4-+=ìí-+=î;解得:m3n7=ìí=î,∴直线AC的函数表达式为y=3x+7.当y=0时,x=7 3 -∴点Q的坐标为(73-,0)当点E的坐标为(-1,2)时,∵D(-1,4),∴直线DE//y轴,点Q的坐标为(-1,0)∴点Q的坐标为(-1,0)或7 (,0)3-【点拨】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、三角形的面积待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:由直线AC将△ADE的面积分成1:2的两部分,找出关于x的一元二次方程.举一反三:【变式1】二次函数2y ax bx c =++的图象如图所示:(1)根据图象解答问题:方程 20ax bx c ++=的两个根为 ;不等式20ax bx c ++<的解集为 ;(2)试根据图象信息,求二次函数的解析式.【答案】(1)13x =-,21x =;31x -<<(2)224233y x x =+-【分析】(1)根据函数图象与x 轴交点的横坐标就是方程20ax bx c ++=的两个根即可解出;根据不等式与函数图象的关系可知不等式20ax bx c ++<对应着x 轴下方的图象,写出图象对应的x 范围即可;(2)根据题中二次函数图象可知其与x 轴交于两点()3,0-、()1,0,可设二次函数交点式,再将与y 轴的交点()0,2-代入交点式方程求解a ,即可得出解析式.(1)解:由图象可知,2y ax bx c =++图象与x 轴交于两点()3,0-、()1,0,即当3x =-时,0y =;当1x =时,0y =,\当0y =时,得到方程20ax bx c ++=的两个根为13x =-,21x =;Q 不等式20ax bx c ++<对应着0y <,从不等式与函数图象的关系看来,不等式20ax bx c ++<的解集意味着x 轴下方图象对应着的x 的取值范围,\不等式20ax bx c ++<的解集为31x -<<;(2)解:由图象可知,2y ax bx c =++图象与x 轴交于两点()3,0-、()1,0,与y 轴交于点()0,2-,设二次函数交点式为()()31y a x x =+-,将()0,2-代入()()31y a x x =+-,得到()()203013a a -=+-=-,23a \=,即()()()222224312323333y x x x x x x =+-=+-=+-,\二次函数的解析式为224233y x x =+-.【点拨】本题主要考查二次函数的图象与性质.准确掌握二次函数图象与一元二次方程的根、二次不等式解集之间的关系是解决此类问题的关键.【变式2】先阅读理解下面的例题,再按要求解答后面的问题.例题:解一元二次不等式x 2﹣3x +2>0.解:令y =x 2﹣3x +2,画出y =x 2﹣3x +2如图所示,由图象可知:当x <1或x >2时,y >0.所以一元二次不等式x 2﹣3x +2>0的解集为x <1或x >2.填空:(1)x 2﹣3x +2<0的解集为 ;(2)﹣x 2+2<0的解集为 ;(3)用类似的方法解一元二次不等式﹣(x ﹣1)2﹣5(x ﹣1)+6>0.【答案】(1)12x <<(2)x <x >;(3)52x -<<.【分析】(1)求出2320x x -+=的解,然后根据函数图像取中间值即可;(2)求出220x -+=的解,然后根据函数图像取两边的值即可;(3)求出2(1)5(1)60x x ----+=的解,然后根据函数图像取中间值即可.(1)解:解2320x x -+=得11x =,22x =,由图象可知:当12x <<时,y <0.所以,不等式2320x x -+<的解集为12x <<;(2)令22y x =-+,画出22y x =-+如图所示,解220x -+=得,1x =2x =所以,由图象可知:不等式220x -+<的解集为x <x >;(3)令2(1)5(1)6y x x =----+,画出函数图像如图,解2(1)5(1)60x x ----+=得,12x =,25x =-,所以,由图象可知:一元二次不等式2(1)5(1)60x x ----+>的解集为52x -<<.【点拨】本题考查了二次函数与不等式,读懂题目信息得到一元二次不等式的解集的求解方法是解题的关键.类型四、二次函数与一元二次方程4.如图,在平面直角坐标系中,点O 为坐标原点,抛物线25y ax bx =++经过点M(1,3)和N (3,5)(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (﹣2,0),且与y 轴交于点B ,同时满足以A 、O 、B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【答案】(1)抛物线与x 轴没有交点;(2)先向左平移3个单位,再向下平移3个单位或将原抛物线先向左平移2个单位,再向下平移5个单位.【分析】(1)把M 、N 两点的坐标代入抛物线解析式可求得a 、b 的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x 轴的交点情况;(2)利用A 点坐标和等腰三角形的性质可求得B 点坐标,设出平移后的抛物线的解析式,把A 、B 的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.(1)解:把点M (1,3)和N (3,5)代入抛物线解析式,得:539355a b a b ++=ìí++=î,解得:13a b =ìí=-î,∴抛物线解析式为235y x x =-+,令y =0,得2350x x -+=,∵△=(-3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x 轴没有交点;(2)解:∵△AOB 是等腰直角三角形,A (﹣2,0),点B 在y 轴上,∴OA =OB ,∴B 点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为2y x mx n =++,①当抛物线过点A (﹣2,0),B (0,2)时,代入,得:2420n m n =ìí-+=î,解得:32m n =ìí=î,∴平移后的抛物线为232y x x =++,∴该抛物线的顶点坐标为(32-,14-),∵原抛物线顶点坐标为(32,114),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A (﹣2,0),B (0,﹣2)时,代入,得:2420n m n =-ìí-+=î,解得:12m n =ìí=-î,∴平移后的抛物线为22y x x =+-,∴该抛物线的顶点坐标为(12-,94-),∵原抛物线顶点坐标为(32,114),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.【点拨】本题主要考查了二次函数的图象和性质,二次函数的平移,熟练掌握二次函数的图象和性质,二次函数的平移的性质是解题的关键.举一反三:【变式1】已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标.【答案】(1)k =-3;(2)点P 的坐标为(2,-5)或(-2,-5).【分析】(1)根据抛物线的对称轴是y 轴以及对称轴公式可得关于k 的方程,解方程后再根据抛物线与x 轴的交点个数即可确定答案;(2)由点P 到y 轴的距离即可确定出点P 的横坐标,再根据抛物线的解析式即可求得点P 的纵坐标即可得答案.解:(1)∵抛物线y=x 2+(k 2+k -6)x+3k 的对称轴是y 轴,∴26022b k k x a +-=-=-=,即k 2+k -6=0,解得k=-3或k=2,当k=2时,二次函数解析式为y=x 2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x 2-9,它的图象与x 轴有两个交点,满足题意,∴k=-3;(2)∵P 到y 轴的距离为2,∴点P 的横坐标为-2或2,当x=2时,y=-5;当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).【点拨】本题考查了抛物线的对称轴,抛物线与x 轴的交点等知识,熟练掌握相关内容是解题的关键.【变式2】如图,抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C ,点D 是直线BC 上方抛物线上一动点.(1)求抛物线的解析式;(2)若过点D 作DE x ^轴于点E ,交直线BC 于点M .当2DM ME =时,求点D 的坐标.【答案】(1)2y x 2x 3=-++;(2)()2,3D .【分析】(1)利用待定系数法求函数解析式即可;(2)令0x =时,2233y x x =-++=,求出()0,3C ,进一步求出直线BC 的解析式为3y x =-+,设()2,23D m m m -++,则223DE m m =-++,表示出(),3M m m -+,(),0E m ,利用2DM ME =,可得2m =,所以()2,3D .(1)解:∵抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B ,∴10930b c b c --+=ìí-++=î,解得:23b c =ìí=î,∴抛物线解析式为.2y x 2x 3=-++(2)解:∵当0x =时,2233y x x =-++=,∴()0,3C ,设直线BC 的解析式为y kx n =+,∴303k n n +=ìí=î,解得:13k n =-ìí=î,∴直线BC 的解析式为3y x =-+,设()2,23D m m m -++,则223DE m m =-++,∵DE x ^轴于点E ,∴(),3M m m -+,(),0E m ,∴3ME m =-+,∴()222333DM DE ME m m m m m =-=-++--+=-+,∵2DM ME =,∴()2323m m m -+=-+,解得12m =,23m =(此时B ,D 重合,不合题意舍去),∴2m =,∴()2,3D .【点拨】本题考查一次函数和二次函数的综合,解题的关键是掌握待定系数法求函数解析式,表示出3ME m =-+,2=3-+DM m m ,解一元二次方程.类型五、二次函数与实际问题5.某宾馆有50个房间供游客住宿,当每个房间的房价为每天200元时,房间会全部住满,当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用,根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的正整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式;(2)当房价为多少时,宾馆每天的利润为10560元;(3)求出宾馆每天获得的最大利润.【答案】(1)y 与x 的函数关系式为y =50-10x ;(2)当房价为260元时,宾馆每天的利润为10560元(3)宾馆每天获得的最大利润是11520元【分析】(1)根据当每个房间每天的房价每增加10元时,就会有一个房间空闲,可以写出y 与x 的函数关系式;(2)根据题意,可以得到(200+x -20)(50-10x )=10560,然后求解即可;(3)根据题意,可以写出利润与x 的函数关系式,然后将函数解析式化为顶点式,再根据二次函数的性质和x 的取值范围,即可得到利润的最大值.(1)解:由题意可得,y =50-10x ,即y 与x 的函数关系式为y =50-10x ;(2)解:由题意可得,(200+x -20)(50-10x )=10560,解得x 1=60,x 2=260,∵每个房间每天的房价不得高于340元,∴200+x ≤340,∴x ≤140,∴0≤x ≤140(x 为10的整数倍),∴x =60,∴200+x =260,答:当房价为260元时,宾馆每天的利润为10560元;(3)解:设利润为w 元,由题意可得:w =(200+x -20)(50-10x )=-0.1(x -160)2+11560,∴当x <160时,w 随x 的增大而增大,∵每个房间每天的房价不得高于340元,∴200+x ≤340,∴x ≤140,∴0≤x ≤140(x 为10的整数倍),∴当x =140时,w 取得最大值,此时w =11520,答:宾馆每天获得的最大利润是11520元.【点拨】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,写出相应的函数关系式,利用二次函数的性质解答.举一反三:【变式1】“一脉温泉韵,满城桂花香”,咸安因加大对桂花产业的宣传力度,年初,我区某工厂接到一批桂花制品的生产任务,要求必须在20天内完成.已知该产品的出厂价为65元/件,工人小王第x 天(x 为整数)生产的产品数量为y 件,y 与x 满足如下关系:y =5x +10,第x 天生产该产品成本为P 元/件,P 与x 的函数关系图象如下:(1)求P 与x 之间的函数关系式;(2)设小王第x 天创造的利润为w 元.①求w 与x 的函数关系式;②为响应国家的“乡村振兴”政策,小王决定,将这20天中单日所创造的最大利润捐给自己所在的村委会,试问,该村委会本次可获得多少元的捐款?【答案】(1)45(010)35(1020)x P x x <£ì=í+<£î(且x 为整数)(2)①2100200(010)5140300(1020)x x w x x x +<£ì=í-++<£î(且x 为整数);②1280元【分析】(1)根据函数图象,结合x 的取值范围,利用待定系数法求出函数解析式即可;(2)①根据利润=售价-成本价,结合(1)中P 与x 的函数解析式,列出w 与x 的解析式即可;②根据一次函数的性质和二次函数的性质,求出w 的最大值,然后进行比较,得出答案即可.(1)解:由图象可知,当010x <£时,45P =;当1020x <£时,设P 与x 的函数解析式为P kx b =+,将(10,45)和(20,55)分别代入,10452055k b k b +=ìí+=î,解得:135k b =ìí=î,∴P 与x 的函数解析式为35P x =+,∴P 与x 的函数解析式为:()()45010351020x x P x x x ì£ï=í+£ïî<,为整数<,为整数.(2)①当010x <£时,()()6545510100200w x x =-+=+,当1020x <£时,()()265355105140300w x x x x =--+=-++,∴w 与x 的函数解析式为2100200(010)5140300(1020)x x x w x x x x +<£ì=í-++<£î,且为整数,且为整数;②当010x <£时,100200w x =+,∵1000>,∴w 随x 的增大而增大,∴当10x =时,100102001200w =´+=最大值,当1020x <£时,()2251403005141280w x x x =-++=--+,∴当14x =时,1280w =最大值,∵12801200>,∴村委会本次可获得1280元捐款.【点拨】本题主要考查了一次函数和二次函数的应用,根据函数图象获得信息,利用待定系数法求出P 与x 的函数解析式,是解题的关键.【变式2】科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示;小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示.(1)直接写出1y 与x 之间的函数关系式;(2)求出2y 与x 之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?【答案】(1)1530y x =+;(2)22540y x x =-+;(3)70米【分析】(1)先设出一次函数的解析式,再用待定系数法求函数解析式即可;(2)用待定系数法求函数解析式即可;(3)当1<x ≤6时小钢球在无人机上方,因此求y 2-y 1,当6<x ≤8时,无人机在小钢球的上方,因此求y 1-y 2,然后进行比较判断即可.解:(1)设y 1与x 之间的函数关系式为y 1=kx +b',∵函数图象过点(0,30)和(1,35),则'35'30k b b +=ìí=î,解得5'30k b =ìí=î,∴y 1与x 之间的函数关系式为1530y x =+.(2)∵6x =时,1563060y =´+=,∵2y 的图象是过原点的抛物线,∴设22y ax bx =+,∴点()1,35,()6,60在抛物线22y ax bx =+上.∴3536660a b a b +=ìí+=î,即35610a b a b +=ìí+=î,解得540a b =-ìí=î,∴22540y x x =-+.答:2y 与x 的函数关系式为22540y x x =-+.(3)设小钢球和无人机的高度差为y 米,由25400x x -+=得10x =或28x =.①16x <£时,21y y y =-2540530x x x =-+--253530x x =-+-27125524x æö=--+ç÷èø,∵50a =-<,∴抛物线开口向下,又∵16x <£,∴当72x =时,y 的最大值为1254;②68x <£时,12y y y =-2530540x x x=++-253530x x =-+27125524x æö=--ç÷èø,∵50a =>,∴拋物线开口向上,又∵对称轴是直线72x =,∴当72x >时,y 随x 的增大而增大,∵68x <£,∴当8x =时,y 的最大值为70.∵125704<,∴高度差的最大值为70米.答:高度差的最大值为70米.【点拨】本题考查了二次函数以及一次函数的应用,关键是根据根据实际情况判断无人机和小钢球的高度差.类型六、二次函数与几何综合6.如图,一次函数y =A 、B ,二次函数2y bx c =++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为:2y x =(2)Q 点坐标为(1,(3,0)或(-1,0).【分析】(1)由直线y x =A ,B ,代入抛物线解析式,求出b ,c 坐标即可;(2)分BC 为对角线和边两种情况讨论,其中当BC 为边时注意点Q 的位置有两种:在点P 右侧和左侧,根据菱形的性质求解即可.解:(1)对于y =x =0时,y =;当y =00x =,妥得,x =3∴A (3,0),B (0,把A (3,0),B (0,2y bx c ++得:=0c c ìïí=ïî解得,b c ì=ïíï=î∴抛物线的解析式为:2y =(2)抛物线的对称轴为直线2b x a =- 故设P (1,p ),Q (m ,n )①当BC 为菱形对角线时,如图,∵B ,C 关于对称没对称,且对称轴与x 轴垂直,∴BC 与对称轴垂直,且BC //x 轴∵在菱形BQCP 中,BC ⊥PQ。

人教版九年级数学上册二次函数知识点巩固练习(含答案)

人教版九年级数学上册二次函数知识点巩固练习(含答案)

人教版九年级数学上册二次函数知识点巩固练习一、单选题1.二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是( )A. y1≤y2B. y1<y2C. y1≥y2D. y1>y22.如果二次函数y=ax2+bx+c(其中a、b、c为常数,a≠0)的部分图象如图所示,它的对称轴过点(-1,0),那么关于x的方程ax2+bx+c=0的一个正根可能是()A. 0.5B. 1.5C. 2.5D. 3.53.下列函数解析式中,一定为二次函数的是( )A. y=3x﹣1B. y=ax2+bx+cC. s=2t2﹣2t+1D. y=x2+4.运动会上,某运动员掷铅球时,所掷的铅球的高y(m)与水平的距离x(m)之间的函数关系式为y=﹣x2+ x+ ,则该运动员的成绩是()A. 6mB. 12mC. 8mD. 10m5.若抛物线C:y=ax2+bx+c与抛物线y=x2-2关于x轴对称,则抛物线C的解析式为A. y=x²-2B. y=-x²-2C. y=-x²+2D. y=x²+26.如果将抛物线y=x2向左平移2个单位,那么所得抛物线的表达式为()A. y=x2+2B. y=x2-2C. y=(x+2)2D. y=(x-2)27.设A(﹣2,y1),B(﹣1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A. y2>y1>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y28.如图,二次函数y=ax2+bx+c 的图象与x 轴的交点的横坐标分别为-1,3,则:①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x 均有ax2+bx≥a+b,其中结论正确的个数有()A. 1B. 2C. 3D. 49.已知y=2x2的图象是抛物线,若抛物线不动,把x轴,y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ).A. y=2(x-2)2+2B. y=2(x+2)2-2C. y=2(x-2)2-2D. y=2(x+2)2+2二、填空题10.一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+,那么铅球运动过程中最高点离地面的距离为________ 米.11.将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为________.12.某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元,以同样的栽培条件,若每盆增加2株,平均单株盈利就减少0.5元,则每盆植________ 株时能使单盆取得最大盈利;若需要单盆盈利不低于13元,则每盆需要植________ 株.13.校运动会小明参加铅球比赛,若某次投掷,铅球飞行的高度y(米)与水平距离x(米)之间的函数关系式为,小明这次投掷的成绩是________ 米.14.抛物线y=ax2,y=bx2,y=cx2的图象如图所示,则a,b,c的大小关系是________.15.已知二次函数y=x2+bx+4顶点在x轴上,则b=________.16.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.三、综合题17.根据下列条件,分别求二次函数的表达式(1)已知函数的顶点坐标(-1,-8),且过点(0,-6)(2)已知图象经过点(3,0),(2,-3),并以直线x=0为对称轴18.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?19.某商店销售面向中考生的计数跳绳,每根成本为20元,销售的前40天内的日销售量m (根)与时间t(天)的关系如表.时间t(天)1381026…日销售量m(件)5149444226…前20天每天的价格y1(元/件)与时间t(天)的函数关系式为:y1= t+25(1≤t≤20且t为整数);后20天每天的价格y2(元/件)与时间t(天)的函数关系式为:y2=﹣ t+40(21≤t≤40且t为整数).(1)认真分析表中的数据,用所学过的一次函数,二次函数的知识确定一个满足这些数据m(件)与t(天)之间的关系式;(2)请计算40天中娜一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<3)给希望工程,公司通过销售记录发现,前20天中扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.答案一、单选题1.【答案】B【解析】【分析】∵二次函数y=﹣x2+bx+c的a=-1<0,对称轴x=1,∴当x<1时,y随x的增大而增大。

人教版初三数学:二次函数y=ax2+bx+c(a≠0)的图象与性质—巩固练习(提高)

人教版初三数学:二次函数y=ax2+bx+c(a≠0)的图象与性质—巩固练习(提高)

二次函数y=ax 2+bx+c(a ≠0)的图象与性质—巩固练习(提高)【巩固练习】 一、选择题1. 定义[,,]a b c 为函数2y ax bx c =++的特征数,下面给出特征数为[2,1,1]m m m ---的函数的一些结 论:①当3m =-时,函数图象的顶点坐标是18,33⎛⎫ ⎪⎝⎭;②当0m >时,函数图象截x 轴所得线段的长度大于32;③当0m <时,函数在14x >时,y 随x 的增大而减小;④当m ≠0时,函数图象经过同一个点.其中正确的结论有( ).A .①②③④B .①②④C .①③④D .②④2.(2015•南昌)已知抛物线y=ax 2+bx+c (a >0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴( ).A .只能是x=﹣1B .可能是y 轴C .在y 轴右侧且在直线x=2的左侧D .在y 轴左侧且在直线x=﹣2的右侧 3.(2016•毕节市)一次函数y=ax +b (a ≠0)与二次函数y=ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .4.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:x …… 0 1 2 3 4 …… y……4114……点A(x 1,y 1),B(x 2,y 2)在函数的图象上,则当1<x 1<2,3<x 2<4时,y 1与y 2的大小关系正确的 是( )A .y 1>y 2B .y 1<y 2C .y 1≥y 2D .y 1≤y 25.如图所示,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =h D .m <n ,k =h第5题 第6题6.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在自变量取值范围内,下列说法正确的是( ) A .有最小值0,有最大值3 B .有最小值-1,有最大值0 C .有最小值-1,有最大值3 D .有最小值-1,无最大值 二、填空题 7.(2016•金山区二模)如果抛物线y=ax 2+2a 2x ﹣1的对称轴是直线x=﹣1,那么实数a= . 8.如图所示,是二次函数2(0)y ax bx c a =++≠在平面直角坐标系中的图象.根据图形判断①c >0;②a+b+c <0;③2a-b <0;④284b a ac +>中正确的是________(填写序号).9.已知点(1,4)、(3,4)在二次函数232y x kx k =+-的图象上,则此二次函数图象的顶点坐标是_________.10.抛物线y=x 2+bx+c 与x 轴的正半轴交于A ,B 两点,与y 轴交于C 点,且线段AB 的长为1,△ABC 的面积为1,则b 的值是_____.11.抛物线y=x 2+kx-2k 通过一个定点,这个定点的坐标是_ ____.12.(2015•长春)如图,在平面直角坐标系中,点A 在抛物线y=x 2﹣2x+2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连结BD ,则对角线BD 的最小值为 .三、解答题 13.(2015•北京)在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线y=x ﹣1交于点A ,点A 关于直线x=1的对称点为B ,抛物线C 1:y=x 2+bx+c 经过点A ,B . (1)求点A ,B 的坐标;(2)求抛物线C 1的表达式及顶点坐标;(3)若抛物线C 2:y=ax 2(a ≠0)与线段AB 恰有一个公共点,结合函数的图象,求a 的取值范围.14.已知二次函数y=-x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(-1,0),与y 轴的交点坐标为(0,3).(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y 为正数时,自变量x 的取值范围;(3)当12≤x ≤2时,求y 的最大值.15.如图,抛物线经过直线与坐标轴的两个交点,此抛物线与轴的另一个交点为,抛物线的顶点为.(1)求此抛物线的解析式; (2)点为抛物线上的一个动点,求使的点的坐标.【答案与解析】 一、选择题 1.【答案】B ;【解析】理解题意是前提,当3m =-时,6a =-,4b =,2c =.所以2218642633y x x x ⎛⎫=-++=--+ ⎪⎝⎭,所以函数图象的顶点坐标是18,33⎛⎫ ⎪⎝⎭,①正确排除选项D ;因为当0m <时,对称轴11244b m x a m -=-=->,所以③错误.排除选项A 、C .所以正确选项为B .2.【答案】D ;【解析】∵抛物线y=ax 2+bx+c (a >0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x 2满足:﹣2<x 2<2,∴﹣2<<0,∴抛物线的对称轴在y 轴左侧且在直线x=﹣2的右侧.故选D .3.【答案】C .【解析】A 、由抛物线可知,a <0,由直线可知,故本选项错误; B 、由抛物线可知,a >0,x=﹣>0,得b <0,由直线可知,a >0,b >0,故本选项错误; C 、由抛物线可知,a <0,x=﹣<0,得b <0,由直线可知,a <0,b <0,故本选项正确; D 、由抛物线可知,a <0,x=﹣<0,得b <0,由直线可知,a <0,b >0故本选项错误.故选C .4.【答案】B ;【解析】由表可知1<x 1<2,∴ 0<y 1<1,3<x 2<4,∴ 1<y 2<4,故y 1<y 2. 5.【答案】A ;【解析】由顶点(n ,k)在(m ,h)的上方,且对称轴相同,∴ m =n ,k >h. 6.【答案】C ;【解析】观察图象在0≤x ≤3时的最低点为(1,-1),最高点为(3,3),故有最小值-1,有最大值3. 二、填空题 7.【答案】1.【解析】∵抛物线y=ax 2+2a 2x ﹣1的对称轴是直线x=﹣1,∴﹣1=﹣解得:a=1.8.【答案】②④;【解析】观察图象知抛物线与y 轴交于负半轴,则0c <,故①是错误的;当1x =时,0y <,即0a b c ++<,故②是正确的;由于抛物线对称轴在y 轴右侧,则02ba->, ∵ 0a >,∴ 0b <,故20a b ->,故③是错误的;∵ 0a >,240b ac ->, ∴ 284b a ac +>,故④是正确的.9.【答案】(2,12);【解析】由点(1,4)、(3,4)的纵坐标相同,可知它们是抛物线上的两个对称点,如果设抛物线的顶点坐标为(x ,y),则1322x +==,2322212y k k =⨯+-=. 故二次函数图象的顶点坐标为(2,12). 10.【答案】-3;【解析】设抛物线y=x 2+bx+c 与x 轴交点的坐标是x 1、x 2,则x 2- x 1=1,△ABC 的面积为1得c=2,由根与系数关系化为123x x +=±, 即=3b a -±,由20b a ->得=3ba-,3b =-. 11.【答案】(2,4);【解析】若抛物线y=x 2+kx-2k 通过一个定点,则与k 值无关,即整理y=x 2+kx-2k 得y=x 2+k (x-2),x-2=0,解得x=2,代入y=x 2+k (x-2),y=4,所以过点(2,4). 12.【答案】1;【解析】∵y=x 2﹣2x+2=(x ﹣1)2+1,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.三、解答题13.【答案与解析】解:(1)当y=2时,则2=x﹣1,解得:x=3,∴A(3,2),∵点A关于直线x=1的对称点为B,∴B(﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C1:y=x2+bx+c得:解得:∴y=x2﹣2x﹣1.顶点坐标为(1,﹣2).(3)如图,当C2过A点,B点时为临界,代入A(3,2)则9a=2,解得:a=,代入B(﹣1,2),则a(﹣1)2=2,解得:a=2,∴14.【答案与解析】(1)将(-1,0),(0,3)代入y=-x2+bx+c得103b c c --+⎧⎨⎩==,, 解得23.b c ⎧⎨⎩==, 所以二次函数的解析式为y=-x 2+2x+3;(2)把y=0代入y=-x 2+2x+3得-x 2+2x+3=0, 解得x 1=-1,x 2=3,所以当-1<x <3,y >0;(3)y=-x 2+2x+3=-(x-1)2+4, 抛物线的对称轴为直线x=1, ∵12≤x ≤2, ∴当x=1时,y 的最大值为4. 15.【答案与解析】 (1)直线与坐标轴的交点,.则 解得此抛物线的解析式.(2)抛物线的顶点,与轴的另一个交点.设,则.化简得.当,得或.或当时,即,此方程无解. 综上所述,满足条件的点的坐标为或.附录资料:《相似》全章复习与巩固--巩固练习(基础)【巩固练习】 一、选择题1.(2015•乐山)如图,l 1∥l 2∥l 3,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知,则的值为( )A.B.C.D.2. (2016•奉贤区一模)用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边AB是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是( )4.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是,则点B的横坐标是()A.B. C.D.5.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有( ) A.1个B.2个 C.3个 D.4个6. 如图,在正方形ABCD中,E是CD的中点,P是BC边上的点,下列条件中不能推出△ABP与以点E、C、P为顶点的三角形相似的是( )A.∠APB=∠EPC B.∠APE=90° C.P是BC的中点D.BP:BC=2:37. 如图,在△ABC中,EF∥BC,12AEEB,,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.138.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是()A.∠E=2∠K B.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.S六边形ABCDEF=2S六边形GHIJKL二、填空题9. (2016•衡阳)若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.10. 如图,在△ABC中,D、E分别是AB和AC中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的面积之比为_______,•△CFG与△BFD的面积之比为________.11. 如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_______.12. 在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在面上的影长为40米,则古塔高为________.13. (2015•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.14.如图,在△ABC中,MN∥BC,若∠C=68°,AM:MB=1:2,则∠MNA=_______度,AN:NC=_____________.15.如图,点D,E分别在AB、AC上,且∠ABC=∠AED。

人教版九年级数学上册 第22章 二次函数 巩固练习(含答案)

人教版九年级数学上册 第22章 二次函数 巩固练习(含答案)

人教版九年级数学上册 第22章二次函数 巩固练习(含答案)例1: 抛物线1)3(22+-=x y 的顶点坐标是( ) A .(3,1) B .(3,-1)C .(-3,1)D .(-3,-1)【答案】A【解析】抛物线2()y a x h k =-+的顶点是(h ,k )例2: 已知二次函数y =x 2-3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2-3x +m =0的两实数根是( ). A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0 D .x 1=1,x 2=3【答案】B .【解析】∵二次函数y =x 2-3x +m 的图象与x 轴的一个交点为(1,0),∴0=12-3+m ,解得m =2,∴二次函数为y =x 2-3x +2.设y =0,则x 2-3x +2=0.解得x 2=1,x 2=2,这就是一元二次方程x 2-3x +m =0的两实数根.所以应选B .例3:(思考题)方程0132=-+x x 的根可视为函数3+=x y 的图象与函数xy 1=的图象交点的横坐标,则方程3210x x +-=的实根0x 所在的范围是( ). A .4100<<x B .31410<<x C . D .1210<<x【答案】C .【解析】依题意得方程x 3+2x -1=0的实根是函数y =x 2+2与xy 1=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x =14时,y =x 2+2=2116,1y x==4,此时抛物线的图象在反比例函数下方; 当x =时,y =x 2+2=219,1y x==3,此时抛物线的图象在反比例函数下方; 21310<<x 13(1)求S 与x 的函数关系式;(2)如果要围成面积为45 m 2的花圃,AB 的长是多少米? (3)能围成面积比45 m 2更大的花圃吗?如果能,请求出 最大面积,并说明围法;如果不能,请说明理由.【答案】(1)由题意,3x +BC=24,所以243BC x =- ,而面积S=BC ×AB=(243)x x -即2(243)243S x x x x =-=-(2)即S=45,代入得224345x x -=,解得x =5,即AB=5米 (3)222433(4)48S x x x =-=--+∵BC 的最大长度为10m ,即024310BC x ≤=-≤,∴1483x ≤≤,∴x ∈[143,8]∵对称轴为x =4且开口向下 ∴在[143,8]上函数递减 ∴当x =143时取得最大值max S =1403,所以能围出比45 m 2更大的花圃。

新人教版九年级上册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版九年级上册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴 顶点坐标 当时开口向上 当时开口向下(轴) (0,0) (轴)(0,) (,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【课程名称:二次函数复习357019 :(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.(2015•盘锦)如图是二次函数y=ax 2+bx+c=0(a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c <0;④b ﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B . ②④⑤C . ①②⑤D .②③⑤【答案】B ;【解析】解:∵抛物线开口向下, ∴a <0, ∵﹣=﹣2,∴b=4a ,ab >0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当a=﹣3时y >0,即9a ﹣3b+c >0, ∴③错误,故正确的有②④⑤. 故选:B .【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.类型三、数形结合3.如图所示是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为(3,0),则由图象可知,不等式20ax bx c ++>的解集是________.【思路点拨】根据抛物线的对称性和抛物线与x 轴的交点A 的坐标可知,抛物线与x 轴的另一个交点的坐标,观察图象可得不等式20ax bx c ++>的解集.【答案】x >3或x <-1;【解析】根据抛物线的对称性和抛物线与x 轴的交点A(3,0)知,抛物线与x 轴的另一个交点为(-1,0),观察图象可知,不等式20ax bx c ++>的解集就是2y ax bx c =++函数值,y >0时,x 的取值范围.当x >3或x <-1时,y >0,因此不等式20ax bx c ++>的解集为x >3或x <-1.【点评】弄清20ax bx c ++>与2y ax bx c =++的关系,利用数形结合在图象上找出不等式20ax bx c ++>的解集.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( ) A.B.C.D.【答案】二次函数的图象与x轴无交点,则说明y=0时,方程无解,即.又图象永远在x轴下方,则.答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定【答案】当y=0时,,,即二次函数的零点个数是2.故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x ,销售量=500+100x ,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x 的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润; (3)设当y=5000时x 有两个解,可推出0≤x≤5时,y≥5000. 【答案与解析】解:(1)依题意,得y=(50﹣40﹣x )•(500+100x )=﹣100x 2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x2+500x+5000=﹣100(x﹣)2+5625,∵x取正整数,当x=2或3时,y=5600.∴5600元是最大利润.(3)当y=5000时,y=﹣100x2+500x+5000=5000,解得x1=0,x2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

九年级数学上册 二次函数(提升篇)(Word版 含解析)

九年级数学上册 二次函数(提升篇)(Word版 含解析)

九年级数学上册二次函数(提升篇)(Word版含解析)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD =QE =2,DQ =A 1'E =﹣m , ∴点A 1'的坐标为(﹣m +1,m ﹣2), 代入y =﹣x 2+2x +3中, 解得,m =﹣3或m =2(舍), ∴Q 的坐标为(1,﹣3),∴点Q 的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值.(3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;(3或4【解析】 【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d为)454d BP sin t =⋅︒=-,则12PBESBE d =⨯⨯)()1244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值;(3)先求出454AM AB sin =⋅︒==N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得4NH ===;设()2,65N m m m -+-,则(),0G m ,(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可. 【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE 的距离()4542d BP sin t =⋅︒=- 所以12PBESBE d =⨯⨯)()1244222t t t t =⨯⨯-=-;∵二次函数()()4f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时,∴()()()2242max f t f ==⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得4542AM AB sin =⋅︒=⨯= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或52m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键3.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1,∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22b b D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22bb D ⎛⎫- ⎪⎝⎭.3B 在抛物线2C 上,2333122222b b b⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去),()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-.(3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=-⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.4.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y =12x 2﹣32x ﹣2;(2)点M 的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【解析】 【分析】(1)根据题意直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,则点A 、B 的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN =32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P (173,509); 当点P 在AB 下方时,同理可得:点P (3,﹣2); 综上,点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.5.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小.【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得2a ≤<,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-; 综上:21a -≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:22a >.综上:若使得函数与矩形ABCD 无交点,则322a <--或21a -≤<-或22a >. 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.6.二次函数22(0)63m my x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标; (2)若点Q (a ,b )在二次函数22(0)63m my x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD . ①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4. 【解析】 【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m my x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可;(3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可. 【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m mb a a m =-+, 即:2263m mb m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0,∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m), 当x=0时,y=m , ∴点A (0,m ), ∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0), 把点A (0,m ),点P (2,3m)代入,得: 23m b mk b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m-x+m , 当y=0时,x=3, ∴点B (3,0); ∴OB=3;∵四边形ABCD 是正方形, ∴AD=AB ,∠DAF+∠FAB=90°, 且∠OAB+∠FAB =90°, ∴∠DAF=∠OAB , 在△ADF 和△ABO 中,DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3, ∴点D 的坐标为:(m ,m+3); ②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m mm m -+≤+,化简得:32418m m -≤.∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4;当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥,∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4. 【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.7.如图1所示,抛物线223y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ 是平行四边形,设点P 的横坐标为m . (1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P 在抛物线上运动时,四边形OPAQ 可能是正方形吗?若可能,请求出点P 的坐标,若不可能,请说明理由;(4)在点Q 随点P 运动的过程中,当点Q 恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x =-+;(2)9个 ;(3)33,22或44,;(4)33【解析】 【分析】(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,即可求解; (2)APC ∆的面积PHAPHCSSS,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434b c, 故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②,联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.8.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x ≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=kx的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,m=12+或m=32;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】 (1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中. 得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:12m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:123322m m ==(不合题意,舍去).所以3212m+=.综上所述:m的取值范围是m<0,m=113+或m=321+.(4)∵四边形ECP'D是菱形,∴点E与点P'关于x轴对称.∵点E的坐标为(2,n),∴点P'的坐标为(2,﹣n).①当点P在y轴左侧时,点P的坐标为(﹣2,﹣n).代入y=(x﹣2)2+n,得:﹣n=(﹣2﹣2)2+n,解得:n=﹣8.②当点P在y轴右侧时,点P的坐标为(﹣n,﹣2).代入y=(x﹣2)2+n,得:﹣2=(﹣n﹣2)2+n.解得:n1=﹣2,n2=﹣3.综上所述:n的值是n=﹣8,n=﹣2,n=﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣23x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴二次函数的关系解析式为y=﹣23x 2﹣43x+2; (2)∵当x=0时,y=2,∴C (0,2)设直线AC 的解析式为y kx b =+,把A 、C 两点代入得 0=32k b b -+⎧⎨=⎩ 解得232k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的函数解析式为223y x =+; (3)存在.如图: 连接PO ,作PM⊥x 轴于M ,PN⊥y 轴于N设点P 坐标为(m ,n ),则n=224233m m --+),PN=-m ,AO=3 当x=0时,y=22400233-⨯-⨯+=2,∴点C 的坐标为(0,2),OC=2∵PAC PAO PCO ACO S S S S =+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m --∵a=-1<0∴函数S △PAC =-m 2-3m 有最大值∴b 当m=()33212-=--⨯-∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭ ∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】 本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.10.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258,解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H ,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a ,又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′== 此时aP92-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.。

九上数学二次函数提高题常考题型抛物线压轴题(含解析)

九上数学二次函数提高题常考题型抛物线压轴题(含解析)

二次函数常考题型与解析一.选择题(共12小题)1.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=72.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y33.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.4.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣5.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大6.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤7.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.108.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或9.已知二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是()A.c<3 B.m≤C.n≤2 D.b<110.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧11.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A.x=10,y=14 B.x=14,y=10 C.x=12,y=15 D.x=15,y=1212.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<0二.填空题(共9小题)13.已知点P(m,n)在抛物线y=ax2﹣x﹣a上,当m≥﹣1时,总有n≤1成立,则a的取值范围是.14.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)15.二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是.16.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.17.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为.18.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为.19.直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB 时,直线AB恒过一个定点,该定点坐标为.20.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C 的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.21.抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.三.解答题(共12小题)22.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<0时,求x的取值范围.23.已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.24.已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为.(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.25.如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.26.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.27.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.28.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.29.如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A (3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC 边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).30.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.31.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.32.小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图2中A点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等待7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线O﹣B﹣C所示,加速过程中行驶路程s(m)与时间t(s)的关系也满足s=at2,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.33.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2017年03月20日初中数学3的初中数学组卷参考答案与试题解析一.选择题(共12小题)1.(2016•荆门)若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣=3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.【点评】本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.2.(2016•兰州)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【分析】根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,可判断y1=y2>y3.【解答】解:∵y=﹣x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故选D.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.3.(2016•贺州)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.【解答】解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,故选:B.【点评】本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键.4.(2016•临沂)二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c 中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选D.【点评】本题考查了待定系数求函数解析式以及二次函数的性质,解题的关键是利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.5.(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.6.(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A (﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【点评】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.7.(2016•绍兴)抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10【分析】根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.【点评】本题考查二次函数的性质、解不等式,解题关键是明确题意,列出相应的关系式.8.(2016•泸州)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或【分析】首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【解答】解:依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.【点评】本题考查了二次函数的性质,解题的关键是能够根据图象经过的点确定a+b+c的值和a、b的符号,难度中等.9.(2016•株洲)已知二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是()A.c<3 B.m≤C.n≤2 D.b<1【分析】根据已知条件得到,解方程组得到c=3﹣2a<3,b=1﹣a<1,求得二次函数的对称轴为x=﹣=﹣=﹣<,根据二次函数的顶点坐标即可得到结论.【解答】解:由已知可知:,消去b得:c=3﹣2a<3,消去c得:b=1﹣a<1,对称轴:m=x=﹣=﹣=﹣<,∵A(﹣1,2),a>0,那么顶点的纵坐标为函数的最小值,∴n≤2,故B错.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟记二次函数的性质是解题的关键.10.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧【分析】根据题意判定点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,从而得出﹣2<<0,即可判定抛物线对称轴的位置.【解答】解:∵抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,∴﹣2<<0,∴抛物线的对称轴可能在y轴左侧且在直线x=﹣2的右侧.故选:D.【点评】本题考查了二次函数的性质,根据点坐标判断出另一个点的位置是解题的关键.11.(2007•临沂)如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A.x=10,y=14 B.x=14,y=10 C.x=12,y=15 D.x=15,y=12【分析】由直角三角形相似得,得x=•(24﹣y),化简矩形面积S=xy 的解析式为S=﹣(y﹣12)2+180,再利用二次函数的性质求出S 的最大值,以及取得最大值时x、y的值.【解答】解:以直角梯形的下底直角边端点为原点,两直角边方向为x,y轴建立直角坐标系,过点D作DE⊥x轴于点E,∵NH∥DE,∴△CNH∽△CDE,∴=,∵CH=24﹣y,CE=24﹣8,DE=OA=20,NH=x,∴,得x=•(24﹣y),∴矩形面积S=xy=﹣(y﹣12)2+180,∴当y=12时,S有最大值,此时x=15.故选D.【点评】本题考查的是直角梯形以及矩形的性质的相关知识点.12.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<0【分析】把(﹣,m)代入y=ax2+bx图象的顶点坐标公式得到顶点(﹣,﹣),再把(﹣,﹣)代入得到k=,由图象的特征即可得到结论.【解答】解:∵y=ax2+bx图象的顶点(﹣,m),∴﹣=﹣,即b=a,∴m==﹣,∴顶点(﹣,﹣),把x=﹣,y=﹣代入反比例解析式得:k=,由图象知:抛物线的开口向下,∴a<0,∴a<k<0,故选D.【点评】本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.二.填空题(共9小题)13.(2016•厦门)已知点P(m,n)在抛物线y=ax2﹣x﹣a上,当m≥﹣1时,总有n≤1成立,则a的取值范围是﹣≤a<0.【分析】依照题意画出图形,结合函数图形以及已知条件可得出关于a的一元一次不等式组,解不等式组即可得出a的取值范围.【解答】解:根据已知条件,画出函数图象,如图所示.由已知得:,解得:﹣≤a<0.故答案为:﹣≤a<0【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是画出函数图象,依照数形结合得出关于a的不等式组.本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质画出函数图象,利用数形结合解决问题是关键.14.(2016•镇江)a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b<c(用“>”或“<”号填空)【分析】求出二次函数的对称轴,再根据二次函数的增减性判断即可.【解答】解:∵二次函数y=x2﹣2ax+3的图象的对称轴为x=a,二次项系数1>0,∴抛物线的开口向上,在对称轴的右边,y随x的增大而增大,∵a+1<a+2,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,∴b<c,故答案为:<.【点评】本题考查了二次函数图象上点的坐标特征,求出对称轴解析式,然后利用二次函数的增减性求解更简便.15.(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c<0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q的值.【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【点评】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.16.(2016•梅州)如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为(1+,2)或(1﹣,2).【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P点坐标.【解答】解:∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=﹣x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=﹣x2+2x+3中,令y=2,可得﹣x2+2x+3=2,解得x=1±,∴P点坐标为(1+,2)或(1﹣,2),故答案为:(1+,2)或(1﹣,2).【点评】本题主要考查等腰三角形的性质,利用等腰三角形的性质求得P点纵坐标是解题的关键.17.(2014•宁德)如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为6.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.=6,.∴当x=1时,C最大值即:四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.18.(2016•泰州)二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为(1+,3)或(2,﹣3).【分析】△ABC是等边三角形,且边长为2,所以该等边三角形的高为3,又点C在二次函数上,所以令y=±3代入解析式中,分别求出x的值.由因为使点C落在该函数y轴右侧的图象上,所以x>0.【解答】解:∵△ABC是等边三角形,且AB=2,∴AB边上的高为3,又∵点C在二次函数图象上,∴C的纵坐标为±3,令y=±3代入y=x2﹣2x﹣3,∴x=1或0或2∵使点C落在该函数y轴右侧的图象上,∴x>0,∴x=1+或x=2∴C(1+,3)或(2,﹣3)故答案为:(1+,3)或(2,﹣3)【点评】本题考查二次函数的图象性质,涉及等边三角形的性质,分类讨论的思想等知识,题目比较综合,解决问题的关键是根据题意得出C的纵坐标为±3.19.(2016•大庆)直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).【分析】根据直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两根之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.【解答】解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=,化简,得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴=,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【点评】本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k的乘积为﹣1.20.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【分析】设D(x,﹣x2+6x),根据勾股定理求得OC,根据菱形的性质得出BC,=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,然后根据三角形面积公式得出∴S△BCD根据二次函数的性质即可求得最大值.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,△BCD∵﹣<0,∴S有最大值,最大值为15,△BCD故答案为15.【点评】本题考查了菱形的性质,二次函数的性质,注意数与形的结合是解决本题的关键.21.(2016•自贡)抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.【分析】(1)根据抛物线经过原点b=0,把a=、b=0代入抛物线解析式,即可求出抛物线解析式,再求出B、C坐标,即可求出BC长.(2)利用△PCB∽△APM,得=,列出方程即可解决问题.【解答】解:(1)∵抛物线y=﹣x2+4ax+b(a>0)经过原点O,∴b=0,∵a=,∴抛物线解析式为y=﹣x2+6x,∵x=2时,y=8,∴点B坐标(2,8),∵对称轴x=3,B、C关于对称轴对称,∴点C坐标(4,8),∴BC=2.(2)∵AP⊥PC,∴∠APC=90°,∵∠CPB+∠APM=90°,∠APM+∠PAM=90°,∴∠CPB=∠PAM,∵∠PBC=∠PMA=90°,∴△PCB∽△APM,∴=,∴=,整理得a2﹣4a+2=0,解得a=2±,∵a>1,∴a=2+.【点评】本题考查二次函数性质、相似三角形的判定和性质、待定系数法等知识,解题的关键是利用相似三角形性质列出方程解决问题,学会转化的思想,属于中考常考题型.三.解答题(共12小题)22.(2016•黔南州)已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<0时,求x的取值范围.【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.【解答】解:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2,0)代入y=x2+bx﹣6得:b=﹣1,∴抛物线的解析式为y=x2﹣x﹣6.∴y=(x﹣)2﹣.∴抛物线的顶点坐标D(,﹣).(2)二次函数的图形沿x轴向左平移个单位长度得:y=(x+2)2﹣.令y=0得:(x+2)2﹣=0,解得:x1=,x2=﹣.∵a>0,∴当y<0时,x的取值范围是﹣<x<.【点评】本题主要考查的是抛物线与x轴的交点、待定系数法求二次函数的解析式,掌握相关知识是解题的关键.23.(2016•无锡)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B 且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以OE:EB=CP:PD;(2)过点C作CF⊥BD于点F,交PE于点G,构造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG的长度,进而求出a 的值,最后将A(或B)的坐标代入解析式即可求出c的值.【解答】解:(1)过点P作PE⊥x轴于点E,∵y=ax2﹣2ax+c,∴该二次函数的对称轴为:x=1,∴OE=1∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)∵A与B关于直线x=1对称,∴A(﹣,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴==∴PG=,∴a=,∴y=x2﹣x+c,把A(﹣,0)代入y=x2﹣x+c,∴解得:c=﹣1,∴该二次函数解析式为:y=x2﹣x﹣1.【点评】本题考查二次函数,涉及待定系数法求出二次函数解析式,相似三角形的性质与判定,锐角三角函数等知识内容,解题的关键是利用作垂线构造直角三角形,再利用相似三角形的对应边的比相等即可得出答案.24.(2016•淄博)已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q 的纵坐标为.(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.【分析】(1)设Q(m,),F(0,),根据QO=QF列出方程即可解决问题.(2)设M(t,t2),Q(m,),根据K OM=K OQ,求出t、m的关系,根据QO=QM 列出方程即可解决问题.(3)设M(n,n2)(n>0),则N(n,0),F(0,),利用勾股定理求出MF 即可解决问题.【解答】解:(1)∵圆心Q的纵坐标为,∴设Q(m,),F(0,),∵QO=QF,∴m2+()2=m2+(﹣)2,∴a=1,∴抛物线为y=x2.(2)∵M在抛物线上,设M(t,t2),Q(m,),。

部编数学九年级上册二次函数y=ax2+k(a≠0)的图象与性质(巩固篇)(专项练习)(人教版)含答案

部编数学九年级上册二次函数y=ax2+k(a≠0)的图象与性质(巩固篇)(专项练习)(人教版)含答案

专题22.9 二次函数y=ax 2+k(a ≠0)的图象与性质(巩固篇)(专项练习)一、单选题类型一、2+k 二次函数y=ax 图象开口方向、对称轴、顶点坐标、平移1.已知二次函数2(0)y ax c a =+>,如果当01m x m £££+时,p y q ££,则下列说法正确的是( )A .q p -有最大值,也有最小值B .q p -有最大值,没有最小值C .q p -没有最大值,有最小值D .q p -没有最大值,也没有最小值2.二次函数223y x =-+在14x -££内的最小值是( )A .3B .2C .-29D .-303.若在同一直角坐标系中,作,,的图像,则它们( )A .都关于轴对称B .开口方向相同C .都经过原点D .互相可以通过平移得到4.函数2112y x =+与212y x =的图象的不同之处是( )A .对称轴B .开口方向C .顶点D .形状类型二、2+k 二次函数y=ax 的图象和性质5.下列对二次函数21y x =-的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧,抛物线从左到右下降6.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的7.抛物线y =212018x ,y =﹣2018x 2+2019,y =2018x 2共有的性质是( )A .开口向上B .对称轴是y 轴C .当x >0时,y 随x 的增大而增大D .都有最低点8.下列关于抛物线y =-x 2+2的说法正确的是( )A .抛物线开口向上B .顶点坐标为(-1,2)C .在对称轴的右侧,y 随x 的增大而增大D .在对称轴的左侧,y 随x 的增大而增大类型三、2+k 求二次函数y=ax 图象识别9.函数y =ax 与y =ax 2+a (a ≠0)在同一直角坐标系中的大致图象可能是( )A .B .C .D .10.在同一平面直角坐标系中,函数y mx n =+与2y mx nx =-的图象可能是( )A .B .C .D .11.如图,矩形纸片ABCD 中,BC =4,AB =3,点P 是BC 边上的动点(点P 不与点B 、C 重合).现将△PCD 沿PD 翻折,得到△PC ′D ,作∠BPC ′的角平分线,交AB 于点E .设BP =x , BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .B .C .D .12.抛物线y=x 2+1的图象大致是( )A .(A )B .(B )C .(C )D .(D )类型四、2+k 求二次函数y=ax 的解析式13.若一条抛物线与212y x =的形状相同且开口向下,顶点坐标为()0,2-,则这条抛物线的解析式为( )A .2122y x =-+B .2122y x =+C .2122y x =--D .2122y x =-14.二次函数2y ax c =+的图象与22y x =的图象形状相同,开口方向相反,且经过点()1,1,则该二次函数的解析式为( )A .221y x =-B .223y x =+C .221y x =--D .223y x =-+15.与抛物线2415y x =--顶点相同,形状也相同,而开口方向相反的抛物线对应的函数是( )A .245y x=-B .2415y x =-C .2415y x =-+D .2415y x =+16.与抛物线y=﹣x 2+1的顶点相同、形状相同且开口方向相反的抛物线所对应的函数表达式为( )A .y=﹣x 2B .y=x 2﹣1C .y=﹣x 2﹣1D .y=x 2+1类型五、2+k 二次函数y=ax 图象与性质综合17.已知抛物线y=-x 2+1,下列结论:①抛物线开口向上;②抛物线与x 轴交于点(-1,0)和点(1,0);③抛物线的对称轴是y 轴;④抛物线的顶点坐标是(0,1);⑤抛物线y=-x 2+1是由抛物线y=-x 2向上平移1个单位得到的.其中正确的个数有( )A .5个B .4个C .3个D .2个18.如图,已知抛物线y 1=﹣2x 2+2,直线y 2=2x+2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x=1时,y 1=0,y 2=4,y 1<y 2,此时M=0.下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小;③使得M 大于2的x 值不存在; ④使得M=1的x 值是或.其中正确的是( )A .①②B .①④C .②③D .③④19.关于抛物线22y x x =-,下列说法正确的是( )A .顶点是坐标原点B .对称轴是直线x =2C .有最高点D .经过坐标原点20.如图所示是二次函数y=2122x -+的图象在x 轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是( )A .4B .163C .2πD .8二、填空题类型一、2+k 二次函数y=ax 图象开口方向、对称轴、顶点坐标、平移21.二次函数y =2(1)3k k x -+的图象开口向上,则k =___.22.二次函数y =-3x 2-2的最大值为 _____.23.二次函数y=3x 2+3的最小值是__________.24.二次函数2122y x =--的图象的对称轴为________.类型二、2+k 二次函数y=ax 的图象和性质25.已知二次函数221y x =-,如果y 随x 的增大而增大,那么x 的取值范围是__________.26.从抛物线y=2x 2﹣3的图象上可以看出,当﹣1≤x≤2时,y 的取值范围是_____.27.设A (﹣1,y 1),B (0,y 2),C (2,y 3)是抛物线y =﹣x 2+2a 上的三点,则y 1,y 2,y 3由小到大关系为_____.28.记实数12,x x ,中的最小值为{}12min ,x x ,例如min{0,1}1-=-,当x 取任意实数时,则{}2min 4,3x x -+的最大值为___________.类型三、2+k 求二次函数y=ax 图象识别29.如图,在平面直角坐标系中,抛物线y=ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线213y x =于点B ,C ,则BC 的长为________.30.抛物线22y ax =+经过点()2,6-,那么=a ________.31.已知二次函数y=2x 2的图象如图所示,将x 轴沿y 轴向上平移2个单位长度后与抛物线交于A 、B 两点,则△AOB 的面积为____.32.我们把横、纵坐标都为整数的点称为格点(1)如图,直线2y =+上的格点坐标为_______;(2)若抛物线212y x c =+与x 轴所围成的封闭图形(不含边界)中仅有一个格点,则c 的取值范围是_______________.类型四、2+k 求二次函数y=ax 的解析式33.已知一条抛物线经过点()0,1,且在对称轴右侧的部分是下降的,该抛物战的表达式可以是_________(写出一个即可).34.如图,在平面直角坐标系中,y 轴上一点A (0,2),在x 轴上有一动点B ,连结AB ,过B 点作直线l ⊥x 轴,交AB 的垂直平分线于点P(x,y),在B 点运动过程中,P 点的运动轨迹是________,y 关于x 的函数解析式是________.35.写出一个二次函数,其图象满足:①开口向下;②与y 轴交于点(0,2),这个二次函数的解析式可以是______.36.某同学用描点法y=ax 2+bx+c 的图象时,列出了表:x …﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y 值,则这个错误的y 值是_______.类型五、2+k 二次函数y=ax 图象与性质综合37.如图,已知P 是函数y 214x =-1图象上的动点,当点P 在x 轴上方时,作PH ⊥x 轴于点H ,连接PO .小华用几何画板软件对PO ,PH 的数量关系进行了探讨,发现PO ﹣PH 是个定值,则这个定值为 _____.38.在线段BG 上取点C ,分别以BC 、CG 为边在BG 的同一侧构造正方形ABCD 和正方形ECGF ,点P 、Q 分别是BC 、EF 的中点,连接PQ ,若8BG =,则线段PQ 的最小值为______.39.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A 、B 、C 、D 分别是“芒果”与坐标轴的交点,AB 是半圆的直径,抛物线的解析式为23322y x =-,则图中CD 的长为__________.40.如图,已知抛物线2122y x =-+,直线222y x =+,当x 任取一值时,x 对应的函数值分别 为12,y y ,若12y y ¹,取12,y y 中的较小值记为M ;若12y y =,记12M y y ==,例如:当1x =时,12120,4,y y y y ==<,此时0M =,下列判断:①当0x <时,12y y >;②当0x <时,x 值越大,M 值越小;③使得M 大于2的x 值不存在;④使得1M =的x 值是12-.其中正确的是_______________________.三、解答题41.在同一直角坐标系中,画出下列三条抛物线:212y x =,2132y x =+,2132y x =-.(1)观察三条抛物线的相互关系,并分别指出它们的开口方向、对称轴和顶点坐标;(2)请你说出抛物线212y x c =+的开口方向,对称轴及顶点坐标.42.探究函数4y xx=+的图象与性质(1)函数4y xx=+的自变量x的取值范围是___;(2)下列四个函数图象中,函数4y xx=+的图象大致是___;A.B.C.D.(3)对于函数4y xx=+,求当0x>时,y的取值范围.请将下面求解此问题的过程补充完整:解:∵x>0∴224y xx=+=+=2___ +∵20³∴y=____.【拓展应用】(4)若函数2+54x xyx+=,求y的取值范围.参考答案1.C 【分析】根据二次函数的性质,表示出p 、q 的值,即可求解.解:Q 二次函数2(0)y ax c a =+>.\开口向上,对称轴为0x =,当0x ³时,y 随x 增大而增大.22(1)2q p y a m c am c am a \-==++--=+.2q p am a \-=+.即q p -是m 的一次函数.0a >Q ,\一次函数上升趋势.0m ³Q .q p \-有最小值,没有最大值.故选:C .【点拨】本题考查二次函数的性质,一次函数的性质.关键在于表示出q p -的代数值,从而转化为一次函数的性质.比较综合.2.C【分析】根据图象,直接代入计算即可解答解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C .【点拨】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.3.A解:因为,,这三个二次函数的图像对称轴为0x =,所以都关于轴对称,故选项A 正确;抛物线,的图象开口向上,抛物线的图象开口向下,故选项B 错误;抛物线,的图象不经过原点,故选项C 错误;因为抛物线,,的二次项系数不相等,故不能通过平移其它二次函数的图象,故D 选项错误;故选A.4.C【分析】根据二次函数的性质得出,a决定开口大小以及方向,再利用顶点坐标位置得出不同.解:y=12x2+1与y=12x2的图象顶点坐标为:(0,1),(0,0),故图象的不同之处是顶点坐标位置.故答案选:C.【点拨】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质.5.B【分析】根据题目中的函数解析式和二次函数的性子可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵二次函数y=x2-1,∴该函数图象开口向上,故选项A错误;对称轴是y轴,故选项B正确;当x=0时,y=-1,故选项C错误;在对称轴右侧,抛物线从左到右上升,故选项D错误;故选:B.【点拨】本题考查了二次函数的性质、二次函数的图象、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.6.D【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.解:∵二次函数y=﹣x2+x=﹣(x12-)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x =12时取得最大值14,该函数有最高点,故选项C 错误;在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点拨】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.7.B【分析】根据二次函数22,y ax y ax k ==+ 的性质逐个判断即可.解:抛物线y =212018x ,y =﹣2018x 2+2019,y =2018x 2共有的性质是对称轴都是y 轴,故选项B 正确;y =212018x 的开口向上,y =﹣2018x 2+2019的开口向下,y =2018x 2的开口向上,故选项A 错误;在y =212018x 中,当x >0时,y 随x 的增大而增大,在y =﹣2018x 2+2019中,当x >0时,y 随x 的增大而减小,在y =2018x 2中,当x >0时,y 随x 的增大而增大,故选项C 错误;抛物线y =212018x 和y =2018x 2有最低点,抛物线y =﹣2018x 2+2019有最高点,故选项D 错误;故选B .【点拨】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.8.D【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.解:∵y=−x 2+2,∴抛物线开口向下,对称轴为y 轴,顶点坐标为(0,2),在对称轴的右侧,y 随x 的增大而减小,在对称轴的左侧,y 随x 的增大而增大,∴A 、B 、C 都不正确,D 正确,故选D.【点拨】本题考查了二次函数的图象和性质.9.D【分析】先根据一次函数的性质确定a>0与a<0两种情况分类讨论抛物线的顶点位置即可得出结论.解:函数y=ax与y=ax2+a(a≠0)A. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数y=ax图形可得a>0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D.【点拨】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.10.C【分析】利用一次函数的性质判定m、n的符号,进一步判定二次函数的开口方向和对称轴的位置进行判断.解:若函数y=mx+n经过一二三象限,m>0,n>0,则二次函数y=mx2-nx的图象开口向上,对称轴x=-2n m->0,在y轴的右侧;若函数y=mx+n经过一二四象限,m<0,n>0,则二次函数y=mx2-nx的图象开口向下,对称轴x=-2n m-<0,在y轴的左侧;故选:C.【点拨】本题考查了一次函数的图象,二次函数的图象,熟练掌握二次函数的性质是解题的关键.11.D【分析】根据题意,连接DE,因为△PCD沿PD翻折,得到△PC′D,故有DP平分∠CPC′;又PE为∠BPC′的角平分线,可推知∠EPD=90°,又因为BP=x,BE=y,BC=4,AB=3,分别用x 和y表示出PD和EP和DE,在Rt△PED中利用勾股定理,即可得出一个关于x和y的关系式,化简即可.解:连接DE,△PCD沿PD翻折,得到△PC′D,故有DP平分∠CPC′;又因为PE为∠BPC′的角平分线,可推知∠EPD=90°,已知BP=x,BE=y,BC=4,AB=3,即在Rt△PCD中,PC=4-x,DC=3.即PD2=(4-x)2+9;在Rt△EBP中,BP=x,BE=y,故PE2=x2+y2;在Rt△ADE中,AE=3-y,AD=4,故DE2=(3-y)2+16,在Rt△PDE中,PE2+PD2=DE2,即x2+y2+(4-x)2+9=(3-y)2+16,化简得:y=-13x2+43x(04x££),图象是一段开口向下的抛物线;结合题意,只有选项D符合题意.故选:D.【点拨】本题考查了矩形的性质,折叠的性质,勾股定理,熟练掌握折叠的性质是解题的关键.12.C解:∵a=1>0,∴抛物线开口向上.∵二次函数表达式为y=x2+1,∴顶点坐标为(0,1),对称轴是直线x=0,即y轴.故选C.【点拨】此题考查了二次函数的图象,二次函数y=ax2+c(a≠0)的图象是顶点坐标为(0,c ),对称轴是y 轴的抛物线,a>时,开口向上,a<0时,开口向下.据此判断即可.13.C【分析】根据抛物线与212y x =的形状相同且开口向下,可知12a =-;再由顶点坐标为(0,-2)可得抛物线解析式为2122y x =--.解:∵抛物线与212y x =的形状相同且开口向下,∴12a =-∵顶点坐标为(0,-2)∴抛物线解析式为2122y x =--故答案是:C.【点拨】本题考查了2()y a x h k =-+中a 的意义及根据顶点坐标来写解析式,熟练掌握相关性质是解题的关键.14.D【分析】根据二次函数y=ax 2+c 的图象与y=2x 2的图象形状相同,开口方向相反,得到a=−2,然后把点(1,1)代入y=−2x 2+c 求出对应的c 的值,从而可得到抛物线解析式.解:∵二次函数y=ax 2+c 的图象与y=2x 2的图象形状相同,开口方向相反,∴a=−2,∴二次函数是y=−2x 2+c ,∵二次函数y=ax 2+c 经过点(1,1),∴1=−2+c ,∴c=3,∴抛该二次函数的解析式为y=−2x 2+3;故选D.【点拨】此题考查二次函数的性质,解题关键在于利用待定系数法求解.15.B【分析】与抛物线y =−45x2−1顶点相同,形状也相同,而开口方向相反的抛物线,即与抛物线y =−45x2−1只有二次项系数不同.解:与抛物线y =−45x2−1顶点相同,形状也相同,而开口方向相反的抛物线,即与抛物线y =−45x2−1只有二次项系数不同.即y=45x 2-1.故选B .【点拨】考查了二次函数图象与系数之间的关系,解题关键是运用了二次项系数确定函数开口方向.16.D【分析】与抛物线y=-x 2+1的顶点相同、形状相同,而开口方向相反的抛物线,即与抛物线y=-x 2+1只有二次项系数互为相反数.解:与抛物线y=-x 2+1顶点相同,形状也相同,而开口方向相反的抛物线,即与抛物线y=-x 2+1只有二次项系数互为相反数.即y=x 2+1,故选D .【点拨】考查了二次函数的性质,二次函数的解析式中,二次项系数确定函数开口方向.17.B【分析】根据a 确定抛物线的开口方向;令y=0解方程得到与x 轴的交点坐标;根据抛物线的对称轴、顶点坐标以及平移的性质,对各小题分析判断后即可得解.解:①∵a=-1<0,∴抛物线开口向下,故本小题错误;②令y=0,则-x 2+1=0,解得x 1=1,x 2=-1,所以,抛物线与x 轴交于点(-1,0)和点(1,0),故本小题正确;③抛物线的对称轴2b x a=-=0,是y 轴,故本小题正确;④抛物线的顶点坐标是(0,1),故本小题正确;⑤抛物线y=-x 2+1是由抛物线y=-x 2向上平移1个单位得到,故本小题正确;综上所述,正确的有②③④⑤共4个.故选B .【点拨】本题考查了二次函数的性质,理解二次函数图象与系数关系是关键.18.D解:∵①当x >0时,利用函数图象可以得出y 2>y 1;∴此选项错误;∵抛物线y 1=﹣2x 2+2,直线y 2=2x+2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;∴②当x <0时,根据函数图象可以得出x 值越大,M 值越大;∴此选项错误;∵抛物线y 1=﹣2x 2+2,直线y 2=2x+2,与y 轴交点坐标为:(0,2),当x=0时,M=2,抛物线y 1=﹣2x 2+2,最大值为2,故M 大于2的x 值不存在;∴③使得M 大于2的x 值不存在,此选项正确;∵使得M=1时,可能是y 1=﹣2x 2+2=1,解得:x 1,x 2=,当y 2=2x+2=1,解得:x=﹣12,由图象可得出:当>0,此时对应y 2=M ,∵抛物线y 1=﹣2x 2+2与x 轴交点坐标为:(1,0),(﹣1,0),∴当﹣1<x <0y 1=M ,故M=1时,x 1x=﹣12,故④使得M=1的x 值是﹣12故正确的有:③④.故选D .19.D解:∵22y x x =-,2211y x x =-+-,211y x =--(),∴顶点坐标是:(1,-1),对称轴是直线x =1,∵a =1>0,∴开口向上,有最小值,∵当x =0时,2220200y x x =-=-´=,∴图象经过坐标原点,故选D .【点拨】先用配方法把二次函数化成顶点式,就能判断选项A 、B 的正确与否,由a 的正负判断有最大值和最小值,由(0,0)是否满足 判断D 的正确与否.20.B解:函数与y 轴交于(0,2)点,与x 轴交于(-2,0)和(2,0)两点,则三点构成的三角形面积S 1=4,则以半径为2的半圆的面积为S 2=π×12×22=2π,则阴影部分的面积S 有:4<S <2π.因为选项A 、C 、D 均不在S 取值范围内.故选 B21【分析】由解析式是二次函数可知22k = ,再由图像的开口向上得10k ->,由此求解即可.解:∵()213k y k x =-+是二次函数,∴22k =,解得k =∵图像的开口向上,∴10k ->即1k >,∴k =.【点拨】本题考查了二次函数的定义与二次函数图像的性质,熟知 图像开口向上时,a >0,图像开口向下时,a <0是解题的关键.22.-2【分析】根据二次函数的性质即可求得最值解:由于二次函数y =-3x 2-2的图象是抛物线,开口向下,对称轴为y 轴, 所以当x =0时,函数取得最大值为-2,故答案为-2.【点拨】本题考查了二次函数y =a x 2+k 的性质,熟练掌握二次函数y =ax 2+k 的性质是解题的关键.23.3.【分析】根据二次函数的性质求出函数的最小值即可.解:∵y=3x 2+3=3(x+0)2+3,∴顶点坐标为(0,3).∴该函数的最小值是3.故答案为:3.【点拨】本题考查了二次函数的性质,二次函数的最值,正确的理解题意是解题的关键.24.y 轴或直线0x =【分析】根据2b x a=-计算即可;解:∵二次函数2122y x =--,∴对称轴为02b x a=-=;故答案是:y 轴或直线0x =.【点拨】本题主要考查了二次函数对称轴的求解,准确计算是解题的关键.25.0x ³【分析】由于抛物线y=2x 2-1的对称轴是y 轴,所以当x≥0时,y 随x 的增大而增大.解:∵抛物线y=2x 2-1中a=2>0,∴二次函数图象开口向上,且对称轴是y 轴,∴当x≥0时,y 随x 的增大而增大.故答案为:0x ³.【点拨】本题考查了抛物线y=ax 2+b 的性质:①图象是一条抛物线;②开口方向与a 有关;③对称轴是y 轴;④顶点(0,b ).26.﹣3≤y≤5解:试题分析:可先求得二次函数的对称轴为x=0,在对称轴两侧分别求其最值,可求得答案.解:∵y=2x 2﹣3,∴抛物线开口向上,对称轴为x=0,∴当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大,当x=0时,y 有最小值,最小值为﹣3,当﹣1≤x <0时,可知当x=﹣1时,y 有最大值,最大值为﹣1,当0≤x≤2时,可知当x=2时,y 有最大值,最大值为5,∴当﹣1≤x≤2时,y 的取值范围是﹣3≤y≤5,故答案为﹣3≤y≤5.【点评】本题主要考查二次函数的性质,掌握二次函数的增减性是解题的关键.27.y 3<y 1<y 2【分析】先根据抛物线解析式得到抛物线的开口方向和对称轴,然后根据二次函数的性质,通过三点与对称轴距离的远近来比较函数值的大小.解:∵22y x a =-+,∴抛物线开口向下,对称轴为y 轴,∵而B (0,y 2)在对称轴上,A (﹣1,y 1)到对称轴的距离比C (2,y 3)近,∴y 3<y 1<y 2.故答案为:y 3<y 1<y 2.【点拨】本题考查了二次函数的图象和性质,能熟记二次函数的性质是解此题的关键.28.3【分析】在同一坐标系中画出两个函数的图象,观察最大值的位置,通过求函数值,求出最大值.解:画出函数24y x =-+和3y x =的图象,如图:由图可知:当x =1时,函数有最大值,最大值为3,所以{}2min 4,3x x -+的最大值为3,故答案为:3.【点拨】本题考查了二次函数的性质和正比例函数的性质,画出函数的图象,数形结合容易求解.29.6解:∵抛物线y=ax 2+3与y 轴交于点A ,∴A 点坐标为(0,3).当y=3时,213x 3=,解得x=±3.∴B 点坐标为(﹣3,3),C 点坐标为(3,3).∴BC=3﹣(﹣3)=6.30.1【分析】把点的坐标代入解析式,得6=4a +2,解方程即可.解:∵抛物线22y ax =+经过点()2,6-,∴6=4a +2,解得a =1,故答案为:1.【点拨】本题考查了抛物线与点的关系,熟记图像过点,点的坐标满足函数的解析式是解题的关键.31.2解:∵二次函数y=2x 2的图象沿y 轴向上平移2个单位长度后与抛物线交于A ,B 两点,∴2x 2=2,x=±1,∴A ,B 两点相当于在原坐标系中的坐标为(-1,2),(1,2),∴S △OAB =12×2×2=2,故答案为2.32. (0,2) 312c -£<-【分析】(1)令0x =即可求出格点坐标;(2)画出抛物线212y x c =+的大致图像,求出取值范围即可得出答案.解:(1)Q 横、纵坐标都为整数的点称为格点,由图可知,当0x =时,2y =,\直线2y =+上的格点坐标为(0,2),故答案为:(0,2);(2)Q 抛物线212y x c =+与x 轴所围成的封闭图形(不含边界)中仅有一个格点,如图所示:当0x =时,1y <-,即1c <-,当1x =时,21112y c =´+>-,即32c >-,312x \-<<-.故答案为:312x -<<-.【点拨】本题考查一次函数性质以及二次函数性质,掌握格点的定义是解决本题的关键.33.y =-x 2+1【分析】首先根据在对称轴右侧部分是下降确定其开口方向,然后根据经过的点的坐标确定解析式即可.解:∵在对称轴右侧部分是下降,∴设抛物线的解析式可以为y=-x2+b,∵经过点(0,1),∴解析式可以是y=-x2+1,故答案为:y=-x2+1.【点拨】本题考查了二次函数的性质,掌握二次函数在对称轴两侧的增减性相反是解题的关键,即根据增减性可以确定出开口方向进而确定出a的符号.34.抛物线 y=14x2+1【分析】当点B在x轴的正半轴上时,如图1,连接PA,作AC⊥PB于点C,则四边形AOBC 是矩形,由P在AB的垂直平分线上可得PA=PB,进而可用y的代数式表示出PC、AP,在Rt△APC中根据勾股定理即可得出y与x的关系式;当点B在x轴的负半轴上时,用同样的方法求解即可.解:当点B在x轴的正半轴上时,如图1,连接PA,作AC⊥PB于点C,则四边形AOBC 是矩形,∴AC=OB=x,BC=OA=2,∵P在AB的垂直平分线上,∴PA=PB=y,在Rt△APC中,AC2+PC2=AP2,∴x2+(y−2)2=y2,整理得y=14x2+1;当点B在x轴的负半轴上时,如图2,同理可得y ,x满足的关系式是:y=14x2+1,∴y ,x满足的关系式是:y=14x2+1.故答案为:抛物线、y=14x2+1.【点拨】本题考查了线段垂直平分线的性质、勾股定理和求解图形中的二次函数关系式,难度不大,构建直角三角形、熟练掌握线段垂直平分线的性质和勾股定理是解题关键.35.22y x =-+(答案不唯一)【分析】根据抛物线开口方向得出a 的符号,进而得出c 的值,即可得出二次函数表达式.解:∵图象为开口向下,并且与y 轴交于点(0,2),∴a <0,c=2,∴二次函数表达式为:y=-x 2+2(答案不唯一).故答案为y=-x 2+2(答案不唯一).【点拨】本题考查了二次函数的图像特征及性质,掌握二次函数的图像特征及性质是解题的关键.36.﹣5.根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得212a b c c a b c -+=-ìï=íï++=-î,解得,301a b c =-ìï=íï=î,函数解析式为y=﹣3x 2+1x=2时y=﹣11,故答案为﹣5.【点拨】本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.37.2【分析】设p (x ,14x 2-1),则OH =|x |,PH =|14x 2-1|,因点P 在x 轴上方,所以14x 2-1>0,由勾股定理求得OP=14x2+1,即可求得OP-PH=2,得出答案.解:设p(x,14x2-1),则OH=|x|,PH=|14x2-1|,当点P在x轴上方时,∴14x2-1>0,∴PH=|14x2-1|=14x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(14x2-1)2=(14x2+1)2,∴OP=14x2+1,∴OP-PH=(14x2+1)-(14x2-1)=2,故答案为:2.【点拨】本题考查二次函数图象上点的坐标特征,勾股定理,利用坐标求线段长度是解题的关键.38.4【分析】过点Q作QH⊥BG,垂足为H,求出PH,设CG=2x,利用勾股定理表示出PQ,根据x 的值即可求出PQ的最小值.解:如图,过点Q作QH⊥BG,垂足为H,∵P,Q分别为BC,EF的中点,BG=8,∴H为CG中点,∴PH=4,设CG=2x,则CH=HG=EQ=x,QH=2x,∴PQ则当x=0时,PQ最小,且为4,故答案为:4.【点拨】本题考查了二次函数的实际应用,勾股定理,线段最值问题,解题的关键是表示出PQ 的长.39.52【分析】根据二次函数的解析式可知对称轴为y 轴,分别令x=0,y=0,可得出A 、B 、D 的坐标,可得OD 、OA 、OB 的长,根据AB 为直径,可求出OC 的长,进而可求出CD 的长,解:∵抛物线的解析式为23322y x =-,∴对称轴为y 轴,当x=0时,y=32-,当y=0时,23322x -=0,解得:x 1=1,x 2=-1,∴A (-1,0),B (1,0),D (0,32-),∴OA=OB=1,OD=32,∵AB 为直径,y 轴为对称轴,∴原点O 为圆心,∴OC=OA=1,∴CD=OC+OD=1+32=52.故答案为:52【点拨】本题考查二次函数图象与坐标轴交点问题,正确求出A 、B 、D 三点坐标是解题关键.40.③④【分析】根据二次函数和一次函数的图像与性质即可得出答案.解:由题可得,函数图像如图所示()212222221y y x x x x -=-+--=-+∴当-1<x<0时,12y y >;当x=-1时,12=y y ;当x<-1时,12y y <,故①错误;由①可知,当x<0时,抛物线与直线的交点坐标为(-1,0)结合图示,可知,当-1<x<0时,M=2y ,当x 越大时,M 越大;当x=-1时,M=12=y y ;当x<-1时,M=1y ,当x 越大时,M 越大,故②错误;由以上分析可知,当x≥0时,21y y >,则M=1y ,此时12y £,故2M £;当-1<x<0时,M=2y ,解得0<M<2;当x≤-1时,M=1y ,解得M≤0,故③正确;由③可得M=1的情况有两种:(1)当x≥0时,即2122x =-+,解得;(2)当-1<x<0时,2x+2=1,解得x=12-,故④正确;故答案为③④.【点拨】本题考查的是二次函数和一次函数的图像与性质,难度较大,需要熟练掌握并灵活运用相关基础知识.41.(1)抛物线212y x =,2132y x =+与2132y x =-开口都向上,对称轴都是y 轴,顶点坐标依次是(0,0)、(0,3)和(0,-3).(2)开口向上,对称轴是y 轴(或直线0x =),顶点坐标为(0,c ).【分析】(1)首先利用取值、描点、连线的方法作出三个函数的图象,根据二次函数图象,可得二次函数的开口方向,对称抽,顶点坐标,通过观察归纳它们之间的关系.(2)由(1)的规律可得抛物线212y x c =+的开口方向,对称轴及顶点坐标.解:(1)列表:x …-3-2-10123…212y x = (1)422120122142…描点、连线,可得抛物线212y x =.将212y x =的图象分别向上和向下平移3个单位,就分别得到2132y x =+与2132y x =-的图象(如图所示).抛物线212y x =,2132y x =+与2132y x =-开口都向上,对称轴都是y 轴,顶点坐标依次是(0,0)、(0,3)和(0,-3).(2)抛物线212y x c =+的开口向上,对称轴是y 轴(或直线0x =),顶点坐标为(0,c ).【点拨】本题考查了二次函数的图象和性质,画出图象,发现图象的变化规律是解答此题的关键.42.(1)x≠0;(2)C ;(3)2,2;(4)y ⩾7.【分析】(1)根据分母不能等于零,可以解答本题;(2)根据函数解析式可以判断函数图象所在的位置,本题得以解决;(3)根据题目中的解答过程可以将没写的补充完整;(4)根据(3)的特点可以解答本题.解:(1)∵4y x x =+,∴x≠0,故答案为x≠0;(2)∵4y x x =+,∴x>0时,y>0,当x<0时,y<0,故选项B. D 错误,。

《二次函数》全章复习与巩固—巩固练习(基础)

《二次函数》全章复习与巩固—巩固练习(基础)

《二次函数》全章复习与巩固—巩固练习(基础)【巩固练习】 一、选择题1.将二次函数2y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ). A .2(1)2y x =-+ B .2(1)2y x =++ C .2(1)2y x =-- D .2(1)2y x =+- 2.二次函数y=ax 2与一次函数y=ax+a 在同一坐标系中的大致图象为( )3.抛物线2y x bx c =++图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为223y x x =--,则b 、c 的值为( ).A .b =2,c =2B .b =2,c =0C .b =-2,c =-1D .b =-3,c =2 4. 抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .22y x x =-- B .211122y x x =-++ C .211122y x x =--+ D .22y x x =-++ 5.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①240b ac ->;②abc >0;③8a+c >0;④9a+3b+c <0.其中,正确结论的个数是( ). A .1 B .2 C .3 D .4第4题 第5题6.已知点(1x ,1y ),(2x ,2y )(两点不重合)均在抛物线21y x =-上,则下列说法正确的是( ). A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y >7.二次函数y=ax 2+bx+c 与一次函数y=ax+c ,它们在同一直角坐标系中的图象大致是( )8.已知二次函数2y ax bx c =++(其中0a >,0b >,0c <),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的有( ).A .0个B .1个C .2个D .3个二、填空题9.已知抛物线2(0)y ax bx c a =++>的对称轴为直线1x =,且经过点1(1,)y -,2(2,)y ,试比较1y 和2y 的大小:1y ________2y (填“>”,“<”或“=”).10.抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为___ _____.11.抛物线22(2)6y x =--的顶点为C ,已知y =-kx+3的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为________.12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为___ _____.第10题 第12题 第13题13.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是________.14.烟花厂为扬州“4·18”烟花三月经贸旅游节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为________.15.已知抛物线2y ax bx c =++经过点A(-1,4),B(5,4),C(3,-6),则该抛物线上纵坐标为-6的另一个点的坐标是________.16.若二次函数26y x x c =-+的图象过A(-1,y 1)、B(2,y 2)、C(32+,y 3)三点,则y 1、y 2、y 3大小关系是 .三、解答题17.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体运动(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.18. 如图所示,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上、下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?19.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元. (1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?20. 王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用了30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量)y 的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益量y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求王亮解题的学习收益量y 与用于解题的时间x 之间的函数关系式,并写出自变量x 的取值范围; (2)求王亮回顾反思的学习收益量y 与用于回顾反思的时间x 之间的函数关系式; (3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大? (注:学习收益总量=解题的学习收益量+回顾反思的学习收益量)【答案与解析】 一、选择题 1.【答案】A ;【解析】2y x =向右平移1个单位后,顶点为(1,0),再向上平移2个单位后,顶点为(1,2),开口方向及大小不变,所以1a =,即2(1)2y x =-=.2.【答案】C ;【解析】①当a >0时,二次函数y=ax 2的开口向上,一次函数y=ax+a 的图象经过第一、二、三象限,排除A 、B ;②当a <0时,二次函数y=ax 2的开口向下,一次函数y=ax+a 的图象经过第二、三、四象限,排除D . 故选C .3.【答案】B ;【解析】2223(1)4y x x x =--=--,把抛物线2(1)4y x =--向左平移2个单位长度,再向上平移3个单位长度后得抛物线2(1)1y x =+-,∴ 222(1)12y x bx c x x x =++=+-=+,∴ b =2,c =0.因此选B .4.【答案】D ;【解析】由图象知,抛物线与x 轴两交点是(-1,0),(2,0),又开口方向向下,所以0a <,抛物线与y 轴交点纵坐标大于1.显然A 、B 、C 不合题意,故选D . 5.【答案】D ;【解析】抛物线与x 轴交于两点,则0b <. 由图象可知a >0,c <0, 则b <0,故abc >0.当x =-2时,y =4a-2b+c >0. ∵ 12bx a=-=,∴ b =-2a , ∴ 4a-(-2a)×2+c >0,即8a+c >0.当x =3时,y =9a+3b+c <0,故4个结论都正确. 6.【答案】D ;【解析】画出21y x =-的图象,对称轴为0x =,若12y y =,则12x x =-;若12x x =-,则12y y =;若120x x <<,则21y y >;若120x x <<,则12y y >.7.【答案】A ; 8.【答案】C ;【解析】∵ 0a >,0b >,∴ 抛物线开口向上,02bx a=-<,因此抛物线顶点在y 轴的左侧,不可能在第四象限;又0c <, 120cx x a=<·,抛物线与x 轴交于原点的两侧, 因此①③是正确的.二、填空题 9.【答案】>;【解析】根据题意画出抛物线大致图象,找出x =-1,x =2时的函数值,比较其大小,易如12y y >. 10.【答案】223y x x =-++;【解析】由题意和图象知抛物线与x 轴两交点为(3,0)、(-1,0),∴ 抛物线解析式为(3)(1)y x x =--+,即223y x x =-++.11.【答案】1; 【解析】92k =,932y x =-+,与坐标轴交点为(0,3),2,03⎛⎫ ⎪⎝⎭. 12.【答案】 x 1=3或x 2=-1 ;【解析】由二次函数22y x x m =-++部分图象知,与x 轴的一个交点为(3,0).代入方程得m =3,解方程得x 1=3或x 2=-1.13.【答案】-1;【解析】因为抛物线过原点,所以210a -=,即1a =±,又抛物线开口向下,所以a =-1. 14.【答案】4s ; 【解析】204(s)522t =-=⎛⎫⨯- ⎪⎝⎭.15.【答案】(1,-6);【解析】常规解法是先求出关系式,然后再求点的坐标,但此方法繁琐耗时易出错,仔细分析就会注意到:A 、B 两点纵坐标相同,它们关于抛物线对称轴对称,由A(-1,4),B(5,4)得,对称轴1522x -+==,而抛物线上纵坐标为-6的一点是(3,-6),所以它关于x =2的对称点是(1,-6).故抛物线上纵坐标为-6的另一点的坐标是(1,-6).16.【答案】y 1>y 3>y 2. 【解析】因为抛物线的对称轴为6323x -==⨯.而A 、B 在对称轴左侧,且y 随x 的增大而减小, ∵ -1<2,∴ y 1>y 2,又C 在对称轴右侧,且A 、B 、C 三点到对称轴的距离分别 为2,1,2,由对称性可知:y 1>y 3>y 2.三、解答题17.【答案与解析】(1)2233519315524y x x x ⎛⎫=-++=--+ ⎪⎝⎭.∵ 305-<,∴ 函数的最大值是194. ∴ 演员弹跳离地面的最大高度是194米.(2)当x =4时,234341 3.45y BC =-⨯+⨯+==.∴ 这次表演成功.18.【答案与解析】 (1)横向甬道的面积为1201801502x +=(m 2). (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯,整理得21557500x x -+=,解得x 1=5,x 2=150(不合题意,舍去).∴ 甬道的宽为5米.(3)设建花坛的总费用为y 万元,则21201800.0280(1601502) 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦. ∴ y =0.04x 2-0.5x+240. 当0.56.25220.04b x a =-==⨯时,y 的值最小. ∵ 根据设计的要求,甬道的宽不能超过6 m .∴ 当x =6m 时,总费用最少,为0.04×62-0.5×6+240=238.44(万元).19.【答案与解析】(1)由题意可知,当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以5000350010025010x -≤+=,即100≤x ≤250时,购买一个需5000-10(x-100)元.故y 1=6000x-10x 2;当x >250时,购买一个需3500元. 故y 1=3500x .所以215000(0100),600010(100250),3500(250),x x y x xx x x ≤≤⎧⎪=-<≤⎨⎪>⎩y 2=5000×80%x =4000x .(2)当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x-10x 2=-10(x-300)2+900000<1400000; 所以,由3500x =1400000,得x =400. 由4000x =1400000,得x =350.故选择甲商家,最多能购买400个路灯.20.【答案与解析】(1)设y =kx ,把(2,4)代入,得k =2,所以y =2x ,自变量x 的取值范围是:0≤x ≤30.(2)当0≤x <5时,设y =a(x-5)2+25, 把(0,0)代入,得25a+25=0,a =-1,所以22(5)2510y x x x =--+=-+. 当5≤x ≤15时,y =25.即210(05),25(515).x x x y x ⎧-+≤<=⎨≤≤⎩(3)设王亮用于回顾反思的时间为x(0≤x <5)分钟,学习收益总量为Z ,则他用于解题的时间为(30-x)分钟.当0≤x <5时,222102(30)860(4)76Z x x x x x x =-++-=-++=--+. 所以当x =4时,76Z =最大.当5≤x ≤15时,Z =25+2(30-x)=-2x+85. 因为Z 随x 的增大而减小, 所以当x =5时,75Z =最大.综合所述,当x =4时,76Z =最大,此时30-x =26.即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时.学习收益总量最大.。

人教版数学-九年级上册-第22章-二次函数-巩固练习(含答案)

人教版数学-九年级上册-第22章-二次函数-巩固练习(含答案)

人教版数学-九年级上册-第22章-二次函数-巩固练习(含答案)一、单选题1.二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④2a+b<0中,正确的有()A. 1个B. 2个C. 3个D. 4个2.函数中,当时,函数值的取值范围是()A. B. C. D.3.二次函数y=x2+mx+1的图象的顶点在坐标轴上,则m的值()A.0B.2C.±2D.0或±24.将抛物线y=3x2先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为()A. y=3(x+1)2+1B. y=3(x+1)2﹣1C. y=3(x﹣1)2+1D. y=3(x﹣1)2﹣15.抛物线y=﹣5x2﹣x+9与y轴的交点坐标为( )A. (9,0)B. (﹣9,0)C. (0,﹣9)D. (0,9)6.已知点M为某封闭图形边界上一定点,动点P从点M出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段MP的长为y.表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( )A. B. C. D.7.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A. 3sB. 4sC. 5sD. 6s8.将抛物线y=﹣5x2+1先向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为()A. y=﹣5(x+3)2﹣2B. y=﹣5(x+3)2﹣1C. y=﹣5(x﹣3)2﹣2D. y=﹣5(x﹣3)2﹣1二、填空题9.已知方程,请你通过变形把它写成一个你所熟悉的函数表达式的形式,则函数表达式为________,成立的条件是________,是________函数.10.军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹的飞行高度y(米)和飞行时间x(秒)的关系满足二次函数,由此可知,炮弹能命中________ 米远的地面目标.11.已知点A(-2,y1),B(,y2)在二次函数y=x2-2x-m的图象上,则y1________y2(填“>”、“=”或“<”).12.请选择一组你喜欢的a,b,c的值,使二次函数的图象同时满足下列条件:①开口向下,②当时,随的增大而增大;当时,y随x的增大而减小.这样的二次函数的表达式可以是________13.一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣,那么铅球运动过程中最高点离地面的距离为________米.14.如果一条抛物线的形状与y=﹣2x2+2的形状相同,且顶点坐标是(4,﹣2),则它的解析式是________.15.若将图中的抛物线y=x2-2x+c向上平移,使它经过点(2,0),则此时的抛物线位于x轴下方的图象对应x的取值范围是________.16.把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为________.三、解答题17.小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?18.”4.20芦山地震”发生后,各地积极展开抗震救援工作,一支救援车队经过如图1所示的一座拱桥,拱桥的轮廓是抛物线型,拱高6m,跨度20m,相邻两支柱间的距离均为5m,将抛物线放在所给的直角坐标系中(如图2所示),拱桥的拱顶在y轴上.(1)求拱桥所在抛物线的解析式;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2m、高2.4m的三辆汽车(隔离带与内侧汽车的间隔、汽车间的间隔、外侧汽车与拱桥的间隔均为0.5m)?请说说你的理由.四、综合题19.已知二次函数y1=m(x﹣1)(x+3)(m≠0)的图象经过点.(1)求二次函数的解析式;(2)当x取a,b(a≠b)时函数值相等,求x取a+b时的函数值;(3)若反比例函数y2=(k>0,x>0)的图象与(1)中的二次函数的图象在第一象限内的交点为A,点A的横坐标x满足2<x0<3,试求实数k的取值范围.20.已知二次函数的图象以为顶点,且过点.(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将函数图象向左平移多少个单位,该函数图象恰好经过原点.答案一、单选题1.【答案】 C【解析】【解答】解:抛物线开口向下,则a<0,所以①选项正确;抛物线与y轴的交点在x轴上方,则c>0,所以②选项正确;抛物线与x轴有两个交点,则b2﹣4ac>0,所以③选项正确;抛物线的对称轴为直线x=﹣=,则2b=﹣6a,即2a+b=﹣a>0,所以④选项错误;故答案为:C.【分析】根据二次函数图象的开口方向、与坐标轴的交点、对称轴的位置分别对四个选项进行判断。

人教版(2024)数学九年级上册第二十二章 二次函数 本章复习与测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 本章复习与测试(含答案)

第二十二章 二次函数一、选择题1. 已知函数 y =(m−3)x m2−7是二次函数,则 m 的值为 ( )A . −3B . ±3C . 3D . ±72. 把抛物线 y =x 2+1 向右平移 3 个单位,再向下平移 2 个单位,得到抛物线的解析式为 A .y =(x +3)2−1B .y =(x +3)2+3C .y =(x−3)2−1D .y =(x−3)2+33. 已知函数 y =(k−3)x 2+2x +1 的图象与 x 轴有交点.则 k 的取值范围是 ( ) A . k <4B . k ≤4C . k <4 且 k ≠3D . k ≤4 且 k ≠34. 已知 A (4,y 1),B (1,y 2),C (−3,y 3) 在函数 y =−3(x−2)2+m (m 为常数)的图象上,则 y 1,y 2,y 3 的大小关系是 ( ) A . y 3<y 1<y 2B . y 1<y 3<y 2C . y 3<y 2<y 1D . y 1<y 2<y 35. 已知二次函数 y =x 2−6x +m (m 为常数)的图象与 x 轴的一个交点为 (1,0),则关于 x 的一元二次方程 x 2−6x +m =0 的两个实数根是 ( ) A . x 1=1,x 2=−1 B . x 1=−1,x 2=3 C . x 1=−1,x 2=4D . x 1=1,x 2=56. 如图是一个横断面为抛物线形状的拱桥.当水面在 l 时,拱顶(拱桥洞的最高点)离水面 2 m ,水面宽 4 m .如图建立平面直角坐标系,则抛物线的关系式是A .y =−12x 2B .y =2x 2C .y =−2x 2D .y =12x 27. 如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx−8=0(a≠0)的一个根为4,那么该方程的另一个根为( )A.−4B.−2C.1D.38. 如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为−3和1;④a−2b+c≥0,其中正确的命题是( )A.①②③B.①③C.①④D.①③④二、填空题9. 二次函数y=−(x+5)2−3,图象的顶点坐标是.10. 如果二次函数的图象经过点(1,2),且在对称轴x=2的右侧部分是上升的,那么这个二次函数的解析式可以是(只要写出一个符合要求的解析式).11. 小明推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系为y=−1(x−4)2+3,则小明12推铅球的成绩是m.12. 当−3≤x≤2时,函数y=ax2−4ax+2(a≠0)的最大值是8,则a=.13. 如图,一次函数y=mx+n的图象与二次函数y=ax2+bx+c的图象交于A(−1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.14. 已知抛物线y=ax2+bx+c的部分图象如图所示,则抛物线与x轴负半轴的交点坐标是.15. 如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上.过点Aʹ作x轴的平行线交抛物线于另一点C.若点Aʹ的横坐标为1,则AʹC的长为.16. 如图,在平面直角坐标系中,正方形ABCD的三个顶点A,B,D均在抛物线y=ax2−4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC长为.三、解答题17. 已知二次函数y=x2−mx−m−3.(1) 求证:无论m为何值,此二次函数的图象与x轴都有两个不同的交点;(2) 若函数y的最小值为−2,求此二次函数的解析式,18. 已知二次函数y=−x2+2x+3.(1) 求函数图象的顶点坐标,并在图中画出这个函数的图象;(2) 根据图象,直接写出:①当函数值y为正数时,自变量x的取值范围;②当−2<x<2时,函数值y的取值范围.19. 百货商店服装柜在销售中发现:某童装每天可卖20件,每件盈利40元.为迎接“六一”儿童节,商场决定采取适当降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:每件童装降价1元,每天可多卖2件.(1) 要想平均每天获利1200元,那么每件童装应降价多少元?(2) 要使每天盈利最多,每件应降价多少元?20. 如图,已知抛物线y=x2−4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1) 求线段AD的长;(2) 平移该抛物线得到一条新抛物线,设新抛物线的顶点为Cʹ.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CCʹ平行于直线AD,求新抛物线对应的函数表达式.21. 音乐喷泉(如图①)可以使喷水造型随音乐的节奏起伏变化而变化.已知某种音乐喷泉喷出的水柱形状是抛物线,设其出水口为原点,出水口离岸边18 m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(如图②),这组抛物线的统一形式为y=ax2+bx.(1) 若k=1,且喷出的抛物线水柱最大高度为3 m,求此时a,b的值;(2) 若k=1,喷出的水柱恰好到达岸边,则此时喷出的抛物线水柱的最大高度是多少?(3) 若k=3,a=−2,则喷出的抛物线水柱能否到达岸边?722. 如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8 m,宽AB为2 m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到原点O的距离为6 m.(1) 求抛物线的解析式;(2) 如果该隧道内设双行道,现在一辆货运卡车高4.2 m,宽2.4 m,这辆货运卡车能否通过该隧道?通过计算说明你的结论.23. 学校”科技创新”社团向市场推出一种新型电子产品,试销发现:该电子产品的销售价格y(元/件)与销售量x(件)之间满足一次函数关系,其图象如图所示,已知该产品的成本价是40元/件,且销售价格高于成本价.(1) 求y与x之间的数关系式.(2) 求销售利润w(元)关于销售量x(件)的函数解析式,并求出当销售量为多少件时,销售利润最大?最大值是多少元?(3) 该社团继续开展科技创新,降低产品成本价格,预估当销售量在120件以上时,销售利润达到最大,则科技创新后该产品的成本价格应低于多少元?答案一、选择题1. A2. C3. B4. A5. D6. A7. B8. B二、填空题9. (−5,−3)10. y=x2−4x+5(答案不唯一)11. 1012. 27或−3213. x<−1或x>414. (−3,0)15. 316. 4三、解答题17.(1) 令x2−mx−m−3=0,则Δ=m2−4(−m−3)=m2+4m+12=(m+2)2+8>0.∴无论m为何值,此二次函数的图象与x轴都有两个不同的交点.(2) ∵函数y的最小值为−2,∴4×1×(−m−3)−(−m)24×1=−2.解得m1=m2=−2.∴此二次函数的解析式为y=x2+2x−1.18.(1) ∵y=−x2+2x+3=−(x−1)2+4,∴图象的顶点坐标为(1,4).图象如图.(2) ①当−1<x<3时,函数值y为正数.②当−2<x<2时,函数值y的取值范围为−5<y≤4.19.(1) 设每件童装应降价x元,根据题意列方程得(40−x)(20+2x)=1200,解得x1=20,x2=10.∵增加盈利,减少库存,∴x=10(舍去).答:每件童装降价20元.(2) 设每天销售这种童装利润为y元,则y=(40−x)(20+2x)=−2x2+60x+800=−2(x−15)2+1250.答:当每件童装降价15元时,能获最大利润1250元.20.(1) 由x2−4=0,得x1=−2,x2=2,∵点A位于点B的左侧,∴A(−2,0),∵直线y=x+m经过点A,∴−2+m=0,解得m=2,∴点D的坐标为(0,2),∴AD=OA2+OD2=22.(2) 设新抛物线对应的函数表达式为y=x2+bx+2,则y=x2+bx+2=(x+b2)2+2−b24,则点Cʹ的坐标为(−b2,2−b24),∵CCʹ平行于直线AD,且经过C(0,−4),∴直线CCʹ的表达式为y=x−4,∴2−b24=−b2−4,解得b1=−4,b2=6,∴新抛物线对应的函数表达式为y=x2−4x+2或y=x2+6x+2.21.(1) 当k=1时,抛物线的顶点在直线y=x上.∵抛物线y=ax2+bx的顶点坐标为(−b2a,−b24a),抛物线水柱最大高度为3 m,∴{−b2a=−b24a,−b24a=3.解得{a=−13,b=2.∴此时a,b的值分别是−13,2.(2) 当k=1时,抛物线的顶点在直线y=x上,∵喷出的水柱恰好到达岸边,出水口离岸边18 m,∴此时抛物线的对称轴为直线x=9.∴y=x=9.∴此时喷出的抛物线水柱的最大高度是9 m.(3) ∵y=ax2+bx的顶点(−b2a,−b24a)在直线y=kx上,且k=3,a=−27,∴−b2a ⋅k=−b24a,即−b−27×2×3=−b2−27×4.解得b=6或0(舍).∴抛物线的解析式为y=−27x2+6x.当y=0时,0=−27x2+6x.解得x1=21,x2=0.∵21>18,∴喷出的抛物线水柱能到达岸边.22.(1) 据题意,设抛物线的解析式为y=ax2+c.∵EO=6,∴c=6,∵D(4,2),∴16a+c=2,得a=−14,∴抛物线解析式为y=−14x2+6.(2) 当x=2.4时,y=4.56>4.2,故这辆货运卡车能通过该遂道.23.(1) 设y与x之间的函数关系式为y=kx+b.由题意,得{64=80k+b,70=50k+b.解得{k=−15,b=80.∴y=−15x+80.∵y>40,∴−15x+80>40.解得x<200.∴y与x之间的数关系式为y=−15x+80(0<x<200).(2) 由题意,得w=(y−40)x=(−15x+80−40)x=−15x2+40x=−15(x−100)2+2000.∵−15<0,0<x<200,∴当x=100时,w取得最大值,最大值为2000元.∴当销售最为100件时,销售利润最大,最大值是2000元.(3) 设科技创新后该产品的成本价格为a元.由题意,得w=(y−a)x=−15x2+(80−a)x.∵当销售量在120件以上时,销售利润达到最大,∴−80−a2×(−15)>120.解得a<32.答:科技创新后该产品的成本价格应低于32元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档