(天津版)高考数学分项版解析专题10排列组合、二项式定理、选修部分理
高中高三年级数学教案:排列、组合、二项式定理案例分析
高中高三年级数学教案:排列、组合、二项式定理案例分析一、教学目标1.理解排列、组合的基本概念和区别,掌握排列数和组合数的计算公式。
2.学会运用排列、组合解决实际问题。
3.理解二项式定理的内容,能够运用二项式定理计算二项展开式的系数。
二、教学重点与难点1.教学重点:排列数和组合数的计算,二项式定理的应用。
2.教学难点:排列、组合在实际问题中的灵活运用,二项式定理的证明。
三、教学过程1.导入新课(1)引导学生回顾初中阶段学习的排列、组合知识,复习排列数和组合数的计算公式。
(2)提出问题:排列和组合在实际问题中有哪些应用?如何运用排列、组合解决实际问题?2.授课内容(1)案例分析一:排列、组合在实际问题中的应用案例1:某班级有10名学生,其中甲必须参加,从剩余的9名学生中任选3名学生参加比赛,求不同的参赛组合数。
案例分析:这是一个排列问题,因为参赛人员的选择顺序是有关的。
根据排列数公式,可得A_9^3=9×8×7=504。
案例2:某班级有10名学生,从中任选3名学生参加比赛,求不同的参赛组合数。
案例分析:这是一个组合问题,因为参赛人员的选择顺序无关。
根据组合数公式,可得C_10^3=10×9×8/(3×2×1)=120。
(2)案例分析二:二项式定理的应用案例1:求(x+y)^5的展开式。
案例分析:根据二项式定理,展开式为x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5。
案例2:求(a+b)^10展开式中含a^5b^5的项。
案例分析:根据二项式定理,含a^5b^5的项为C_10^5a^5b^5=252a^5b^5。
3.练习与讨论1.某班级有10名学生,其中甲必须参加,从剩余的9名学生中任选3名学生参加比赛,求不同的参赛组合数。
2.某班级有10名学生,从中任选3名学生参加比赛,求不同的参赛组合数。
3.求(x+y)^6的展开式。
专题04 排列组合与二项式定理(解析版)--高二数学专题解析
专题04排列组合与二项式定理--高二数学专题解析知识点一:排列1:排列≤)个元素,并按照一定的顺序排成一列,叫做从n个不(1)定义:一般地,从n个不同元素中取出m(m n同元素中取出m个元素的一个排列.(2)相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.2:排列数与排列数公式1:组合(1)定义:一般地:从n个不同的元素中取出m(m n≤)个元素作为一组,叫做从n个不同元素中取出m 个元素的一个组合.(2)相同组合:只要两个组合的元素相同,无论元素的顺序如何,都是相同的组合.(3)组合与排列的异同≤)个元素”.相同点:组合与排列都是“从n个不同的元素中取出m(m n不同点:组合要求元素“不管元素的顺序合成一组”,而排列要求元素“按照一定的顺序排成一列”因此区分某一问题是组合问题还是排列问题,关键是看选出的元素是否与顺序有关,即交换某两个元素的位置对结果有没有影响,若有影响,则是排列问题,若无影响,则是组合问题.2:组合数与组合数公式(1)组合数的定义:从n个不同元素中取出m(m n≤)个元素的所有不同组合的个数,叫做从n个不同元3:组合数的性质b一、单选题1.在()5232x x ++的展开式中x 的系数是()A .160B .180C .240D .210【答案】C【分析】根据二项式的定义可知有4个因式中取2,1个因式中取3x 项,即可得解.【详解】在()5232x x ++的展开式中,要得到含x 的项,则有4个因式中取2,1个因式中取3x 项,故x 的系数为445C 32240⨯⨯=.故选:C7.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法.【答案】3600【答案】20【分析】根据题意,先对【详解】对于6盏不同的花灯进行取下,可先对因为取花灯每次只能取一盏,且只能从下往上取,又因为每串花灯先后顺序已经固定,所以除去重复的排列顺序,所以共有663333A20 A A=故答案为:20.13.按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球;(4)6个不同的小球放入4个不同的盒子,恰有1个空盒.x16.(多选题)若()32+n x(=20.(多选题)有甲、乙、丙、丁、戊五位同学,下列说法正确的是()A .若丙在甲、乙的中间(可不相邻)排队,则不同的排法有20种B .若五位同学排队甲不在最左端,乙不在最右端,则不同的排法共有78种C .若五位同学排队要求甲、乙必须相邻且甲、丙不能相邻,则不同的排法有36种D .若甲、乙、丙、丁、戊五位同学被分配到三个社区参加志愿活动,每位同学只去一个社区,每个社区至少一位同学,则不同的分配方案有150种【答案】BCD【分析】对于A :讨论甲、乙之间有几位同学,分析运算即可;对于B :讨论甲、乙所在位置,分析运算即可;对于C :先求甲、乙相邻的安排方法,再排除甲、乙相邻且甲、丙相邻的安排方法;对于D :先将学生安排出去,再排除有小区没有人去的可能.【详解】对于选项A :可知有三种可能:甲、乙之间只有一位同学,则不同的排法有2323A A 12=种;甲、乙之间有两位同学,则不同的排法有12222222C A A A 16=种;甲、乙之间有三位同学,则不同的排法有2323A A 12=种;不同的排法共有12161240++=种,故A 错误;对于选项B :可知有四种可能:甲在最右端,乙在最左端,则不同的排法有33A 6=种;甲在最右端,乙不在最左端,则不同的排法有1333C A 18=种;甲不在最右端,乙在最左端,则不同的排法有1333C A 18=种;甲不在最右端,乙不在最左端,则不同的排法有2333A A 36=种;不同的排法共有618183678+++=种,故B 正确;对于选项C :若甲、乙相邻,则不同的排法有2424A A 48=种;若甲、乙必须相邻且甲、丙相邻,则不同的排法有2323A A 12=种;不同的排法共有481236-=种,故C 正确;对于选项D :若每位同学只去一个社区,则不同的排法有53243=种;若有小区没有人去,则有两种可能:所有人去了一个小区,则不同的排法有13C 3=种;所有人去了两个小区,则不同的排法有()25132C 2C 90-=种;不同的排法共有()243390150-+=种,故D 正确;故选:BCD.21.将5名学生分到A ,B ,C 三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A 宿舍的不同分法有__________.原理即可得出答案.【详解】首位是1,第二位是0,则后三位可以用剩下的数字全排列,共有33A 6=个,前两位是12,第三位是0,后两位可以用余下的两个数字进行全排列,共有22A 2=种结果.前三位是123,第四位是0,最后一位是4,只有1种结果,∴数字12340前面有6+2+1=9个数字,数字本身就是第十个数字.故答案为:10.27.重新排列1,2,3,4,5,6,7,8.(1)使得偶数在原来的位置上,而奇数不在原来的位置上,有多少种不同排法?(2)使得偶数在奇数的位置上,而奇数在偶数的位置上,有多少种不同的排法?(3)使得偶数在偶数位置上,但都不在原来的位置上;奇数在奇数位置上,但也都不在原来的位置上,有多少种不同的排法?(4)如果要有数在原来的位置上,有多少种不同的排法?(5)如果只有4个数在原来的位置上,有多少种不同的排法?(6)如果至少有4个数在原来的位置上,有多少种不同的排法?(7)偶数在偶数位置上;但恰有两个数不在原来位置上,奇数在奇数位置上,但恰有两个数不在原来位置上,有多少种不同排法?(8)偶数在偶数位置上,且至少有两个数不在原来位置上;奇数在奇数位置上,也至少有两个数不在原来位置上,有多少种不同排法?【答案】(1)9;(2)576;(3)81;(4)25487;(5)630;(6)771;(7)36;(8)225.【分析】(1)利用匹配问题错排公式求解;(2)利用乘法分步原理求解;(3)利用匹配问题求解;(4)用排除法.对8个数进行全排列,再减去没有数在原来的位置上的排法,即得解;(5)利用乘法分步原理求解;(6)用排除法.先对8个数进行全排列,再去掉恰有i 个数在原来位置上的排法()0123i =,,,,即得解;(7)利用匹配问题和分步乘法原理得解;。
高中数学知识点总结 第十章排列组合和二项式定理
高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。
本文将对这两个知识点进行总结和说明。
1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。
组合是指从一组元素中不考虑顺序地取出一部分元素的方式。
排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。
1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。
二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。
二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。
其中C(n, k)表示从n个元素中选择k个元素的组合数。
二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。
二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。
它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。
3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。
例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。
高中数学知识点归纳排列组合与二项式定理
高中数学知识点归纳排列组合与二项式定理在高中数学中,排列组合是一种重要的概念与工具,它涉及到对对象的选取和排列的方式。
而在排列组合的基础上,我们还能引出二项式定理,进一步探讨多项式的展开与计算。
本文将对这些数学知识点进行归纳总结和讨论。
一、排列组合的基本概念1.1 排列排列是从给定的一组对象中,按照一定的顺序选择若干个对象进行排列。
假设有n个不同的对象,要从中选择r个对象进行排列,可以得到的排列数记为P(n,r)。
P(n,r) = n!/(n-r)!1.2 组合组合是指从给定的一组对象中,无视其顺序,选择若干个对象。
同样假设有n个不同的对象,要从中选择r个对象进行组合,可以得到的组合数记为C(n,r)。
C(n,r) = n!/(r!(n-r)!)1.3 重复排列与重复组合当给定的一组对象中存在重复的元素时,我们可以计算可能的重复排列与重复组合。
计算公式如下:重复排列:P(n1,n2,...,nk) = n!/(n1!n2!...nk!)重复组合:C(n+r-1,r) = (n+r-1)!/(r!(n-1)!)二、排列组合的应用2.1 生日问题生日问题是指在一个房间里,至少有两个人生日相同的概率有多大。
利用排列组合的思想可以很方便地解决这个问题。
在一个房间里,有n 个人,假设有365天可以选作生日。
我们可以计算至少有两个人生日相同的概率,即为1减去没有人生日相同的概率。
P(at least two people have the same birthday) = 1 - P(no two people have the same birthday)= 1 - C(365,n)/365^n2.2 二项式定理与展开二项式定理是代数中的重要定理之一,它描述了两个数之和的幂展开后的表达式。
假设有实数a和b以及正整数n,根据二项式定理可以将(a+b)^n展开为:(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + C(n,2)a^(n-2)*b^2 + ... + C(n,n-1)a^1*b^(n-1) + C(n,n)a^0*b^n2.3 二项式系数与组合恒等式二项式系数指的是二项式展开中各项的系数。
高中数学专题讲解排列组合及二项式定理
1 / 101 排列组合及二项式定理【基本知识点】1.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=).(2)增减性与最大值:当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C-,12n n C +取得最大值. (3)各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++,令1x =,则0122n r n n n n n n C C C C C =++++++【常见考点】一、可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法"可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。
(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34 (3)34二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.2 / 102 (4),,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种(5)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A。
360 B. 188 C。
高中数学排列组合及二项式定理知识点
高中数学排列组合及二项式定理知识点高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:完成某事有多种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:完成某事必须分成几个步骤,每个步骤都有不同的方法,而每个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n个元素的问题;区别:前者有顺序,后者无顺序。
2)排列数、组合数:排列数的公式:Ann(n-1)(n-2)。
(n-m+1)=n。
注意:①全排列:Ann。
②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①AnnAn-1将从n个不同的元素中取出m(m≤n)个元素,分两步完成:第一步从n个元素中选出1个排在指定的一个位置上;第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)②AnmAn-1An-1将从n个不同的元素中取出m(m≤n)个元素,分两类完成:第一类:m个元素中含有a,分两步完成:第一步将a排在某一位置上,有m不同的方法。
第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)即有mAn-1种不同的方法。
第二类:m个元素中不含有a,从n-1个元素中取出m个元素排在m个位置上,有An-1种方法。
组合数的公式:Cmnmm!(n-m)!/m!组合数的性质:CnCn从n个不同的元素中取出m个元素后,剩下n-m个元素,也就是说。
(天津专用)2020版高考数学大一轮复习10.2二项式定理课件
2.形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R)的式子求其展开式的各项系数之和,
常用赋值法,只需令x=1即可;形如(ax+by)n(a,b∈R)的式子求其展开式各 项系数之和,只需令x=y=1即可.
3.一般地,若f(x)=a0+a1x+a2x2+…+anxn,则f(x)中各项系数之和为f(1),奇数
+…+ xn.若a=1,b=-x,则得到公式:(1-x)n=1+(-1)1 x + x2+…+(-1)n x n. Cn C1 C2 Cn n n n n
4.二项式系数的性质 (1)对称性
与首末两端“等距离”的两个二项式系数⑤ 相等 ,事实上,这一性
质可直接由公式 = nr 得到. Cr n Cn (2)增减性
r
k
答案 -5
方法2
二项式系数与项的系数
0 1
C n , Cn ,…, 1.二项式系数与项的系数是不同的两个概念,二项式系数是指 Cn n ,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除
变量外的常数部分,它不仅与各项的项数有关,也与a,b的值有关,如(a+
Cn ,而项的系数是 Cn an-kbk. bx)n的展开式中,第k+1项的二项式系数是
就是Tr+1项的系数.
考向突破
考向 求二项展开式中特定项或特定项的系数
例
1 (1)(x2+2) 2 1 的展开式的常数项是 ( x
5
)
A.-3
B.-2
6
C.2
D.3
.(用数字作答)
2023年高考数学真题分训练 排列组合、二项式定理(理)(含答案含解析)
专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。
高中数学第十章-排列组合
高三数学总复习................................................................高考复习科目:数学 高中数学总复习(九)复习内容:高中数学第十章-排列组合 复习范围:第十章 编写时间:2004-7修订时间:总计第三次 2005-4 一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) 二、排列.1. ⑪对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑬排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n个不同元素中取出m 个元素的一个排列数,用符号m n A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n=.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m n mmmn m n -=+--==⑬两个公式:①;m n n m n C C -= ②mn m n m n C C C 11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有mn m n m n C C C 11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑮①几个常用组合数公式n n n n n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n kn m n m m n m m m m m m n n n n n n n n C n C k nCkC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C .vi. 构造二项式. 如:n nn n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中nx 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而mm A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-.②有n 件不同商品,若其中A 、B 排在一起有2211A A nn ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则. ⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mmm m n m n m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义. ⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某rx 1x 2x 3x 4个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有m n A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理
高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理【高考展望】命题角度:该部分的命题就是围绕两个点展开.第一个点是围绕排列,组合展开,设计利用排列组合和两个基本原理求解的实际计数问题的试题,目的是考查对排列组合基本方法的掌握程度,考查分类与整合的思想方法,试题都是选择题或者填空题,难度中等或者偏易;第二点是围绕二项式定理展开,涉及利用二项式的通项公式计算二项式中特定项的系数、常数项、系数和等试题,目的是考查对二项式定理的掌握程度和基本的运算求解能力,试题也都是选择题或者填空题,难度中等.预计高考对该部分的考查基本方向不变,即考查简单的计数问题、二项式定理的简单应用,但由于排列,组合试题的特点,也不排除出现难度稍大的试题的可能.复习建议:该部分的复习以基本问题为主,要点有两个:一个是引导学生掌握解决排列,组合问题的基本思想,即分类与分步的思想,使学生在解题时有正确的思维方向;一个是掌握好二项展开式的通项公式的应用,这是二项式定理的考查核心.【知识升华】一、排列与组合1、分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.2、排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.3、排列与组合的主要公式①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=mnnnmnnA mn(m≤n)A nn=n! =n(n―1)(n―2) ·…·2·1.②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=mmmnnnmnmnC mn(m≤n).③组合数性质:①mnnmnCC-=(m≤n). ②nnnnnnCCCC2210=+⋅⋅⋅+++③1314202-=⋅⋅⋅++=⋅⋅⋅++nnnnnnCCCCC4、分类应在同一标准下进行,确保“不漏”、“不重”,分步要做到“步骤连续”和“步骤独立”,并能完成事项.5、界定“元素与位置”要辩证地看待,“特殊元素”、“特殊位置”可直接优先安排,也可间接处理.6、解排列组合综合问题注意先选后排的原则,复杂的排列、组合问题利用分类思想转化为简单问题求解.7、常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.二、二项式定理1、二项式定理(a +b)n =C 0n an +C1n an-1b+…+Crn an-rbr +…+Cnn bn,其中各项系数就是组合数Crn,展开式共有n+1项,第r+1项是Tr+1 =C rn an-rbr.2、二项展开式的通项公式二项展开式的第r+1项Tr+1=C rn an-rbr(r=0,1,…n)叫做二项展开式的通项公式。
最新届天津高三数学理科试题精选分类汇编:排列组合二项式定理
最新届天津高三数学理科试题精选分类汇编:排列组合二项式定理部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑最新2018届天津高三数学理科试卷精选分类汇编9:排列、组合、二项式定理姓名____________班级___________学号____________分数______________一、选择题1 .<天津市新华中学2018届高三寒假复习质量反馈数学<理)试卷)如图,用四种不同的颜色给图中的五个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共有( >种< )b5E2RGbCAPA.72B.86C.106D.1202 .<天津市新华中学2018届高三寒假复习质量反馈数学<理)试卷)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是p1EanqFDPw(A>152 (B>126 (C>90 (D>543 .<天津市十二区县重点中学2018届高三毕业班联考<一)数学<理)试卷)在的二项展开式中,的系数为< )DXDiTa9E3dA.-120B.120 C.-15D.154 .<天津市新华中学2018届高三寒假复习质量反馈数学<理)试卷)的展开式中的常数项为< )RTCrpUDGiTA.1 B.3 C.D.5 .<天津南开中学2018届高三第四次月考数学理试卷)二项式的展开式中的常数项是< )5PCzVD7HxAA.-28B.-7C.7D.286 .<2018-2018-2天津一中高三年级数学第四次月考检测试卷<理))的展开式的常数项是< )< )jLBHrnAILg A.-3B.-2C.2D.37 .<天津市滨海新区五所重点学校2018届高三联考试卷数学<理)试卷)若展开式中的系数为,则的值为<)xHAQX74J0XA.B.C.D.8 .<天津市天津一中2018届高三上学期第三次月考数学理试卷)展开式中的常数项是< )LDAYtRyKfEA.B.C.D.二、填空题9 .<天津市六校2018届高三第二次联考数学理试卷<WORD版))在(1+x>2(1->3的展开式中,含x项的系数是.Zzz6ZB2Ltk最新2018届天津高三数学理科试卷精选分类汇编9:排列、组合、二项式定理参考答案一、选择题1.A2.B3.C4.C5.C6.D7.【答案】A二项展开式的通项为,由得,所以,即的系数为,即,所以,解得,选A.dvzfvkwMI18.【答案】Crqyn14ZNXI解:展开式的通项公式为,令得.所以常数项为,选C二、填空题9.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
天津市高三数学一轮复习 试题选编10 排列组合及二项式定理 理 新人教A版
天津市2014届高三理科数学一轮复习试题选编10:排列组合及二项式定理一、选择题1 .(天津市河东区2013届高三第二次模拟考试数学(理)试题)在二项式251(-)x x的展开式中,含4x 的项的系数是( )A .-10B .10C .-5D .5【答案】B2 .(2012年天津理))在251(2)x x-的二项展开式中,x 的系数为 ( )A .10B .-10C .40D .-40【答案】∵25-1+15=(2)()r r r r T C x x -⋅-=5-10-352(1)r r r rC x -,∴103=1r -,即=3r ,∴x 的系数为40-.3 .(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)如图,用四种不同的颜色给图中的P A B C D 、、、、五个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共有( )种 ( )A .72B .86C .106D .120【答案】A 4 .(天津市红桥区2013届高三第二次模拟考试数学理试题(word 版) )一个班有6名战士,其中正副班长各一名,现从中选4人完成四种不同的任务,每人完成一种任务,正副班长中有且仅有一人参加,另一人要留下值班,则不同的分配方法有 ( ) A .240种 B .192种 C .2880种 D .8种 【答案】B 5 .(天津市五区县2013届高三质量检查(一)数学(理)试题)在5(x的二项展开式中,2x 的系数为( )A .40B .-40C .80D .-80【答案】A6 .(2013届天津市高考压轴卷理科数学)二项式8(2x -的展开式中常数项是( )A .28B .-7C .7D .-28 【答案】C【解析】展开式的通项公式为488831881()(()(1)22k k k k k k k k x T C C x ---+==-,由4803k -=得6k =,所以常数项为6866781()(1)72T C -=-=,选C .7 .(2011年高考(天津理))在6⎫-⎝的二项展开式中,2x 的系数为 ( )A .154-B .154C .38-D .38【答案】【命题立意】本小题主要考查了二项式定理及二项展开式的通项公式和某一项的系数的求解.C 【解析】6⎫⎝的二项展开式的通项为6263166((1)2r r r r r r rr T C C x ---+==- 令32r -=得1r =,所以2x 的系数为43268--⨯=-8 .(天津市河北区2013届高三总复习质量检测(二)数学(理)试题)若nxx )1(2-展开式中的所有二项式系数和为512,则该展开式中的常数项为( )A .84B .-84C .36D .-36【答案】A9 .(天津市十二校2013届高三第二次模拟联考数学(理)试题)设(5nx的展开式的各项系数和M ,二项式系数和为N ,若240M N -=,则展开式中x 的系数为 ( )A .150-B .150C .300D .300- 【答案】B10.(2013年天津市滨海新区五所重点学校高三毕业班联考理科数学)若51()ax x-(0)a >展开式中3x 的系数为581-,则a 的值为 ( )A .13 B .19C .127D .1【答案】A 二项展开式的通项为55521551()()(1)kkk k k k k k T C ax C a x x ---+=-=-,由523k -=得1k =,所以14325(1)T C a x =-,即3x 的系数为45a -,即45581a -=-,所以4181a =,解得13a =,选 ( )A .11.(天津市十二区县重点中学2013届高三毕业班联考(一)数学(理)试题)在1012x x ⎛⎫- ⎪⎝⎭的二项展开式中,4x 的系数为 ( )A .-120B .120C .-15D .15【答案】C12.(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)92)21(xx -的展开式中的常数项为 ( )A .1B .3C .1621 D .815【答案】C13.(天津市天津一中2013届高三上学期第三次月考数学理试题)91x ⎫⎪⎭展开式中的常数项是( )A .36-B .36C .84-D .84【答案】C解:展开式的通项公式为93921991()(1)kk kk k kk T C C x x--+=-=-,令9302k -=得3k =.所以常数项为3349(1)84T C =-=-,选C14.(天津市蓟县二中2013届高三第二次模拟考试数学(理)试题)在5)(xa x +二项展开式中,第4项的系数为80,则a 的值为 ( )A .-2B .2C .-2或2D .22-或22【答案】B15.(2012-2013-2天津一中高三年级数学第四次月考检测试卷(理))2521(2)(1)x x+-的展开式的常数项是( ) ( ) A .-3 B .-2 C .2 D .3 【答案】D 16.(天津市2013届高三第三次六校联考数学(理)试题)已知()|2||4|f x x x =++-的最小值为n ,则二项式1()n x x-展开式中2x 项的系数为( )A .15B .15-C .30D .30- 【答案】A 17.(2010年高考(天津理))如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有 ( ) A .288种 B .264种 C .240种 D .168种【答案】B18.(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是( )A .152B .126C .90D .54【答案】B19.(天津南开中学2013届高三第四次月考数学理试卷)二项式8312⎪⎪⎭⎫ ⎝⎛-x x 的展开式中的常数项是( )A .-28B .-7C .7D .28 【答案】C 二、填空题 20.(天津市蓟县二中2013届高三第二次模拟考试数学(理)试题)12名同学站成前后两排,前排4人,后排8人,现要从后排8人中选2人站到前排,若其他同学的相对顺序不变,则不同的调整方法种数为_________种. 【答案】840 21.(2009高考(天津理))用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个(用数字作答) 【答案】324 22.(天津市六校2013届高三第二次联考数学理试题(WORD 版))在(1+x)2(1-x2)3的展开式中,含x 项的系数是 .【答案】4-23.(2013天津高考数学(理))6x⎛⎝的二项展开式中的常数项为______.【答案】15 因为136622166()(1)r rrrrr r T C xx C x---+=-=-,令3602r -=得4r =所以4456(1)15T C =-=24.(天津市红桥区2013届高三第二次模拟考试数学理试题(word 版) )在91x ⎫⎪⎭的二项展开式中,常数项是_________________.【答案】84-。
专题10 排列组合、二项式定理、选修部分(解析版)
第十章 排列组合、二项式定理、选修部分一.基础题组1.【2005天津,理6】从集合{1,2,3,…,11}中的任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||11,||9B x y x y =<<内的椭圆的个数是 A 、43 B 、72 C 、86 D 、90 【答案】B2.【2005天津,理11】设*n N ∈,则12321666n n n n n n C C C C -++++=__________。
【答案】()1716n- 【解析】()12211671616666nn n n n n n n n C C C C --=+=+++++⇒所求为:()1716n- 本题答案填写:()1716n-3.【2006天津,理5】将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种 【答案】A4.【2006天津,理11】7)12(xx +的二项展开式中x 的系数是____ (用数学作答). 【答案】280【解析】7)12(xx +的二项展开式中x的项是3347(2)280C x x ⋅=,所以x 的系数是280.5.【2007天津,理11】若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中3x 的系数为5,2则a =__________.(用数字作答) 【答案】2 【解析】()621123166()rr rr r r r T C x ax C x a ----+⎡⎤==⎣⎦,当3r =时得到3x 项的系数336522C a a -=⇒=6.【2008天津,理11】52⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中,2x 的系数是 (用数字作答). 【答案】40【解析】3552155((2)r rrr r rr T C xC x --+==-,所以2r =,系数为225(2)40C -=. 7.【2010天津,理14】如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P ,若11,23PB PC PA PD ==,则BCAD的值为__________.【解析】解析:∵∠PBC+∠ABC=180°, ∠ADC+∠ABC=180°, ∴∠PBC=∠ADC, 又∵∠P=∠P, ∴△PBC∽△PDA,∴BC PCAD PA=, 由11,23PB PC PA PD ==得PB =12PA ,PD =3PC ,由切割线定理得:PB·PA=PC·PD,∴12PA2=3PC2, 即221,6PC PA=,得PC PA =,∴BC AD =. 8.【2011天津,理5】在6-的二项展开式中,2x 的系数为 A .154- B .154 C . 38- D .38【答案】C9.【2011天津,理11】已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数),若斜率为1的直线经过抛物线C的的焦点,且与圆()2224(0)x y r r -+=>相切,则r =_______.【答案】210.【2011天津,理12】如图已知圆中两条弦AB 与CD 相交于点F ,E 是AB延长线上一点,且::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则CE 的长为________.【答案】2711.【2012天津,理5】在(2x 2-1x)5的二项展开式中,x 的系数为( ) A .10 B .-10 C .40 D .-40 【答案】D【解析】Tr +1=5C r(2x2)5-r(1x-)r =(-1)r25-r 5C rx10-3r , ∴当10-3r =1时,r =3.∴(-1)325-335C =-40.12.【2012天津,理12】已知抛物线的参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =__________. 【答案】2∴3222p p -=,∴p=2.13.【2012天津,理13】如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB =1,32EF =,则线段CD 的长为__________.【答案】4314.【2013天津,理10】6x⎛-⎝的二项展开式中的常数项为__________. 【答案】15【解析】二项展开式的通项为3662166C (1)C rr r r r r r T x x --+⎛==- ⎝,3602r -=得r =4,所以二项展开式的常数项为T5=(-1)446C =15.15.【2013天津,理11】已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为π4,3⎛⎫⎪⎝⎭,则|CP |=__________.【答案】【解析】由圆的极坐标方程为ρ=4cos θ,得圆心C 的直角坐标为(2,0),点P 的直角坐标为(2,),所以|CP|=16.【2013天津,理13】如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD =5,则线段CF 的长为__________.【答案】8317.【2014天津,理6】如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论: ①BD 平分CBF Ð;②2FB FD FA =?;③AE CEBE DE ??;④AF BD AB BF ??.则所有正确结论的序号是 ( )(A )①② (B )③④ (C )①②③(D )①②④ 【答案】D .考点:1.弦切角定理;2.切线长定理;3.相交弦定理.18.【2014天津,理13】在以O 为极点的极坐标系中,圆4sin r q =和直线sin a r q =相交于,A B 两点.若AOB D是等边三角形,则a 的值为___________.【答案】3.考点:直线和圆的极坐标方程.19. 【2015高考天津,理5】如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( ) (A )83 (B )3 (C )103 (D )52【答案】A【考点定位】相交弦定理. 20.二.能力题组1.【2007天津,理16】如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有__________种(用数字作答). 【答案】390 【解析】用2色涂格子有26230C ⨯=种方法,用3色涂格子有()3263382360C C ⨯-⨯=种方法,故总共有390种方法.2.【2009天津,理16】用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有___________个(用数字作答). 【答案】324三.拔高题组1.【2008天津,理10】有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种(B) 1248种(C) 1056种(D) 960种【答案】B2.【2010天津,理10】如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有( )A.288种 B.264种C.240种 D.168种【答案】B3.【2015高考天津,理12】在614xx⎛⎫-⎪⎝⎭的展开式中,2x的系数为.【答案】15 16【考点定位】二项式定理及二项展开式的通项.。
2020年高考天津版高考理科数学 10.2 二项式定理
的展开式中,x2 的系数为 .
2 ������
5
答案 2
( )������ 8
7.(2019 届天津一中第一次月考,10)若 ������ + 3 ������ 的展开式中 x4 的系数为 7,则实数 a= .
1
答案 2
( ) 8.(2018
天津一中 5 月月考,10)已知二项式
������2
★★☆
分析解读 1.掌握二项式定理和二项式的性质.2.会用二项式定理的知识解决系数和、常数项、整除、
近似值、最大值等相关问题.3.二项展开式的通项是高考热点.本节在高考中一般以选择题或填空题形式出
现,分值约为 5 分,属容易题.
破考点
【考点集训】
考点 二项式定理的概念及性质
1.(2015 课标Ⅰ,10,5 分)(x2+x+y)5 的展开式中,x5y2 的系数为( )
为 . 答案 -40
( )1 ������
16.(2018 天津实验中学热身训练,11)若 ������ - ������ 的二项展开式中各项的二项式系数之和是 64,则展开式中
的常数项为 .(用数字作答)
答案 15
答案 A
( ) 2.(2015 湖南,6,5 分)已知
������ -
������ ������
5
3
的展开式中含������2的项的系数为 30,则 a=( )
A. 3 B.- 3 C.6 D.-6
答案 D
( )������ 7
1
3.(2014 湖北,2,5 分)若二项式 2������ + ������ 的展开式中������3的系数是 84,则实数 a=( )
高三数学排列组合与二项式定理试题答案及解析
高三数学排列组合与二项式定理试题答案及解析1.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为()A.8B.6C.14D.48【答案】D【解析】方法一:第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有23=8(种)选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6(个)不同的三位数.由分步乘法计数原理知共可得到8×6=48(个)不同的三位数.方法二:第一步,排百位有6种选择,第二步,排十位有4种选择,第三步,排个位有2种选择.根据分步乘法计数原理,共可得到6×4×2=48(个)不同的三位数.2.设、、为整数,若和被除得余数相同,则称和对模同余,记.若,且,则的值可以为()A.B.C.D.【答案】A【解析】,因此除的余数为,即,因此的值可以为,故选A.【考点】1.二项式定理;2.数的整除性3.5名志愿者到3个不同的地方参加义务植树,则每个地方至少有一名志愿者的方案共有____种.【答案】150【解析】将5名志愿者分到3个不同的地方参加义务植树,且每个地方至少有一名志愿者,则分配至3地的人数模式只有“1、1、3”与“1、2、2”这两种模式.设这3地分别为甲、乙、丙.(1)当分配的人数模式是“1、1、3”时,即甲、乙、丙3地中有一地是3个人,其他两地都只有1人,则共有(种).即先从三地中选一地是分配3个人的,再从5名志愿者中选三人派到该地.剩余2人再分配至其余两地.(2) 当分配的人数模式是“1、2、2”时,即甲、乙、丙3地中有一地是1个人,其他两地都有2人,则共有(种).即先从三地中选一地是只分配1个人的,再从5名志愿者中选1人派到该地.剩余4人再选出2人分配至其余两地中的某地,那剩余2人即是最后一地所得.综上所述,共有60+90=150种方案.【考点】排列与组合4.如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依次类推,则(1)按网络运作顺序第n行第一个数字(如第2行第一个数字为2,第3行第一个数字为4,…)是;(2)第63行从左至右的第4个数应是.【答案】(1)。
天津高中数学必修 选修全部知识点精华归纳总结(新课标人教A版)
高三第一轮复习资料(个人汇编请注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 排列组合、二项式定理、选修部分一.基础题组1.【2005天津,理6】从集合{1,2,3,…,11}中的任意取两个元素作为椭圆22221x y m n +=方程中的m 和n ,则能组成落在矩形区域(){},|||11,||9B x y x y =<<内的椭圆的个数是A 、43B 、72C 、86D 、90 【答案】B2.【2005天津,理11】设*n N ∈,则12321666n n n n n n C C C C -++++=__________。
【答案】()1716n- 【解析】()12211671616666nn n n n n n n n C C C C --=+=+++++⇒所求为:()1716n- 本题答案填写:()1716n-3.【2006天津,理5】将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种 【答案】A【解析】将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:①1号盒子中放1个球,其余3个放入2号盒子,有144C =种方法;②1号盒子中放2个球,其余2个放入2号盒子,有246C =种方法;则不同的放球方法有10种,选A .4.【2006天津,理11】7)12(xx +的二项展开式中x 的系数是____ (用数学作答). 【答案】280【解析】7)12(xx +的二项展开式中x的项是3347(2)280C x x ⋅=,所以x 的系数是280.5.【2007天津,理11】若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中3x 的系数为5,2则a =__________.(用数字作答)【答案】2 【解析】()621123166()rrrr r rr T C x ax C x a ----+⎡⎤==⎣⎦,当3r =时得到3x 项的系数336522C a a -=⇒=6.【2008天津,理11】52⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中,2x 的系数是 (用数字作答). 【答案】40【解析】3552155((2)r rrr r rr T C xC x --+==-,所以2r =,系数为225(2)40C -=.7.【2010天津,理14】如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P ,若11,23PB PC PA PD ==,则BCAD的值为__________.【解析】解析:∵∠PBC+∠ABC=180°, ∠ADC+∠ABC=180°, ∴∠PBC=∠ADC,又∵∠P=∠P, ∴△PBC∽△PDA,∴BC PCAD PA=, 由11,23PB PC PA PD ==得PB =12PA ,PD =3PC , 由切割线定理得:PB·PA=PC·PD,∴12PA2=3PC2,即221,6PC PA=,得66PC PA =,∴66BC AD =. 8.【2011天津,理5】在622x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为 A .154- B .154 C . 38- D .38【答案】C【解析】由二项式展开式得,()k k k k kkk k x C x x C T ---+-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=36626612122, 令1=k ,则2x 的系数为()832116612-=⋅--⨯C .9.【2011天津,理11】已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数),若斜率为1的直线经过抛物线C 的的焦点,且与圆()2224(0)x y r r -+=>相切,则r =_______.【答案】210.【2011天津,理12】如图已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且2,::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则CE 的长为________.【答案】2711.【2012天津,理5】在(2x 2-1x)5的二项展开式中,x 的系数为( ) A .10 B .-10 C .40 D .-40 【答案】D【解析】Tr +1=5C r(2x2)5-r(1x-)r =(-1)r25-r 5C rx10-3r , ∴当10-3r =1时,r =3.∴(-1)325-335C =-40.12.【2012天津,理12】已知抛物线的参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =__________. 【答案】2【解析】由参数方程22,2,x pt y pt ⎧=⎨=⎩(t 为参数),p >0,可得曲线方程为:y2=2px(p >0).∵|EF|=|MF|,且|MF|=|ME|(抛物线定义), ∴△MEF 为等边三角形,E 的横坐标为2p-,M 的横坐标为3. ∴EM 中点的横坐标为:322p-,与F 的横坐标2p 相同, ∴3222p p -=,∴p=2.13.【2012天津,理13】如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB =1,32EF =,则线段CD 的长为__________.【答案】4314.【2013天津,理10】6x x ⎛⎝的二项展开式中的常数项为__________.【答案】15【解析】二项展开式的通项为3662166C (1)C rr r rr r r T xx x --+⎛==- ⎝,3602r -=得r =4,所以二项展开式的常数项为T5=(-1)446C =15.15.【2013天津,理11】已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为π4,3⎛⎫⎪⎝⎭,则|CP |=__________. 【答案】3【解析】由圆的极坐标方程为ρ=4cos θ,得圆心C 的直角坐标为(2,0),点P 的直角坐标为(2,3,所以|CP|=2316.【2013天津,理13】如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD =5,则线段CF 的长为__________.【答案】83【解析】∵AE 为圆的切线, ∴由切割线定理,得AE2=EB·ED. 又AE =6,BD =5,可解得EB =4. ∵∠EAB 为弦切角,且AB =AC , ∴∠EAB =∠ACB =∠ABC. ∴EA ∥BC.又BD ∥AC , ∴四边形EBCA 为平行四边形. ∴BC =AE =6,AC =EB =4. 由BD ∥AC ,得△ACF ∽△DBF , ∴45CF AC BF BD ==. 又CF +BF =BC =6,∴CF =83.17.【2014天津,理6】如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FB FD FA ;③AE CE BE DE ;④AF BDAB BF .则所有正确结论的序号是 ( )EFD ABC(A )①② (B )③④ (C )①②③ (D )①②④ 【答案】D .考点:1.弦切角定理;2.切线长定理;3.相交弦定理. 18.【2014天津,理13】在以O 为极点的极坐标系中,圆4sin 和直线sin a 相交于,A B 两点.若AOB 是等边三角形,则a 的值为___________.【答案】3. 【解析】试题分析:圆的方程为2224x y ,直线为y a .AOB 是等边三角形,∴其中一个交点坐标为,3aa ,代入圆的方程可得3a .考点:直线和圆的极坐标方程.19. 【2015高考天津,理5】如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( )(A )83 (B )3 (C )103 (D )52【答案】A【解析】由相交弦定理可知,,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB CN NE CM MD ⋅=⋅∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A.【考点定位】相交弦定理.20. 【2016高考天津理数】281()x x-的展开式中x 7的系数为__________.(用数字作答)【答案】56- 【解析】试题分析:展开式通项为281631881C ()()(1)C r r r r r rr T x xx--+=-=-,令1637r -=,得3r =,所以展开式中7x 的系数为338(1)56C -=-.故答案为56-. 【考点】二项式定理【名师点睛】①求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所要求的项.②有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.21.【2016高考天津理数】如图,AB 是圆的直径,弦CD 与AB 相交于点E ,BE =2AE =2,BD =ED ,则线段CE 的长为__________.【答案】233【考点】相交弦定理【名师点睛】1.解决与圆有关的成比例线段问题的两种思路:(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2.应用相交弦定理、切割线定理时要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.二.能力题组1.【2007天津,理16】如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有__________种(用数字作答).【答案】390 【解析】用2色涂格子有26230C ⨯=种方法,用3色涂格子有()3263382360C C ⨯-⨯=种方法,故总共有390种方法.2.【2009天津,理16】用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有___________个(用数字作答).【答案】324三.拔高题组1.【2008天津,理10】有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种 (B) 1248种 (C) 1056种 (D) 960种【答案】B【解析】首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有31248412⨯=种不同的排法,选B .2.【2010天津,理10】如图,用四种不同颜色给图中的A ,B ,C ,D ,E ,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有( )A .288种B .264种C .240种D .168种【答案】B【解析】首先给A、D、E三个点涂色有34A=4×3×2=24(种),A、D、E颜色固定,当B与D、E涂色不同时,有3种涂法,A、D、E颜色固定,当B与D、E其中一个涂色相同时,有8种涂法,共有24×(3+8)=264(种).3. 【2015高考天津,理12】在614xx⎛⎫-⎪⎝⎭的展开式中,2x的系数为 .【答案】15 16【考点定位】二项式定理及二项展开式的通项.。