七年级数学下册 1.23幂的乘方与积的乘方练习题
幂的乘方与积的乘方(150题)
第1页.共23页幂的乘方与积的乘方一.选择题(本大题共23小题.共69.0分。
在每小题列出的选项中.选出符合题目的一项)1. 计算a 3⋅(a 3)2的结果是( ) A. a 8B. a 9C. a 11D. a 182. 下列运算正确的是( ) A. a 2+a 2=a 4B. a 3⋅a 4=a 12C. (a 3)4=a 12D. (ab)2=ab 23. 计算(−12a)3的结果是( ) A. −32aB. −12a 3C. −16a 3D. −18a 34. 计算(23)2013×1.52012×(−1)2014的结果是( ) A. 23B. 32C. −23D. −325. 计算(0.5×105)3×(4×103)2的结果是( ) A. 2×1013B. 0.5×1014C. 2×1021D. 8×10216. 计算a ·a 5−(2a 3)2的结果为( ) A. a 6−2a 5B. −a 6C. a 6−4a 5D. −3a 67. 350.440.530的大小关系是( )A. 350<440<530B. 530<350<440C. 530<440<350D. 440<530<350 8. 下列运算结果正确的是( ) A. a 2+a 3=a 5B. (a 4)3=a 12C. a 2·a 3=a 6D. (−a 2)4=−a 89. 设a =355.b =444.c =533.则a .b .c 的大小关系是( ) A. c <a <bB. a <b <cC. b <c <aD. c <b <a10. 计算a ⋅a 5−(−2a 3)2的结果为( ) A. −3a 6B. −a 6C. a 6−4a 5D. a 6−2a 511. 计算(23)2015×(32)2016的结果是( ) A. 23B. −23C. 32D. −3212. 若m .n 均是正整数.且2m+1⋅4n =64.则m +n 的所有可能值为( ) A. 3或4 B. 4或5C. 5或6D. 3或613. 若a =999999.b =119990.则下列结论正确是( )A. a <bB. a =bC. a >bD. ab =1第2页.共23页14. 计算[(23)2]3×[(32)2]2的结果是( ) A. 1B. 23C. (23)2D. (23)415. 已知a =96.b =314.c =275.则a .b .c 的大小关系是( ) A. a >b >cB. a >c >bC. c >b >aD. b >c >a16. 计算:(−0.25)12×413( ) A. −1B. 1C. 4D. −417. 下列运算错误的是( ) A. (2xy 2)2=4x 2y 4 B. (−12a 2b 3)2=14a 4b 6 C. (−3a 3b 4)3=−9a 9b 12D. (−12x 3y 2)3=−18x 9y 618. 已知x a =m .x b =n .则x 3a+2b =( ) A. m 3n 2B. m 3n2C. 3m +2nD. 3m2n19. 下列计算中.正确的是( ) A. a ⋅a 2=a 2B. (a 3)2=a 5C. (2a 2)3=8a 2D. −2a +3a =a20. 已知10a =5.则100a 的值是( ) A. 25B. 50C. 250D. 50021. 小明计算(−a ⋅a 2)3=(−1)3⋅a 3⋅(a 2)3=−a 3⋅a 6=−a 9时.第一步运算的依据是( ) A. 乘法分配律 B. 积的乘方法则 C. 幂的乘方法则D. 同底数幂的乘法法则 22. 下列计算正确的有( )①(−x)2=x 2 ②a −2=1a2(a ≠0)③2b 3×b 2=2b 6④(−2a 2b)2=4a 4b 2A. 1个B. 2个C. 3个D. 4个23. 下列等式中.正确的是( ) ①(−2x 2y 3)3=−6x 6y 9 ②(−a 2n )3=a 6n ③(3a 6)3=9a 18 ④(−a)5+(−a 2)3+(−a 4)=a 7 ⑤(−0.5)100×2101=(−0.5×2)100×2.A. ① ② ③ ④B. ② ③ ④C. ② ⑤D. ⑤二.填空题(本大题共35小题.共105.0分)24. 已知x =2m +1.y =3+4m .若用只含有x 的代数式表示y .则y = . 25. 若a =78.b =87.则5656= (用含a .b 的代数式表示). 26. 计算:(−3)2013×(−13)2011= .27. 计算:x2⋅x4−(2x3)2=______.28. 若a m=5.a n=2.则a m+3n=_____.29. 填空:(x3)4=.x4+x4=.(−x4)2=.30. 若4n+1−22n=48.则n的值为______.31. 计算:(−215)2019×(511)2020=____.32. 若m+3n−4=0.则3m⋅27n=__________.33. 计算:(−2a2b3)4=_________.34. 若3×9m×27m=311.则m的值为______ .35. 填空(结果用幂的形式表示):(1)29×59=( ______× ______ )9=;(2)(−10)12×(12)12=( ______× ______ )12=;(3)(−2)15×(14)15=( ______× ______ )15=.36. 数学注重逻辑思维.如计算(a5)2时.若忘记了法则.可以借助(a5)2=a5⋅a5=a5+5=a10.得到正确答案.你计算(a3)3−a2⋅a7的结果是.37. 计算:46×1212=.38. 若x+2y−5=0.则3x⋅9y的值为______.39. 比较大小[(−2)3]2______(−22)3.(填“>”.“<”或“=”)40. 已知a m=3.a2m+n=81.则a n=.41. 若4×8m×16m=29.则m的值为__________.42. 如果a.b.c满足2a=3.2b=5.2c=135.那么a.b.c满足的等式是.43. 计算:82021×(−0.125)2020=__________.44. 当今大数据时代.“二维码”具有存储量大.保密性强.追踪性高等特点.它已被广泛应用于我们的日常生活中.尤其在全球“新冠”疫情防控期间.区区“二维码”已经展现出无穷威力.看似“码码相同”.实则“码码不同”.通常.一个“二维码”由1000个大大小小的黑白小方格组成.其中大约80%的小方格专门用做纠错码和其他用途的编码.这相当于1000个方格中只有200个方格作为数据码.根据相关数学知识.这200个方格可以生成2200个不同的数据二维码.现有四名网友对2200的理解如下:(永远的神):2200就是200个2相乘.它是一个非常非常大的数.(懂的都懂):2200等于2002.(觉醒年代):2200的个位数字是6.第3页.共23页(强国有我):我知道210=1024.103=1000.所以我估计2200比1060大.其中对2200的理解错误的网友是(填写网名字母代号).45. 若x m=3.x n=5.则x2m+n的值为.46. 有下列运算: ①(−x2)3=−x5; ②3xy−3yx=0; ③3100×(−3)100=0; ④m⋅m5⋅m7= m12; ⑤3a4+a4=3a8; ⑥(x2)4=x16.其中正确的是(填序号).47. 计算:(−0.125)2023×82022=__________.48. 如果a=2333,b=3222,c=6111.那么a.b.c的大小关系是___________.49. 若n为正整数.且x2n=4.求(3x2n)2−4(x2)2n=______.50. 计算:a⋅a3=;(−xy2)3=;(2×10−7)2=.51. 若x=3m.y=27m−8.用x的代数式表示y.则y=__________.52. 已知a=212.b=38.c=54.则a.b.c的大小关系是______ .53. 已4m=a.8n=b.22m+3n=____.(用含a.b的式子表示)54. 已知x2n=3.则(19x3n)2⋅4(x2)2n的值为________.55. 若x.y均为实数.43x=2021.47y=2021.则:(1)43xy⋅47xy=(______ )x+y.(2)1x +1y=______ .56. 已学的“幂的运算”有:①同底数幂的乘法.②幂的乘方.③积的乘方.在“(a2⋅a3)2= (a2)2(a3)2=a4⋅a6=a10”的运算过程中.运用了上述幂的运算中的______ (按运算顺序填序号).57. 如果a m=p.a n=q(m,n是正整数)那么a3m=______.a2n=______.a3m+2n=______.58. 已知2m=a.32n=b.m.n为正整数.则25m+10n=______.三.计算题(本大题共20小题.共120.0分)59. 计算:(1)(m4)4⋅m4 (2)(a2)6−a4⋅a8.60. 计算:(1)a2·(−a2)3·(−a)3(2)2[(−c)3]3−(−c)4·c5(3)[(a−b)m]3·[(b−a)4]n(4)(a n)3·(a2)m−3(a3)n·a2·(a m−1)261. 计算:(1)(102)3.(2)(b5)5.(3)(a n)3.(4)−(x2)m.(5)(y2)3⋅y.(6)2(a2)6−(a3)4.第4页.共23页第5页.共23页62. 计算:(1)−2a ·(3b)2·(−4ab).(2)−2a 2⋅(12ab +b 2)−5a(a 2b −ab 2).63. 用简便方法计算:(1) [(12)2]6×(23)2;(2)(0.5×113)200×(−2×311)200;(3) 0.254×218×255.64. 计算下列各式.并用幂的形式表示结果.(1) −a ⋅(a 2b)4 (2)(−2x 2)3+4x 3⋅x 3(3) [2(a −b)2]3 (4) x ⋅(−x)3+(−x)⋅x 365. 计算:(1)(−3x 3)2−x 2⋅x 4−(x 2)3(2)x 2⋅x 5⋅x +(−2x 4)2+(x 2)466. 计算:(1)(−2a 2bc 3)4.(2)x 4⋅x 3⋅x +(x 4)2+(−2x 2)4 67. 计算:(1)−x 2⋅x 3+4x 3⋅(−x)2−2x ⋅x 4(2)−2m 2⋅m 3−(−3m)3⋅(−2m)2−m ⋅(−3m)468. 计算:(1)5(a 3)4−13(a 6)2 (2)7x 4·x 5·(−x)7+5(x 4)4−(x 8)2. (3)3(x 2)2·(x 2)4−(x 5)2·(x 2)2 (4)[(x +y)3]6+[(x +y)9]2.69. 计算:(1)(−3x 3)2−x 2⋅x 4−(x 2)3(2)x 2⋅x 5⋅x +(−2x 4)2+(x 2)470. 计算:(1) [(−3a 2b 3)3]2(2) (2)(−2xy 2)6+(−3x 2y 4)3 (3) (3)(−14)2018×161009(4) (4)(0.5×323)199×(−2×311)200.71. 计算(1)−a 4⋅a 3⋅a +(a 2)4−(−2a 4)2 (2)(−2xy 2)6+(−3x 2y 4)3 (3)(−3a 2b)3⋅(ab)2 (4)[(x +y)3]6+[(x +y)9]272. 计算:(1)(−a 2)3⋅a 3+(−a)2⋅a 7−5(a 3)3(2)x 5⋅x 7+x 6⋅(−x 3)2+2(x 3)473. 计算(1)(a 4)2+a 6⋅a 2(2)(m 3)3⋅(m 3)2(3)(a 2)3⋅(a 4)4(4)(b 4)2⋅b 2.74. 计算(1)(a3)2+(a2)3−a⋅a5(2)(−a n)2⋅a n+1−a⋅(−a n)3(n是正整数)(3)(a⋅a4⋅a5)2(4)(−2a2)2⋅a4−(−5a4)275. 计算:(1)x·x3+x2·x2(2)(−pq)3(3)−(−2a2b)4(4)a3·a4·a+(a2)4+(−2a4)2.76. 计算:(−2x2y)3+(3x2)2⋅(−x)2⋅(−y)377. 计算(1)(−m)4⋅m+m2⋅(−m)3(2)a10⋅a5−(−2a5)3+(−a3)578. 计算:(1)(−t4)3+(−t2)6(2)(m4)2+(m3)2−m(m2)2⋅m3四.解答题(本大题共72小题.共576.0分。
初一数学积的乘方与幂的乘方试题
初一数学积的乘方与幂的乘方试题1.计算的结果是( )A.B.C.D.【答案】D【解析】原式==.2.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a3【答案】D【解析】利用积的乘方以及幂的乘方法则进行计算即可求出答案.3.下列计算正确的是()A.x3•x2=2x6B.x4•x2=x8C.(-x2)3=-x6D.(x3)2=-x5【答案】C【解析】A、x3•x2=x5,故本选项错误;B、x4•x2=x6,故本选项错误;C、(-x2)3=-x6,故本选项正确;D、(x3)2=x6≠x-5,故本选项错误.4.下列各式中计算正确的是( )A.(ab2)3=ab6B.(3xy)2=6x2y2C.(-2a2)2=-4a4D.(a2b3)m=a2m b3m【答案】D【解析】直接应用积的乘方、幂的乘方的运算性质进行计算即可.5.下列运算正确的是()A.a3•a4=a12B.(-y3)3=y9C.(m3n)2=m5n2D.-2x2+6x2=4x2【答案】D【解析】A、应为a3•a4=a7,故本选项错误;B、应为(-y3)3=-y9,故本选项错误;C、应为(m3n)2=m6n2,故本选项错误;D、-2x2+6x2=4x2,故本选项正确.6.(-a2b)2•a= _______.【答案】a5b2【解析】(-a2b)2•a=a4b2a=a5b2.7.已知10m=2,10n=3,则103m+2n=______.【答案】72【解析】103m+2n=103m102n=(10m)3(10n)2=23•32=8×9=72.8.计算:-(-3a2b3)4的结果是_______.【答案】-81a8b12【解析】-(-3a2b3)4=-(-3)4a8b12=-81a8b12.9.计算:0.1252013×(-8)2014=______.【答案】8【解析】0.1252013×(-8)2014=(-0.125×8)2013×(-8)=(-1)×(-8)=8.10. 93=3m,则m=______.【答案】6【解析】∵93=(32)3=36,∴m=6.。
同底数幂、幂的乘方、积的乘方知识点及习题
幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例1: 计算列下列各题 (1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-练习:简单 一选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
2、 b 2·b ·b 7=________。
3、103·_______=10104、(-a)2·(-a)3·a5=__________。
5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。
北师大版七年级下册数学 1.2幂的乘方与积的乘方 同步练习(含答案)
1.2幂的乘方与积的乘方一、单选题1.下列运算正确的是( )A .()1432a a =B .22(2)4a a -=-C .339a a a ⋅=D .22()ab ab = 2.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += 3.如果()2368nx y x y =,则n 的值为( ) A .2 B .3 C .6 D .4 4.若31,27m m x y -=-=,用x 的代数式表示y 为( ) A .33y x =+ B .3(1)y x =+ C .31(1)y x =- D .31(1)y x =+ 5.若3,2x y a a ==,则2x y a +等于( )A .6B .8C .12D .18 6.计算20206060(0.125)(2)-⨯的结果是( )A .1B .1-C .8D .8- 7.若()-=-n m mn x x ,则( )A .m ,n 均为奇数B .m ,n 均为偶数C .m 为奇数,n 为偶数D .不论m 为奇还是偶数,n 为奇数 8.下列各式中,正确的是( )A .()32222()m m m ⎡⎤-⋅-=⎣⎦B .()236x x -=C .()336a a a -⋅=D .()222422a a a -= 9.已知32282m ⨯=,则m 的值为( )A .18B .9C .10D .11 10.已知a=42,b=58 , c=(-10)4 , 则a ,b ,c 三个数的大小关系是( ) A .b>c> aB .b>a> cC .c>a>bD .a>b>c二、填空题11.化简:53y y ⋅=____;()43x -=_____; 12.若出35x y +=,则28x y ⨯=________.13.计算:3213a b ⎛⎫= ⎪⎝⎭- ________. 14.()32-的底数是__________,运算结果是__________;23-的底数是_____________,运算结果是________.15.若5554443333,4,5a b c ===,则a 、b 、c 的大小关系为_________________.三、解答题16.计算:2342552()()x x x x x x ⋅⋅⋅+-+- 17.已知()()()142313n n x x x +-=⋅,求()32n -的值. 18.尝试解决下列有关幂的问题:(1)若1632793m m ⨯÷=,求m 的值;(2)已知2,3,x y a a =-=求32x y a -的值;(3)若n 为正整数,且24n x =,求()()223234n n x x -的值参考答案1.A 2.B 3.D 4.D 5.D 6.A 7.D 8.B 9.B 10.A 11.8y 12x 12.3213.63127a b - 14.-2 -8 3 -9 15.c <a <b16.10x17.-118.(1)15;(2)89-;(3)512。
北师大版七年级数学下册专项练习题-幂的乘方及积的乘方(含答案)
A. a>b>cB. a>c>bC. c>b>aD. b>c>a
5.新冠肺炎疫情肆虐全球,截止2020年北京时间11月1日零时全球新冠肺炎确诊病例已超质过4600万例.将数4600万用科学记数法表示为()
A. B. C. D.
6.如果(an•bmb)3=a9b15,那么( )
则 ,
因此 ,
,
,
,
故答案为: .
三、解答题
19.计算:(-2xy2)6+(-3x2y4)3;
【答案】37x6y12;
【解析】
(-2xy2)6+(-3x2y4)3,
=64x6y12-27x6y12,
=37x6y12.
20.小明做了这样一道题,他的方法如下:
.
请你用他的方法解下面题目.
设 , ,求 的值.
故选:C.
6.如果(an•bmb)3=a9b15,那么( )
A. m=4,n=3B. m=4,n=4
C. m=3,n=4D. m=3,n=3
【答案】A
【解析】
解:∵(anbmb)3=a9b15,∴(an)3(bm)3b3=a3nb3m+3=a9b15,
∴3n=9,3m+3=15,
解得:m=4,n=3,
=22+33−22×32
=4+27−4×9
=−5.
22.已知am=2,an=4,求下列各式的值:(1)am+n;(2)a3m+2n
【答案】(1)23或8;(2)27或128.
【解析】
(1) =2×4=8;
(2) = =8×16=128.
23.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.
(完整版)七年级下册-同底数幂的乘法、幂的乘方与积的乘方练习
❖ 知识点一:同底数幂的乘法大山坪一长方形草坪的长比宽多2米,如果草坪的长和宽都增加3米,则这个长方形草坪的面积将增加75平方米,这块草坪原来的长和宽各是多少米? 解:设这个长方形草坪的宽是x 米,则长为(x+2)米。
x ( x+2)+75=(x+3)(x+5)解这个方程需要用到整式的乘法。
思考: a n 表示的意义是什么?其中a 、n 、a n分 别叫做什么?概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.问题:25表示什么?10×10×10×10×10 可以写成什么形式?25= . 10×10×10×10×10 = .思考: 式子103×102的意义是什么?幂的运算知识讲解这个式子中的两个因数有何特点?先根据自己的理解,解答下列各题。
103×102 =23×22 =a3×a2 =思考:观察下面各题左右两边,底数、指数有什么关系?103×102 = 10() = 10();23×22 = 2() = 2();a3× a2 = a()= a()。
猜想: a m · a n=? (当m、n都是正整数)分组讨论,并尝试证明你的猜想是否正确。
a m·a n=(aa…a)(aa…a)=aa…a=a m+nm个a n个a (m+n)个a即:a m·a n =a m+n (当m、n都是正整数)猜想是正确的!同底数幂的乘法:a m·a n =a m+n (当m、n都是正整数)同底数幂相乘,底数______,指数________。
运算形式(同底、乘法)运算方法(底不变、指数相加)如 43×45=43+5=48想一想:a m·a n·a p= (m、n、p都是正整数)问题:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
幂的乘方与积的乘方-练习题(含答案)
)幂的乘方与积的乘方 练习题一、判断题1.(xy )3=xy 3 ( )2.(2xy )3=6x 3y 3( ) 3.(-3a 3)2=9a 6 ( )4.(32x )3=38x 3( )5.(a 4b )4=a 16b ( )`二、填空题1.-(x 2)3=______,(-x 2)3=______;2.(-21xy 2)2=_______;3.81x 2y 10=( )2;4.(x 3)2·x 5=_____;5.(a 3)n =(a n )x (n 、x 是正整数),则x =_____.三、选择题。
1.计算(a 3)2的结果是( ).A .a 6B .a 5C .a 8D .a 92.计算(-x 2)3的结果是( ).A .-x 5B .x 5C .-x 6D .x 63.运算(a 2·a n )m =a 2m ·a mn ,根据是( ).A .积的乘方B.幂的乘方C.先根据积的乘方再根据幂的乘方"D.以上答案都不对4.-a n=(-a)n(a≠0)成立的条件是( ).A.n是奇数 B.n是偶数C.n是整数 D.n是正整数5.下列计算(a m)3·a n正确的是( ).A.a m+n B.a3m+nC.a3(m+n) D.a3mn,四、解答题1.已知:84×43=2x,求x.2.如下图,一个正方体棱长是3×102mm,它的体积是多少mm\3.选做题4πr3计算出地球的数学课上老师与同学们一起利用球的体积公式V=3体积是×1011(km3),接着老师问道:“太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢”同学们立即计算起来,不一会好多同学都举手表示做完了,小丁的答案是×1013(km3),小新的答案是×1015(km3),小明的答案是×1017(km3),那么这三位同学谁的答案正确呢请同学们讨论,并将你的正确做法写出来.(—$参考答案一、判断题1.×2.×3.√4.×5.×)二、填空题1.-x6,-x61x2y42.43.9xy54.x115.3三、选择题1.A-2.C3.C4.A5.B四、解答题1.(23)4×(22)3=2x∴212×26=2x,∴218=2x∴x=182.(3×102)3=33×(102)3=27×106=×107 3.小明的对,略.。
幂的乘方与积的乘方练习题及答案
幂的乘方与积的乘方练习题及答案第1课时幂的乘方基础题1.计算(a2)3的结果是()A.a5 B.a6 C.a8 D.3a22.下列式子的化简结果不是a8的是()A.a6·a2 B.(a4)2 C.(a2)4 D.(a4)43.下列各式计算正确的是()A.(x3)3=x6 B.a6·a4=a24C.[(-x)3]3=(-x)9 D.-(a2)5=a104.下列运算正确的是()A.a2+a2=a4 B.a5-a3=a2 C.a2·a2=2a2 D.(a5)2=a105.填空:( )2=( )3=( )4=a12.6.已知x n=2,则x3n=____.7.已知10a=5,那么100a的值是()A.25 B.50 C.250 D.5008.若3x+4y-5=0,则8x·16y的值是()A.64 B.8 C.16 D.329.下列各式与x3n+2相等的是()A.(x3)n+2 B.(x n+2)3C.x2·(x3)n D.x3·x n+x210.计算(-p)8·[(-p)2]3·[(-p)3]2的结果是()A.-p20 B.p20 C.-p18 D.p1811.若26=a2=4b,则a b等于()A.43 B.82 C.83 D.4812.若 2a=3,2b=4,则23a+2b等于()A.7 B.12 C.432 D.10813.若3×9m×27m=321,则m的值是()A.3 B.4 C.5 D.614.若a4n=3,那么(a3n)4=____.15.若5m=2,5n=3,则53m+2n+1=_______.16.填空:(1)(-a3)2·(-a)3=________;(2)[(x-y)3]5·[(y-x)7]2=_______;(3)a3·(a3)2-2·(a3)3=____________.精选题17.计算:(1)(-x)3·(x3)2·(-x)4=_________.(2)x n-1·(x n+2)2·x2·(x2n-1)3=_______.(3)2(x3)2·x2-3(x2)4+5x2·x6=_____.(4)[(a-b)3]2-2(a-b)3·(b-a)3=.18.若x2n=5,且n为整数,求(x3n)2-5(x2)2n的值.19.已知10m=2,10n=3,求103m+2n的值.20.(1)已知2x+5y-3=0,求4x·32y的值;(2)已知273×94=3x,求x的值.21.已知A=355,B=444,C=533,试比较A,B,C的大小.第2课时积的乘方基础题1.计算(x3)2的结果是()A.x5 B.x6 C.x8 D.x92.下列计算错误的是()A.a2·a=a3 B.(ab)2=a2b2C.(a2)3=a5 D.-a+2a=a3.计算(x2y)3的结果是()A.x5y B.x6y C.x2y3 D.x6y3 4.计算(-3a2)2的结果是()A.3a4 B.-3a4 C.9a4 D.-9a45.计算(-0.25)2010×42010的结果()A.-1 B.1 C.0.25 D.44020 6.-(a3)4=_____.7.若x3m=2,则x9m=_____.8.[(-x)2] n·[-(x3)n]=______.9.若a2n=3,则(2a3n)2=____.10.计算:(1)(a4)3+m (2)(-4xy2)211.计算: (x-y)3·(y-x)2·(x-y)4.12.计算(1)(-0.25)11×411 (2)(-0.125)200×8201精选题13.若x m·x2m =2,求 x9m 的值14.若x m =2,求 x4m 的值15已知:644×83=2x,求x.16.计算:(-2x2y3)+8(x2)2·(-x)2·(-y)3.17.某养鸡场需定制一批棱长为3×102毫米的正方体鸡蛋包装箱(包装箱的厚度忽略不计),求一个这样的包装箱的容积.(结果用科学记数法表示)1.2 幂的乘方与积的乘方第1课时幂的乘方1 B2 D3 C4 D 5. a6,a4,a3 6. 8 7. A 8 .D 9 .C 10. B 11. C 12. C 13.B 14. 2715. 36016. (1) -a9 (2) (x-y)29 (3) -a917. (1) 解:原式=x13(2) 解:原式=a9n+2(3) 解:原式=4x8(4) 解:原式=3(a-b)618. 解:原式=x6n-5x4n=(x2n)3-5(x2n)2=53-5×52=019. 解:103m+2n=(10m)3·(10n)2=23×32=7220. (1) 解:由2x+5y-3=0得2x+5y=3,所以4x·32y=22x·25y=22x+5y=23=8(2) 解:x=1721. 解:因为A=355=(35)11=24311;B=444=(44)11=25611;C=533=(53)11=12511,所以B>A>C第2课时积的乘方1.B 2.C 3.D 4.C 5.B6.-a127.8 8.-x5n9.10810.a12+4m,16x2y4 11.(x-y)9 12.-1,813.解:x m·x2m=x3m=2,∵x9m =(x3m)3,∴x9m的值为814.解:x m =2,∵x4m=(x m)4,∴x4m的值为1615.∵644×83=(26)4×(23)3=224×29=233∵644×83=2x,∴233=2x,∴x=33.16.-16x6y3.17.(3×102)3=33(102)3=27×106=2.7×107(立方毫米).答:一个这样的包装箱的容积是2.7×107立方毫米.。
北师大版数学七年级下册 1.2《幂的乘方与积的乘方》测试(含答案及解析)
第 1 页幂的乘方与积的乘方 测试时间:90分钟总分: 1001. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. 以下运算正确的选项是( )A. a 2⋅a 3=a 6B. (a 2)3=a 5C. 2a 2+3a 2=5a 6D. (a +2b)(a −2b)=a 2−4b 2 3. 假如a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a 4. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 105. 假设a x =3,a y =2,那么a 2x+y 等于( ) A. 6 B. 7 C. 8 D. 186. 以下各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个7. 2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( )A. c =2b −1B. c =a +bC. b =a +1D. c =ab 8. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 39. 以下运算错误的选项是( )A. (−2a 2b)3=−8a 6b 3B. (x 2y 4)3=x 6y 12C. (−x)2⋅(x 3y)2=x 8y 2D. (−ab)7=−ab 7 10. 计算(−2xy)2的结果是( )A. 4x 2y 2B. 4xy 2C. 2x 2y 2D. 4x 2y二、填空题〔本大题共10小题,共分〕11. 2x +3y −5=0,那么9x ⋅27y 的值为______. 12. 计算:32018×(−19)1009=______.13. 2x =3,2y =5,那么22x+y−1= ______ . 14. (−x 3)4+(−2x 6)2=______. 15. (−0.25)2015×42016= ______ .16. 假设x +2y =2,那么3x ⋅9y = ______ . 17. 计算:0.1253×(−8)3的结果是______. 18. :52n =a ,4n =b ,那么102n = ______ . 19. 2x =3,2y =5,那么22x−y−1的值是______ . 20. 假设a 2n =5,b 2n =16,那么(ab)n = ______ . 三、计算题〔本大题共4小题,共分〕 21. 计算(1)(m 2)n ⋅(mn)3÷m n−2(2)|−2|+(π−3)0−(1)−2+(−1)2016.322.(−a2)3⋅(b3)2⋅(ab)423.计算:)−3−20160−|−5|;(1)(12(2)(3a2)2−a2⋅2a2+(−2a3)2+a2.24.计算题)−1+(−2)0−|−2|−(−3)(1)(12(2)a⋅a2⋅a3+(a3)2−(−2a2)3.四、解答题〔本大题共2小题,共分〕25.x n=2,y n=3,求(x2y)2n的值.26.272=a6=9b,求2a2+2ab的值.第 3 页答案和解析【答案】1. C2. D3. C4. A5. D6. A7. D8. A9. D10. A11. 24312. −113. 45214. 5x1215. −416. 917. −118. ab19. 91020. ±4√521. 解:(1)原式=m2n+3n3÷m n−2=m n+5n3;(2)原式=2+1−9+1=−5.22. 解:原式=−a6⋅b6⋅a4b4=−a10b1023. 解:(1)原式=8−1−5=2;(2)原式=9a4−2a4+4a6+a2=7a4+4a6+a2.)−1+(−2)0−|−2|−(−3)24. 解:(1)(12=2+1−2+3=4(2)a⋅a2⋅a3+(a3)2−(−2a2)3=a6+a6−(−8a6)=10a625. 解:∵x n=2,y n=3,∴(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=144.26. 解:由272=a6,得36=a6,∴a=±3;由272=9b,得36=32b,∴2b=6,解得b=3;(1)当a=3,b=3时,2a2+2ab=2×32+2×3×3=36.(2)当a=−3,b=3时,2a2+2ab=2×(−3)2+2×(−3)×3=18−18=0.所以2a2+2ab的值为36或0.第 5 页【解析】1. 解:(23)2015×(32)2015×32=(23×32)2015×32=32,应选:C .将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得.此题主要考察幂的乘方与积的乘方,掌握幂的乘方与积的乘方的运算法那么是解题的关键.2. 【分析】此题主要考察了整式的运算,根据同底数幂的乘法,可判断A ,根据幂的乘方,可判断B ,根据合并同类项,可判断C ,根据平方差公式,可判断D.此题考察了平方差,利用了平方差公式,同底数幂的乘法,幂的乘方. 【解答】解:A 、原式=a 5,故A 错误; B 、原式=a 6,故B 错误; C 、原式=5a 2,故C 错误;D 、原式=a 2−4b 2,故D 正确; 应选D .3. 解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 应选:C .根据幂的乘方得出指数都是11的幂,再根据底数的大小比拟即可. 此题考察了幂的乘方,关键是掌握a mn =(a n )m . 4. 【分析】此题主要考察了幂的乘方运算,正确化简各式是解题关键.直接利用幂的乘方运算法那么化简进而合并求出答案. 【解答】解:(−a 5)2+(−a 2)5=a 10−a 10=0. 应选A .5. 解:∵a x =3,a y =2,∴a 2x+y =(a x )2×a y =32×2=18. 应选:D .直接利用幂的乘方运算法那么结合同底数幂的乘法运算法那么求出答案. 此题主要考察了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法那么是解题关键.6. 【分析】此题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要纯熟掌握并灵敏运用. 根据幂的运算性质对各选项进展逐一计算即可判断. 【解答】解:(1)−(−a 3)4=−a 12,故本选项错误; (2)(−a n )2=(a 2)n ,故本选项错误;(3)(−a −b)3=−(a +b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.应选A.7. 解:∵2a=5,2b=10,∴2a×2b=2a+b=5×10=50,∵2c=50,∴a+b=c;∵22b−1=102÷2=50=2c,∴2b−1=c;∵2a+1=5×2=10=2b,∴a+1=b.错误的为D.应选D.根据同底数幂的乘法法那么:同底数幂相乘,底数不变,指数相加,依此即可得到a、b、c之间的关系.考察了幂的乘方和积的乘方、同底数幂的乘法,解答此题的关键是掌握各知识点的运算法那么.8. 解:(x2y)3=(x2)3y3=x6y3,应选:A.根据积的乘方和幂的乘方法那么求解.此题考察了积的乘方和幂的乘方,纯熟掌握运算法那么是解题的关键.9. 解:A、(−2a2b)3=−8a6b3,本选项正确;B、(x2y4)3=x6y12,本选项正确;C、(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确;D、(−ab)7=−a7b7,本选项错误.应选D.原式各项利用积的乘方与幂的乘方运算法那么计算得到结果,即可做出判断.此题考察了幂的乘方与积的乘方,以及单项式乘以单项式,纯熟掌握运算法那么是解此题的关键.10. 解:(−2xy)2=4x2y2.应选:A.直接利用积的乘方运算法那么求出答案.此题主要考察了积的乘方运算法那么,正掌握运算法那么是解题关键.11. 【分析】此题考察了同底数幂的乘法,先根据同底数幂的乘法法那么和幂的乘方法那么将9x⋅27y变形为32x+3y,然后再把2x+3y=5代入计算即可.【解答】解:∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为243.12. 【分析】此题考察了积的乘方,利用幂的乘方底数不变指数相乘得出积的乘方是解题关键.根据幂的乘方底数不变指数相乘,可得积的乘方,根据积的乘方,可得答案.【解答】)1009解:原式=91009×(−19=[9×(−19 )]1009=−1,故答案为−1.13. 解:22x+y−1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=452,故答案为:452.根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.此题考察了同底数幂的除法,熟记法那么并根据法那么计算是解题关键.14. 解:原式=x12+4x12=5x12,故答案为5x12.根据幂的乘方与合并同类项的法那么进展计算即可.此题考察了幂的乘方和合并同类项,掌握运算法那么是解题的关键.15. 解:(−0.25)2015×42016=(−0.25×4)2015×4=(−1)2015×4=−1×4=−4,故答案为:−4.根据幂的乘方和积的乘方,即可解答.此题考察了幂的乘方和积的乘方,解决此题的关键是熟记幂的乘方和积的乘方.16. 解:原式=3x⋅(32)y=3x⋅32y=3x+2y=32=9.故答案为:9.根据同底数幂的乘法及幂的乘方法那么进展运算即可.此题考察了幂的乘方及同底数幂的乘法运算,属于根底题,关键是掌握各局部的运算法那么.17. 解:0.1253×(−8)3=[0.125×(−8)]3=−1.故答案为:−1.直接利用幂的乘方运算法那么计算得出答案.此题主要考察了幂的乘方运算等知识,正确掌握运算法那么是解题关键.18. 解:∵52n=a,4n=b,∴52n=a,22n=b,∴102n=52n×22n=ab.故答案为:ab.直接利用幂的乘方运算法那么将原式变形求出答案.此题主要考察了幂的乘方运算,正确将原式变形是解题关键.19. 解:22x−y−1=22x÷2y÷2=(2x)2÷2y÷2=9÷5÷2=910,故答案为:910.根据同底数幂的除法底数不变指数相减,幂的乘方,可得答案.此题考察了同底数幂的除法、幂的乘方,熟记法那么并根据法那么计算是解题关键.第 7 页20. 解:∵a2n=5,b2n=16,∴(a n)2=5,(b n)2=16,∴a n=±√5,b n=±4,∴(ab)n=a n⋅b n=±4√5,故答案为:±4√5.根据幂的乘方与积的乘方,即可解答.此题考察了幂的乘方与积的乘方,解决此题的关键是注意公式的逆运用.21. (1)原式利用幂的乘方与积的乘方运算法那么计算即可得到结果;(2)原式利用绝对值的代数意义,零指数幂、负整数指数幂法那么,以及乘方的意义计算即可得到结果.此题考察了同底数幂的乘法,以及实数的运算,纯熟掌握运算法那么是解此题的关键.22. 根据同底数幂的乘法的性质:底数不变指数相加,幂的乘方的性质:底数不变指数相乘,积的乘方的性质进展计算.此题考察了同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质.23. (1)原式利用零指数幂、负整数指数幂法那么,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法那么计算,合并即可得到结果.此题考察了单项式乘单项式,幂的乘方与积的乘方,以及零指数幂、负整数指数幂,纯熟掌握运算法那么是解此题的关键.24. (1)首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.此题主要考察了幂的乘方和积的乘方,零指数幂、负整数指数幂的运算方法,以及同底数幂的乘法的运算方法,要纯熟掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n 是正整数);②(ab)n=a n b n(n是正整数).25. 利用积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘把代数式化简,再把代入求值即可.此题主要考察积的乘方的性质,纯熟掌握运算性质是解题的关键.26. 先把条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.。
七年级下数学《幂的乘方与积的乘方》典型例题及习题
例 1 计算:(1) ; (2)
;(5)
;(6)
例 2 计算
; (3)
例 3 计算: (1) (2)
(用两种方法计算) ; (用两种方法计算) 。
例 4 用简便方法计算:
(1)
;(2)
;(3)
。
例 5 已知
,求
的值。
;(4) 。
参考答案 例 1 分析:看清题意,分清步骤,注意运用幂的运算性质。
)
A.1
B.-1
C.0
D.1 或-1
5,已知 P=(-ab ) ,那么-P 的正确结果是(
)
A.a b
B.-a b
C.-a b
D.- a b
6,计算(-4×10 ) ×(-2×10 ) 的正确结果是(
)
A.1.08×10
B.-1.28×10
C.4.8×10
D.-1.4×10
7,下列各式中计算正确的是(
解:(1)
=
;
(2)
;
(3)
。
例 5 分析:直接比较 , 和 无法实现,可设法把它们的指数变成
相同的数字,∵
,所以把原来三个幂变成
,
,
进而比较底数的大小。
解:∵
,
,
,
显然
∴
。
说明:当指数较大时,无法计算幂的数值时,可借助学过的幂的性质把原式 化简。
1.4 幂的乘方与积的乘方
1,下列各式中,填入 a 能使式子成立的是( )
5.
=__________.
6.
=_________,
=_____.
7.若
,则 =_______,
幂的乘方与积的乘方练习题及答案
幂的乘方与积的乘方练习题及答案一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )A. −24y 10B. −6y 10C. −18y 10D. 54y 1017.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】本题主要考查幂的乘方与积的乘方,掌握幂的乘方与积的乘方的运算法则是解题的关键. 将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确;∴错误的为D.故选D.5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.【解答】解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.【解答】解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−513)=−513 故选:C . 首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6,得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a2+2ab=2×32+2×3×3=36.(2)当a=−3,b=3时,2a2+2ab=2×(−3)2+2×(−3)×3=18−18=0.所以2a2+2ab的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。
(完整word)北师大版七年级下册1.2幂的乘方与积的乘方(1)同步练习题
41.2幂的乘方与积的乘方(1)、选择题: 12 12A . 0B . 2aC . 6aD . a二、填空题:13 . (1)若 x 5 x a x 11,贝U a _________ ;2 m 4 3m(2 )右 a a ,贝U m __________ ;14 .已知 x n 2,贝y x 3n ______________________ ;15 . - a 2?a 6 +(a 3)2?a 2 等于 ________ ;16 .在下列各式的括号中填入适当的数、式,使等式成立: 1.计算a 2 的结果A . 8a 2 B . a 4 a 6 a 8 2.计算(-a 3)2结果正确的是 A . a 5 B . -a 5 3 .计算(—a 3)5的结果是 A . a 8 B . a 15 4. 下列运算正确的是 A . 2a 2+3a=5a 3 5. 下列运算正确的是( A . a 2 - a=a B . ) -a 6 C . ) C . ) B . a 2?a 3=a 6 ) ax+ ay= axy D . a 6 -a 15C .D . - a 8 C . (a 3) 2=a 6 D . a 3 - a 3=a 6. 下列式子的化简结果不是a 8的是( (a 4)2 C . a 6的式子是( A . a 6 a 2 7.下列运算中, B . 结果是 m 2?m 4=m 6 ) (a 2)4 I ) D .( y 3) 2=y 5 D . (a 4)4 a 2 a 3 a 12- a 6 3、3 C . (a ) D . (- a ) 6 & [ (x 2) 3]7 等于( A . 9. ( x 5) 4x 2 等于( A . — x ? 10 .化简(- A . - x 6 -x 7 ) B . x 12 C . x 9 C . x 9 x ) 3? (- x ) 2的结果正确的是( B . x 6 11 .下列计算:(1) a n ?a n = 2a n ; 中,正确的个数为( A . 0个 C . - x 5(2) a 6+a 6=a 12;(3) x 42 D . ) D . x 5 c?c 5=c 5 x 22 (4) 26+26=27; (5) (3xy 3) 3=9x 3y 912 .计算(2a 6)2 2(a 4)3的结果是(/八 6 / \2 小3\2 A ) / 5\2 / 、2 , 2、4 , 3、2 (1)a ( ) ; (2) (2 ) 4 ; (3) (a ) ( ____ ) (a ) (a );417•计算:(y2)3(y3)2= ________ ;18.计算:(-a2)3+a6的结果是_____________20111 9.计算:2013 13 - = ;3三、解答题:(写出必要的计算步骤、解答过程)2 0 . 计算: 23 2 3 3 22x x x x x ;21.计算:2 3(1) a2 3 2 2 3a a a ;n 3n \2 2 6 \ n(2) (x y ) (x y )22.计算:(4、3 3、4 2、6a ) ( a ) ( a ) 2 3 \ 3a ( a ) ( a );四•拓展提高:1. 已知273943x,求x的值;2. 已知:2x 3y 4 0,求4x8y的值;3. 已知:9n 132n72,求n的值;4. 若a 255, b 344, c 433,比较a, b, c 的大小;1.2 幂的乘方与积的乘方(1)参考答案:1~12 DDCCC DDDDC BB13.(1)2;(2)8;14.8;15.0;16.(1)(2)(3)17.2y6;18.0;19.9;20.3x10;21.(1)a5;(2)2x2n y6n;拓展提高:1.x 17 ;2.16;3.n 1 ;55 5 11 11 44 4 11 11 33 3 11 11 4.a 2 (2 ) 32 ,b 3 (3 ) 81 ,c 4 (4 ) 64 /• b>c>a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.23幂的乘方与积的乘方_经典题库3
一、判断题
1.(xy )3=xy 3( )
2.(2xy )3=6x 3y 3( )
3.(-3a 3)2=9a 6( )
4.(32x )3=38
x 3( )
5.(a 4b )4=a 16b ( ) 二、填空题
1.-(x 2)3=_________,(-x 2)3=_________.
2.(-21
xy 2)2=_________.
3.81x 2y 10= ( )2.
4.(x 3)2·x 5=_________.
5.(a 3)n =(a n )x (n 、x 是正整数),则x =_________.
三、选择题
1.计算(a 3)2的结果是( ) A .a 6 B .a 5 C .a 8
D .a 9 2.计算(-x 2)3的结果是( )
A .-x 5
B .x 5
C .-x 6
D .x 6
3.运算(a 2·a n )m =a 2m ·a mn ,根据是( )
A .积的乘方
B .幂的乘方
C .先根据积的乘方再根据幂的乘方
D .以上答案都不对
4.-a n =(-a )n (a ≠0)成立的条件是( )
A .n 是奇数
B .n 是偶数
C .n 是整数
D .n 是正整数
5.下列计算(a m )3·a n 正确的是( )
A .a m 3+n
B .a 3m +n
C .a 3(m +n )
D .a 3mn
四、解答题
1.已知:84×43=2x ,求x .
2.如图1,一个正方体棱长是3×102 mm ,它的体积是多少mm ?
图1
3.选做题
数学课上老师与同学们一起利用球的体积公式V =34πr 3计算出地球的体积是9.05×1011(km 3),接着老题问道:“太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢?”同学们立即计算起来,不一会好多同学都举手表示做完了,
小丁的答案是9.05×1013(km 3),小新的答案是9.05×1015(km 3),小明的答案是9.05×
1017(km 3).那么这三位同学谁的答案正确呢?请同学们讨论,并将你的正确做法写出来.
参考答案
一、1.× 2.× 3.√ 4.× 5.×
二、1.-x 6 -x 6 2.
41x 2y 4 3.9xy 5 4.x 11 5.3
三、1.A 2.C 3.C 4.A 5.B
四、1(23)4×(22)3=2x
∴ 212×26=2x ,∴ 218=2x
∴ x =18.
2.(3×102)3=33×(102)3=27×106=2.7×107
3.小明的对 略。