人教版7年级下册第一单元数学测试卷含答案

合集下载

人教版七年级数学下册 《10.3 课题学习 从数据谈节水》单元测试试卷 含答案解析

人教版七年级数学下册 《10.3 课题学习 从数据谈节水》单元测试试卷 含答案解析

人教版七年级下册数学《10.3课题学习从数据谈节水》课时练1.某数学学习小组为了解本校同学日常“垃圾分类”投放情况,随机从本校同学中抽取部分同学进行调查,并将调查到的数据绘制成如图所示的扇形统计图,其中A:每次分类投放,B:经常分类投放,C:有时分类投放,D:从不分类投放,则下列说法中错误的是()A.此次共随机调查了200名同学B.选择“每次分类投放”垃圾的同学有55人C.选择“有时分类投放”垃圾所在扇形圆心角的度数为46.8°D.选择“从不分类投放”垃圾的同学占比2%2.反映偃师市某一周每天的最高气温的变化趋势,宜采用()A.折线统计图B.扇形统计图C.条形统计图D.统计表3.如图是某校七年级学生到校方式的统计图,由图可得出乘公共交通的人数占七年级学生总人数的()A.30%B.40%C.50%D.60%4.据不完全统计,2020年1~4月份我国某型号新能源客车的月销量情况如图所示,下列说法错误的是()A.1月份销量为2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了0.9万辆D.1~4月新能源客车销量逐月增加5.一个班有40名学生,在期末体育考核中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角是()A.144°B.162°C.216°D.250°6.5G移动通信网络将推动我国数字经济发展迈上新台阶,据预测,2020年到2025年中国5G直接经济产出和间接经济产出的情况如图所示,根据图中提供的信息,下列推断不正确的是()A.2020年到2025年,5G间接经济产出和直接经济产出都呈增长趋势B.2020年到2022年,5G间接经济产出和直接经济产出共10.7万亿元C.2023年到2024年,5G间接经济产出和直接经济产出的增长率相同D.2020年到2025年,5G间接经济产出总量比直接经济产出总量多3万亿元7.甲、乙两个施工队分别从两端共同修一段长度为380米的公路,在施工过程中,乙队因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.施工期间,甲队每天的施工进度相同,乙队技术改进前和改进后每天的施工进度也分别相同,下表是每天的工程进度:施工时间/天123456789累计完成施工量/米3570105140160215270325380下列说法正确的是()A.甲施工队每天修路15米B.乙施工队第一天修路20米C.整个工程中,甲施工队比乙施工队少修路20米D.乙施工队技术改进后每天修路55米8.某校初三(1)班同学参加内容为“最适合自己的考前减压方式”的调查,收集并整理数据绘制如图扇形统计图,已知选择享用美食的8人,则选择体育运动的有人.9.某商店销售5种领口大小(单位:cm)分别为38,39,40,41,42的村衫.为了调查各种领口大小村衫的销售情况,商店统计了某天的销售情况,并绘制了如图所示的扇形统计图,则该商店应将领口大小为cm的衬衫进的最少.10.为提高服务质量,学校食堂对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序:①绘制扇形统计图;②收集最受学生欢迎菜品的数据;③利用扇形统计图分析出最受学生欢迎的菜品;④整理所收集的数据.请按正确的调查统计顺序重新排序(只填番号):.11.某校为了观看一场体育运动会,体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.请根据以上统计结果,计算出这次被调查的同学中有观看游泳项目意愿的人数有人.12.为了传承中华民族优秀传统文化,我市某中学举行“经典诵读”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如下两幅不完整的统计图.在扇形统计图中,m的值为.13.有效的垃圾分类,可以减少污染、保护地球上的资源.为了更好地开展垃圾分类工作,某社区居委会对本社区居民掌握垃圾分类知识的情况进行调查.从中随机抽取部分居民进行垃圾分类知识测试,并把测试成绩分为A,B,C,D四个等次,绘制成如图所示的两幅不完整的统计图.下面有四个推断:①本次的调查方式是抽样调查,样本容量是40;②扇形统计图中,表示C等次的扇形的圆心角的度数为72°;③测试成绩为D等次的居民人数占参测总人数的10%;④测试成绩为A或B等次的居民人数共30人.所有合理推断的序号是.14.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为.15.在一个样本中,100个数据分布在5个组内,第一、二、四、五组的频数分别为9,16,40,15,若用扇形图对这些数据进行统计,则第三组对应的扇形圆心角的度数为.16.根据某商场2019年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为600万元,则该商场全年的营业额为万元.17.某公司有员工800人举行元旦庆祝活动,A、B、C分别表示参加各种活动的人数的百分比(如图),规定每人都要参加且只能参加其中一项活动,则下围棋的员工共有人.18.某校计划购买一批课外读物,为了解学生对课外读物的需求情况,学校随机抽取了部分学生进行了一次“我最喜欢的课外读物”的调查(设置了“文学”、“艺术”、“科普”、“名人传”和““其它”五个类别,规定每人必须且只能选择其中的一个类别),将调查结果进行了统计分析,并绘制了如下两幅不完整的统计图:该校共有学生1200人,请根据以上统计分析,估计该校“我最喜欢的课外读物”是“名人传”的学生约有人.19.某班主任把本班学生上学方式的调查结果绘制成如图所示的扇形统计图,已知骑自行车上学的学生有26人,乘坐公交车上学所对应的扇形的圆心角的度数是144°,则乘坐公交车上学的学生人数为.20.“校园安全”受到全社会的广泛关注,“高远”中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,要求被抽查的同学在四种了解程度中选择唯一一种,绘制了尚不完整的条形统计图,且知在抽样调查中“了解很少”的同学占抽样调查人数的50%,请你根据提供的信息解答下列问题:(1)接受问卷调查的学生共有多少名?(2)请通过计算补全条形统计图;(3)若“高远”中学共有1700名学生,请你估计该校学生对校园安全知识“基本了解”的有多少名?21.某数学小组将课外书大概分四类:“文学名著”、“科普”、“人文社科”和“猎奇类”,在校内对你最喜欢读的一类书进行调查,随机调查了若干人(每名学生必选一种且只能从这四项中选择一项),并将调查结果绘制成不完整的统计图.(1)求本次共抽查了多少名学生;(2)请补全条形统计图,并求出“科普”类书在扇形统计图中圆心角的度数;(3)若该学校共有2000名学生,请你估计最喜欢读“猎奇类”书的学生有多少名?22.为了解学校九年级学生体育成绩,安排了体育中考模拟测试,现从中随机抽取部分学生的体育成绩进行分组(A:40分;B:39﹣36分;C:35﹣32分;D:31﹣24分;E:23﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整.(2)如果把成绩在24分以上(含24分)定为合格,估计该校今年800名九年级学生中,体育模拟测试成绩为合格的学生人数有多少人?23.复学之后,某校要求各班必须配备额温枪并全员测温打卡登记,如图所示为依据九(2)班学生5月6日温测数据绘制的不完整统计图表,已知当日温测1次的同学人数占全班人数的12%.请结合以上信息解答下列问题:(1)九(2)班学生人数为;(2)温测3次的人数为m,温测4次的人数为n,且m=2n+1,请补全统计图;(3)若绘制扇形统计图,温测4次的同学人数所对应扇形的圆心角的度数为.(4)已知该校共有2200名学生.请你估计该校当日温测不少于3次的人数.24.为倡导“低碳出行”,环保部门对我市居民日常出行使用交通方式的情况进行了问卷调查,将调查结果整理后,绘制了如下不完整的统计图,其中“骑自行车、电动车”所在扇形的圆心角是162°.请根据以上信息解答下列问题:(1)本次调查共收回多少张问卷?(2)补全条形统计图,在扇形统计图中,“其他”对应扇形的圆心角是多少度;(3)若该城市有32万居民,通过计算估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有多少人?25.每年12月4日是“国家宪法日”.某中学为了让学生学宪法,成为宪法小卫士,组织全校学生参加了“宪法知识网络答题”活动.该校德育处对九年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校九年级共有名学生,“优秀”所占圆心角的度数为.(2)请将图1中的条形统计图补充完整.(3)已知该市共有20000名学生参加了这次“宪法知识网络答题”活动,请以该校九年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?26.我市某校想知道学生对家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项):A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成两幅不完整的统计图,根据两幅统计图中的信息回答下列问题:(1)本次调查了多少名学生?补全条形统计图;(2)扇形统计图中,A选项所对应扇形的圆心角度数为多少?(3)该校共有500名学生,请你估计“不知道”的学生有多少名?27.王先生在春节前卖灯笼,第一天收入780元.在扣除这一天的成本(进货和租摊位等费用)后,王先生把利润(剩余的钱)存入了银行,其中摊位费是进货费的.根据收入分配情况的扇形统计图回答下面问题:(1)王先生第一天卖灯笼的成本是多少钱?(2)存入银行的钱比进货用去的钱少百分之几?(3)如果接下来每天都能有和第一天同祥多的利润,王先生将7天所得的钱全部存入银行2年,年利率为2.10%,到期时王先生共能取回多少钱?参考答案1.A2.A3.B4.D5.B6.D7.C8.12.9.42.10.②④①③.11.27.12.25.13.①②④.14.1100人.15.72°.16.3000.17.160.18.180.19.20.20.解:(1)接受问卷调查的学生共有30÷50%=60(名);(2)“不了解”的人数为60﹣(15+5+30)=10(人),补全条形图如下:(3)700×=425(名),答:估计该校学生对校园知识“基本了解”的有425名.21.解:(1)本次共抽查的学生有:35÷35%=100(名);(2)选择“科普”的人数有:100﹣15﹣35﹣10=40(人),补全统计图如下:“科普”类书在扇形统计图中圆心角的度数是360°×=144°;(3)2000×=200(名),答:最喜欢读“猎奇类”书的学生有200名.22.解:(1))根据题意得:70÷35%=200(人),所以抽取的学生人数为200人.B组的人数是:200﹣70﹣40﹣30﹣10=50(人),补全统计图如下:(2)根据题意得:800×(1﹣5%)=760(人),答:体育模拟测试成绩为合格的学生人数有760人.23.解:(1)由统计图可知,温测1次的同学有6人,占占全班人数的12%,则九(2)班学生人数为:6÷12%=50(人),故答案为:50人;(2)由题意得,6+10+12+m+n=60,即6+10+12+2n+1+n=50,解得,n=7,则m=15,补全统计图如图所示;(3)温测4次的同学人数所对应扇形的圆心角的度数为:×360°=50.4°,故答案为:50.4°;(4)估计该校当日温测不少于3次的人数为:×2200=1496(人).24.解:(1)本次调查的学生数是:80÷40%=200(人),即本次调查共收回200张问卷;(2)开私家车对应的百分比为×100%=12.5%,“骑自行车、电动车”对应的百分比为162÷360×100%=45%,∴“其他”对应的百分比为1﹣40%﹣45%﹣12.5%=2.5%,∴“其他”对应的人数为200×2.5%=5(人),“骑自行车、电动车”对应的人数为200×45%=90(人),补全图形如下:在扇形统计图中,“其他”对应扇形的圆心角是360°×2.5%=9°;(3)估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有32×(40%+45%)=27.2(万人).25.解:(1)该校九年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为360°×=108°;故答案为:500,108°;(2)“一般”的人数为500﹣150﹣200﹣50=100(名),补全条形统计图如下:(3)20000×=2000(名),该校九年级学生答题成绩统计情况估计该市大约有2000名学生在这次答题中成绩不合格.26.解:(1)本次调查的学生人数为15÷30%=50(人),则C选项人数为50﹣10﹣15﹣5=20(人),补全条形图如图所示:(2)扇形统计图中,A选项所对应扇形的圆心角度数为360°×=72°;(3)500×=50(人),答:该校共有500名学生,估计“不知道”的学生有50名.27.解:(1)780×(+×)=520(元),答:王先生第一天卖灯笼的成本是520元钱;(2)×100%=50%,答:存入银行的钱比进货用去的钱少50%;(3)7×(780﹣520)×2×(1+2.10%)=3716.44(元),答:到期时王先生共能取回3716.44元钱.。

人教版四年级数学下册第一单元测试卷及答案(共6套)

人教版四年级数学下册第一单元测试卷及答案(共6套)

第1单元评价测试卷题号一二三四总分得分一、我会填。

(16分)1.58-4×8÷2,应先算(),再算(),最后算()。

2.算式22+18×45-15,如果要改变运算顺序,最后一步算乘法,那么必须使用(),算式是()。

3.在○里填上“>”“<”或“=”。

(24+24)÷24×24○24+24÷24×24 16+4-16+4○(16+4)-(16+4)(78-78)÷6○78-78÷6 324-17+14×4○(324-17)+14×44.根据29×36=1044,写出两道除法算式。

5.王涛5分钟跑1500米,时间/分48路程/米180030006.40减去40除以40的商,所得的差再乘40,结果是()。

二、我会选。

(14分)1.甲数是100,比乙数的3倍多16,乙数是()。

A.28B.312C.38D.322.从459里面减去15的4倍,差是多少?正确的算式是()。

A.(459-15)×4B.459-15×4C.459×4-15D.以上都不对3.根据算式选择问题。

甲、乙两人同时从两地相向而行,甲骑车每小时行15 km,乙步行每小时行6 km,经过4小时两人相遇。

(1)15×4()。

(2)15+6()。

(3)(15+6)×4()。

A.甲、乙两人每小时共行多少千米?B.两地之间的路程是多少千米?C.相遇时,甲行了多少千米?4.在除法里,0不能作()。

A.被除数B.除数C.商D.以上都不对5.下面的算式中,不一定等于0的算式是()。

A.0+△B.0÷○(○≠0)C.0×△D.以上都不对三、我会算。

(39分)1.直接写得数。

(9分)146+350=5×9÷9=0×36÷6=2800÷70= 78+22-46= 36-0÷23=25÷5×9= 27÷3×0= (24-10)÷2=2.计算并验算。

新人教版一年级下册数学1-7单元单元达标测试(含答案)

新人教版一年级下册数学1-7单元单元达标测试(含答案)

7+( ) =15
11-( ) =5
17-( ) =9
七、看图列式计算。(每题 3 分,共 6 分)
1.
2.
= (个)
= (支)
八、解决问题。(1 题 5 分,5 题 6 分,其余每题 10 分,共 41 分)
1. 看书。
(1)小玲比小娟少看多少页? = ()
(2)小玲和小娟一共看了多少页? = ()
三、略 四、长方形:①⑫
正方形: 三角形: 圆形:③ 平行四边形:⑧⑩ 五、1. 1 1 1 7 2. 4 4 8 5 5 六、16 七、3 3 4 7 八、圈第 2 个 圈第 1 个 圈第 2 个 圈第 1 个 九、圈第一个和第三个
圈第二个和第三个 圈第一个和第二个 圈第二个和第四个 十、
十一、3 4 6 十二、
5. (1)9-6=3(下)
(2)言言和北北一共踢了几下?
8+6=14(下)(答案不唯一)
6.
14-4-4=6(本)
人教版一年级下册数学第三单元达标测试卷
一、选一选。(每题 3 分,共 9 分) 1.在动物下面画“√”。
2.在蔬菜下面画“√”。 3.在水果下面画“√”。 二、圈一圈,把每组中不同类的圈起来。(每题 2 分,共 6 分)
三、分一分。(12 分)
四、按要求分类。(每题 8 分,共 16 分) 1. 按花的样子分一分,在下面涂一涂,填一填。 2. 按卡(kǎ)片的形状分一分,在下面涂一涂,填一填。
五、分类。(每题 8 分,共 24 分) 1.按不同的活动分类。 2.涂一涂。
3. 如果分成两组,可以怎样分? 六、按要求做题。(2 题 6 分,其余每题 4 分,共 14 分)
[点拨]前四个图的答案不唯一。

人教版数学七年级下册《期中检测卷》(含答案)

人教版数学七年级下册《期中检测卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题2分,共20分)1. 据悉,世界上最小开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×1092. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+43. 下列各式中,不能用平方差公式是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A B.C. D.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B. 32C. 1D. 27. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 8. 给定下列条件,不能判定三角形是直角三角形的是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A B.C. D.二、填空题(每题3分,共24分)11. 若a+3b ﹣3=0,则3a •27b =_____.12. (a ﹣2018)2+(2020﹣a )2=20,则a ﹣2019=_____.13. 若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.14. 已知a ,b ,c 是一个三角形的三边长,化简|a+c ﹣b|﹣|b ﹣c+a|﹣|a ﹣b ﹣c|=_____.15. 已知BD 、CE 是△ABC 的高,BD 、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC =_____. 16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.17. 如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.答案与解析一、选择题(每题2分,共20分)1. 据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×109[答案]A[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000009=9.0×10﹣8.故选:A.[点睛]本题考查了绝对值小于1的数的科学计数法表示,熟练掌握表示法则是解题的关键.2. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+4[答案]C[解析][分析]分别根据完全平方公式,积的乘方,同底数幂的乘法等知识进行计算即可求解.[详解]解:A.原式=x2+2xy+y2,计算错误,不合题意;B.原式=﹣8x9,计算错误,不合题意;C.原式=x1+2=x3,计算正确,符合题意;D.原式=x2+4+4x,计算错误,不合题意.故选:C.[解答]本题考查了完全平方公式、积的乘方、同底数幂的乘法等知识,熟知相关法则是解题关键.3. 下列各式中,不能用平方差公式的是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)[答案]D[解析][分析]根据平方差公式的结构特点,两个数的和乘以两个数的差,对各选分析判断即可得解.[详解]解:A、(3x﹣2y)(3x+2y)是3x与2y的和与差的积,符合公式结构,故本选项不符合题意;B、(a+b+c)(a﹣b+c),是(a+c)与b的和与差的积,符合公式结构,故本选项不符合题意;C、(a﹣b)(﹣b﹣a),是﹣b与a的和与差的积,符合公式结构,故本选项不符合题意;D、(﹣x+y)(x﹣y)=﹣(x﹣y)2,不符合公式结构,故本选项符合题意.故选:D.[点睛]此题主要考查平方差公式的结构特点,正确掌握结构是解题关键.4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交的两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A 2个 B. 3个 C. 4个 D. 5个[答案]D[解析][分析]根据三角形的高、点到直线的距离定义、平行公理、平行线定义进行分析即可.[详解]解:①平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;②平面内,不相交的两条直线必平行,故原题说法错误;③三角形的三条高线交于一点,应该是三条高线所在直线交于一点,故原题说法错误:④直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误;⑤过直线外一点有且只有一条直线与已知直线平行,故原题说法错误.错误的说法有5个,故选:D.[点睛]此题主要考查真假命题的判断,正确理解各相关概念是解题关键.5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B.C D.[答案]B[解析][分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A、∠1=∠2不能判定任何直线平行,故本选项错误;B、∵∠1=∠2,∴AB∥CD,符合平行线判定定理,故本选项正确;C、∵∠1=∠2,∴AC∥BD,故本选项错误;D、∠1=∠2不能判定任何直线平行,故本选项错误.故选:B.[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B.32C. 1D. 2[答案]B[解析][分析]S△ADF-S△CEF=S△ABE-S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=9,就可以求出三角形ABE的面积和三角形BCD的面积.[详解]∵BE=CE,∴BE=12 BC,∵S△ABC=9,∴S△ABE=12S△ABC=12×9=4.5.∵AD=2BD ,S △ABC =9,∴S △BCD =13S △ABC =13×9=3, ∵S △ABE -S △BCD =(S △ADF +S 四边形BEFD )-(S △CEF +SS 四边形BEFD )=S △ADF -S △CEF ,即S △ADF -S △CEF =S △ABE -S △BCD =4.5-3=1.5.故选B .[点睛]考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.7. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 [答案]B[解析][分析]直接利用多项式乘多项式运算法则计算,进而得出a ,b 的值.[详解]解:∵(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,∴原式=x 4﹣3x 3+ax 3﹣3ax 2+bx 2﹣3bx=x 4+(﹣3+a )x 3+(﹣3a+b )x 2﹣3bx ,∴﹣3+a =0,﹣3a+b =0,解得:a =3,b =9.故选:B .[点睛]本题考查整式的乘法、多项式乘多项式的法则,灵活运用这些法则是解题的关键,属于中考常考题型. 8. 给定下列条件,不能判定三角形是直角三角形是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ [答案]C[解析][分析]根据三角形的内角和等于180°求出最大角,然后选择即可.[详解]解:A 、最大角∠C=180°÷(2+3+5)×5=90°,是直角三角形,故此选项不符合题意;B 、最大角∠A=∠B+∠C=180°÷2=90°,是直角三角形,故此选项不符合题意;C 、最大角∠A=180°÷(2+2+1)×2=72°,故此选项符合题意;D 、最大角∠C=(1+2+3)×3==90°,故此选项不符合题意;故答案为:C.[点睛]本题考查了由角度大小计算判断直角三角形,掌握三角形的内角和等于180°是解题的关键. 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°[答案]C[解析][分析] 先求出∠AEF ,再根据翻折变换的性质得到∠A ′EA ,根据平角的定义和翻折变换的性质可求∠A ′EG ,∠DEG ,再根据平行线的性质和角的和差关系即可求解.[详解]解:∵∠AFE =70°,∴∠AEF =20°,由翻折变换的性质得∠A ′EA =40°,∴∠A ′ED =140°,由翻折变换的性质得∠A ′EG =∠DEG =70°,∵A ′E ∥C ′G ,∴∠EGC ′=110°,∵AD ∥BC ,∴∠EGB =70°,∴∠BGC ′=110°﹣70°=40°.故选:C .[点睛]本题考查了翻折的性质,平行线的性质,理解翻折的性质得到相等的角解题关键.10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A. B.C. D.[答案]D[解析][分析]该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.[详解]解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.[点睛]本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.二、填空题(每题3分,共24分)11. 若a+3b﹣3=0,则3a•27b=_____.[答案]27[解析][分析]先将原式化为同底,然后利用条件即可求出答案.[详解]解:原式=3a•(33)b=3a+3b,∵a+3b﹣3=0∴a+3b=3,∴原式=33=27,故答案为:27.[点睛]本题考查幂的乘方、同底数幂的乘法,解题的关键是熟练掌握运算法则.12. (a﹣2018)2+(2020﹣a)2=20,则a﹣2019=_____.[答案]±3[解析][分析]将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.[详解]解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.[点睛]此题主要考查求代数式的值,解题关键是根据题意整理式子.13. 若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.[答案]55或20[解析][分析]根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.[详解]解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.[点睛]本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14. 已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=_____.[答案]a﹣3b+c[解析][分析]根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.[详解]解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.[解答]本题考查了三角形三边关系,绝对值的意义,根据三角形三边关系得到三个绝对值内整式的符号是解题关键.15. 已知BD、CE是△ABC的高,BD、CE所在的直线相交所成的角中有一个角为60°,则∠BAC=_____.[答案]60°或120°.[解析][分析]分两种情况:(1)当∠A为锐角时,如图1;(2)当∠A为钝角时,如图2;根据四边形的内角和为360°即可得出结果.[详解]解:分两种情况:(1)当∠A为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC的度数为60°或120°,故答案为:60°或120°.[点睛]本题考查了三角形高线的定义,四边形的内角和等知识,掌握相关定理,能分类讨论是解题关键.16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.[答案]9[解析][分析]分底小于腰和底大于腰两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.[详解]解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=21,解得:x=3,当x=3时,x+6=9,此时等腰三角形的三边为:3,9,9;(2)设底为x,则腰为(x﹣6),由题意得:x+2(x﹣6)=21,解得:x=11,当x=11时,x﹣6=5,11,5,5不能构成三角形,不符合题意;因此,腰为9,故答案为:9.[点睛]本题考查了等腰三角形的定义,三角形的三边关系,根据题意分类讨论,并对答案根据三边关系进行分析取舍是解题关键.17. 如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.[答案]68°[解析][分析]如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.[详解]解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E, ∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.[答案]2.5或14.5[解析][分析]根据题意得:动点P 在BC 上运动的时间是4秒,又由动点的速度,可得BC 、AF 的长;再根据三角形的面积公式解答即可.[详解]解:动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC =2cm/秒×4秒=8(cm ); 动点P 在CD 上运动时,对应的时间为4到6秒,易得:CD =2cm/秒×(6﹣4)秒=4(cm );动点P 在DF 上运动时,对应的时间为6到9秒,易得:DE =2cm/秒×(9﹣6)秒=6(cm ),故图甲中的BC 长是8cm ,DE =6cm ,EF =6﹣4=2(cm )∴AF =BC+DE =8+6=14(cm ),∴b =9+(EF+AF )÷2=17, ∴12152AB t ⋅=或()12152AB BC CD DE EF AF t ++++-=, 解得t =2.5或14.5.故答案为:2.5或14.5.[点睛]本题考查了一元一次方程的应用及动点问题,根据题意需要分情况讨论是解题的关键.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.[答案](1)3a5;(2)10.[解析][分析](1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.[详解]解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.[点睛]本题考查了整式的乘法运算,平方差公式,0指数幂,负整数指数幂等知识,熟知相关运算法则是解题关键.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.[答案]﹣y+2x,﹣2[解析][分析]先根据整式的运算法则进行化简,然后将x与y的值代入原式即可求出答案.[详解]解:原式=(4x2﹣4xy+y2﹣9x2+y2+5x2)÷(﹣2y)=(2y2﹣4xy)÷(﹣2y)=﹣y+2x,当x=12-,y=1时,原式=﹣1+2×(12 -)=﹣1﹣1=﹣2.[点睛]本题考查乘法公式的混合运算,熟记完全平方公式和平方差公式是解题的关键,需要注意把乘法公式的结果用括号括起来.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )[答案]已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[解析]分析]利用平行线的性质定理和判定定理进行解答即可.[详解]证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC中,∠1+∠B+∠3=180°,在△ADF中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB//CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD//BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[点睛]本题考查平行线的性质以及判定定理,熟练掌握相关定理是解决此题的关键.22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.[答案](1)DE∥BF,理由见解析;(2)∠A =50°.[解析][分析](1)依据FG∥CB,即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF.(2)依据三角形外角性质以及三角形内角和定理,即可得到∠A的度数.[详解]解:(1)BF与DE的位置关系为互相平行,理由:∵∠AGF=∠ABC=70°,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°∴DE∥BF.(2)∵DE⊥AC,∠2=150°,∴∠C=∠2﹣∠CED=150°﹣90°=60°,又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣60°=50°.[点睛]此题主要考查平行线的判定和性质、三角形的内角和定理、三角形的外角性质,熟练进行逻辑推理是解题关键.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.[答案](1)24ab-6b2;(2)31500元.[解析][分析](1)根据已知条件,用大正方形的面积减去4个长方形的面积再减去中间小正方形的面积即可求解.(2)把a=10,b=5及草坪的造价为每平米30元代入代数式即可求解.[详解]解:(1)∵阴影部分的面积为:大正方形的面积减去4个长方形的面积再减去中间小正方形的面积,∴草坪(阴影)面积为:6a×6a﹣4×b×12×b﹣(6a﹣2b)2=24ab-6b2.(2)当a=10,b=5时,草坪的造价为:(24×10×5-6×52)×30=31500(元).[点睛]本题考查了整式的应用和求整式的值,根据题意正确列出整式是解题的关键.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.[答案](1)甲在600秒时,第一次超出乙600米;(2)1600,1000,1360;(3)150或900或1150或1500.[解析][分析](1)由图象可得:点A表示甲在600秒时,第一次超出乙600米;(2)先求出甲,乙速度,即可求解;(3)分四种情况讨论,由时间=路程÷速度,即可求解.[详解]解:(1)点A表示甲在600秒时,第一次超出乙600米,故答案为:甲在600秒时,第一次超出乙600米;(2)由图形可得乙出发1600s时到达终点,∴乙的速度=24001600=1.5米/秒,∴甲的速度=600600+1.5=2.5秒,∴a=600 2.51.5⨯=1000,∴b=24002.5﹣600+1000=1360,故答案为:1600,1000,1360;(2)刚出发时,1502.5 1.5-=150s,甲在A地时,2.56001501.5⨯-=900s,从A地出发后,1000+150=1150s,甲到终点后,24001501.5-=1500s,综上所述:甲乙出发150s或900s或1150s或1500s时,相距150米.故答案为:150或900或1150或1500.[点睛]此题主要考查根据函数图象的信息解决实际问题,解题关键是读懂函数图象.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.[答案](1)∠DAE=20°;(2)α﹣20°;(3)∠1+∠2=2∠B[解析][分析](1)三角形根据三角形内角和定理求出∠BAC,再由角平分线性质求得∠BAE,再根据三角形的高和直角三角形的性质求得∠BAD,进而由角的和差关系求得结果;(2)根据直角三角形的性质求得∠BAD,再由角的和差关系求得∠BAE,由角平分线的定义求得∠BAC,最后根据三角形内角和定理求得结果;(3)根据邻补角性质和角平分线定义用∠1、∠2分别表示∠BGH和∠BHG,再由三角形内角和定理得结果.[详解]解:(1)∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(2)∵∠B=α,∠ADB=90°,∴∠BAD=90°﹣α,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=100°﹣α,∵AE平分∠BAC,∴∠BAC=200°﹣2α,∴∠C=180°﹣∠B﹣∠BAC=180°﹣α﹣200°+2α=α﹣20°, 故答案为:α﹣20°;(3)∠1+∠2=2∠B.理由:由折叠知,11,,22BGH BGF BHG BHF ∠=∠∠=∠∵∠BGF=180°﹣∠1,∠BHF=180°﹣∠2,∴∠BGH=90°﹣12∠1,∠BHG=90°﹣122∠,∴∠B=180°﹣∠BGH﹣∠BHG=1112 22∠+∠,即∠1+∠2=2∠B.[点睛]本题考查三角形内角和、邻角补角性质、角平分线、高线、直角三角形相关性质以及折叠图形的特点,熟练掌握相关知识点并运用是解决此题的关键.。

新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。

13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。

(人教版)北京市七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

(人教版)北京市七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.如图,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF ,则四边形ABFD 的周长为( )A .8B .9C .10D .11 3.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .1554.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.55.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46° 6.下面命题中是真命题的有( )①相等的角是对顶角 ②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个7.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 8.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个9.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°11.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是( )A .75︒B .120︒C .135︒D .无法确定 12.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º二、填空题13.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°,则∠DOF 的度数为__.14.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥15.命题“等边三角形的每个内角都等于60°”的逆命题是_____命题.(填“真”或“假”) 16.命题“相等的角是对顶角”是______(填“真命题”或“假命题”).17.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.18.如图,将直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,DE 交BC 于点G ,BG =4,EF =12,△BEG 的面积为4,下列结论:①DE ⊥BC ;②△ABC 平移的距离是4;③AD =CF ;④四边形GCFE 的面积为20,其中正确的结论有________(只填写序号).19.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.20.如图,添加一个你认为合适的条件______使//AD BC .三、解答题21.三角形ABC 中,D 是AB 上一点,//DE BC 交AC 于点E ,点F 是线段DE 延长线上一点,连接FC ,180BCF ADE ∠+∠=︒.(1)如图1,求证://CF AB ;(2)如图2,连接BE ,若40ABE ∠=︒,60ACF ∠=︒,求BEC ∠的度数; (3)如图3,在(2)的条件下,点G 是线段FC 延长线上一点,若:7:13EBC ECB ∠∠=,BE 平分ABG ∠,求CBG ∠的度数.22.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG AC 于点,G H 是AB 上一点,HE AC ⊥于点,12E ∠=∠,求证://DE BC .证明:连接EF .,FG AC HE AC ∴⊥⊥,90FGC HEC ︒∴∠=∠=.//FG ∴_______( ).3∴∠=∠_______( ).又12∠=∠,∴______24=∠+∠,即∠_________EFC =∠.//DE BC ∴(___________).23.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.(1)与BOF ∠互余的角是______;(2)求EOF ∠的度数.24.如图,已知直线l 1//l 2,l 3、和l 1、l 2分别交于点A 、B 、C 、D ,点P 在直线l 3或上且不与点A 、B 、C 、D 重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P 在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P 在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P 在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明; (4)若点P 在线段DC 延长线上运动时,请直接写出∠1、∠2、∠3之间的关系.25.如图所示,直线MN 分别与直线,AC DG 是好点B 、F ,且12∠=∠,ABF ∠的平分线BE 交直线DG 于点E ,BFG ∠的平分线FC 交直线AC 于点C .(1)请判断直线AC 与DG 的位置关系,并说明理由(2)请判断直线BE 与CF 的位置关系,并说明理由(3)若35C ∠=︒,求BED ∠的度数26.在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a 格(当a 为正数时,表示向右平移.当a 为负数时,表示向左平移),再沿竖直方向平移b 格(当b 为正数时,表示向上平移.当b 为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(,)a b .例如,从A 到B 记为:1,()3A B →++.从C 到D 记为:(1,2)C D →+-,回答下列问题:(1)如图1,若点A 的运动路线为:A B C A →→→,请计算点A 运动过的总路程.(2)若点A 运动的路线依次为:(2,3)A M →++,(1,1)M N →+-,(2,2)N P →-+,(4,4)P Q →+-.请你依次在图2上标出点M 、N 、P 、Q 的位置.(3)在图2中,若点A 经过(,)m n 得到点E ,点E 再经过(,)p q 后得到Q ,则m 与p 满足的数量关系是 .n 与q 满足的数量关系是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A.在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误;B.两直线相交,对顶角相等,故本选项错误;C.垂线段最短,故本选项正确;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误;故选:C.【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.D解析:D【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【详解】解:根据题意,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.3.C解析:C【分析】先求出∠BOC,再由邻补角关系求出∠COD的度数.∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C .【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键. 4.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.5.D解析:D【分析】依据l 1∥l 2,即可得到∠1=∠3=44°,再根据l 3⊥l 4,可得∠2=90°-44°=46°.【详解】解:如图,∵l 1∥l 2,∴∠1=∠3=44°,又∵l 3⊥l 4,∴∠2=90°-44°=46°,故选:D .本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.7.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.8.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.9.D解析:D【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DE∴⊥,故④正确.DE AC综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.10.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.11.A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.12.C解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.二、填空题13.【分析】利用垂直定义可得∠COE=90°进而可得∠COB的度数再利用对顶角相等可得∠AOD再利用角平分线定义可得答案【详解】解:∵EO⊥CD于点O∴∠COE=90°∵∠BOE=50°∴∠COB=90解析:70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∴∠COE=90°,∵∠BOE=50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°, 故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.14.对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对 解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.15.真【分析】逆命题就是原命题的假设和结论互换找到原命题的题设为等边三角形结论为每个内角都是60°互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°∴逆命题为:三个内角都是60解析:真【分析】逆命题就是原命题的假设和结论互换,找到原命题的题设为等边三角形,结论为每个内角都是60°,互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°,∴逆命题为:三个内角都是60°的三角形是等边三角形∴逆命题为真命题;故答案为:真.【点睛】本题考查了命题的真假,正确掌握原命题与逆命题之间的关系是解题的关键;16.假命题【分析】对顶角相等但相等的角不一定是对顶角从而可得出答案【详解】解:对顶角相等但相等的角不一定是对顶角从而可得命题相等的角是对顶角是假命题故答案为:假命题【点睛】此题考查了命题与定理的知识属于解析:假命题【分析】对顶角相等,但相等的角不一定是对顶角,从而可得出答案.【详解】解:对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假命题.【点睛】此题考查了命题与定理的知识,属于基础题,在判断的时候要仔细思考.17.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.18.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.19.70°【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°【点睛】解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB ∥CD ,∴∠BAE =∠DCE =140°, 由折叠可得:12DCF DCE ∠=∠, ∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 20.∠ADF=∠C 或∠A=∠ABE 或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=解析:∠ADF=∠C 或∠A=∠ABE 或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)【分析】根据平行线的判定方法即可求解.【详解】第一种情况,同位角相等,两直线平行,即∠ADF=∠C 时,//AD BC ;第二种情况,内错角相等,两直线平行,即∠A=∠ABE 时,//AD BC ;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,//AD BC ;故答案为∠ADF=∠C 或∠A=∠ABE 或∠A+∠ABC=180°或∠C+∠ADC=180°.【点睛】本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题21.(1)证明见解析;(2)100°;(3)12°.【分析】(1)根据平行线的判定及其性质即可求证结论;(2)过E 作//EK AB 可得//CF AB ∥EK ,再根据平行线的性质即可求解;(3)根据题意设7EBC x ∠=︒,则13ECB x ∠=︒,根据∠AED +∠DEB +BEC =180°,可得关于x 的方程,解方程即可求解.【详解】(1)证明:∵DE ∥BC ,∴ADE B ∠=∠,又∵∠BCF +∠ADE =180°,∴180BCF B ∠+∠=︒,∴//CF AB ,(2)解:过E 作//EK AB ,∵//CF AB ,∴//CF EK ,∵//EK AB ,40ABE ∠=︒,∴40BEK ABE ∠=∠=︒,∵//CF EK ,60ACF ∠=︒,∴60CEK ACF ∠=∠=︒,又∵BEC BEK CEK ∠=∠+∠,∴4060100BEC ∠=︒+︒=︒,答:BEC ∠的度数是100°,(3)解:∵BE 平分ABG ∠, 40ABE ∠=︒,∴40EBG ABE ∠=∠=︒,∴:7:13EBC ECB ∠∠=,∴设7EBC x ∠=︒,则13ECB x ∠=︒,∵DE ∥BC ,∴7DEB EBC x ∠=∠=︒,13AED ECB x ∠=∠=︒,∵180AED DEB BEC ∠+∠+∠=︒,∴137100180x x ++=,∴4x =,∴728EBC x ∠=︒=︒,又∵EBG EBC CBG ∠=∠+∠,∴CBG EBG EBC ∠=∠-∠,∴402812CBG ∠=-=︒,∠的度数是12°.答:CBG【点睛】本题考查平行线的判定及其性质,解题的关键是熟练掌握平行线的判定及其性质的有关知识.22.HE;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF;内错角相等,两直线平行【分析】∠=∠,再证明∠DEF=∠EFC,再连接EF,根据垂线定义和平行线的判定与性质可证得34根据平行线的性质即可证得结论.【详解】证明:连接EF⊥⊥,,FG AC HE AC∴∠=∠=.90FGC HEC︒∴∥HE(同位角相等,两直线平行).FG∴∠=∠(两直线平行,内错角相等).34∠=∠,又12∴∠+∠=∠+∠,1324∠=∠.即DEF EFCDE∴∥BC(内错角相等,两直线平行),故答案为:HE;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键.23.(1)∠BOD、∠AOC;(2)54°【分析】(1)根据垂直的定义得到∠FOD=90°,于是得到∠BOF+∠BOD=90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=1∠BOD=36°,因此∠EOF=36°+18°=54°.2【详解】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC.故答案为:∠BOD、∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=1∠BOD=36°,2∴∠EOF=36°+18°=54°.【点睛】本题考查了对顶角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.24.(1)证明见详解;(2)∠3=∠2﹣∠1;(3)∠3=360°﹣∠1﹣∠2,证明见详解;(4)∠3=360°﹣∠1﹣∠2.【分析】此题四个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,即可得出∠1、∠2、∠3的数量关系.【详解】解:(1)如图(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠EPF=∠QPE+∠QPF,∴∠EPF=∠1+∠2.(2)∠3=∠2﹣∠1;证明:如图2,过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠EPF=∠QPF﹣∠QPE,∴∠EPF=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:如图(3),过P作PQ∥l1∥l2;∴∠EPQ+∠1=180°,∠FPQ+∠2=180°,∵∠EPF=∠EPQ+∠FPQ;∴∠EPQ +∠FPQ +∠1+∠2=360°,即∠EPF=360°﹣∠1﹣∠2;(4)点P在线段DC延长线上运动时,∠3=∠1﹣∠2.证明:如图(4),过P作PQ∥l1∥l2;∴∠1=∠QPE、∠2=∠QPF;∵∠QPE﹣∠QPF=∠EPF;∴∠3=∠1﹣∠2.【点睛】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.25.(1)AC∥DG,理由见解析;(2)BE∥CF,理由见解析;(3)145°【分析】(1)求出∠1=∠BFG,根据平行线的判定得出AC∥DG;(2)求出∠EBF=∠BFC ,根据平行线的判定得出即可;(3)根据平行线的性质得出∠C=∠CFG=∠BEF=35°,再求出答案即可.【详解】(1)AC ∥DG证明:∵∠1=∠2,∠2=∠BFG ,∴∠1=∠BFG ,∴AC ∥DG ,(2)BE ∥CF证明:∵AC ∥DG∴∠ABF=∠BFG ,∵∠ABF 的角平分线BE 交直线DG 于点E ,∠BFG 的角平分线FC 交直线AC 于点C , ∴∠EBF=12∠ABF ,∠CFB =12∠BFG , ∴∠EBF=∠CFB ,∴BE ∥CF ;(3)∵AC ∥DG ,BE ∥CF ,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°-∠BEG=145°.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.26.解:(1)A 运动过的总路程是14;(2)见解析;(3)5m p +=;0n q +=【分析】(1)按照先左右后上下的顺序列出算式,再计算即可;(2)根据题意画出图即可;(3)根据A 、Q 水平相距的单位,可得m 、p 的关系;根据A 、Q 水平相距的单位,可得n 、q 的关系.【详解】解:(1)∵点A 的运动路线为:A B C A →→→,则根据题意可得:1,()3A B →++,(2,1)B C →++,(3,4)C A →--,∴点A 运动过的总路程是:1321|3||4|14++++-+-=;(2)根据题意,点M 、N 、P 、Q 的位置如下图示:(3)∵点A 经过(,)m n 得到点E ,点E 再经过(,)p q 后得到Q ,根据题意可得:5m p +=,0n q +=.故答案为5m p +=,0n q +=.【点睛】本题考查了坐标与图形变化-平移,横坐标,右移加,左移减;纵坐标,上移加,下移减.。

人教版二年级数学下册第一单元测试卷(含答案)

人教版二年级数学下册第一单元测试卷(含答案)

人教版二年级数学下册第一单元测试卷(含答案)一.选择题(共5题,共10分)1.小美沿着操场跑了一圈,大约跑了( )。

A.400米B.200千米C.200厘米2.蜜蜂身长约2()。

A.米B.厘米3.一张床长()。

A.2厘米B.2米C.10厘米D.10米4.剪一条1米长的绳子,用这条绳子比一比下面物体。

比1米长的是()。

A. B. C.5.小动物们测量方法正确的是:()A. B.C. D.二.判断题(共5题,共10分)1.都是线段。

()2.左图中一共有4条线段。

()3. 从1米长的细绳上剪下7厘米,还剩3厘米。

()4. 下图中的铅笔长7厘米。

()5. 人走5步的距离大约是16m。

()三.填空题(共5题,共20分)1.下面的物体分别多长?____厘米____毫米,____厘米____毫米,_____厘米_____毫米_____厘米_____毫米。

2.估一估,量一量。

估计:________厘米实际测量:________厘米3.量一量,铅笔长________厘米;大约________支这样的铅笔长1米。

4.量一量。

宽约______厘米宽约______厘米5.在()里填上合适的单位。

①铅笔长约17()②大树高约15()③毛巾长约60()④足球场长约80()⑤小明的身高大约是1()25()四.作图题(共2题,共15分)1.画一画。

(1)画一条长3厘米4毫米的线段。

(2)画一条比2厘米短5毫米的线段。

2.连一连。

五.解答题(共5题,共26分)1.一个小组8个学生用同一把尺子测量同一支铅笔的长度,并记录如下。

试估计这支铅笔的长度。

2.我们身体上有很多“尺子”可以助我们测量。

(1)比如聪聪的指甲盖宽约为1厘米,他正在用指甲盖量图中铅笔的长度。

请你估计这支铅笔的长度大约是________厘米。

(2)下面是与明明身体有关的一些数据。

现在明明想要测量绕蓝球场一圈的长度,你觉得选择下边哪个“尺子”最合适?如何测量?(写出测量过程)3.(1)这支铅笔长________毫米。

新人教版一年级下册数学1-7单元单元测试(2套含答案)

新人教版一年级下册数学1-7单元单元测试(2套含答案)

一、6 3 1 6 2 3 二、略
参考答案
三、
四、提示:根据平面图形和立体图形的特征来解答。 五、1. 2 3 3 1 2
2. (1)7 1 1 1 (2)2 2 3 六、提示:根据正方形和长方形的特征来画。 七、正方 ⑥ 八、提示:可能是三角形,也可能是长方形,还可能是正方形。如图:
一、连一连。
2. 五、1. 13 8 5 13 5 8 2. 5 14-9=5 5 14-9=5 3. 12-4=8 13-5=8 六、1. 13-7=6(根) 2. (1)15-6=9(盆) (2)略 3. 15-8=7(棵)
七、
第二单元检测卷(2)
一、算一算,写一写。 8+5= 8+6= 8+7=
四、涂一涂。
分成两个相同的 三角形
1. 给长方形涂上绿色,正方形涂上红色。
2. 给三角形涂上绿色,圆涂上黄色。
3. 给正方形涂上蓝色。
4.给长方体的前面涂上红色,上面涂上绿色,右边涂上黄色。
五、填一填。 1.
图中的正方形有( )个,长方形有( )个,三角形有( ) 个,平行四边形有( )个,圆有( )个。 2.(1)
1.15- =8 +6=11 16-9= -6=8 +6=182.
五、看图列式计算。
1. -= -=
2.
比 少 个。
= (个) 3.
比 多 个。 = (个)
= (个) 六、解决问题。
1.小灰兔和小白兔一共拔了 13 根萝卜。
= (个)
小白兔拔了多少根萝卜?
2.
7盆
6盆
15 盆
(1) 比 少几盆? (2)提一个用减法计算的问题,并解答。
3.小华要给 15 棵小树苗浇水,还剩几棵没浇?

人教版初中数学七年级数学下册第一单元《相交线与平行线》测试卷

人教版初中数学七年级数学下册第一单元《相交线与平行线》测试卷

一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤ 3.下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直4.如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 5.下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角 6.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定7.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180° 8.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 9.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个 10.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线11.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于012.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0二、填空题13.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).14.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.15.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.16.两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______. 17.如图,,OA OC OB OD ⊥⊥,4位同学观察图形后分别说了自己的观点.甲:AOB ∠COD =∠;乙:180BOC AOD ∠+∠=︒;丙:90AOB COD ∠+∠=︒;丁:图中小于平角的角有6个;其中正确的结论有__________个.18.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.19.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.20.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)三、解答题21.如图,点P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点E ;(2)过点P 画OA 的垂线,垂足为H ;(3)过点P 画OA 的平行线PC ;(4)若每个小正方形的边长是1,则点P 到OA 的距离是___________;(5)线段,,PE PH OE 的大小关系是_____________________(用“<”连接).22.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠,试判断AED ∠与D ∠之间的数量关系,并说明理由.24.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)∠AOC 的对顶角为______,∠AOC 的邻补角为______;(2)若∠EOC =70°,求∠BOD 的度数;(3)若∠EOC :∠EOD =2:3,求∠BOD 的度数.25.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.26.试用举反例的方法说明下列命题是假命题.例如:如果ab <0,那么a +b <0.反例:设a =4,b =-3,ab =4⨯(-3)=-12<0,而a +b =4+(-3)=1>0,所以这个命题是假命题.(1)如果a +b >0,那么ab >0.(2)如果a 是无理数,b 也是无理数,那么a +b 也是无理数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A .在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误; B .两直线相交,对顶角相等,故本选项错误;C .垂线段最短,故本选项正确;D .直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误; 故选:C .【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 3.B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.4.B解析:B【分析】根据平行线的性质求出∠ABE ,求出∠CBA ,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62°,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B观察点A的方向是北偏东28°,故选:B.【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE的度数是解题的关键.5.C解析:C【分析】利用反例对A进行判断;根据平行线的性质对B进行判断;根据三角形内角和定理对C进行判断;根据对顶角定义对D进行判断.【详解】解:A、当a=-2,b=-1时,则a+b<0,ab>0,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误,是假命题;C、三角形的内角和等于180°,所以C选项为真命题;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.7.B解析:B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.8.A解析:A【分析】根据同位角的定义求解.【详解】解:直线a,b被直线c所截,∠1与∠2是同位角.故选:A.【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.9.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.10.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断. 11.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题.故选:D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.二、填空题13.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.14.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.15.50或130【分析】由∠A 与∠B 的两边分别平行可得∠A=∠B 或∠A+∠B=180°继而求得答案【详解】解:∵∠A 与∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A 与∠B 的两边分别平行,可得∠A=∠B 或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A=∠B 或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A与∠B的两边分别平行,可得∠A与∠B相等或互补.16.①③④【分析】①根据对顶角相等可以判定四个角相等由周角360°可知四个角都为90°则AB⊥CD;②因为对顶角相等但不能说明有角为90°不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补解析:①③④【分析】①根据对顶角相等可以判定四个角相等,由周角360°可知,四个角都为90°,则AB⊥CD;②因为对顶角相等,但不能说明有角为90°,不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补角的和为180°,又相等,所以每个角为90°,则AB⊥CD.【详解】①如图,若∠AOC=∠COB=∠BOD,∵∠AOD=∠COB,∴∠AOC=∠COB=∠BOD=∠AOD,∵∠AOC+∠COB+∠BOD+∠AOD=360°,∴∠AOC=∠COB=∠BOD=∠AOD=90°,∴AB⊥CD;所以此选项能判定这两条直线垂直;②∠AOC=∠BOD,∠AOD=∠COB,但不能说明有角为90°,所以此选项不能判定这两条直线垂直;③若∠AOC=90°,∴AB⊥CD,所以此选项能判定这两条直线垂直;④若∠AOC=∠AOD,∵∠AOC+∠AOD=180°,∴∠AOC=∠BOD=90°,所以此选项能判定这两条直线垂直;故能判定这两条直线垂直的有:①③④;故答案为:①③④.【点睛】本题考查了对顶角、邻补角以及垂直的定义,熟练掌握两条直线垂直的定义是关键. 17.3【分析】先根据垂直的定义可得再逐个判断即可得【详解】则甲的结论正确;则乙的结论正确;假设又由题中已知条件不能得到则丙的结论错误;图中小于平角的角为共有6个则丁的结论正确;综上正确的结论有3个故答案 解析:3【分析】先根据垂直的定义可得90AOC BOD ∠=∠=︒,再逐个判断即可得.【详解】,OA OC OB OD ⊥⊥,9090AOB BOC AOC COD BOC BOD ∠+∠=∠=︒⎧∴⎨∠+∠=∠=︒⎩, AOB COD ∴∠=∠,则甲的结论正确;180AOB BOC COD BOC AOC BOD ∠+∠+∠+∠=∠+∠=︒,180AOD BOC ∴∠+∠=︒,则乙的结论正确;假设90AOB COD ∠+∠=︒,90AOB BOC ∠+∠=︒,BOC COD ∴∠=∠,又90COD BOC ∠+∠=︒,45BOC COD ∴∠=∠=︒,由题中已知条件不能得到,则丙的结论错误;图中小于平角的角为,,,,,AOB AOC AOD BOC BOD COD ∠∠∠∠∠∠,共有6个, 则丁的结论正确;综上,正确的结论有3个,故答案为:3.【点睛】本题考查了垂直的定义、角的和差等知识点,熟练掌握角的运算是解题关键.18.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD ∥BC ∴∠BCD=180°-∠D=80°又∵CA 平分∠BCD ∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD ∥BC ,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.19.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.20.①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B∴AB∥CD故本小题正确;②∵∠2=∠5∴AB∥CD故本小题正确;③∵∠3=∠4∴AD∥BC故本小题错误;④∵∠1解析:①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠1=∠D,∴AD∥BC,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.故答案为①②⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.三、解答题<< 21.(1)见解析;(2)见解析;(3)见解析;(4)1;(5)PH PE OE【分析】(1)(2)根据题意画垂线;(3)根据题意画平行线;(4)根据点到直线距离的定义计算;(5)根据直角三角形的直角边小于斜边可以证得.【详解】∠的边OB上的一点.如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)由题意PH即点P到OA的距离,且PH=1,∴答案为1;(5)∵在RT△PHE中,PH是直角边,PE是斜边,∴PH<PE,同理在RT△POE中,PE是直角边,OE是斜边,∴PE<OE,∴线段PE,PH,OE的大小关系是PH PE OE<<.故答案为PH<PE<OE.【点睛】本题考查垂线和平行线的画法、垂线的应用及直角三角形的性质,熟练掌握“垂线段最短”的定理是解题关键.22.(1)DE∥BC;(2)72°【分析】(1)先根据已知条件得出∠EFC=∠ADC,故AD∥EF,由平行线的性质得∠DEF=∠ADE,再由∠DEF=∠B,可知∠B=∠ADE,故可得出结论.(2)依据DE平分∠ADC,∠BDC=3∠B,即可得到∠ADC的度数,再根据平行线的性质,即可得出∠EFC的度数.【详解】解:(1)DE∥BC.理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,又∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC.(2)∵DE平分∠ADC,∴∠ADE=∠CDE,又∵DE∥BC,∴∠ADE=∠B,∵∠BDC=3∠B,∴∠BDC=3∠ADE=3∠CDE,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD∥EF,∴∠EFC=∠ADC=72°.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行是解答此题的关键.23.∠AED+∠D=180°,理由见解析【分析】根据平行线的判定定理得出CE∥FG,根据平行线的性质得出∠C=∠FGD,求出∠FGD=∠EFG,根据平行线的判定得出AB∥CD,再根据平行线的性质得出即可.【详解】解:∠AED+∠D=180°,理由是:∵∠CED=∠GHD,∴CE∥FG,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°.【点睛】本题考查了平行线的性质和判定定理,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.24.(1)∠BOD ,∠BOC 或∠AOD ;(2)∠BOD =35°;(3)∠BOD =36°.【分析】(1)根据对顶角、邻补角的意义,结合图形即可得出答案;(2)根据角平分线的意义和对顶角的性质,即可得出答案;(3)根据平角、按比例分配,角平分线的意义、对顶角性质可得答案.【详解】(1)根据对顶角、邻补角的意义得:∠AOC 的对顶角为∠BOD ,∠AOC 的邻补角为∠BOC 或∠AOD ,故答案为:∠BOD ,∠BOC 或∠AOD(2)∵OA 平分∠EOC.∠EOC =70°,∴∠AOE =∠AOC 12=∠EOC =35°, ∵∠AOC =∠BOD ,∴∠BOD =35°,(3)∵∠EOC :∠EOD =2:3,∠EOC+∠EOD =180°,∴∠EOC =180°×25=72°,∠EOD =180°×35=108°, ∵OA 平分∠EOC , ∴∠AOE =∠AOC 12=∠EOC =36°, 又∵∠AOC =∠BOD ,∴∠BOD =36°.【点睛】本题考查对顶角、邻补角、角平分线、平角的意义和性质,通过图形具体理解这些角的意义是正确计算的前提.25.(1) 155︒;(2)平分,见解析【分析】(1)由角平分线求出∠AOD=12∠AOC=25︒,利用邻补角的性质求出BOD ∠的度数; (2)根据角度的和差计算求出∠BOE 和∠COE 的度数,即可得到结论.【详解】 (1)∵50AOC ∠=︒,OD 平分AOC ∠,∴∠AOD=12∠AOC=25︒, ∴BOD ∠=180155AOD ︒-∠=︒;(2)∵90DOE ∠=︒,∠AOD=25︒,∴∠BOE=18065AOD DOE ︒-∠-∠=︒,∵OD 平分AOC ∠,∴∠COD=∠AOD=25︒,∴∠COE=9065COD ︒-∠=︒,∴∠BOE=∠COE ,∴OE 平分BOC ∠.【点睛】此题考查几何图形中角度的计算,角平分线的性质,平角的性质,邻补角的性质,掌握图形中各角之间的数量关系是解题的关键.26.(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b >0,那么ab >0;所举的反例就是,a 、b 一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a 、b 均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.。

2020-2021人教版数学七年级下册 专项测试卷(二)新定义数学问题

2020-2021人教版数学七年级下册 专项测试卷(二)新定义数学问题

人教版数学七年级下册 专项测试卷(二)新定义数学问题一、按要求做题1.用“※”定义一种新运算:对于任意有理数a 和b .规定a ※b =ab ²+2ab+a ,如1※2=1x2²+2x1x2+1=9.(1)求(-4)※3;(2)若21+a ※3=-16,求a 的值.2.定义新运算:对于任意实数a 、b 都有a ▲b=ab -a -b+1,等式右边是通常的加法、减法及乘法运算,例如:2▲4= 2x4-2-4+1=3.试根据上述知识解决下列问题.(1)若3▲x =6,求x 的值;(2)若▲x 5的值不大于9,求x 的取值范围.3.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数,称为a 的根整数,例如:[9]=3,[10]_3.(1)仿照以上方法计算:[4]=____,[37]=____.(2)若[x ]=1,写出满足题意的x 的整数值:____;如果我们对a 连续求根整数,直到结果为1.例如:对10连续求根整数2次,[10]=3→[3]=1,这时的结果为1.(3)对120连续求根整数,____次之后结果为1;(4)只需进行3次连续求根整数运算,最后结果为1的所有正整数中,最大的是____.4.对于实数a 、b ,定义两种新运算“※”和“*”:a ※b=a+kb ,a*b=ka+b(其中k 为常数,且k ≠0).若对于平面直角坐标系xOy 中的点P(a ,b),有点P'(a ※b ,a*b)与之对应,则称点P 的“k 衍生点”为点P',例如:P(1,3)的“2衍生点”为P'(1+2x3,2x1+3),即P'(7,5).(1)点P( -1,5)的“3衍生点”的坐标为____;(2)若点P 的“5衍生点”的坐标为(9,-3),求点P 的坐标;(3)若点P 的“k 衍生点”为点P',且直线PP'平行于y 轴,线段PP'的长度为线段OP 长度的3倍,求k 的值.5.在平面直角坐标系xOy 中,对于任意两点P ₁(x ₁,y ₁)与P ₂(x ₂,y ₂)的“识别距离”,给出如下定义: 若y y x x 2121-≥-,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为x x 21-;若y y x x 2121--<,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为y y 21-.(1)已知点A(-1,0),点B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,则写出满足条件的点B 的坐标为____;②直接写出点A 与点B 的“识别距离”的最小值为____;(2)已知点C 的坐标为⎪⎭⎫ ⎝⎛+343m m ,点D 的坐标为(0,1),求点C 与点D 的“识别距离”的最小值及相应的点C 的坐标.6.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义,“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2)、B(-3,1)、C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”D=ah=20.根据所给定义解决下列问题:(1)已知点D(1,2)、E(-2,1)、F(0,6),则这三点的“矩面积”S=____;(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”S 为18,求点F 的坐标.7.[阅读材料,获取新知]在航空、航海等领域我们经常用距离和角度来确定点的位置,规定如下:在平面内取一个定点O .叫做极点,引一条射线O x ,叫做极轴,再选定单位长度和角度的正方向(通常取逆时针方向).对于平面内任意一点M ,用p 表示线段OM 的长度(有时也用r 表示),p 表示从O x 到OM 的角度,p 叫做点M 的极径,ρ叫做点M 的极角,有序数对(p ,θ)就叫做点M 的极坐标,这样建立的坐标系叫做极坐标系.通常情况下,M 的极径坐标单位为1(长度单位),极角坐标单位为rad(或°).例如:如图①所示,点M 到点O 的距离为5个单位长度,OM 与O x 的夹角为70°(O x 的逆时针方向).则点M 的极坐标为(5,70°);点N 到点O 的距离为3个单位长度,ON 与O x 的夹角为50°(O x 的顺时针方向),则点N 的极坐标为(3,-500).[利用新知,解答问题]如图②所示,已知过点O 的所有射线等分圆周且相邻两射线的夹角为15°,且极径坐标单位为1.(1)点A 的极坐标是____,点D 的极坐标是____.(2)请在图②中标出点B(5,45°),点E(2,-90°);(3)怎样从点B 运动到点C?小明设计的一条路线为点B →(4,45°)→(3,45°)→(3,30°)→点C .请你设计一条与小明不同的路线,也可以从点B 运动到点C .8.定义:可化为其中一个未知数的系数都为1,另一个未知数的系数互为倒数,并且常数项互为相反数的二元一次方程组,称为“相关线性方程组”,如所示,其中k 、b 称为该方程组的“相关系数”.(1)若关于x 、y 的方程组可化为“相关线性方程组”,则该方程组的解为____,(2)若某“相关线性方程组”有无数组解,求该方程组的两个“相关系数”之和.9.阅读下列材料:我们给出如下定义:数轴上给定不重合的两点A 、B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.解答下列问题:(1)若点A 表示的数为-3。

人教版七年级数学下册期中测试卷(含答案)

人教版七年级数学下册期中测试卷(含答案)

人教版七年级数学下学期期中测试卷(含答案)班级:姓名:学号:分数:(考试时间:120分钟试卷满分:120分)一、选择题(1—6题每题2分,7-16题每题3分,共42分)1.如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位2.为认真贯彻落实党的十八大和中央政治局关于八项规定的精神,厉行节约、反对铺张浪费,某市严格控制“三公”经费支出,共节约“三公”经费5.05亿元.用科学记数法表示为()A.505×106元B.5.05×107元C.50.5×107元D.5.05×108元3.下列运算正确的是()A.a2+a3=a5B.(a3)2=a5C.(a+3)2=a2+9 D.﹣2a2•a=﹣2a34.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.5.在下图中,∠1=∠2,能判断AB∥CD的是()A.B.C.D.6.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°7.在多项式x2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是()A.x B.3x C.6x D.9x8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定10.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣11.若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD的度数为()A.30°B.40°C.50°D.60°12.已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.613.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.6614. 已知则( )A. B. C. D.5215.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为A. B. C. D.16.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D →E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C.D.二.填空题(每题3分,共12分)17.长为3m+2n,宽为5m-n的长方形的面积为__________.18.已知:OE平分∠AOD,AB∥CD,OF⊥OE于O,∠D = 50°,则∠BOF=________。

人教版数学七年级下册《期中测试卷》附答案

人教版数学七年级下册《期中测试卷》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(本题满分30分,每题3分)1. 下列计算中,正确的是( ) A. (a 2)3=a 5B. a 2•a 3=a 6C. 2a •3a =6a 2D. 2a +3a =5a 22. 世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A. 15.610-⨯B. 25.610-⨯C. 35.610-⨯D. 0.5610⨯3. 小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m )与时间t(min )的大致图象是( )A. B. C. D.4. 如图,将一张含有30角的三角形纸片的两个顶点放在直尺的两条对边上,若110∠=︒,则2∠的度数是( )A. 30B. 40︒C. 50︒D. 60︒5. 下列多项式乘法中可以用平方差公式计算的是( ) A. (﹣a +b )(a ﹣b )B. (x +2)(2+x )C. (3x +y )(y ﹣3x) D. (x ﹣2)(x +1)6. 如图,在下列给出条件中,不能判定AC∥DE 的是( )A. ∠1=∠AB. ∠A=∠3C. ∠3=∠4D. ∠2+∠4=180°7. 用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( ) A. 100(0.6)y n m=+ B. 100()0.6y n m=+ C. (1000.6)y n m =+ D. 1000.6y mn =+8. 若a 、b 、c 是正数,下列各式,从左到右的变形不能用如图验证的是( )A. (b +c )2=b 2+2bc +c 2B. a (b +c )=ab +acC. (a +b +c )2=a 2+b 2+c 2+2ab +2bc +2acD. a 2+2ab =a (a +2b )9. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( ) A. 3-,4-B. 3-,4C. 3,4-D. 3,410. 如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A. B. C. D.二、填空题(本题满分24分,每题3分)11. 一个角的余角为40︒,则这个角的补角是______度. 12. 计算2132x y xy ⎛⎫÷-⎪⎝⎭的结果是______.13. 如图,//AB CD ,130AGE ∠=︒,HM 平分EHD ∠,则MHD ∠的度数是______度.14. 若2a x =,3b x =,2a b x +=______.15. 某烤鸭店在确定烤鸭烤制时间时,主要依据的是下表的数据: 鸭质量/千克 1 15 2 2.5 3 3.5 4 烤制时间/分6080100120140160180设鸭的质量为千克,烤制时间为,估计当6x =千克时,的值为______分. 16. 若2254x kx ++是一个完全平方式,则k =______ .17. 一个圆柱的底面半径为cm R ,高为6cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192cm π3.则R =______厘米.18. 计算:20192020133⎛⎫⋅-= ⎪⎝⎭______.三、解答题(本题共有6道小题,满分66分)19. 计算: (1)2201901(1)(3.14)3π-⎛⎫-+--- ⎪⎝⎭(2)()()3222223a ba b a b -+⋅-(3)()()3232a b c a b c +--+ (4)()()()312x x x x +---(5)用乘法公式计算:2202020182022-⨯.20. 先化简,再求值:22(2)()()5(4)x y x y x y y x ⎡⎤+-+--÷-⎣⎦,其中3x =-,13y =. 21. 如图:已知直线AB 、CD 相交于点,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数;(2)若:2:7BOD BOC ∠∠=,求AOE ∠的度数. 22. 填空,将理由补充完整.如图,CF AB ⊥于,DE AB ⊥于,1180EDC ∠+∠=︒,求证://FG BC .证明:∵CF AB ⊥,DE AB ⊥(已知) ∴90BED BFC ∠=∠=︒(垂直的定义) ∴//ED FC (________________________) ∴23∠∠=(________________________) ∵1180EDC ∠+∠=︒(已知)又∵2180EDC ∠+∠=︒(________________________) ∴12∠=∠(________________________) ∴13∠=∠(________________________) ∴//FG BC (________________________)23. 如图,已知//DC AB ,CE 平分BCD ∠,CE 与AB 相交于点M ,AME E ∠=∠.试说明//ED BC ,并写出每一步的根据.24. 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程 s (米)与时间 t (分)之间的关系.(1)小明从家到学校的路程共 米,从家出发到学校,小明共用了 分钟; (2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?25. (1)如图:若//AB CD ,点在AB 、CD 内部,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)如图,若//AB CD ,将点移到AB 、CD 外部,则BPD ∠、B 、D ∠的数量关系是______.(3)在下图中,将直线AB 绕点逆时针方向旋转一定角度交直线CD 于点,则BPD ∠、B 、D ∠、BED ∠之间满足的数量关系是______.答案与解析一、单选题(本题满分30分,每题3分)1. 下列计算中,正确的是( ) A. (a 2)3=a 5 B. a 2•a 3=a 6C. 2a •3a =6a 2D. 2a +3a =5a 2[答案]C [解析] [分析]根据幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项的法则分别进行计算,即可得出答案. [详解]A.(a 2)3=a 6,A 选项错误; B.a 2•a 3=a 5,B 选项错误; C.2a •3a =6a 2,C 选项正确; D.2a +3a =5a ,D 选项错误; 故选:C .[点睛]本题考查了幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项,掌握运算法则是解题关键. 2. 世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A. 15.610-⨯ B. 25.610-⨯C. 35.610-⨯D. 0.5610⨯[答案]B [解析] [分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. [详解]0.056=25.610-⨯. 故选:B .[点睛]本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3. 小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m )与时间t(min )的大致图象是( )A. B. C. D.[答案]C [解析]试题分析:小明从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长, 故选C . 考点:函数图象4. 如图,将一张含有30角的三角形纸片的两个顶点放在直尺的两条对边上,若110∠=︒,则2∠的度数是( )A. 30B. 40︒C. 50︒D. 60︒[答案]B [解析] [分析]利用平行线的性质,三角形的外角的性质解决问题即可. [详解]如图,∵AB ∥CD , ∴∠3=∠2,∵∠3=∠1+30,∠1=10°, ∴∠2=∠3=40︒, 故选:B .[点睛]本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5. 下列多项式乘法中可以用平方差公式计算的是( ) A. (﹣a +b )(a ﹣b ) B. (x +2)(2+x )C. (3x +y )(y ﹣3x ) D. (x ﹣2)(x +1)[答案]C [解析]本题考查平方差公式的特点.选项A 和B 都是完全平方式, C 、211111()()()()33339x y y x y x y x y x +-=+-=-. 6. 如图,在下列给出的条件中,不能判定AC∥DE 的是( )A. ∠1=∠AB. ∠A=∠3C. ∠3=∠4D. ∠2+∠4=180°[答案]B [解析] [分析]根据平行线的判定,逐项进行判断即可.[详解]解:当∠1=∠A 时,可知是DE 和AC 被AB 所截得到的同位角,可得到DE ∥AC ,故A 可以; 当∠A=∠3时,可知是AB 、DF 被AC 所截得到的同位角,可得AB ∥DF ,故B 不可以; 当∠3=∠4时,可知是DE 和AC 被AB 所截得到的内错角,可得DE ∥AC ,故C 可以; 当∠2+∠A=180°时,是一对同旁内角,可得DE ∥AC ;故D 可以; 故选B .[点睛]本题主要考查平行线的判定方法,掌握平行线的判定方法是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.7. 用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( ) A. 100(0.6)y n m=+ B. 100()0.6y n m=+ C. (1000.6)y n m =+ D. 1000.6y mn =+[答案]A [解析] [分析]用100元钱加上购买m 本书的邮寄费列解析式即可.[详解]解:根据题意可得:y=n (100m+0.6);故选A[点睛]此题考查函数关系式,理解题意,找出数量关系,列出解析式即可.8. 若a、b、c是正数,下列各式,从左到右的变形不能用如图验证的是( )A. (b+c)2=b2+2bc+c2B. a(b+c)=ab+acC. (a+b+c)2=a2+b2+c2+2ab+2bc+2acD. a2+2ab=a(a+2b)[答案]D[解析][分析]通过几何图形面积之间的数量关系完全平方公式或其他等式作出几何解释即可.[详解]依据①②③④四部分的面积可得,(b+c)2=b2+2bc+c2,故A能验证;依据⑤⑥两部分的面积可得,a(b+c)=ab+ac,故B能验证;依据整个图形的面积可得,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故C能验证;图中不存在长为a+2b,宽为a的长方形,故D选项不能验证;故选D.[点睛]本题主要考查了完全平方公式的几何背景,用大正方形的面积和作为相等关系,即可得到完全平方公式.9. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2-7x+12,则a,b的值可能分别是( )A. 3-,4-B. 3-,4C. 3,4-D. 3,4 [答案]A[解析][分析]根据题意可得规律为712a bab+=-⎧⎨=⎩,再逐一判断即可.[详解]根据题意得,a,b的值只要满足712a bab+=-⎧⎨=⎩即可,A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.[点睛]本题考查了多项式乘多项式,解题的关键是根据题意找出规律.10. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.[答案]B[解析]解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;二、填空题(本题满分24分,每题3分)11. 一个角的余角为40︒,则这个角的补角是______度.[答案]130[解析][分析]首先计算出这个角度数,再计算出它的补角即可.[详解]设这个角为x ,则:90°−x =40°,解得:x =50°,则它的补角是:180°−50°=130°.故答案为:130.[点睛]此题主要考查了余角和补角,关键是掌握:余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角. 补角:如果两个角和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.12. 计算2132x y xy ⎛⎫÷- ⎪⎝⎭的结果是______. [答案]-6x[解析][分析]根据单项式的除法运算法则即可求解.详解]2132x y xy ⎛⎫÷- ⎪⎝⎭=6x - 故答案为:6x -.[点睛]此题主要考查单项式的除法,解题的关键是熟知其运算法则.13. 如图,//AB CD ,130AGE ∠=︒,HM 平分EHD ∠,则MHD ∠的度数是______度.[答案]25°[分析]由题意可由平行线的性质,求出∠EHD 的度数,再由HM 平分∠EHD ,即可求出∠MHD 的度数.[详解]由题意得:∠AGE =∠BGF =130°,∵AB ∥CD ,∴∠EHD =180°−∠BGF =50°,又∵HM 平分∠EHD ,∴∠MHD =12∠EHD =25°. 故答案为:25°.[点睛]本题考查平行线的性质,关键在于掌握两直线平行,同位角相等,内错角相等,同旁内角互补. 14. 若2a x =,3b x =,2a b x +=______.[答案]18[解析][分析]根据幂的运算公式及逆运算即可求解.[详解]∵2a x =,3b x =∴()22a b a bx x x +=⋅=2×32=18. 故答案为:18.[点睛]此题主要考查幂的运算,解题的关键是熟知幂的运算公式及逆运算.15. 某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为千克,烤制时间为,估计当6x =千克时,的值为______分.[答案]260[解析][分析]观察表格可知,烤鸭的质量每增加1千克,烤制时间增加40分钟,由此可判断出函数关系式,再将x =6千克代入即可求出烤制时间.[详解]从表中可以看出,烤鸭的质量每增加1千克,烤制的时间增加40分钟,由此可知烤制时间t 与烤鸭质量的函数关系式为t=60+40(x-1)=40x+20.当x=6千克时,t=40×6+20=260分钟.故答案:260.[点睛]本题考查了的是函数关系式,解题的关键是根据题目的已知及图表条件得到相关的信息.16. 若2254x kx++是一个完全平方式,则k=______.[答案]±20[解析][分析]利用完全平方公式的结构特征判断即可确定出k的值.[详解]∵2254x kx++是一个完全平方式,∴k=±20,故答案为:±20.[点睛]此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.17. 一个圆柱的底面半径为cmR,高为6cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192cmπ3.则R=______厘米.[答案]7[解析][分析]表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.[详解]依题意得:6π(R+2)2−6πR2=192π,解得R=7.故答案为:7.[点睛]本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法.18. 计算:20192020133⎛⎫⋅-=⎪⎝⎭______.[答案]-3[解析][分析]根据积的乘方逆运算即可求解.[详解]20192020133⎛⎫⋅-= ⎪⎝⎭20191333⎡⎤⎛⎫⨯⨯- ⎪⎢⎥⎝⎭⎣⎦=()201931⨯-=-3故答案为:-3. [点睛]此题主要考查幂的运算,解题的关键是熟知积的乘方逆运算公式.三、解答题(本题共有6道小题,满分66分)19. 计算:(1)2201901(1)(3.14)3π-⎛⎫-+--- ⎪⎝⎭(2)()()3222223a b a b a b -+⋅- (3)()()3232a b c a b c +--+(4)()()()312x x x x +---(5)用乘法公式计算:2202020182022-⨯.[答案](1)7(2)6317a b (3)2229124a b bc c -+-(4)43x -(5)4[解析][分析](1)根据实数的性质进行化简即可求解;(2)根据幂及单项式乘法运算法则即可求解;(3)根据乘法公式即可求解;(4)根据多项式的乘法法则即可求解(5)根据平方差公式即可求解.[详解](1)2201901(1)(3.14)3π-⎛⎫-+--- ⎪⎝⎭ =191-+-=7(2)()()3222223a b a b a b -+⋅- =6324229a b a b a b -+⋅=636318a b a b -+=6317a b(3)()()3232a b c a b c +--+=()()3232a b c a b c +---⎡⎤⎡⎤⎣⎦⎣⎦=()2232a b c --=()2229124a b bc c --+=2229124a b bc c -+-(4)()()()312x x x x +---=22332x x x x x +---+=43x -(5)2202020182022-⨯=22020(20202)(20202)--⨯+=22202020204-+=4.[点睛]此题主要考查整式的乘法运算,解题的关键是熟知实数的性质、负指数幂的运算及整式的乘法运算法则.20. 先化简,再求值:22(2)()()5(4)x y x y x y y x ⎡⎤+-+--÷-⎣⎦,其中3x =-,13y =. [答案]-y , -13[解析][分析] 先算乘法,再合并同类项,最后代入求出即可.[详解]22(2)()()5(4)x y x y x y y x ⎡⎤+-+--÷-⎣⎦=[x 2+4xy +4y 2−x 2+y 2−5y 2]÷(-4x )=4xy ÷(-4x )=-y ,当3x =-,13y =时,原式=-13. [点睛]本题考查了整式的混合运算的应用,主要考查学生的计算能力和化简能力,题目比较好,难度适中. 21. 如图:已知直线AB 、CD 相交于点,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数;(2)若:2:7BOD BOC ∠∠=,求AOE ∠的度数.[答案](1)58°(2)130°[解析][分析](1)根据∠BOE =180°−∠AOC−∠COE 直接解答即可;(2)根据平角的定义可求∠BOD ,根据对顶角的定义可求∠AOC ,根据角的和差关系可求∠AOE 的度数.[详解](1)∵∠COE =90°,∠AOC =32°,∴∠BOE =180°−∠AOC−∠COE=180°−32°−90°=58°(2)∵∠BOD :∠BOC =2:7,∠BOD +∠BOC =180°,∴∠BOD =40°,∵∠BOD =∠AOC ,∴∠AOC =40°,∵∠COE =90°,∴∠AOE =∠COE +∠AOC =90°+40°=130°.[点睛]此题考查了对顶角、邻补角,熟练掌握平角等于180度,直角等于90度,对顶角相等是解答本题的关键. 22. 填空,将理由补充完整.如图,CF AB ⊥于,DE AB ⊥于,1180EDC ∠+∠=︒,求证://FG BC .证明:∵CF AB ⊥,DE AB ⊥(已知)∴90BED BFC ∠=∠=︒(垂直的定义)∴//ED FC (________________________)∴23∠∠=(________________________)∵1180EDC ∠+∠=︒(已知)又∵2180EDC ∠+∠=︒(________________________)∴12∠=∠(________________________)∴13∠=∠(________________________)∴//FG BC (________________________)[答案]同位角相等,两直线平行;两直线平行,同位角相等;平角的定义;等量代换;等量代换;内错角相等,两直线平行[解析][分析]由垂直的定义得出∠BED =∠BFC =90°;由同位角相等得出ED ∥FC ;由两直线平行,同位角相等,得出∠2=∠3;由∠1+∠EDC =180°,∠2+∠EDC =180°,等量代换得出∠1=∠2,等量代换得出∠1=∠3;由内错角相等,两直线平行即可得出结论.[详解]证明:∵CF ⊥AB ,DE ⊥AB (已知),∴∠BED =∠BFC =90°(垂直的定义),∴ED ∥FC (同位角相等,两直线平行),∴∠2=∠3 (两直线平行,同位角相等),∵∠1+∠EDC =180°(已知),又∵∠2+∠EDC =180°(平角的定义),∴∠1=∠2 (等量代换),∴∠1=∠3(等量代换),∴FG ∥BC (内错角相等,两直线平行).故答案为:同位角相等,两直线平行;两直线平行,同位角相等;平角定义;等量代换;等量代换;内错角相等,两直线平行.[点睛]本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.23. 如图,已知//DC AB ,CE 平分BCD ∠,CE 与AB 相交于点M ,AME E ∠=∠.试说明//ED BC ,并写出每一步的根据.[答案]见解析[解析][分析]由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由CE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.[详解]证明:∵AB∥DC(已知)∴∠2=∠AME(两直线平行,同位角相等)∠(已知)∵CE平分BCD∴∠1=∠2(角平分线的定义)∴∠AME=∠1(等量代换)∠=∠(已知)∵AME E∴∠1=∠E(等量代换)∴AD∥BC(内错角相等,两直线平行).[点睛]此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.24. 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?[答案](1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)[解析][分析](1)根据纵轴的最大值为2000,可得出学校离家的距离为2000米;根据横轴的最大值为20,可得出小明到达学校时共用时间20分钟;(2)用15-10可求出修车时间(3)根据速度=路程÷时间,分别求出修车前、后的平均速度.[详解](1)∵纵轴的最大值为2000,∴学校离家的距离为2000米.∵横轴的最大值为20,∴小明到达学校时共用时间20分钟(2)15-10=5(分钟),小明修车用了5分钟.(3)修车前的骑行平均速度为1000÷10=100(米/分钟), 修车后的骑行平均速度为(2000-1000)÷(20-15)=200(米/分钟)[点睛]此题考查了学生从图象中读取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.25. (1)如图:若//AB CD ,点在AB 、CD 内部,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)如图,若//AB CD ,将点移到AB 、CD 外部,则BPD ∠、B 、D ∠的数量关系是______.(3)在下图中,将直线AB 绕点逆时针方向旋转一定角度交直线CD 于点,则BPD ∠、B 、D ∠、BED ∠之间满足的数量关系是______.[答案](1)BPD ∠=B +D ∠(2)∠B =D ∠+BPD ∠(3)BPD ∠=B +D ∠+BED ∠[解析][分析](1)延长BP 交CD 于点E ,根据AB ∥CD 得出∠B =∠BED ,再由三角形外角的性质即可得出结论;(2)根据AB ∥CD 得出∠B =∠BOD ,再由三角形外角的性质即可得出结论;(3)连接EP 并延长,由三角形外角的性质得出∠BPH =∠B +∠BEP ,∠DPH =∠D +∠DEP ,由此可得出结论.[详解](1)延长BP 交CD 于点E ,∵AB ∥CD∴∠B =∠BED∵BPD ∠=D ∠+∠BED∴BPD ∠=B +D ∠故答案为:BPD ∠=B +D ∠;(2)∵AB ∥CD∴∠B =∠BOD∵∠BOD =D ∠+BPD ∠∴∠B =D ∠+BPD ∠故答案为:∠B =D ∠+BPD ∠;(3)连接EP 并延长,在△BEP 中,∠BPH =∠B +∠BEP ,在△DEP 中,∠DPH =∠D +∠DEP ,又BED ∠=∠BEP+∠DEP ,BPD ∠=∠BPH+∠DPH∴BPD ∠=B +D ∠+BED ∠故答案为:BPD ∠=B +D ∠+BED ∠.[点睛]本题考查的是平行线的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.。

人教版数学七年级下册第7章《平面直角坐标系 》单元质量测试卷(含答案)

人教版数学七年级下册第7章《平面直角坐标系 》单元质量测试卷(含答案)

人教版数学七年级下册第7章《平面直角坐标系》单元质量测试卷一.选择题(共10小题,满分30分)1.在平面直角坐标系中,点P(﹣2020,2019)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)3.点P在第二象限内,那么点P的坐标可能是()A.(4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)4.如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y轴平行,则L也会通过的点为()A.点A B.点B C.点C D.点D5.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2)B.(3,0)C.(﹣1,3)D.(0,﹣4)6.已知a是整数,点A(2a﹣1,a﹣2)在第四象限,则a的值是()A.﹣1B.0C.1D.27.平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等8.在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是()A.﹣2B.8C.2或8D.﹣2或89.点(﹣2,﹣3)向左平移3个单位后所得点的坐标为()A.(﹣2,0)B.(﹣2,﹣6)C.(﹣5,﹣3)D.(1,﹣3)10.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)二.填空题(共6小题,满分18分)11.点A(3,﹣4)在第象限.12.点M(3,﹣1)到x轴距离是.13.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(﹣2,0),点B在y轴上,若OA=2OB,则点B的坐标是.14.将点A(2,5)先向上平移3个单位,再向左平移2个单位,得到点B,则点B的坐标为.15.已知直角坐标平面内两点A(﹣3,1)和B(3,﹣1),则A、B两点间的距离等于.16.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,……每个正方形四条边上的整点的个数.按此规律推算出正方形A2019B2019C2019D2019四条边上的整点共有.三.解答题(共8小题,满分52分)17.指出下列各点的横坐标和纵坐标,并指出各点所在的象限.A(2,3)、B(﹣2,3)、C(﹣2,﹣3)、D(2,﹣3)18.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.19.如图是天安门广场周围的主要景点分布示意图.在此图中建立平面直角坐标系,表示故宫的点坐标为(0,﹣1),表示美术馆的点的坐标为(2,2),并写出其余各景点的坐标.20.已知点P(2m﹣6,m+2),(1)若点P在y轴上,P点坐标为;(2)若点P和Q都在过点A(2,3)且与x轴平行的直线上,且PQ=3,求Q点坐标.21.(1)在平面直角坐标系中描出下列各点.A(1,2),B(﹣3,3),C(1,3)D(﹣1,3),E(1,﹣4),F(3,3)(小方格的边长为1).由描出的点你发现了什么规律?答:.(2)应用:已知P(m,﹣2),Q(3,m﹣1)且PQ∥x轴,求线段PQ的长.22.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.23.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.24.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4(,)A8(,)、A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A101到点A102的移动方向.参考答案一.选择题(共10小题)1.【解答】解:点P(﹣2020,2019)所在的象限是第二象限.故选:B.2.【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.3.【解答】解:A、(4,3)在第一象限,故此选项不合题意;B、(﹣3,﹣4)在第三象限,故此选项不合题意;C、(﹣3,4)在第二象限,故此选项符合题意;D、(3,﹣4)在第四象限,故此选项不合题意;故选:C.4.【解答】解:如图所示:有一直线L通过点(﹣3,4)且与y轴平行,故L也会通过A 点.故选:A.5.【解答】解:∵在x轴上的点的纵坐标是0,∴在x轴上的点为:(3,0).故选:B.6.【解答】解:点A(2a﹣1,a﹣2)在第四象限,则,解得:<a<2,a是整数,则符合条件的为C,故选:C.7.【解答】解:平行于x轴的直线上的任意两点的坐标之间的关系是纵坐标相等.故选:B.8.【解答】解:∵点M(﹣2,3)与点N(﹣2,y)之间的距离是5,∴|y﹣3|=5,解得:y=8或y=﹣2.故选:D.9.【解答】解:点(﹣2,﹣3)向左平移3个单位后所得点的坐标为(﹣2﹣3,﹣3),即(﹣5,﹣3),故选:C.10.【解答】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D.二.填空题(共6小题)11.【解答】解:∵点(3,﹣4)横坐标为正,纵坐标为负,∴应在第四象限.故答案为:四.12.【解答】解:M(3,﹣1)到x轴距离是1.故答案为:113.【解答】解:∵点A的坐标是(﹣2,0),∴OA=2,又∵OA=2OB,∴OB=1,∵点B在y轴上,∴点B的坐标为(0,1)或(0,﹣1),故答案为:(0,1)或(0,﹣1).14.【解答】解:将点A(2,5)先向上平移3个单位,再向左平移2个单位,得到点B的坐标为(2﹣2,5+3),即:(0,8).故答案为:(0,8).15.【解答】解:∵直角坐标平面内两点A(3,﹣1)和B(﹣1,2),∴A、B两点间的距离等于=2,故答案为2.16.【解答】解:∵A1B1C1D1每条边上的整点共有:2×1+1=3个,A2B2C2D2每条边上的整点共有;2×2+1=5个,正方形A3B3C3D3每条边上的整点的个数有:2×3=1=7个,…∵A1B1C1D1四条边上的整点共有8个,即4+4×1=8,A2B2C2D2四条边上的整点共有16个,即4+4×3=16,正方形A3B3C3D3四条边上的整点的个数有4+4×5=24,…∴第n个正方形上的整点个数是:4+4(2n﹣1)=8n,∴正方形A2019B2019C2019D2019四条边上的整点的个数=2019×8=16152,故答案为:16152.三.解答题(共8小题)17.【解答】解:A(2,3)横坐标是2,纵坐标是3,在第一象限;B(﹣2,3)横坐标是﹣2,纵坐标是3,在第二象限;C(﹣2,﹣3)横坐标是﹣2,纵坐标是﹣3,在第三象限;D(2,﹣3)横坐标是2,纵坐标是﹣3,在第四象限.18.【解答】解:(1)由题意得:m﹣1=0,解得:m=1;(2)由题意得:m﹣1=2m+3,解得:m=﹣4.19.【解答】解:如图所示:景山(0,1.5),王府井(3,﹣1),天安门(0,﹣2),中国国家博物馆(1,﹣3),前门(0,﹣5.5),人民大会堂(﹣1,﹣3),电报大楼(﹣4,﹣2).20.【解答】解:(1)∵点P在y轴上,∴2m﹣6=0,解得m=3,∴P点的坐标为(0,5);故答案为(0,5);(2)∵点P和点Q都在过A(2,3)点且与x轴平行的直线上,∴点P和点Q的纵坐标都为3,∴P(﹣4,3)而PQ=3,∴Q点的横坐标为﹣1或﹣7,∴Q点的坐标为(﹣1,3)或(﹣7,3).21.【解答】解:(1)如图所示,发现的规律:纵坐标相同的点在平行于x轴的直线上,横坐标相同的点在平行于y轴的直线上.(2)∵PQ∥x轴,∴m﹣1=﹣2,∴m=﹣1,∴P(﹣1,﹣2),Q(3,﹣2)∴PQ=|﹣1﹣3|=4.答:线段PQ的长为4.22.【解答】解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).23.【解答】解:(1)△ABC的面积是:×3×5=7.5;(2)作图如下:∴点C′的坐标为:(1,1).24.【解答】解:(1)由图可知,A4,A8,A12都在x轴上,∵蚂蚁每次移动1个单位,∴OA4=2,OA8=4,OA12=6,∴A4(2,0),A8(4,0),A12(6,0);故答案为:2,0;4,0;6,0;(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n,0);(3)∵101÷4=25...1,102÷4=25 (2)∴A101与A102的移动方向与从点A1到A2的方向一致,为从左向右.。

人教版四年级下册数学第一单元测试卷 (含答案)

人教版四年级下册数学第一单元测试卷  (含答案)

人教版四年级下册数学第一单元测试卷一、填空题1.32+48÷(17-9),先算( ),再算( ),最后算( )。

2.把20×6=120,120-75=45,180÷45=4这三个算式写成一个综合算式,应该是( )。

3.一个数除以28,商和余数都是12,这个数是( )。

4.算式18×270-54÷3,把这道算式的运算顺序改成先算减法,再算除法,最后算乘法的算式是( ),其结果是( )。

5.根据60-34=26,12×26=312组成一个综合算式是( )。

6.在39÷13+8×2这道算式里,我们要想先算加法,应该把算式改写成( )。

7.把算式822-15×24÷6的运算顺序改成先算除法,再算乘法,最后算减法,那么这个算式应改写为( )。

8.把12×5=60,35+43=78,60×78=4680合并成一道综合算式是( )。

9.每把椅子57元,每张课桌99元,学校买了90套桌椅,买课桌比买椅子多花了( )元。

10.240÷(20−5),应先算( )的( )法,再算( )法,最后结果是( )。

二、判断题1.比70少2的数的2倍是136。

( )2.在有加法、有减法的算式里,一定先算加法。

( )3.算式里同时有中括号和小括号,要先算中括号里面的。

( )4.258+[(117+33)÷30)]×2的计算最后算的是乘法。

( )5.算式中只有加、减运算的,要先算加法,后算减法. ( )三、选择题1.把“26+14=40,280÷40=7,52−7=45”改写成综合算式,正确的是()。

A.52−(280÷26+14)B.52−280÷(26+14)C.280÷(26+14)−522.750÷[(38-13)×2]的运算顺序是( )。

人教版七年级数学下册第一章《整式的乘除》单元测试卷含答案

人教版七年级数学下册第一章《整式的乘除》单元测试卷含答案

七年级数学下册第一章《整式的乘除》单元测试卷满分:150分题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列计算正确的是()A. b3⋅b3=2b3B. (ab2)3=ab6C. (a3) 2⋅a4=a9D. (a5)2=a102.数学家赵爽公元3~4世纪在其所著的《勾股圆方图注》中记载如下构图,图中大正方形的面积等于四个全等长方形的面积加上中间小正方形的面积.若大正方形的面积为100,小正方形的面积为25,分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是A. x+y=10B. x−y=5C. xy=15D. x2−y2=503.若x2+(m−3)x+16是完全平方式,则m=()A. 11或−7B. 13或−7C. 11或−5D. 13或−54.计算(2a2b)2÷(ab)2的结果是()A. 4a3B. 4abC. a3D. 4a25.若x+y=7,xy=10,则x2−xy+y2的值为()A. 30B. 39C. 29D. 196.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. x2−y2=(x−y)(x+y)B. (x−y)2=x2−2xy+y2C. (x+y)2=x2+2xy+y2D. (x−y)2+4xy=(x+y)27.下列计算正确的是A. a2·a3=a6B. (a2)3=a6C. (2a)3=2a3D. a10÷a2=a58.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A. (a−b)(a+2b)=a2−2b2+abB. (a+b)2=a2+2ab+b2C. (a−b)2=a2−2ab+b2D. (a−b)(a+b)=a2−b29.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)210.下列语句中正确的是()A. (−1)−2是负数B. 任何数的零次幂都等于1C. 一个不为0的数的倒数的−p次幂(p是正整数)等于它的p次幂D. (23−8)0=111.下列四个算式: ①2a3−a3=1; ②(−xy2)⋅(−3x3y)=3x4y3; ③(x3)3⋅x=x10; ④2a2b3⋅2a2b3=4a2b3.其中正确的有()A. 1个B. 2个C. 3个D. 4个12.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A. 205B. 250C. 502D. 52013.下列运算正确的是()A. (−2ab)⋅(−3ab)3=−54a4b4B. 5x2⋅(3x3)2=15x12×10n)=102nC. (−0.1b)⋅(−10b2)3=−b7D. (3×10n)(1314.已知多项式x2+kx+36是一个完全平方式,则k=()A. 12B. 6C. 12或−12D. 6或−615.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)9二、填空题(本大题共5小题,共25.0分)16.若单项式3x2y与−2x3y3的积为mx5y n,则m+n=.17.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x−1)※x的结果为.18.计算:(1)8m÷4m=;(2)27m÷9m÷3=.19.计算:2019×1981=.20.已知31=3,32=9,33=27,34=81,35=243,36=729⋯⋯,设A=(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)×2+1,则A的个位数字是.三、计算题(本大题共2小题,共18.0分)计算:(1)(−2)8⋅(−2)5;(2)(a−b)2⋅(a−b)⋅(a−b)5;(3)x m⋅x n−2⋅(−x2n−1)21. 先化简,再求值:(2x +3y)2−(2x +y)(2x −y),其中x =13,y =−12.四、解答题(本大题共5小题,共62.0分)22. 某中学为了响应国家“发展体育运动,增强人民体质”的号召,决定建一个长方体游泳池,已知游泳池长为(4a 2+9b 2)m ,宽为(2a +3b)m ,深为(2a −3b)m ,请你计算一下这个游泳池的容积是多少⋅23. 形如|acb d |的式子叫做二阶行列式,它的运算法则用公式表示为|acb d |=ad −bc ,比如:|2513|=2×3−1×5=1.请你按照上述法则,计算|−2ab a 2b−3ab 2(−ab)|的结果.24.如图,甲长方形的两边长分别为m+1,m+7;乙长方形的两边长分别为m+2,m+4.(其中m为正整数)(1)图中的甲长方形的面积S1,乙长方形的面积S2,比较:S1S2;(填“<”“=”或“>”)(2)现有一正方形,其周长与图中的甲长方形的周长相等,试探究:该正方形的面积S与图中的甲长方形的面积S1的差(即S−S1)是一个常数,求出这个常数.25.小明想把一张长为60cm、宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.小红家有一块L型的菜地,如图所示,要把L型的菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a m,下底都是b m,高都是(b−a)m,请你帮小红家算一算这块菜地的面积共有多少,并求出当a=10,b=30时,L型菜地的总面积.答案1.D2.C3.C4.D5.D6.C7.B8.D9.A10.C11.B12.D13.D14.C15.C16.−217.x2−118.2m3m−119.399963920.121.解:(1)原式=−28×25=−213;(2)原式=(a−b)2+1+5=(a−b)8;(3)原式=−x m+n−2+2n−1=−x m+3n−3.22.解:(2x+3y)2−(2x+y)(2x−y)=(4x2+12xy+9y2)−(4x2−y2)=4x2+12xy+9y2−4x2+y2=12xy+10y2,当x =13,y =−12时,原式=12×13×(−12)+10×(−12)2=12.23.解:这个游泳池的容积是(16a 4−81b 4)m 3.24.解:|−2ab a 2b −3ab 2(−ab )|=−2ab ⋅(−ab )−a 2b ·(−3ab 2)=2a 2b 2+3a 3b 3.25.解:(1)>(2)图中的甲长方形的周长为2(m +7+m +1)=4m +16.所以该正方形的边长为m +4.所以S −S 1=(m +4)2−(m 2+8m +7)=9.所以这个常数为9.26.解:(1)阴影部分的面积为(4x 2−200x +2400)cm 2.(2)这个盒子的体积为7500cm 3.27.解:这块菜地的面积共有(b 2−a 2)m 2,当a =10,b =30时,L 型菜地的总面积为800m 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7年级下册数学第一单元测试卷
一.填空题
1、图形在平移时,下列特征中不发生改变的有________(把你认为正确的序号都填上).①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.
2、对于同一平面内的三条直线、、,给出下列五个论断:①∥;②∥;③⊥;
④∥;⑤⊥.以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题:
__________________.
3、命题“对顶角相等”中的题设是_________ ,结论是___________ 。

4、如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=__________.
5、如图,∠1=70°,若m∥n,则∠2=
6、如下图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=__________.
7、三条直线最多能组成个直角.
8、如图,直线a、b被直线c所截,若要a∥b,需增加条件(填一个即可).
9、如图:(1)当∥时,∠DAC=∠BCA;(2)
当 = 时,AB//DC.
10、如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为1,4,则图中三个阴影三角形面积之和为
____________.
11、命题“等腰三角形的两个底角相等”的逆命题是_____。

二.选择题
13、下列语句错误的是( )
A.连接两点的线段的长度叫做两点间的距离
B.两条直线平行,同旁内角互补
C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角
D.平移变换中,各组对应点连成两线段平行且相等
14、给出下列说法:
①两条直线被第三条直线所截,则内错角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③平面内的三条直线任意两条都不平行,则它们一定有三个交点;④若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补.其中正确的个数是()
A.B.C.D.
15、如图,,要使a∥b,则∠2等于()
A.75° B.95° C.105° D.115°
16、如图,AB//CD ,,的度数是 ( )
A. B. C. D.
17、如图,,和相交于点,,,则等于()
A. B. C. D.
18、如图,在△ABC中,已知∠B和∠C的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E。

若BD+CE=9,则线段DE的长为( )
A.9 B.8 C.7 D.6
19、如图,AB∥CD,下列结论中正确的是()
A. B. C. D.
20、如图,AB∥CD,则图中么∠1、∠2、∠3之间的关系一定成立的是()
A.∠l+∠2+∠3= B.∠l+∠2+∠3= C.∠l+∠2+=2∠2 D.∠l+∠3=∠2
21、如图,AB∥CD,直线EF分别交AB,CD于E,F两点,∠BEF的平分线交CD于点G,若∠EFG=72°,则∠EGF等于()
A.36° B.54° C.72° D.108°
22、有下列说法:①两条直线被第三条直线所截,内错角相等;②相等的角是对顶角;③同角或等角的余角相等;④三角形的三条高交于一点.其中正确的有 ( )
A.1个 B.2个 C.3个 D.4个
23、一个两边平行的纸条,如下图那样折叠一下,则∠1的度数是()
A.30° B.40° C.50° D.60°
24、同一平面内互不重合的三条直线的公共点的个数是()
A.可能是0个,1个,2个 B.可能是0个,1个,2个或3个
C.可能是0个,2个,3个D.可能是1个或3个
25、下列命题中是真命题的是( )
A.同位角都相等B.内错角都相等C.同旁内角都互补 D.对顶角都相等26、如图,分别在上,为两平行线间一点,那么()
A. B. C. D.
27、如图,AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数为()
A.80° B.90° C.100° D.110°
28、.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()
A.50°
B.55°
C.60°
D.65°
29、下列说法正确的有()个
①每个定理都有逆定理;②每个命题都有逆命题;③假命题没有逆命题;
④真命题的逆命题是真命题。

A.1个B.2个 C.3个 D.4个
30、下列命题是真命题的是()
A和为180°的两个角是邻补角;
B一条直线的垂线有且只有一条;
C点到直线的距离是指这点到直线的垂线段;
D两条直线被第三条直线所截,内错角相等,则同位角必相等。

31、下列语句不是命题的为()
A两点之间,线段最短 B同角的余角不相等 C作线段AB的垂线 D不相等的角一定不是对顶角
32、汉字“王、人、木、水、口、立”中能通过平移组成一个新的汉字的有( )
A.1个
B.2个
C.3个
D.4个
33、下列现象是数学中的平移的是()
A.秋天的树叶从树上随风飘落 B.电梯由一楼升到顶楼
C.DVD片在光驱中运行 D.“神舟”六号宇宙飞船绕地球运动
三、简答题
35、已知,如图,AB∥CD,∠1=∠B,∠2=∠D。

求证:BE⊥DE。

36、如图13,经过平移,△ABC的边AB移到了EF,作出平移后的三角形,你能给出两种作法吗?请表述出来。

四、计算题
37、如图,已知:AD⊥BC,EF⊥BC,∠1=∠2.求证:∠3 =∠B.
38、如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.
下面是部分推理过程,请你将其补充完整:
∵AD⊥BC于D,EG⊥BC于G (已知)
∴∠ADC=∠EGC=90°
∴AD∥EG
()
∴∠1=∠2
()=∠3(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3()
∴AD平分∠BAC()
39、如图,若AO⊥OC,BO⊥DO,
(1)若∠DOC=38°,则∠AOB是多少度?
(2)图中有哪些角相等?
(3)若∠AOB=156°,则∠DOC是多少度?
(4)∠AOD、∠DOC、∠COB能否相等,若相等,请求出它们的度数;若不相等,说明理由.
40、如图,点,在上,,,,吗?为什么?
41、如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:
(1)平移后的三个顶点坐标分别为:A
1,B
1
,C
1

(2)画出平移后三角形A
1B
1
C
1

(3)求三角形ABC的面积.
参考答案
一、填空题
1、①③④⑤⑥
2、答案不唯一,合理、正确即可
3、两个角是对顶角;它们相等;
4、120°
5、70°
6、120°
7、12
8、或或
9、(1)AD,BC;(2)∠BAC=∠ACD.
10、10,5 11、有两个角相等的三角形是等腰三角形12、
二、选择题
13、C 14、B 15、C 16、B 17、C 18、A 19、D 20、D 21、B 22、A 23、C 24、B 25、D
26、C 27、C 28、A 29、A 30、D 31、C 32、D; 33、B
三、简答题
34、(1)两个图形是否都符合题意,对于图①,
由;
对于图②,;
(2)当<时,;
当>时,。

35、证明:作EF∥AB
∵AB∥CD ∴∠B=∠3(两直线平行,内错角相等)
∵∠1=∠B(已知)∴∠1=∠3(等量代换)
∵AB∥EF,AB∥(已作,已知)∴EF∥CD(平行于同一直线的两直线平行)
∴∠4=∠D(两直线平行,内错角相等)
∵∠2=∠D(已知)∴∠2=∠4(等量代换)
∵∠1+∠2+∠3+∠4=180°(平角定义)∴∠3+∠4=90°(等量代换、等式性质)即∠BED=90°∴BE⊥ED(垂直定义)
36、给出以下两种作法:
(1)依据平移后的的图形与原来的图形的对应线段平行,那么应有ED∥AC,FD∥BC。

(2)还可根据平移后对应点所连接的线段平行且相等,那么连接AE,作CD∥AE,且CD=AE。

四、计算题
39、解:(1)2(90°一38°)+38°=142° (2)∠AOC=∠BOD=90°∠AOD=∠BOC
(3)设∠DOC=,则2(90°一)+ =156°
∴=24°
(4)能相等.设∠AOD=∠DOC=∠COB=.则
90°
∴=45°
40、解:理由是:由可得由,可得从而可得所以
41、解:(1)结合所画图形可得:A
1坐标为(4,7),点B
1
坐标为(1,2),C
1
坐标为(6,4).
(2)所画图形如下:(3)
S
△ABC =S
矩形EBGF
﹣S
△ABE
﹣S
△GBC
﹣S
△AFC
=25﹣﹣5﹣3=.。

相关文档
最新文档