2PSK数字信号的调制与解调-分享版

合集下载

通信系统实训报告2psk的调制与解调

通信系统实训报告2psk的调制与解调

目录一.摘要和关键词 ..... 错误!未定义书签。

二.小组成员与分工 ... 错误!未定义书签。

三.设计的主要原理 ... 错误!未定义书签。

四.设计的系统仿真 .. 错误!未定义书签。

五.仿真系统的结论 .. 错误!未定义书签。

六.总结和体会: ..... 错误!未定义书签。

七.致谢 ............. 错误!未定义书签。

八.参考文献 ......... 错误!未定义书签。

2PSK的调制与解调一.摘要和关键词2PSK中文是:二进制相移键控,其有两种调制方法,模拟调制法和键控法,解调是用相干解调法。

我们这次做的是2PSK的调制与解调,在实现的过程中,使用了MATLAB的M文件的程序和SIMULINK 实现。

关键词:2PSK 调制解调 MATLAB二.小组成员与分工小组成员分工:确定题目:,查找资料:全部,设计程序: Simulink模拟图:;PPT,演讲:,演示:旁观:三.设计的主要原理二进制相移键控中,通常用相位0和π来分别表示“0”或“1”。

2PSK已调信号的时域表达式为e(t)=s(t)cosωt 。

因此,在某一个码元持续时间内观察时,有0,或π。

当码元宽度为载波周期的整数倍时,2PSK信号的典型波形如下图,2PSK信号的模拟调制法框图;如下图是产生2PSK信号的键控法框图,就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB调幅信号。

而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ 或双极性NRZ脉冲序列信号均可。

2PSK信号属于DSB信号,它的解调,不再能采用包络检测的方法,只能进行相干解调。

在这次通信系统仿真实训中,我们使用了MATLAB中的M文件实现,也使用了SIMULINK模块实现了2PSK的调制与解调。

而我负责的是SIMULINK的解调部分,Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

2PSK调制解调

2PSK调制解调
• 其中:
• 这里,g(t)是脉宽为sT的单个矩形脉冲,
• 上式中而an的统计特性为:
• 即发送二进制符号“0”时(na取+1),)(2tePSK取0相位;发送 二进制符号“1”时(na取-1),取π相位。这种以载波的不同 相位直接去表示相应二进制数字信号的调制方式,称为二进制绝 对相移方式。调制方法有模拟调制和键控法,解调方法通常采用 的是相干解调法。下面是2PSK的调制解调原理框图。
2PSK调制方法:
• 2PSK信号的解调一般采用相干解调,以下为原理图:
仿真结果:
2PSK调制解调
2PSK调制解调的基本原理
• 相移键控是利用载波的不同相位来传递数字信息,而振幅和 制 “0”和“1”。因此,2PSK 信号的时域表达式为:
• 其中,n表示第n个符号的绝对相位:
• 因此,式子可以改写为:
• 由于表示信号的两种码元的波形相同,极性相反,故2PSK信号一 般可以表述为一个双极性(bipolarity)全占空(100% duty ratio) 矩形脉冲序列与一个正弦载波的相乘,即:

2psk调制解调的原理

2psk调制解调的原理

2psk调制解调的原理2PSK调制(2-Phase Shift Keying)是一种基本的数字调制方式。

它通过改变载波的相位来传输数字信号,每个数字比特对应两个不同的相位。

以下将详细解析2PSK调制的原理。

2PSK调制主要涉及到两个过程:调制和解调。

调制过程:1. 文字编码:将要传输的信息进行数字编码,例如使用二进制编码方式,将每个数字比特用0和1代表。

2. 符号分配:每个数字比特对应一个相位,通常选择相位0和相位π来表示0和1。

3. 载波生成:产生一个恒定频率和幅度的正弦波,这个波被称为载波信号。

4. 相位调制:根据编码的数字比特,将相应的相位信息融入到载波信号中。

比如,相位0可以对应载波信号的相位不变,而相位π可以对应载波信号的相位反转。

5. 调制信号生成:得到相位调制后的信号,该信号即为调制信号。

解调过程:1. 接收信号采样:接收到经过信道传输的调制信号,并对信号进行采样。

2. 相位判决:根据接收到的信号的相位信息,进行相位判决以确定每个数字比特的数值。

例如,如果接收到的信号相位为0,则判定为0;如果接收到的信号相位为π,则判定为1。

3. 数字解码:将解调的数字比特翻译回原始的信息字符。

2PSK调制的优点:1. 简单性:2PSK调制的实现比较简单,仅需要改变相位即可。

2. 抗噪声性能:2PSK调制的抗噪声性能较好,因为每个数字比特对应的相位差异明显,相位误差引起的误码率较低。

2PSK调制的局限:1. 带宽效率:2PSK调制一次只能传输一个比特,相比其他复杂调制方式,其带宽利用率较低。

2. 灵活性:2PSK调制只能传输二进制信号,不能传输多元信号。

总结:2PSK调制通过改变载波的相位来传输数字信号。

在调制过程中,信号经过文字编码、符号分配、载波生成和相位调制等步骤。

在解调过程中,信号经过接收信号采样、相位判决和数字解码等步骤。

2PSK调制简单易实现,抗噪声性能好,但带宽利用率相对较低,适用于二进制信号的传输。

【2017年整理】2ASK和2PSK调制与解调实验

【2017年整理】2ASK和2PSK调制与解调实验

实验二2ASK和2PSK调制与解调实验(一)实验目的1、掌握振幅键控(ASK)调制与解调的原理,并会用仿真软件绘制仿真的原理图,得出正确的波形图。

2、掌握相移键控(PSK)调制与解调的原理,并会用仿真软件绘制仿真的原理图,得出正确的波形图。

(二)实验设备计算机、SystemView软件(三)实验内容1、振幅键控(ASK)调制与解调:掌握振幅键控(ASK)调制与解调的原理,并用仿真软件绘制仿真的原理图,得出正确的波形图。

2、相移键控(PSK)调制与解调:掌握相移键控(PSK)调制与解调的原理,并用仿真软件绘制仿真的原理图,得出正确的波形图。

(四)实验原理1、2ASK调制部分:二进制幅度键控的调制器可用一个相乘器来实现。

对于2ASK 信号,相乘器则可以用一个开关电路来代替。

调制信号为1时,开关电路导通,为0时切断。

2ASK信号表达式:S(t)=a(n)Acos(ωct)式中:A-载波幅度,ωc -载波频率,a(n)-二进制数字信号2、2PSK二进制相移键控(2PSK )就是根据数字基带信号的两个电平,使载波相位在连个不同的数值之间不通的数值之间切换的一种相位调制方法。

通常,两个载波相位相差π个弧度。

PSK 信号可以写成如下形式:Spsk (t )=a(n)Acos (ωct )1.调制部分:在2PSK 中,通常用相位0°或180°来分别表示1或-1.这里用调相法来生成2PSK :将数字信号与载波直接相乘。

这也是DSB 信号产生的方法。

S2PSK (t )=cos(ω0t+φ), φ=0或πS2PSK (t )= ACOS(ω0) a(n)=1-ACOS(ω0) a(n)= -12.解调部分2PSK 必须采用相干解调,同步载波是个关键问题。

相干接收2PSK 系统组成如图所示:对2PSK 信号相干接收的前提是首先进行载波提取,可采用平方环或科斯塔斯环来实现。

为分析方便起见,在本实验中可直接在接收端设信道输出图3-2-1 2PSK 系统组成置一个与发送端严格同步的本地载波源。

2PSK数字信号的调制与解调-分享版

2PSK数字信号的调制与解调-分享版

信息对抗大作业一、实验目的。

使用MATLAB构成一个加性高斯白噪声情况下的2psk调制解系统,仿真分析使用信道编码纠错和不使用信道编码时,不同信道噪声比情况下的系统误码率。

二、实验原理。

数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。

为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。

这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。

数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。

这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。

图1 相应的信号波形的示例1 0 1数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。

如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。

一般把信号振荡一次(一周)作为360度。

如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。

当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。

载波的初始相位就有了移动,也就带上了信息。

相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。

在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。

因此,2PSK信号的时域表达式为(t)=Acos t+)其中,表示第n个符号的绝对相位:=因此,上式可以改写为图2 2PSK信号波形解调原理2PSK信号的解调方法是相干解调法。

实验六PSK调制与解调

实验六PSK调制与解调

实验六2PSK调制与解调一、实验目的1、理解二进制移相键控(Phase Shift Keying,PSK)调制和解调的基本原理;2、了解2PSK调制和解调的实现方法。

二、实验原理一个正弦载波。

如果它被一个双极性比特流按照图6-1所示的方案调制,它的极性将在每一次比特流极性改变时跟着改变。

图6-1对正弦波来说,极性的翻转就等价于反相。

因此,乘法器的输出就是BPSK(2PSK)信号。

二进制移相键控的解调可分两个步骤来考虑。

1、限带信号波形的恢复,使其转化到基带信号;2、从基带的限带波形里重建二进制消息比特流。

在本实验中,实现第一步依靠的是一个“窃取”的本地同步载波。

第二步的抽样判决由定标模块实现,最后还应线性解码,重建原始单极性基带信号。

解调原理如图6-2所示。

图6-2三、实验设备1、主机TIMS-301F2、TIMS基本插入模块(1)TIMS-148音频振荡器(Audio Oscillator)(2)TIMS-150乘法器(Multiplier)或TIMS-425正交模块(Quadrature Utilities),此模块集成了2个乘法器和1个加法器(3)TIMS-151移相器(Phase Shifer)(4)TIMS-153序列产生器(Sequence Generator)(5)TIMS-154可调低通滤波(Tuneable LPF)(6)TIMS-402定标模块(decision-maker module)(7)TIMS-406线性编码器(Line Code Encoder)(8)TIMS-407线性译码器(Line Code Decoder)3、计算机4、Pico虚拟仪器四、实验步骤1、将Tims系统中音频振荡(Audio Oscillator)、移相器(Phase Shifter)、序列码产生器(Sequence Generator)、线性编码器(Line-code Encode)、乘法器(Multiplier)按图6-3连接。

2PSK信号的调制与解调

2PSK信号的调制与解调

通信原理大作业2PSK 信号的调制与解调3090401014 葛一飞 通信091 一.2PSK 信号的调制原理:当相移常数Kp=π时,当基带数字信号采用幅度为1宽度为TS 的矩形脉冲的双极性非归零码表示时,时域表示式为:受键控的载波相位按基带脉冲而改变的数字调制方式。

()()⎩⎨⎧-===-=P 1,0,0P ,1,1概率为概率为n n s n a a nT t g a t m ()()()t m K t cos t S p c PSK +=ω2()()⎩⎨⎧-==+=P 10P 1以概率以概率,a ,t cos ,a ,K t cos n c n p c ωω()()()⎩⎨⎧-==-=P 1,0,cos P ,1,cos 2以概率以概率n c n c PSK a t a t t S ωωt nT t g a t S c n s n PSK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑⎩⎨⎧→→”“”“如,相位相位010π二.2PSK 信号相干解调由于绝对移相方式是以某一相位作为基准的,因此解调时在接收端也必须有同样一个固定基准相位作为参考。

即采用相干解调2.波形显示调制:冲 据输出 S 2解调:总结:通过本次大作业,我们在MATLAB平台上对数字信号的传输系统进行了一次仿真,有效的完善了学习过程中实践不足的问题,同时进一步巩固了原先的基础知识。

通过仿真,基本掌握了MATLAB的基本功能和使用方法,对数字基带传输系统有了一定的了解,加深了对2PSK信号的调制原理的认识,理解了如何对他们进行调制,通过使用MATLAB仿真,对个调制和解调电路中各元件的特性有了较为全面的理解。

可以说这次大作业使我收益颇丰,对通信原理也有了新的认识。

附录:Matlab程序代码:clcclose allclear allcodn=60;fc=6e+3;fs=fc*6;bode=1000;code=round(rand(1,codn));code_len=round(1/bode/(1/fs));for i=1:codnx0((i-1)*code_len+1:code_len*i)=code(i);endx=2*x0-1;car=cos(2*pi*fc/fs*(0:length(x0)-1));y=x.*car;figuresubplot(211)plot(x)axis([0 length(x0) -1.5 1.5]) grid onzoom ontitle('原始基带信号')subplot(212)plot(y)zoom ongrid ontitle('2PSK的频谱')ay=abs(fft(y));f=0:fs/length(y):fs/2;ay=ay(1:length(f));figureplot(f,ay)zoom ongrid ontitle('2PSK信号')z=y.*car;fl=fir1(64,fc/fs*2); ¨z1=2*filter(fl,1,z);figuresubplot(211)plot(z)grid ontitle('混频器输出信号') subplot(212)plot(z1)grid ontitle('解调得到的基带信号') zoom onfiguresubplot(211)plot(x)axis([0 length(x0) -1.5 1.5]) grid ontitle('原始基带信号')subplot(212)plot(z1)axis([0 length(x0) -1.5 1.5]) grid ontitle('解调得到的基带信号') zoom on。

2psk解调原理

2psk解调原理

2psk解调原理
2PSK(相移键控)解调原理如下:
2PSK信号采用相干解调方法解调,解调的关键在于恢复出一个与发送端载波同频同相的本地参考载波。

2PSK信号经过信道传输之后,再和载波相乘,然后经过低通滤波后抽样判决恢复出原始基带码元信号。

在相干解调中,如何得到与接收的2PSK信号同频同相得相干载波是一个关键问题,这涉及到同步原理。

需要注意的是,在实际应用中,由于绝对移相方式存在相位模糊现象(或反向工作现象或倒π现象),因此在相干解调中,通常采用差分移相键控方式。

南京工程学院数字信号的2PSK调制与解调

南京工程学院数字信号的2PSK调制与解调

For personal use only in study and research; not for commercial use数字信号的2PSK调制与解调一、实验目的1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。

2、通过实验了解、掌握2PSK调制原理。

3、通过实验了解、掌握2PSK相干解调原理。

二、实验内容1、用System View建立一个数字信号2PSK调制解调仿真电路,观察各模块输出波形变化,理解2PSK调制解调基本原理。

2、观察各模块输出波形的功率谱和带宽变化,理解2PSK调制解调原理。

3、调节信道中高斯白噪声(均值为0,均方差可调)的大小,观察输出端误码情况。

三、电路构成与参数设置参数设置:Token0:产生原始码元信号,随机产生(参数设置:Source——Noise/PN――Pn Seg ,幅度1V,频率50HZ,电平数2,偏移0V)Token1,5:Multiplier(乘法器)Token2,6:产生用于调制和解调的载波信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率200Hz)Token9:Adder(加法器)Token10:产生高斯噪声(参数设置:Source――Noise/PN――Gauss Noise,均值为0,均方差为0.1)Token7:产生一个模拟低通滤波器(参数设置:Operator――Filters/Systems――Linear Sys Filters,选择Analog,频率50,极点个数3,低通滤波器的截止频率=原始码元速率)Token11:产生抽样信号(参数设置:Operator——Sample/Hold——Sampler,Sample Rate =50Hz,抽样速率=码元速率)Token12:对抽样信号进行保持(参数设置:Operator——Sample/Hold——Hold,Hold Value =Last Sample Gain=1V)Token13:对低通滤波器输出的抽样值进行判决(参数设置:Operator——Logic——Compare 选择:Select Comparison为a>=b)Token14:产生比较判决器的另一个输入,将抽样判决输出与此输入进行比较(参数设置:Source――Periodic――Sinusoid,幅度0V,频率0Hz)系统定时设置:单击工具条中的系统定时按钮,打开System Time Specification对话框,设置Start Time:0 ,Stop Time:0.5, Sample Rate:10000HZ,单击OK完成系统定时设置。

2psk调制与解调实验报告

2psk调制与解调实验报告

竭诚为您提供优质文档/双击可除2psk调制与解调实验报告篇一:2psK解调实验报告实验二:2psK和QpsK(院、系)专业班课学号20XX20214420姓名谢显荣实验日期1、2psK实验一、实验目的运用mATLAb编程实现2psK调制过程,并且输出其调制过程中的波形,讨论其调制效果。

二、实验内容编写2psK调制仿真程序。

2psK二进制相移键控,简记为2psK或bpsK。

2psK信号码元的“0”和“1”分别用两个不同的初始相位0和π来表示,而其振幅和频率保持不变。

故2psK信号表示式可写为:s(t)=Acos(w0t+θ)式中,当发送“0”时,θ=0;当发送“1”时,θ=π。

或者写成:╱Acos(w0t)发送“0”时s(t)=╲Acos(w0t+π)发送“1”时由于上面两个码元的相位相反,故其波形的形状相同,但极性相反。

因此,2psK信号码元又可以表示成:╱Acosw0t发送“0”时s(t)=╲-Acosw0t发送“1”时任意给定一组二进制数,计算经过这种调制方式的输出信号。

程序书写要规范,加必要的注释;经过程序运行的调制波形要与理论计算出的波形一致。

三、实验原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。

为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。

这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。

数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。

这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(psK)基本的调制方式。

图1相应的信号波形的示例101调制原理数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。

2PSK调制与解调系统的仿真(1)

2PSK调制与解调系统的仿真(1)

2PSK调制与解调系统的仿真(1)1. 调制原理2PSK调制(又称二进制相移键控调制)是数字通信中最简单的调制技术之一,它的原理是通过改变载波信号的相位来传输数字信号。

在2PSK调制中,我们使用两种相位来表示两个不同的数字,通常是0和1。

当数字为0时,我们保持载波信号的相位不变;当数字为1时,我们将载波信号的相位改变180度。

因此,我们可以将数字信号转换成载波信号的相位变化,并在通信信道中传输这些相位变化。

2. 模拟调制和解调系统为了实现2PSK调制,我们需要将数字信号转换成模拟信号,并将这个信号变成载波信号的相位变化。

下面是一个基本的2PSK调制系统的示意图:数字信号 --> 数字调制器 --> 模拟调制器 --> 载波信号在这个系统中,我们使用数字信号作为输入,并将它们传输到数字调制器。

数字调制器将数字信号转换成符号,每个符号代表一个数字(0或1)。

接着,我们将符号传输到模拟调制器中,该模拟调制器将符号转换成相应的模拟信号。

这个模拟信号代表了载波信号的相位,我们可以将它作为波形输出。

最后,我们将波形和载波信号相乘,得到调制后的信号,可以通过信道发送。

为了解调这个信号,我们需要对它进行解调,也就是将载波信号的相位变化转换成数字信号。

下面是解调系统的示意图:调制后信号 --> 解调器 --> 数字解调器 --> 原始数字信号在这个系统中,我们首先使用解调器来解调调制后的信号,这是模拟解调器。

它将载波信号的相位变化转换成波形信号。

接下来,我们使用数字解调器将波形信号转换成符号,每个符号对应一个数字。

最后,我们使用恢复数字信号的符号,这是原始的数字信号。

3. 2PSK调制系统的仿真为了验证2PSK调制系统的有效性,我们可以使用MATLAB对其进行仿真。

我们可以编写一个简单的脚本来执行以下操作:1.生成随机的0和1的数字信号;2.将数字信号转换为2PSK信号;3.将2PSK信号发送到信道;4.解调信号并还原原始数字信号。

2PSK数字信号的调制与解调

2PSK数字信号的调制与解调

2PSK数字信号的调制与解调2PSK数字信号的调制和解调是一种被广泛应用于无线电技术领域的技术,主要用于实现数字信号的无线传输与接收。

在2PSK数字信号的调制和解调过程中,调制用于将原始的数字信号转换成适合发射的信号,而解调则是将接收到的信号还原成原始的数字信号。

2PSK调制是一种线性的调制技术,它通过改变发射信号在基线上的相位,从而实现数据的传输。

首先,将收发机中的比特流转换成在空间上对应的类型,然后将其转换为发射信号——或“载波”。

每个比特可以通过调整载波的相位来表示,这就是2PSK调制的主要原理。

2PSK技术可以通过改变发射信号在基线上的相位来表示(比如0和π/2),并在相同比特率下获得更高的效率,这一点不同于其他的调制技术。

2PSK解调是解调无线信号的一种方式,其过程包括将接收到的无线载波信号转换成比特流,以便可以处理。

首先,要将接收到的信号传输到收发机中,然后通过一系列的预处理操作,包括前置放大、扩频和多路复用技术,将接收到的信号解调成原始的比特流。

最后,解调得到的比特流将用于对收发机端数据进行信号处理。

2PSK数字信号的调制解调技术为无线系统带来了许多优势,其主要优势有:一是提高系统可靠性,更大程度抑制了噪声对信号的影响;二是改善系统的信道容量,能够将多路并发信号在相同带宽中传输;三是提高系统的功率效率,数据可以在同样的功耗条件下进行传输。

2PSK数字信号的调制和解调是一种可靠、高效、灵活的方式,由于它具有很多优点,已经成为无线设备中应用最广泛的调制技术之一。

在充分发挥它的好处的同时,我们还应该注意使用这种技术时带来的可能的缺点,如延迟时间长、复杂的网络架构等。

对此,我们应从源头上通过优化系统的设计和调整技术参数等手段克服相关困难,以达到我们想要的传输效果。

参考文献[1] Zhou, Hongbiao. “2PSK Modulation & Demodulation.” Electronic Devices and Circuits, Vol. 2, Jan. 2018.。

2psk非相干解调

2psk非相干解调

2PSK非相干解调1. 介绍2PSK(2相位移键控)是一种数字调制技术,常用于无线通信中。

非相干解调是一种解调方法,它不需要接收端与发送端进行相位同步。

本文将介绍2PSK非相干解调的原理、步骤和应用。

2. 2PSK调制原理2PSK调制是通过改变信号的相位来传输数字信息。

它使用两个不同的相位来表示两个二进制数字,通常为0和1。

在2PSK调制中,0和1分别对应两个不同的相位,例如0对应0度,1对应180度。

3. 2PSK非相干解调原理2PSK非相干解调是一种解调方法,它不需要接收端与发送端进行相位同步。

它通过比较接收信号的两个不同时间点的相位差来判断接收信号的相位,从而实现解调。

2PSK非相干解调的步骤如下:1.接收信号采样:接收端对接收到的信号进行采样,以获取离散的信号样本。

2.相位估计:通过比较两个不同时间点的信号样本的相位差,估计出信号的相位。

3.判决:根据相位估计的结果,将信号解调为相应的二进制数字。

4. 2PSK非相干解调的应用2PSK非相干解调在无线通信中有广泛的应用,其中包括:1.蓝牙通信:蓝牙是一种短距离无线通信技术,它使用2PSK非相干解调来传输数据。

2.无线传感网络:无线传感网络是由许多传感器节点组成的网络,它们通过2PSK非相干解调来传输采集到的数据。

3.数字广播:数字广播使用2PSK非相干解调来传输音频和视频信号。

4.移动通信:移动通信系统中的调制解调器使用2PSK非相干解调来传输语音和数据。

5. 总结2PSK非相干解调是一种常用的数字调制解调技术。

它通过比较接收信号的两个不同时间点的相位差来判断接收信号的相位,从而实现解调。

2PSK非相干解调在无线通信中有广泛的应用,包括蓝牙通信、无线传感网络、数字广播和移动通信等领域。

通过本文的介绍,我们对2PSK非相干解调的原理、步骤和应用有了更深入的了解。

这种解调方法的优点是不需要进行相位同步,使得无线通信更加灵活和可靠。

希望本文对读者有所帮助,增加对2PSK非相干解调的理解。

2psk键控调制相干解调

2psk键控调制相干解调

2PSK 及其性能估计——键控调制,相干解调1、实验目的:(1)了解2PSK 系统的电路组成、工作原理和特点;(2)分别从时域、频域视角观测2PSK 系统中的基带信号、载波及已调信号; (3)熟悉系统中信号功率谱的特点; (4)学会分析2DPSK 系统的抗噪声性能;(5)掌握使用SystemView 软件对2DPSK 系统进行性能估计的方法。

2、实验内容:(1)以PN 码作为系统输入信号,码速率Rb =20kbit/s 。

i. 采用键控法实现2PSK 的调制;ii. 观察绝对码序列、调制信号、载波及2PSK 等信号的波形。

iii. 获取主要信号的功率谱密度。

(2)以2PSK 作为系统输入信号,码速率Rb =20kbit/s 。

i. 采用相干解调法实现2PSK 的解调,分别观察系统各点波形; ii. 获取主要信号的功率谱密度。

3、实验原理:在二进制数字调控中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK )信号。

通常用已调信号载波的0°和180°分别表示二进制数字基带信号的1和0。

二进制移相键控信号的时域表达式为⎥⎦⎤⎢⎣⎡-=∑n s n PSK nT t g a t e )()(2t c ωcos其中,n a 选择双极性,即n a =⎩⎨⎧-,1,1P P-1发送概率为发送概率为)(t g 是脉宽为S T 、高度为1的矩形脉冲,则有⎩⎨⎧-=,cos ,cos )(2t t t e c c PSK ωω P P -1发送概率为发送概率为 当发送二进制符号1时,已调信号)(2t e PSK 取0°相位,发送二进制符号0时,)(2t e PSK 取180°。

若用n ϕ表示第n 个符号的绝对相位,则有)(2t e PSK )cos(n c t ϕω+=,其中⎩⎨⎧︒︒=1800n ϕ 符号发送符号发送0,1, 这种以载波的不同相位直接表示相应二进制数字信号的调制方式,成为二进制绝对移相方式。

2PSK原理及调制解调仿真

2PSK原理及调制解调仿真

2PSK原理及调制解调仿真2PSK(二相移键调制)是一种数字调制技术,它使用两个相位状态来表示数字数据。

在2PSK中,每个相位状态代表一个比特,即"0"或"1"。

2PSK的原理可以通过以下步骤进行说明:1.数据编码:将数字数据转换为二进制形式。

例如,将十进制数"7"编码为二进制数"0111"。

2.相位映射:将每个比特对应到不同的相位状态上。

在2PSK中,通常将"0"映射到相位0°,将"1"映射到相位180°。

3.载波调制:将相位状态映射到载波信号上。

通常使用正弦波作为载波信号,其频率可以根据需求设定。

4.发射信号:将调制后的载波信号发送到信道中。

5.接收端解调:接收信号后,使用相位解调的方法将信号恢复成数字数据。

这可以通过比较接收到的信号与预设的相位状态来实现。

6.数据解码:将恢复的二进制数据转换为原始的数字数据。

2PSK的调制解调可以通过软件仿真工具进行模拟。

对于调制过程,可以使用软件如MATLAB或Simulink来实现。

首先,需要生成要调制的数字信号,并将其转换为二进制形式。

然后,将每个比特映射到相应的相位状态,并将其表示为正弦波信号。

最后,将所有的正弦波信号叠加起来,形成最终的调制信号。

这个过程可以通过MATLAB或Simulink中的各种函数和模块来实现。

对于解调过程,可以使用相位解调器来还原接收到的信号。

相位解调器通常包括相位鉴频器和比较器。

相位鉴频器用于提取信号的相位信息,而比较器则将提取的相位信息与预设的相位状态进行比较,以确定每个比特的值。

这个过程可以通过MATLAB或Simulink中的函数和模块来实现。

通过仿真实验,可以观察到在不同信噪比(SNR)条件下的调制解调性能。

SNR的增加会提高解调的准确性,但当SNR较低时,解调错误率将增加。

实验五 2PSK调制解调

实验五 2PSK调制解调

实验五 2PSK 调制解调仿真(院、系) 专业 班 课程一、实验目的1.熟悉2PSK 调制解调原理。

2.掌握编写2PSK 调制解调程序的要点。

3.掌握使用Matlab 调制解调仿真的要点。

二、实验容1.根据2PSK 调制解调原理,设计源程序代码。

2.通过Matlab 软件仿真给定信号的调制波形。

3. 对比给定信号的理论调制波形和仿真解调波形。

三、实验原理 1. 2PSK 的调制原理所谓的二进制相移键控(2PSK )信号,是指在二进制调制中,正弦载波的相位随着二进制数字基带信号离散变化而产生的信号。

已调信号载波可以用“0”和“π”或者“+π/2”和“-π/2”来表示二进制基带信号的“0”和“1”。

2PSK 信号的时域表达式为:)cos(2n c PSK t A e ϕω+= 其中,n ϕ表示第n 个符号的绝对相位:时发送时发送”“”“010n ⎩⎨⎧=πϕ即2PSK 表达式也可以为:PP tA tA t e c c PSK -⎩⎨⎧-=1cos cos )(2概率为概率为ωω即发送二进制符号“0”时(取+1),取0相位;发送二进制符号“1”时(取-1),取π相位。

所以二进制绝对相移,则是以载波的不同相位直接去表示相应 二进制数字信号。

由于表示信号的两种码元的波形相同,极性相反,故2PSK 信号一般可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波的相乘。

由于2PSK信号是双极性不归零码的双边带调制,所以如果数字基带信号不是双极性不归零码时,则要先转成双极性不归零码,然后再进行调制。

调制方法有模拟法和相位键控选择法。

2PSK调制原理图如图1和图2所示。

模拟法使源信号如果不是双极性不归零,则转成双极性不归零码后与本地载波相乘即可调制成2PSK信号。

相位键控选择法则是通过电子开关来实现的,当双极性不归零码通过电子开关时,遇低电平就以180度相移的本地载波相乘输出,遇高电平,电子开关则连通没相移的本地载波上然后输出。

通信原理实验——2PSK调制与解调

通信原理实验——2PSK调制与解调

贵州大学实验报告学院:计信学院专业:网络工程班级:101 姓名学号实验组实验时间2013.06.16 指导教师成绩实验项目名称实验二2PSK调制与解调实验目的1、掌握2PSK调制的原理及实现方法。

2、掌握2PSK解调的原理及实现方法。

实验原理1、2PSK调制2PSK信号产生的方法有两种:模拟调制法和数字调制法。

码型变换乘法器NRZ输入双极性NRZ调制输出载波输入图16-1 2PSK调制模拟相乘法原理框图上图16-1是2PSK调制模拟相乘法原理框图。

信号源模块提供码速率96K的NRZ 码和384K正弦载波。

在2ASK中数字基带信号是单极性的,而在2PSK中数字基带信号是双极性的。

故先将单极性NRZ码经码型变换电路转换为双极性NRZ码,然后与384K正弦载波相乘,便得2PSK调制信号。

乘法器的调制深度可由“调制深度调节”旋转电位器调节。

载波1384K开关电路2调制输出NRZ输入开关电路1反相器图16-2 2PSK调制数字键控法原理框图上图16-2是2PSK调制数字键控法原理框图。

为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz正弦载波信号,NRZ码为“1”的一个码元对应0相位起始的正弦载波的4个周期,NRZ码为“0”的一个码元对应π相位起始的正弦载波的4个周期。

实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来控制门的通/断。

当NRZ 码为高电平时,模拟开关1导通,模拟开关2截止,0相位起始的正弦载波通过门1输出;当NRZ 码为低电平时,模拟开关2导通,模拟开关1截止,π相位起始的正弦载波通过门2输出。

门的输出即为2FSK 调制信号,如下图16-3所示。

NRZ输入调制信号11001PSK图16-3 2PSK 调制信号波形2、2PSK 解调2PSK 信号的解调通常采用相干解调法,原理框图如下图16-4所示。

LPF 相乘器电压判决抽样判决调制输入BS输入PSK/DPSK 判决电压调节载波输入相乘输出滤波输出解调输出判压输出图16-4 2PSK 解调相干解调法原理框图设已调信号表达式为1()cos(())s t A t t ωϕ=⨯+(A 1为调制信号的幅值), 经过模拟乘法器与载波信号A 2cos t ω(A2为载波的幅值)相乘,得0121()[cos(2())cos ()]2e t A A t t t ωϕϕ=++ 可知,相乘后包括二倍频分量121cos(2())2A A t t ωϕ+和cos ()t ϕ分量(()t ϕ为时间的函数)。

实验四 2PSK调制与解调实验

实验四  2PSK调制与解调实验

实验四 2PSK 调制与解调实验1、 实验箱中2PSK 调制器用的调制方法是什么?答:移相键控调制的直接调相法。

2、 2PSK 调制能否用非相干解调方法?答:不能。

3、 相位模糊产生的原因和解决方法?答:①原因:在调制过程中采用了分频,而二分频器的输出电压有相差180度的两种可能相位,即其输出电压的相位决定了分频器的初始状态,这就是会导致分频出的载波存在相位模糊(2PSK 采用的是相移方式)②解决办法:使用2DPSK 二相相对移相键控4、 绝/相、相/绝变换的框图?答:5、 绝/相、相/绝变换电路是怎么实现的。

答:绝/相变换电路是把数据信息源输出的绝对码变相对码,2DPSK 信号由相对码进行绝对调相得到。

它由模二加10A U (74LS86)和D 触发器9A U (74LS74)组成,其逻辑关系为:i a ⊕i-1b =i b ,其中i a 是绝对码,i-1b 是延迟一个码元的相对码,i b 是相对码。

相/绝变换电路由14B U (74LS74)和15B U (74LS86)组成,其逻辑关系可表示为i-1b ⊕i b =i a ,其中i b 为相对码,i-1b 为延迟一个码元的相对码,i a 为绝对码。

6、 画出实验板中2PSK 、2DPSK 调制与解调器的原理框图;答:7、本实验中,2PSK 信号带宽是多少?用数字示波器如何测量?答:B=2f=2/Ts。

先按MATH按钮,再选择FFT选项。

s8、测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测?示波器的触发源该选哪一种信号?为什么?答:绝对码波形。

原始信号。

触发源信号应该选择频率较低、稳定度高的信号。

9、解调电路各点信号的时延是怎么产生的?答:由滤波与抽样产生。

10、码再生的目的是什么?答:①防止噪声干扰的累加,恢复出基带信号。

②把码元展宽。

11、用D触发器做时钟判决的最佳判决时间应该如何选择?答:眼图中眼睛张开最大时刻,即码元能量最大时刻,把各个信号叠加在一起。

2PSK数字信号的调制与解调

2PSK数字信号的调制与解调

中南民族大学软件课程设计报告电信学院级通信工程专业题目2PSK数字信号的调制与解调学生学号42指导教师2012年4月21日基于MATLAB数字信号2PSK的调制与解调摘要:为了使数字信号在信道中有效地传播,必须使用数字基带信号的调制与解调,以使得信号与信道的特性相匹配。

基于matlab实验平台实现对数字信号的2psk的调制与解调的模拟。

本文详细的介绍了PSK波形的产生和仿真过程加深了我们对数字信号调制与解调的认知程度。

关键字:2PSK;调制与解调;MATLAB引言当今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。

而对于信息的传输,数字通信已经成为重要的手段。

因此,数字信号的调制就显得非常重要。

调制分为基带调制和带通调制。

不过一般狭义的理解调制为带通调制。

带通调制通常需要一个正弦波作为载波,把基带信号调制到这个载波上,使这个载波的一个或者几个参量上载有基带数字信号的信息,并且还要使已调信号的频谱倒置适合在给定的带通信道中传输。

特别是在无线电通信中,调制是必不可少的,因为要使信号能以电磁波的方式发送出去,信号所占用的频带位置必须足够高,并且信号所占用的频带宽度不能超过天线的的通频带,所以基带信号的频谱必须用一个频率很高的载波调制,使期带信号搬移到足够高的频率上,才能够通过天线发送出去。

主要通过对它们的三个参数进行调制,振幅,角频率,和相位。

使这三个参量都按时间变化。

所以基带的数字信号调制主要有三种方式:FSK,PSK,ASK。

在这三种调制的基础上为了得到更高的效果也出现了很多其它的调制方式,如:DPSK,MASK,MFSK,MPSK,APK。

它们其中有的一些是将基本的调制方式用在多进制上或者引入了一些新的方式来解决基本调制的一些问题如相位模糊和无法提取位定时信号,另外一些由是组合多种基本的调制方式来达到更好的效果。

基带信号的调制主要分为线性调制和非线性调制,线性调制是指已调信号的频谱结构与原基带信号的频谱结构基本相同,只是占用的频率位置搬移了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息对抗大作业一、实验目的。

使用 MATLAB构成一个加性高斯白噪声情况下的2psk 调制解系统,仿真分析使用信道编码纠错和不使用信道编码时,不同信道噪声比情况下的系统误码率。

二、实验原理。

数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。

为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。

这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。

数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。

这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。

图 1相应的信号波形的示例101数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于" 同相 " 状态;如果其中一个开始得迟了一点,就可能不相同了。

如果一个达到正最大值时,另一个达到负最大值,则称为" 反相 " 。

一般把信号振荡一次(一周)作为360 度。

如果一个波比另一个波相差半个周期,我们说两个波的相位差180 度,也就是反相。

当传输数字信号时, "1" 码控制发 0 度相位, "0" 码控制发 180 度相位。

载波的初始相位就有了移动,也就带上了信息。

相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。

在2PSK 中,通常用初始相位0 和π分别表示二进制“1”和“ 0”。

因此, 2PSK信号的时域表达式为(t)=Acos t+)其中,表示第 n 个符号的绝对相位:=因此,上式可以改写为图 22PSK信号波形解调原理2PSK信号的解调方法是相干解调法。

由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。

下图2-3 中给出了一种2PSK信号相干接收设备的原理框图。

图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。

判决器是按极性来判决的。

即正抽样值判为1,负抽样值判为0.2PSK信号相干解调各点时间波形如图3所示.当恢复的相干载波产生180°倒相时, 解调出的数字基带信号将与发送的数字基带信号正好是相反, 解调器输出数字基带信号全部出错.图 32PSK信号相干解调各点时间波形这种现象通常称为 " 倒π " 现象 . 由于在 2PSK 信号的载波恢复过程中存在着 180°的相位模糊 , 所以 2PSK信号的相干解调存在随机的 " 倒π " 现象 , 从而使得 2PSK方式在实际中很少采用。

2PSK的基本原理:相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。

在 2PSK中,通常用初始相位为 0 和π表示二进制的“ 1”和“ 0”。

因此 2PSK的信号的时域表达式为:e 2psk (t)=Acos(ω c t+φ n)其中,φ n 表示第0n 个符号的绝对相位:发送“ 0”时φn=π发送“ 1”时因此,上式可改写为Acosω c t概率为Pe2psk (t)=- Acosω c t概率为1-P图 4 2PSK信号的时间波形T sA-A100由于表示信号的两种码元的波形相同,记性相反,鼓 2PSK信号一般可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波相乘,即e 2psk(t)=s(t)cosω c t其中s(t)=∑a g(t-nTs )n这里, g(t)是脉宽为Ts 的单个矩形脉冲,而an 得统计特性为1概率为 Pa n=-1概率为 1-P即发送二进制符号“ 0”时( an 取 +1),e 2psk(t)取 0 相位;发送二进制符号“1”时( an 取-1 ),e 2psk(t)取π 相位。

2PSK相干解调系统但是由于2PSK信号的载波回复过程中存在着180°的相位模糊,即恢复的本地载波与所需相干载波可能相同,也可能相反,这种相位关系的不确定性将会造成解调出的数字基带信号与发送的基带信号正好相反,即“1”变成“ 0”吗“ 0”变成“ 1”,判决器输出数字信号全部出错。

这种现象称为2PSK方式的“倒π ”现象或“反相工作”。

10011atT sbtctdt10011et图 5 2PSK信号的解调器波形图2PSK信号在一个码元的持续时间Ts 内可以表示为u1T(t)发送“ 1”时S T (t)=u oT(t)=- u1T(t)发送“ 0”时期中Acosω c t0< t < Tsu1T(t)=0其他设发送端发出的信号如上式所示,则接收端带通滤波器输出波形y(t) 为[a+n c (t)]cosω c t-n s(t)sinω c t发送“ 1”时y(t)=[-a+n c(t)]cosω c t-n s(t)sinω c t发送“ 0”时y(t)经过想干解调(相乘—低通)后,送入抽样判决器的输入波形为a+n c(t)发送“ 1”时x(t)=-a+n c(t)发送“ 0”时由于 nc(t)是均值为0,方差为σ 2 的高斯噪声,所以x(t)的一维概率密度函数为1-(x-a)2f1(x)=exp发送“ 1”时2πσn2σ2n21-(x+a)2f(x)=exp发送“ 0”时2πσn22σn由最佳判决门限分析可知,在发送“ 1”和“ 0”概率相等时,即 P(1)=P(0) 时,最佳门限 b*=0. 此时,发“ 1”而错判为“ 0”的概率为P(0/1)=P(x≦ 0)= ∫0-∞ f 1(x)dx=1/2erfc(r )22式中: r=a /2 σn同理,发“ 0 而错判为“ 1”的概率为P(1/0)=P(x>0)=∫ -∞f0(x)dx=1/2erfc(r )2PSK信号的调制器键控法原理方框图如图:双极性s(t )不归零e2 PSK (t)码型变换乘法器cos c t图 6 2PSK信号的调制器原理方框图说明: 2psk 调制器可以采用相乘器,也可以采用相位选择器就模拟调制法而言,与产生2ASK 信号的方法比较,只是对s(t)要求不同,因此2PSK 信号可以看作是双极性基带信号作用下的DSB调幅信号。

而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ或双极性NRZ脉冲序列信号均可。

2PSK 信号属于DSB信号,它的解调,不再能采用包络检测的方法,只能进行相干解调。

2PSK信号的解调通常采用相干解调法原理框图如图:带通e2PSK (t )滤波器a相乘器c低通d抽样e滤波器判决器输出cos ctb定时脉冲图 7 2PSK信号的相干解调原理方框图图中,假设相干载波的基准相位与2PSK信号的基准一致(通常默认为0 相位)。

说明:由于PSK信号的功率谱中五载波分量,所以必须采用相干解调的方式。

在相干解调中,如何得到同频同相的本地载波是个关键问题。

只有对PSK信号进行非线性变换,才能产生载波分量。

2PSK信号经过带通滤波器得到有用信号,经相乘器与本地载波相乘再经过低通滤波器得到低频信号v(t),再经抽样判决得到基带信号。

2PSK相干解调系统性能原理框图如图:带通低通抽样输出发送端信道相乘器滤波器滤波器判决器P e s T (t )y i (t)y(t)x(t )定时n i (t ) 2 cos c t脉冲图 8 2PSK相干解调系统性能原理方框图由最佳判决门限分析可知,在发送“1”符号和发送“ 0”符号概率相等时,最佳判决门限b* = 0。

此时,发“1”而错判为“0”的概率为P ( 0 / 1 )P ( x0 )0f 1 ( x ) dx同理,发送“ 0”而错判为“ 1”的概率为1erf c r 2P ( 1 / 0 )P ( x0 ) f 0 ( x ) dx故 2PSK信号相干解调时系统的总误码率为1erf c r 2P e P(1)P (0 / 1) P( 0) P(0 /1) 1 erfc r2在大信噪比条件下,上式可近似为P e 1e r2r三、实验过程。

根据代码即可实现全部过程,图形如下:代码如下:clc;clear all;close all;max=15;s=randint(1,max);%长度为 max 的随机二进制序列?Sinput=[];for n=1:length(s);if s(n)==0;A=zeros(1,2000);else s(n)==1;A=ones(1,2000);endSinput=[Sinput A];endfigure(1);subplot(211);plot(Sinput);grid onaxis([0 2000*length(s) -2 2]);title('输入信号波形');Sbianma=encode(s,7,4,'hamming');%汉明码编码后序列? a1=[];b1=[];f=1000;t=0:2*pi/1999:2*pi;for n=1:length(Sbianma);if Sbianma(n)==0;B=zeros(1,2000);%每个值 2000 个点 ?????else Sbianma(n)==1;B=ones(1,2000);enda1=[a1 B];%s(t),码元宽度 2000????c=cos(2*pi*f*t);%载波信号 ?b1=[b1 c];%与 s(t)等长的载波信号,变为矩阵形式?endfigure(2);subplot(211)plot(a1);grid on;axis([0 2000*length(Sbianma) -2 2]);title('编码后二进制信号序列 '); a2=[];b2=[];for n=1:length(Sbianma);if Sbianma(n)==0;C=ones(1,2000);%每个值 2000 点 ?????????d=cos(2*pi*f*t);%载波信号 ?????else Sbianma(n)==1;C=ones(1,2000);d=cos(2*pi*f*t+pi);%载波信号 ?????enda2=[a2 C];%s(t),码元宽度 2000?b2=[b2 d];%与 s(t)等长的载波信号 ?endtiaoz=a2.*b2;%e(t)调制 ?figure(3);subplot(211);plot(tiaoz);grid on;axis([0 2000*length(Sbianma) -2 2]);title('2psk已调制信号 ');figure(2);subplot(212);plot(abs(fft(a1)));axis([0 2000*length(Sbianma) 0 400]);title('编码后二进制信号序列频谱');figure(3);subplot(212);plot(abs(fft(tiaoz)));axis([0 2000*length(Sbianma) 0 400]);title('2psk信号频谱 ')%-----------------带有高斯白噪声的信道 ----------------------?tz=awgn(tiaoz,10);%信号 tiaoz加入白噪声,信噪比为10?figure(4);subplot(211);plot(tz);grid onaxis([0 2000*length(Sbianma) -2 2]);title('通过高斯白噪声后的信号 ');figure(4);subplot(212);plot(abs(fft(tz)));axis([0 2000*length(Sbianma) 0 800]);title('加入白噪声的 2psk 信号频谱 ');%-------------------同步解调-----------------------------?jiet=2*b1.*tz;%同步解调 ?figure(5);subplot(211);plot(jiet);grid onaxis([0 2000*length(Sbianma) -2 2]);title('相乘后的信号波形 ')figure(5);subplot(212);plot(abs(fft(jiet)));axis([0 2000*length(Sbianma) 0 800]);title('相乘后的信号频率 ');%----------------------低通滤波器 ---------------------------fp=500;fs=700;rp=3;rs=20;fn=11025;ws=fs/(fn/2);wp=fp/(fn/2);%计算归一化角频率?[n,wn]=buttord(wp,ws,rp,rs);%计算阶数和截止频率?[b,a]=butter(n,wn);%计算 H( z ) ?figure(6);freqz(b,a,1000,11025);subplot(211);axis([0 40000 -100 3])title('lpf频谱图 ');jt=filter(b,a,jiet);figure(7);subplot(211);plot(jt);grid onaxis([0 2000*length(Sbianma) -2 2 ]);title('经低通滤波器后的信号波形');figure(7);subplot(212);plot(abs(fft(jt)));axis([0 2000*length(Sbianma) 0 800]); title('经低通滤波器后的信号频率');%-----------------------抽样判决--------------------------? for m=1:2000*length(Sbianma);if jt(m)<0;jt(m)=1;else jt(m)>0;jt(m)=0;endendfigure(8);subplot(211);plot(jt)grid onaxis([0 2000*length(Sbianma) -2 2]);title('经抽样判决后信号jt(t)波形')figure(8);subplot(212);plot(abs(fft(jt)));axis([0 2000*length(Sbianma) 0 800]);title('经抽样判决后的信号频谱');grid on;n=500:2000:2000*length(Sbianma);a5=[];a5=[a5 jt(n)];s1=decode(a5,7,4,'hamming');a6=[];for n=1:length(s1);if s1(n)==0;G=zeros(1,2000);else s1(n)==1;G=ones(1,2000);enda6=[a6 G];endfigure(1);subplot(212);plot(a6);grid onaxis([0 2000*length(s) -2 2]);title('汉明码译码后的波形')grid on%------------------2psk误码率仿真-------------------------? snrdB_min=-10;snrdB_max=10;snrdB=snrdB_min:1:snrdB_max;Nsymbols=200;snr=10.^(snrdB/10);h=waitbar(0,'SNR?Iteration');len_snr=length(snrdB);for j=1:len_snrwaitbar(j/len_snr);sigma=sqrt(1/(2*snr(j)));error_count=0;for k=1:Nsymbolsd=round(rand(1));%随即数据 ?x_d=2*d-1;%0,1分别转化为-1,1?????????n_d=sigma*randn(1);%加噪y_d=x_d+n_d;%加噪后接收?if y_d>0d_est=1;elsed_est=0;endif(d_est~=d)error_count=error_count+1;endenderrors(j)=error_count;endber_sim=errors/Nsymbols;ber_theor=(erfc(sqrt(snr))).*(1-0.5*erfc(sqrt(snr)));figure(9);semilogy(snrdB,ber_theor,'-',snrdB,ber_sim,'*');axis([snrdB_min snrdB_max 0.0001 1]);xlabel('信噪比 ');ylabel('误码率 ');title('2psk信噪比误码率关系图');legend('理论值 ','实际值')。

相关文档
最新文档