利用两个一次函数的图像解决问题
利用一次函数的图像解决实际问题
解法1:
解法2:
①要使y甲=y乙,就是要使
将两函数的图像在同一坐标
3000x=2000x+40000,解得
系中画出,观察图像可知:这两
x=40,即当x=40时,租哪家租金 个函数图像的交点是
都相同.
(40,120000),也就是当x=40时,y
②要使y甲>y乙,就是要使 3000x>2000x+40000,解得 x>40,即当x>40时,租乙家的房 屋更合算. ③要使y甲<y乙,就是要使 3000x<2000x+40000,解得 x<40,即当x<40时,租甲家的房 屋更合算.
(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),
则小芳比预计时间早几分钟到达乙地?
解:(1)由函数图像可以得出小芳家距离 甲地的路程为10 km,花费时间为0.5 h,故 小芳骑车的速度为10÷0.5=20(km/h),
由题意可得出点H的纵坐标为20,横坐标
. 为
41 3 36 2
说明:由此可以看出,有些一元一次方程和一元一次不等式问 题,可以借助一次函数来考虑,借助一次函数的图像,往往能 使方程和不等式的意义更加直观和形象.
活动2 一起探究 某电脑工程师张先生准备开一家小型电脑公司,欲租一处临街房屋,现 有甲、乙两家出租屋,甲家已经装修好,每月租金为3000元;乙家未装修,每月 租金为2000元,但若装修成与甲家房屋同样的规格,则需要花装修费4万元. (1)设租用时间为x个月,承租房屋所付租金为y元,分别求租用甲、乙两家的 租金y与租用时间x之间的函数关系式. (2)根据求出的两个函数表达式,试判断租用哪家的房屋更合算.
设直线EF的解析式为y3=k3x+b3,将点E
时借助两个一次函数图象解决有关问题课件
借助一次函数图象解决不等式问题
不等式解集
通过观察一次函数的图象 ,可以大致确定不等式解 集的范围。
借助图象分析
利用一次函数的图象可以 直观地分析不等式的解集 情况。
转化为方程式
将不等式转化为方程பைடு நூலகம், 然后借助一次函数的图象 求解。
借助一次函数图象解决方程问题
方程解的几何意义
方程的解可以看作是两个函数图 象的交点。
观察法求解
通过观察两个函数的图象,可以大 致确定方程解的情况。
转化为不等式
将方程转化为不等式,然后借助一 次函数的图象求解。
04
案例分析
案例一:两个一次函数图象的交点求解
总结词
了解函数图象交点的含义,掌握求解两个一次函数图象交 点的方法。
详细描述
对于两个一次函数 y=kx+b (1) 和 y=mx+n (2),它们的 交点就是解方程组 y=kx+b 和 y=mx+n。通过解方程组 ,可以得到交点的横坐标和纵坐标。
总结词
理解不等式的解法及其与一次函数图象的关系,掌握运用 一次函数图象解不等式的方法。
总结词
能够根据实际问题的需要,灵活运用不等式的解法与一次 函数图象的关系解决问题。
详细描述
在具体应用中,可以根据实际问题的需要,灵活运用不等 式的解法与一次函数图象的关系解决问题。例如,在解决 实际问题时,可以通过画出相应的图象,直观地得到问题 的解集等。
在实际生活中的应用
针对不同学生的实际情况,进 行分层教学,更好地满足不同 学生的需求
鼓励学生多做习题,熟能生巧 ,提高解题能力
THANKS
感谢您的观看
详细描述
首先,需要明确函数图象交点的含义和重要性。交点是指 两个或多个函数图象在同一直角坐标系中相交的点。求解 交点就是求出这些函数图象在某一点处的横坐标和纵坐标 。
4.4一次函数的应用-利用两个一次函数的图象解决问题(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关实际问题,如两个商店的价格竞争问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过调整一次函数的斜率和截距来观察图象变化。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数图象解决实际问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.
4.通过实例,让学生感受数学与实际生活的联系,提高他们解决问题的能力。
本节课将结合具体实例,引导学生掌握一次函数在实际问题中的应用,培养他们运用数学知识解决实际问题的能力。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,使其能够从实际问题中抽象出一次函数模型,理解并运用函数图象解决问题;
在学生小组讨论时,我尽量让自己成为一个引导者和协助者,而不是直接给出答案。我希望通过这种方式,学生能够学会独立思考和合作解决问题。但从反思的角度来看,我可能需要提供更多开放性的问题,以及更具体的反馈,来帮助他们深入理解和应用一次函数的知识。
最后,我觉得课后收集学生的反馈也很重要,这样我可以及时了解他们的学习情况,进一步调整教学策略,让每个学生都能在数学课堂上有所收获。
最新北师版八年级初二数学上册《两个一次函数图象的应用》名师精品教案
第3课时 两个一次函数图象的应用1.掌握两个一次函数图象的应用;(重点)2.能利用函数图象解决实际问题.(难点)一、情境导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)分别求出甲、乙两根蜡烛燃烧时,y 与x 的函数关系式;(2)燃烧多长时间时,甲、乙两根蜡烛的高度相同?(不考虑都燃尽时的情况)(3)在哪个时间段内,甲蜡烛比乙蜡烛高?在哪个时间段内,甲蜡烛比乙蜡烛矮? 你会解答上面的问题吗?学完本节知识,相信你一定能很快得出答案.二、合作探究探究点:两个一次函数的应用 【类型一】 利用两个一次函数解决实际生活中的问题自来水公司有甲、乙两个蓄水池,现将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y 与注水时间x 之间的函数表达式;(2)求注入多长时间后甲、乙两个蓄水池的深度相同;(3)3小时后,若将乙蓄水池中的水按原速全部注入甲蓄水池,又需多长时间? 解析:(1)根据图象确定点的坐标,再运用待定系数法确定函数表达式;(2)根据甲、乙两个蓄水池水的深度相同,可以得到一个一元一次方程,解此方程可得注水时间;(3)由图可知乙蓄水池的水深为4米,乙蓄水池水上升的速度为1米/小时,由此求得答案即可. 解:(1)设它们的函数关系式为y =kx +b ,根据甲的函数图象可知,当x =0,y =2;当x =3时,y =0,将它们分别代入所设函数关系式y =kx +b 中得k =-23,b =2,所以甲蓄水池中水的深度y 与注水时间x 之间的函数关系式为y =-23x +2.同理可得乙蓄水池中水的深度y 与注水时间x 之间的函数关系式为y =x +1;(2)由题意得-23x +2=x +1,解得x =35.故当注水35小时后,甲、乙两个蓄水池水的深度相同;(3)4÷(3÷3)=4小时.所以若将乙蓄水池中的水按原速全部注入甲蓄水池,又需要4小时.方法总结:本题首先根据图象确定一次函数的表达式.然后结合方程思想解题.【类型二】 利用两个一次函数解决几何问题已知一次函数y =32x +a 和y =-12x +b 的图象都经过点A(-4,0),且与y 轴分别交于B 、C 两点,求△ABC 的面积.解析:充分利用数形结合的方法,求出点B ,C 的坐标,求得BC 的长,进而求出面积.解:∵y=23x +a 与y =-12x +b 的图象都过点A(-4,0),∴32×(-4)+a =0,-12×(-4)+b =0.∴a=6,b =-2.∴两个一次函数分别是y =32x +6和y =-12x -2.y =32x +6与y 轴交于点B ,则y =32×0+6=6,∴B(0,6);y =-12x -2与y 轴交于点C ,则y =-2,∴C(0,-2).如图所示,S △ABC =12BC ·AO =12×4×(6+2)=16. 方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x 轴、y 轴交点的坐标.三、板书设计两个一次函数的应用⎩⎪⎨⎪⎧实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。
北师大版数学八年级上册《利用两个一次函数的图象解决问题》说课稿1
北师大版数学八年级上册《利用两个一次函数的图象解决问题》说课稿1一. 教材分析北师大版数学八年级上册《利用两个一次函数的图象解决问题》这一节的内容,是在学生掌握了函数的概念、一次函数的图象和性质等基础知识后进行讲解的。
通过这一节的内容,让学生学会如何利用两个一次函数的图象来解决问题,培养学生运用数学知识解决实际问题的能力。
本节课的主要内容有:两个一次函数的图象的交点问题、两个一次函数的图象的平行和重合问题、利用两个一次函数的图象解决实际问题等。
这些内容都是学生以前所没有接触过的,对于他们来说是一个新的挑战。
二. 学情分析学生在学习这一节的内容时,已经掌握了函数的概念、一次函数的图象和性质等基础知识。
他们在学习过程中,能够通过观察、实验、推理等方法来探究两个一次函数的图象之间的关系。
但是,学生在解决实际问题时,往往会因为不能准确地找到问题的关键所在,而无法将数学知识运用到实际问题中。
三. 说教学目标1.知识与技能:让学生掌握两个一次函数的图象的交点、平行和重合等基本知识,培养学生运用数学知识解决实际问题的能力。
2.过程与方法:通过观察、实验、推理等方法,让学生学会如何利用两个一次函数的图象来解决问题,培养学生的探究能力。
3.情感态度与价值观:让学生在解决实际问题的过程中,体验到数学的价值,激发学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生掌握两个一次函数的图象的交点、平行和重合等基本知识。
2.教学难点:如何引导学生将数学知识运用到实际问题中,解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,激发学生的学习兴趣,培养学生的探究能力。
2.教学手段:利用多媒体课件、黑板、粉笔等,辅助教学,提高教学效果。
六. 说教学过程1.导入:通过展示一些实际问题,引导学生发现这些问题都可以通过两个一次函数的图象来解决,激发学生的学习兴趣。
2.探究:让学生通过观察、实验、推理等方法,探究两个一次函数的图象之间的关系,引导学生发现解决问题的方法。
一次函数及其图像(教案)
中考命题趋势及复习对策一次函数是数学中重要内容之一,题量约占全部试题的5%~10%,分值约占总分的5%~10%,题型既有低档的填空题和选择题,又有中档的解答题,更有大量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查计算能力,逻辑思维能力、空间想象能力和创造能力.针对中考命题趋势,在复习时应先理解一次函数概念.掌握其性质和图象,而且还要注重一次函数实际应用的练习.一、函数1、知识归纳函数的概念一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y 是x的函数,其中x是自变量,y是因变量。
函数的三种表达式:(1)图象;(2)表格;(3)关系式。
要使函数的解析式有意义。
函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。
④函数的解析式是三次根式时,自变量的取值应是一切实数。
(2)对于反映实际问题的函数关系,应使实际问题有意义。
2、经典题型题型考点一求简单的函数关系式,识别自变量与因变量,给定自变量的值,相应地会求出函数的值。
例1.某市自来水公司为限制单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
⑴写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨;②用水量大于3000吨。
⑵某月该单位用水3200吨,水费是元;若用水2800吨,水费元。
⑶若某月该单位缴纳水费1540元,则该单位用水多少吨?参考答案:(1)y=0.5 x 、y=1500+0.8(x-3000)(2)1660 1400(3) 3050例2.函数是研究( )A.常量之间的对应关系的B.常量与变量之间的对应关系的C.变量与常量之间对应关系的D.变量之间的对应关系的题型考点二确定函数的自变量取值范围,例1 .(2010四川凉山)在函数121xyx+=-中,自变量x的取值范围是____题型考点三能根据实际问题的意义以及函数关系式,确定函数图像例1、某游客为爬上3千米高的山顶看日出,先用了1小时爬了2千米,休息0.5小时后,又用了1小时爬上了山顶。
利用两个一次函数解析式求其交点引出的角平分线
利用两个一次函数解析式求其交点引出的角平分线1.引言1.1 概述本文将讨论利用两个一次函数的解析式求其交点,并由此引出角平分线的概念。
一次函数是高中数学中的基础概念,它在几何学和物理学等领域有着广泛的应用。
通过本文的学习,我们将深入了解一次函数的解析式的含义和求交点的方法。
我们将通过数学推导和实例分析,详细介绍两个一次函数的交点的求解过程,以及如何运用这一结果来引出角平分线的概念和性质。
角平分线是几何学中的一个重要概念,它是指将一个角分为两个相等的角的直线。
角平分线的性质在数学、物理、工程和建筑等领域都有着广泛的应用。
在本文中,我们将探讨如何运用两个一次函数的交点求解方法,推导出角平分线的相关性质和公式。
通过学习本文,读者将对一次函数的解析式和求交点的方法有更为深入的理解,并能够灵活运用这一知识解决实际问题。
同时,读者还将了解角平分线的定义、性质和应用,为在几何学和相关学科领域的学习和研究提供坚实的基础。
综上所述,本文旨在通过对一次函数的解析式求交点的方法的探讨,引出角平分线的概念和性质,为读者提供一种全新的思维方式和问题解决的方法。
同时,本文还将探讨解析式和求交点的应用前景,展示这一知识的广泛应用领域和重要性。
1.2文章结构文章结构部分的内容可以写成如下形式:1.2 文章结构本文将按照以下顺序进行阐述:第一部分:引言- 1.1 概述:介绍利用两个一次函数解析式求其交点引出的问题背景和意义。
- 1.2 文章结构:阐述本文的整体结构和各个部分的内容安排。
- 1.3 目的:明确本文的研究目的,即通过对角平分线的探讨来解决问题。
第二部分:正文- 2.1 一次函数的解析式:介绍一次函数的定义和一般的解析式表示方法。
- 2.2 求两个一次函数的交点:通过求解方程组的方法得出两个一次函数的交点坐标。
- 2.3 引出的角平分线:通过求解两个一次函数交点的过程,引出角平分线的概念和性质。
第三部分:结论- 3.1 结果分析:对于求解两个一次函数交点和角平分线的方法和结果进行分析和讨论。
20.2 一次函数的图像(2)
20.2一次函数的图像(2)知识梳理+九大题型分析+经典同步练习知识梳理一、一次函数与一元一次方程(组)与二元一次方程(组)的关系(1) 一次函数(≠0,为常数).当函数=0时,就得到了一元一次方程,此时自变量的值就是方程=0的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值. 从图象上看,这相当于已知直线(≠0,为常数),确定它与轴交点的横坐标的值.(2)每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.函 数 问 题方程(组)、不等式问题从“数”的角度看从“形”的角度看求关于、的一元一次方程=0(≠0)的解为何值时,函数的值为0?确定直线与轴(即直线=0)交点的横坐标求关于、的二元一次方程组的解.为何值时,函数与函数的值相等?确定直线与直线的交点的坐标关键词:数形结合解函数问题。
二、一次函数与一元一次不等式 由于任何一个一元一次不等式都可以转化为>0或<0或≥0或≤0(、y kx b =+k b y 0kx b +=x kx b +y kx b =+k b x x y ax b +a x y ax b =+y ax b =+x y x y 1122=+ìí=+î,.y a x b y a x b x 11y a x b =+22y a x b =+11y a x b =+22y a x b =+ax b +ax b +ax b +ax b +a b为常数,≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点:求关于的一元一次不等式>0(≠0)的解集,从“数”的角度看,就是为何值时,函数的值大于0?从“形”的角度看,确定直线在轴(即直线=0)上方部分的所有点的横坐标的范围.典型例题题型一:一次函数与一元一次不等式组例题1、如图,直线y kx b =+经过点()1,2--A 和点()2,0B -,直线2y x =过点,A 则不等式20x kx b <+<的解集为( )A .2x <-B .21x -<<-C .20x -<<D .0x <【答案】B 【解析】直线y=kx+b 经过点A (-1,-2)和点B (-2,0),观察图象,当x >-2时,直线y=kx+b 在x 轴下方,当x <-1时,直线y=kx+b 在直线y=2x 的上方,∴不等式组2x <kx+b <0的解集为-2<x <-1.故选:B .a y axb =+x ax b +a x y ax b =+y ax b =+xy题型二:一次函数与二元一次方程组例题2、如果点()1,2同时在函数y ax b =+与x by a-=的图象上,那么a ,b 的值分别为( )A .a=-3,b=-1B .a=-3,b=1C .a=1,b=-3D .a=-1,b=3【答案】D【解析】把点()1,2代入两个函数解析式得到方程组212,a b b a +=ìï-í=ïî 然后解方程组即可.把点(1,2)代入y =ax +b与x b y a -=中得212,a b ba +=ìï-í=ïî解方程组得13.a b =-ìí=î故选:D.拓展练:如果二元一次方程组3231x y x y -=ìí-=î无解,则直线32y x =-与31y x =-的位置关系为( )A .平行B .垂直C .相交D .重合【答案】A【解析】根据一次函数与二元一次方程组的关系即可判断.∵二元一次方程组3231x y x y -=ìí-=î无解,即直线32y x =-与31y x =-无交点,故位置关系为平行,选A.题型三:一次函数平移的综合性问题例题3、已知一次函数y =﹣2x +4的图象沿着x 轴或y 轴平移m 个单位长度得到的图象与原图象关于原点对称,则m 的值可能为( )A .5B .6C .7D .8【答案】D 【解析】∵一次函数y =﹣2x +4的图象经过一二四象限,∴一次函数y =﹣2x +4的图象向下平移m 个单位得到的图象与原图象关于原点对称,∴平移后的函数的解析式为y =﹣2x +4﹣m ,∵直线y =﹣2x +4经过点(1,2),该点关于原点的对称点为(﹣1,﹣2),将(﹣1,﹣2)代入y =﹣2x +4﹣m ,得﹣2=2+4﹣m ,解得m =8,故选:D .题型四:含绝对值的一次函数图像例题4、函数|1|y x =-的图象是( )A .B .C .D .【答案】B 【解析】根据绝对值函数的值域即可判断.解:∵y=|x-1|≥0,∴只有B符合,故选:B.拓展练:将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数112y x=+与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,112x+比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围【答案】(1)见解析,223x-<<;(2)21b--……【解析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.解:(1)当b=0时,y=|x+b|=|x|列表如下:x -101112y x =+ 12112y =|x|11描点并连线;∴如图所示:该函数图像为所求∵1y x 12||y x ì=+ïíïî= ∴2x=-32=-y 3ìïïíïïî或y=x=22ìíî∴两个函数的交点坐标为A 2233æö-ç÷èø,,B(2,2),∴观察图象可知:223x -<<时,112x +比||x 大;(2)如图,观察图象可知满足条件的b 的值为21b --……,题型五:新定义的分段函数例题5、定义新运算:a ※b =()()30b a b a a b b b ì-£ïí>¹ïî且,则函数y =4※x 的图象可能为( )A .B .C .D .【答案】D 【解析】根据题目中的新运算,可以得到函数y =4※x 的图象对应的函数解析式,从而可以解答本题.解:根据新定义运算可知,y =4※x =()()34440x x x x x ì-£ïí>¹ïî且(1)当x ≥4时,此函数解析式为y ≥11,函数图象在第一象限,以(4,1)为端点且在第一象限的射线,故可排除A 、B 、C ;(2)当x <4时,此函数是反比例函数,图象在一、三象限.故选:D.题型六:利用一次函数图像上点的坐标的范围确定参数范围例题6、已知过点(1,4)-的直线(0)y ax b a =+¹不经过第一象限.设3t a b =-,则t 的取值范围是( )A .124t -£<B .85t -£<C .104t -£<D .123t -£<【答案】A 【解析】利用函数及方程得到a=44t -,b=134t --,根据一次函数的性质得到a<0,b<0,构建不等式组求出t 的取值范围.将点(1,4)-代入(0)y ax b a =+¹中,得a+b=-4,∴a=-4-b ,∵3t a b =-,∴a+4=t-3a ,得a=44t -,∴b=a+4=134t --,∵直线(0)y ax b a =+¹不经过第一象限.∴a<0,b<0,∴4041304t t -ì<ïïíï--£ïî,解得124t -£<,故选:A.题型七:新定义:min 与max 型在一次函数中的应用例题7、 定义m in(,)a b ,当a b ³时,m i n(,)=a b b ,当a <b 时,m i n(,)=a b a ;已知函数min(3,221)y x x =---,则该函数的最大值是A .15-B .9-C .6-D .6【答案】B 【解析】根据定义m in(,)a b ,可得min(3,221)y x x =---只有当3221x x --=- 取得最大值,代入即可求得最大值.解:根据根据定义m in(,)a b ,可得min(3,221)y x x =---取得最大值则3221x x --=-,因此可得6x = 代入可得639y =--=- 所以该函数的最大值为-9故选B.题型八:一次函数图像规律题例题8、如图,在平面直角坐标系中,11POA D ,212P A A D ,323P A A D ,…都是等腰直角三角形,其直角顶点()13,3P ,2P ,3P,…均在直线143y x =-+上.设11POA D ,212P A A D ,323P A A D ,…的面积分别为1S ,2S ,3S ,…,根据图形所反映的规律,2019S =( )A .2018194æö´ç÷èøB .2019194æö´ç÷èøC .2018192æö´ç÷èøD .2019192æö´ç÷èø【答案】A 【解析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.解:如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且△P 1OA 1是等腰直角三角形,∴OC=CA 1=P 1C=3,设A 1D=a ,则P 2D=a ,∴OD=6+a ,∴点P 2坐标为(6+a ,a ),将点P 2坐标代入143y x =-+,得:1(6)43a a -++=,解得:32a =∴A 1A 2=2a=3,232P D =,同理求得32333,42P E A A ==,12311391339639,3,, (222422416)S S S =´´==´´==´´=Q 20182019201819449S æöç\÷èø==´题型九:一次函数图像与动态几何综合题例题9、如图,直线AB :39y x =-+交y 轴于A ,交x 轴于B ,x 轴上一点(1,0)C -,D 为y 轴上一动点,把线段BD 绕B 点逆时针旋转90°得到线段BE ,连接CE ,CD ,则当CE 长度最小时,线段CD 的长为( )A B C .5D .【答案】B【解析】作EH ⊥x 轴于H ,通过证明△DBO ≌△BEH ,可得HE=OB ,从而确定点点E 的运动轨迹是直线3y =-,根据垂线段最短确定出点E 的位置,然后根据勾股定理求解即可.解:作EH ⊥x 轴于H ,∵∠DBE=90°,∴∠DBC+∠CBE=90°.∵∠BHE=90°,∴∠BEH+∠CBE=90°,∴∠DBC=∠BEH.在△DBO 和△BEH 中,∵∠DBC=∠BEH ,∠BOD=∠BHE ,BD=BE ,∴△DBO ≌△BEH 中,∴HE=OB ,当y=0时,039x =-+,∴x=3,∴HE=OB=3,∴点E 的运动轨迹是直线3y =-,B(3,0),∴当CE ⊥m 时,CE 最短,此时点'E 的坐标为(-1,3),∵B(-1,0),B(3,0),∴BC=4,∴BE ′,∴BD= BE ′=4,∴,∴.故选B.C .4D .5一、单选题1.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A .5x >-B .3x >-C .2x >-D .2x <-【答案】C【解析】根据一次函数的图象和两函数的交点坐标即可得出答案【详解】解:从图象得到,当x >-2时,3y x b =+的图象在函数y=ax-3的图象上∴不等式3x+b>ax-3的解集是x>-2,故选:C【点睛】此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象2.如图在平面直角坐标系中,直线y 6x =-+分别与x 轴、y 轴交于点A 、B ,与()y 0k x x =>的图象交于点C 、D .若CD =13AB ,则k 的值为( )A .4.B .6.C .8.D .10.【答案】C【解析】先求出点A 、B 的坐标,于是可得AB 的长,进而可得CD 的长,设C 、D 的横坐标分别为a ,b ,则a ,b 是联立y =﹣x +6和y =k x并整理后的方程的解,由CD b -并结合根与系数的关系可得关于k 的方程,解方程即可求出k ,从而可得答案.【详解】解:对直线y =﹣x +6,令x =0,则y =6,令y =0,则x =6,∴点A 、B 的坐标分别为(6,0)、(0,6),∴OB =OA =6,∴AB ==3CD ,∠BAO =45°,∴CD =,联立y =﹣x +6和y =k x并整理得:x 2﹣6x +k =0,设点C 、D 的横坐标分别为a ,b ,则a +b =6,ab =k ,∵∠BAO =45°,∴CD b -,∴CD 2=2(a ﹣b )2=2[(a +b )2﹣4ab ]=2(36﹣4k )=()2,解得:k =8.故选:C .【点睛】本题是一次函数与反比例函数的综合题,主要考查了一次函数与坐标轴的交点、反比例函数与一次函数的交点以及一元二次方程的根与系数的关系等知识,熟练掌握上述知识、灵活应用数形结合思想是解题的关键.3.如图,在平面直角坐标系中,正比例函数2y x =的图像与直线y kx b =+交于()1,2--A .直线y kx b =+,还经过点()2,0-.则不等式20x kx b <+<的解集为( )A .2x <-B .20x -<<C .21x -<<-D .10x -<<【答案】C【解析】根据图象知正比例函数y=2x 和一次函数y=kx+b 的图象的交点,即可得出不等式2x <kx+b 的解集,根据一次函数y=kx+b 的图象与x 轴的交点坐标即可得出不等式kx+b <0的解集是x >-2,即可得出答案.【详解】由图象可知:正比例函数y=2x 和一次函数y=kx+b 的图象的交点是A (-1,-2),∴不等式2x <kx+b 的解集是x <-1,∵一次函数y=kx+b 的图象与x 轴的交点坐标是B (-2,0),∴不等式kx+b <0的解集是x >-2,∴不等式2x <kx+b <0的解集是-2<x <-1,故选:C .【点睛】本题考查一次函数和一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力.4.直线1:l y kx a =+如图所示,则下列关于直线2:2l y ax a =+的说法错误的是( )A .直线2l 一定经过点(2,0)-B .直线2l 经过第一、二、三象限C .直线2l 与坐标轴围成的三角形的面积为2D .直线2l 与直线3:2l y ax a =-+关于y 轴对称【答案】C【解析】取2x =-,代入计算2y ax a =+求得y 值,可判断A ;由直线1l 可得到0a >,推出直线2l 所经过的象限,即可判断B ;求得直线2l 与坐标轴围成的面积,可判断C ;分别求得直线2l 和直线3l 与与坐标轴的交点坐标,即可判断D .【详解】A 、当2x =-时,220y a a =-+=,所以直线2l 一定经过点(-2,0),选项A 正确;B 、由直线1l 的图象知:0a >,则直线2l 经过第一、二、三象限,选项B 正确;C 、直线2l 与x 轴相交于点(-2,0),与y 轴相交于点(0,2a ),则直线2l 与坐标轴围成的三角形的面积为12222a a ´´=,选项C 错误,符合题意;D 、直线2l 与x 轴相交于点(-2,0),与y 轴相交于点(0,2a ),直线3l 与x 轴相交于点(2,0),与y 轴相交于点(0,2a ),而点(-2,0)与点(2,0)关于y 轴对称,则直线2l 与直线3l 关于y 轴对称,选项D 正确;故选:C .【点睛】本题主要考查了一次函数的图象和性质,一次函数的图象与坐标轴围成的三角形的面积,一次函数图象与几何变换,熟练掌握一次函数图象与性质是解题的关键.5.如图,已知正比例函数1y ax =与一次函数212y x b =-+的图象交于点P .下面有四个结论:①0a >;②0b <;③当0x <时,10y <;④当2x >时,12y y <.其中正确的是( )A .①②B .②④C .③④D .①③【答案】D【解析】利用两函数图象结合与坐标轴交点进而分别分析得出答案.【详解】如图所示:∵y1=ax,经过第一、三象限,∴a>0,故①正确;∵21 2y x b=-+与y轴交在正半轴,∴b>0,故②错误;∵正比例函数y1=ax,经过原点,∴当x<0时,函数图像位于x轴下方,∴y1<0;故③正确;当x>2时,y1>y2,故④错误.故选:D.【点睛】此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.6.定义新运算:a※b=()()3b a baa b bbì-£ïí>¹ïî且,则函数y=4※x的图象可能为( )A.B.C.D.【答案】D【解析】根据题目中的新运算,可以得到函数y=4※x的图象对应的函数解析式,从而可以解答本题.【详解】解:根据新定义运算可知,y=4※x=() ()34440 x xx xxì-£ïí>¹ïî且(1)当x≥4时,此函数解析式为y≥11,函数图象在第一象限,以(4,1)为端点且在第一象限的射线,故可排除A、B、C;(2)当x<4时,此函数是反比例函数,图象在一、三象限.故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.已知点A(1,a),B(m,n)(m>1)均在正比例函数y=2x的图象上,反比例函数y=kx的图象经过点A,过点B作BD⊥x轴于D,交反比例函数y=kx的图象于点C,连接AC ,则下列结论正确的是( )A .当m =2时,AC ⊥OBB .当AB =2OA 时,BC =2CDC .存在一个m ,使得S △BOD =3S △OCDD .四边形AODC 的面积固定不变【答案】C【解析】求出点A 的坐标,确定函数关系式,进而求出各条线段的长,借助三角函数值和三角形的面积公式,逐个判断即可.【详解】由题意知,点A 的坐标为(1,2),则反比例函数的解析式为y =2x,当m =2时,点B 的坐标为(2,4),则点C 的坐标为(2,1),BC =3,∵AB ,OB =∴cos ∠OBD =BD AB OB BC =¹ ,∴AC 与OB 不垂直,故A 错误;当AB =2OA 时,点B 的横坐标为3,则点B 的坐标为(3,6),点C 的坐标为(3,23),则BC =6﹣23=163,则BC =8CD ≠2CD ,故B 错误;∵S△OCD=12k=12×2=1,∴S△BOD=3=12OD•BD=12•m•2m=m2,解得m(负值已舍去).即存在m,使得S△BOD=3S△COD,故C正确;∵随着点B向右移动,点C到线段AB的距离逐渐增大,则△AOC的面积逐渐增大,而S△OCD=1固定不变,则四边形AODC的面积逐渐增大,故D错误.故选:C.【点睛】此题考查反比例函数、一次函数图象上点的坐标特征,解题关键在于把点的坐标代入.8.若m为任意实数,点P(3 - m,m - 1) ,则下列说法正确的个数有()个①若点P在第二象限,则m的取值范围是m > 3②因为m为任意实数,所以点P可能在平面内任意位置③无论m取何值,点P都是某条定直线上的点④当m变化时,点P的位置也在变化,所以在平面内无法确定与原点距离最近的点P的位置A.1B.2C.3D.4【答案】B【解析】根据坐标平面内点的坐标特征可判断①,求出点P所在的直线可判断③和②,根据垂线段最短可判断④.【详解】①若点P在第二象限,则3010mm-<ìí->î,解得m > 3,∴m 的取值范围是m > 3,故①正确;③设x=3-m ,y=m-1,∴x+y=2,∴y=-x+2,∴无论m 取何值,点P 都是某条定直线上的点,故③正确;②∵y=-x+2不经过第三象限,∴点P 不可能在平面内任意位置,故②错误;④根据垂线段最短可知,过点O 作直线y=-x+2的垂线,则垂足是与原点距离最近的点P 的位置,故④错误.故选:B.【点睛】本题考查了坐标平面内点的坐标特征,一次函数的图像与性质,以及垂线段最短的性质,求出点P 所在的定直线是解答本题的关键.9.在平面直角坐标系内有一条直线与坐标轴相交于()()2,0,0,A B m -两点,且此直线与两坐标轴围成的三角形面积为4,则点B 的坐标是( )A .()0,4B .()0,4-C .()0,4-或()0,4D .无法确定【答案】C【解析】根据三角形面积公式得到12×|-2|×|m|=4,然后解关于m 的绝对值方程即可.【详解】根据题意得12×|-2|×|m|=4,解得m=4或m=-4.∴点B 的坐标为()0,4-或()0,4故选:C .【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(-b k,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .也考查了三角形面积公式.10.如图,直线AB :39y x =-+交y 轴于A ,交x 轴于B ,x 轴上一点(1,0)C -,D 为y 轴上一动点,把线段BD 绕B 点逆时针旋转90°得到线段BE ,连接CE ,CD ,则当CE 长度最小时,线段CD 的长为( )A B C .5D .【答案】B【解析】作EH ⊥x 轴于H ,通过证明△DBO ≌△BEH ,可得HE=OB ,从而确定点点E 的运动轨迹是直线3y =-,根据垂线段最短确定出点E 的位置,然后根据勾股定理求解即可.【详解】解:作EH ⊥x 轴于H ,∵∠DBE=90°,∴∠DBC+∠CBE=90°.∵∠BHE=90°,∴∠BEH+∠CBE=90°,∴∠DBC=∠BEH.在△DBO 和△BEH 中,∵∠DBC=∠BEH ,∠BOD=∠BHE ,BD=BE ,∴△DBO ≌△BEH 中,∴HE=OB ,当y=0时,039x =-+,∴x=3,∴HE=OB=3,∴点E 的运动轨迹是直线3y =-,B(3,0),∴当CE ⊥m 时,CE 最短,此时点'E 的坐标为(-1,3),∵B(-1,0),B(3,0),∴BC=4,∴BE ′,∴BD= BE ′=4,∴,∴.故选B.【点睛】本题考查一次函数与坐标轴的交点,坐标与图形的变化,旋转变换、全等三角形的判定与性质,垂线段最短以及勾股定理等知识,解题的关键是确定点E 的位置.11.对于实数,a b ,定义符号{},min a b 其意义为:当a b ³时,{},min a b b =;当a b <时,{},min a b a =.例如:21{},1min -=-,若关于x 的函数2{}1,3y min x x =--+,则该函数的最大值是( )A .1B .43C .53D .2【答案】C【解析】根据定义先列不等式:213x x --+…和213x x --+…,确定其{21y min x =-,3}x -+对应的函数,画图象可知其最大值.【详解】解:由题意得:213y x y x =-ìí=-+î,解得:4353x y ì=ïïíï=ïî,当213x x --+…时,43x …,\当43x …时,{21y min x =-,3}3x x -+=-+,由图象可知:此时该函数的最大值为53;当213x x --+…时,43x …,\当43x …时,{21y min x =-,3}21x x -+=-,由图象可知:此时该函数的最大值为53;综上所述,{21y min x =-,3}x -+的最大值是当43x =所对应的y 的值,如图所示,当43x =时,53y =,故选:C【点睛】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.12.将一次函数3y x b =+(b 为常数)的图像位于x 轴下方的部分沿x 轴翻折到x 轴上方,和一次函数3y x b =+(b 为常数)的图像位于x 轴及上方的部分组成“V ”型折线,过点()0,1作x 轴的平行线l ,若该“V ”型折线在直线l 下方的点的横坐标x 满足03x <<,则b 的取值范围是( )A .81b -££-B .81b -<<-C .1b ³-D .8b <-【答案】A【解析】先解不等式3x+b <1时,得x <13b -;再求出函数y=3x+b 沿x 轴翻折后的解析式为y=-3x-b ,解不等式-3x-b <1,得x >-1+3b ;根据x 满足0<x <3,得出-1+3b =0,13b -=3,进而求出b 的取值范围.【详解】∵y=3x+b ,∴当y <1时,3x+b <1,解得x <13b -;∵函数y=3x+b 沿x 轴翻折后的解析式为-y=3x+b ,即y=-3x-b ,∴当y <1时,-3x-b <1,解得x >-1+3b ;∴-1+3b <x <13b -,∵x 满足0<x <3,∴-1+3b =0,13b -=3,∴b=-1,b=-8,∴b 的取值范围为-8≤b≤-1.故选:A.【点睛】本题考查了一次函数图象与几何变换,求出函数y=2x+b沿x轴翻折后的解析式是解题的关键.二、填空题13.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2.0),点(0,3),有下列结论:①关于x的方程kx十b=0的解为x=2:②关于x方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是______(填序号).【答案】①②③【解析】根据一次函数的图象与性质判断即可.【详解】①由一次函数y=kx+b的图象与x轴点(2.0)知,当y=0时,x=2,即方程kx+b=0的解为x=2,故此项正确;②由一次函数y=kx+b的图象与y轴点(0,3),当y=3时,x=0,即方程kx+b=3的解为x=0,故此项正确;③由图象可知,x>2的点都位于x轴的下方,即当x>2时,y<0,故此项正确;④由图象可知,位于第二象限的直线上的点的纵坐标都大于3,即当x<0时,y﹥3,故此项错误,所以正确的是①②③,故答案为:①②③.【点睛】本题考查了一次函数的图象与性质,涉及一次函数与一元一次方程的关系、一次函数与不等式的关系,解答的关键是会利用数形结合思想解决问题.14.如图,在平面直角坐标系xOy中,一次函数y=﹣x+4的图象与反比例函数y=kx(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且V BOC的面积为2.则k=______.【答案】3【解析】由一次函数解析式求得C点坐标,根据三角形面积求得B点纵坐标,代入一次函数解析式即可求得B点坐标,然后根据待定系数法即可求得k的值.【详解】解:一次函数y=﹣x+4中,令y=0,解得x=4,∴C(4,0),∴OC=4,作BD⊥OC于D,如图.∵△BOC的面积为2,∴12OC•BD=2,即12×4×BD=2,∴BD=1,∴点B 的纵坐标为1,代入y =﹣x +4中,可得x =3,∴B (3,1),∵反比例函数y =k x(k >0)的图象经过B 点,∴k =3×1=3.故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数的解析式和三角形的面积等知识,属于常考题型,熟练掌握一次函数与反比例函数的基本知识是解题关键.15.在平面直角坐标系xOy 中,点A 的坐标为(1,2)-,点B 的坐标为(,2)m ,若直线1y x =-与线段AB 有公共点,则m 的值可以为_____(写出一个即可).【答案】4(3)m ³答案不唯一【解析】由直线1y x =-与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,在其内任取一数即可得出结论.【详解】解:当y=2时,2=x-1∴x=3∵直线y=x-1与线段AB有公共点,∴m≥3,m³答案不唯一故答案为:4(3)【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于m的一元一次不等式是解题的关键.16.一次函数y=(3﹣k)x+1的图象与x轴的交点在正半轴上,则k的取值范围_____.【答案】k>3.【解析】求出一次函数y=(3﹣k)x+1的图象与y轴交于点(0,1),根据一次函数y=(3﹣k)x+1的图象与x轴的交点在正半轴上,画出函数图象,确定函数经过第一、二、四象限,得到3﹣k<0,解不等式即可.【详解】解:当x=0时,y=(3﹣k)x+1=1,∴一次函数y=(3﹣k)x+1的图象与y轴交于点(0,1).大致画出函数图象,如图所示.∵一次函数y =(3﹣k )x +1的图象经过第一、二、四象限,∴3﹣k <0,∴k >3.故答案为:k >3.【点睛】本题考查了一次函数与坐标轴的交点,根据一次函数图象确定函数解析式中字母取值,根据题意画出函数大体图象,列出不等式是解题关键.17.如图,在平面直角坐标系中,正方形ABCD 的边长为1,AB x P 轴,点A 的坐标为()1,1,若直线1y kx =-与正方形的边(包括顶点)有交点,则k 的取值范围是_____________.【答案】13k ££【解析】根据正方形的性质求得A 、C 的坐标,分别代入y=kx 中,即可求得k 的取值,根据取值范围即可判断.【详解】∵正方形ABCD 的边长为1,点A (1,1),.∴B(2,1),D(1,2),当直线y=kx经过点D时,则2=k-1,k=3当直线y=kx经过点B时,则1=2k-1,解得k=1,∴若直线y=kx-1与正方形ABCD的边有交点,则k取值为:1≤k≤3,故答案为:1≤k≤3.【点睛】此题考查一次函数图象上点的坐标特征,一次函数图象和系数的关系,正方形的性质,解题关键是求出点A、C的坐标,掌握正方形的性质.18.如图所示,函数y1=|x|和y2=13x+43的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是_____.【答案】x<﹣1或x>2【解析】由图象法可直接得出x的取值范围.【详解】由图象可知:当y1>y2时x的取值范围为:x<﹣1或x>2.故答案为:x<﹣1或x>2.【点睛】本题考查的是一次函数的图像问题,比较简单,解题关键是观察图像得出两条直线的交点坐标.19.如图,直线y1与y2相交于点C(1,2),y1与x轴交于点D,与y轴交于点(0,1);y2与x轴交于点B(3,0),与y轴交于点A.下列说法正确的有_____________.①y1的解析式为y1=x+2②OA=OB③∠CDB=45°④△AOB≌△BCD.【答案】②③【解析】分析:观察函数图象,利用待定系数法求出y1的解析式为y=x+1,由此判断①;同样可得y2的解析式为y=-x+3,则可确定A(0,3),所以OA=OB,于是可对②进行判断;由y1可得OE=OD,易得D(-1,0),所以∠EDO=45°,于是可对③进行判断;通过计算BD和AB的长可对④进行判断.详解:如图,设y1的解析式为y1=kx+b,把C(1,2),B(3,0)代入得21k bb+=ìí=î,解得11kb=ìí=î,所以y1的解析式为y=x+1,故①不正确;同样可得y2的解析式为y=-x+3,当x=0时,y=-x+3=3,则A (0,3),则OA=OB ,所以②正确;当y=0时,x+1=0,解得x=-1,则D (-1,0),所以OE=OD ,则∠EDO=45°,所以③正确;因为BD=3+1=4,而,所以△AOB 与△BCD 不全等,所以④错误.故答案为②③.点睛:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.也考查了全等三角形的判定.20.如图,直线2y x =+与y 轴相交于点0A ,过点0A 作x 轴的平行线交直线1y x =+于点1B ,过点1B作y 轴的平行线交直线2y x =+于点1A ,再过点1A 作x 轴的平行线交直线1y x =+于点2B ,过点2B 及作y 轴的平行线交直线2y x =+于点2A ,…,依此类推,得到直线2y x =+上的点1A ,2A ,3A ,…,与直线1y x =+上的点1B ,2B ,3B ,…,则1n n A B -的长为______.【答案】n 【解析】根据两直线的解析式分别求出0A 、1A 、21n A A -¼与1B 、2B 、n B ¼的坐标,然后将01A B 、12A B 、23A B 、34A B 的长度求出,然后根据规律写出1n n A B -的长即可.【详解】解:令0x =代入2y x =+,2y \=,0(0,2)A \,令2y =代入1y x =+,x \=,01A B \=,令x =代入2y x =+,2y \=,12)A \,\令2y 代入1y =+,3x \=+,2(32)B \+,123A B \=,同理可求得:23A B =349A B =,由以上规律可知:1nn n A B -=,故答案为:n.【点睛】本题考查数字规律问题,解题的关键根据一次函数解析式求出相关点的坐标,然后找出1n n A B -的长的规律.三、解答题21.一次函数5y kx =-的图像经过点A(-3,7).(1)求这个函数表达式;(2)若13x -<<,求函数值y 的取值范围;(3)若直线y mx n =+(0m >)也经过点A ,请直接写出不等式5mx n kx +>-的解集.【答案】(1)45y x =--;(2)171y -<<-;(3)x>-3.【解析】(1)利用待定系数法将A 点代入即可求出函数解析式;(2)分别计算x=-1和x=-3时y 的值,即可得出y 的取值范围;(3)结合函数的增减性即可得出不等式的解集.【详解】解:(1)将A(-3,7)代入5y kx =-得735k =--,解得4k =-,所以这个函数表达式为45y x =--;(2)当x=-1时,451y =-=-,当x=3时,12517y =--=-,所以,当13x -<<,函数值y 的取值范围为:171y -<<-;(3)∵两函数都经过A 点,∴当x=-3时,两函数值相等,∵y mx n =+(0m >),y 随x 的增大而增大,45y x =--,y 随x 的增大而减小,∴当x>-3时,y mx n =+的值大于45y x =--的值,即5mx n kx +>-的解为x>-3.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.熟练理解一次函数的增减性与k 的关系是解题关键.22.如图,根据图中信息解答下列问题:(1)关于x 的不等式ax+b >0的解集是 ;(2)关于x 的不等式mx+n <1的解集是 ;(3)当x 满足 的条件时,y 1⩽y 2;(4)当x 满足 的条件时,0<y 2<y 1.【答案】(1)4x <;(2)0x <;(3)2x £;(4)24x <<.【解析】(1)求ax +b >0的解集,只需确定直线y 2在x 轴上方时x 的取值范围即可;(2)求mx +n <1的解集,也就是求直线y 1在y =1下方时x 的取值范围,据此解答即可;(3)找出直线y 1在直线y 2的下方与相交时x 的取值范围,据此可确定y 1≤y 2时x 的取值范围;(4)根据函数图象,找出直线y 2在直线y 1的下方且在x 轴上方时x 的取值范围即可.【详解】(1)∵直线y 2=ax +b 与x 轴的交点是(4,0),∴当x <4时, y 2>0,即不等式ax +b >0的解集是x <4;(2)∵直线y 1=mx +n 与y 轴的交点是(0,1),∴当x <0时, y 1<1,即不等式mx +n <1的解集是x <0;(3)由一次函数的图象知,两条直线的交点坐标是(2,1.8),当函数y 1的图象在y 2的下面时,有x ⩽2,∴当x ≤2时, y 1≤ y 2;(4)如图所示,当2<x <4时,0< y 2< y 1.故答案为:(1)4x <;(2)0x <;(3)2x £;(4)24x <<.【点睛】本题考查一次函数与一元一次不等式关系,能用函数观点看一元一次不等式是解题关键.23.如图,过点C (0,﹣2)的直线l 1:y 1=kx +b (k ≠0)与直线l 2:y 2=x +1交于点P (2,m ),且直线l 1与x 轴交于点B ,直线l 2与x 轴交于点A .(1)直接写出使得y 1<y 2的x 的取值范围;(2)求点P 的坐标和直线l 1的解析式;(3)若点M 在x 轴的正半轴上运动,点M 运动到何处时△ABP 与△BPM 面积相等?求出此时△BPM 面积.【答案】(1)x <2;(2)点P 的坐标为(2,3),y 1=52x ﹣2;(3)点M 运动到(0,135)时△ABP 与△BPM 面积相等,S △BPM =2710.【解析】(1)观察函数图象得到当x <2时,直线l 1在直线l 2的下方,则y 1<y 2;(2)先把P (2,m )代入y 2=x +1,求出m 得到P 点坐标,然后利用待定系数法求直线l 1的解析式;(3)由△ABP 与△BPM 有相同的高,即h =3.当AB =BM 时,△ABP 与△BPM 面积相等,可求BM =OM ﹣OB =95,求得OM =95+45=135,则点M 运动到(0,135)时△ABP 与△BPM 面积相等,再根据三角形面积公式即可求解.【详解】解:(1)当x <2时,y 1<y 2;(2)把点P (2,m )代入y 2=x +1中,得m =2+1=3,∴点P 的坐标为(2,3).把点C (0,﹣2)、P (2,3)分别代入y 1=kx +b 中,得223b k b =-ìí+=î,解得522k b ì=ïíï=-î,。
人教版数学八年级下册第十九章19.2.2《含两个一次函数的应用》课件
例1 “黄金1号”玉米种子的价格为5元/kg.如果一次
购买2 kg以上的种子,超过2 kg部分的种子价格打8
折.
(1购)填买写量/表kg. 0.5 1 1.5 2 2.5 3 3.5 4 …
付款金额/元
…
(2)写出付款金额关于购买量的函数解析式,并画 出
函数图象.
分析:付款金额与种子价格相关. 问题中种子价格不是固 定不变的,它与购买量有关. 设购买x kg种子,当 0≤x≤2时,种子价格为5元/kg;当x>2时,其中有 2kg种子按5元/kg计价,其余的(x-2)kg(即超出2 kg 部分) 种子按4元/kg (即8折)计价,因此,写函数解析 式与画函数图象时,应对 0≤x≤2和x>2分段讨论.
次性返还现金4元,则购买盒子所需要最少费用为
___2_9____元.
型号 单个盒子容量/升
单价/元
AB 23 56
合作探究
知识点 2 从图像中获取信息的应用
例3 游泳池常需进行换水清洗,图中的折线表示的是游泳池 换水清洗过程“排水——清洗——灌水”中 水量y(m3) 与时间t(min)之的函数图象. (1)根据图中提供的信息,求排水阶段和 清洗阶段游泳池中的水量y(m3)与时间 t(min)之间的函数关系式(不必写出t的 取值范围); (2)问:排水、清洗各花多少时间?
y=
___1_8_0_x___(x=1,2,…,10), ___1_8_0_x_+__7_2_0__ (x>10,且x为整数).
3 【中考·黄石】一食堂需要购买盒子存放食物,盒子
有A,B两种型号,单个盒子的容量和价格如表.现
有15升食物需要存放且要求每个盒子要装满,由于A
型号盒子正做促销活动:购买三个及三个以上可一
一次函数的图象教案6篇
一次函数的图象教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!一次函数的图象教案6篇下面是本店铺收集的一次函数的图象教案6篇一次函数图像教学内容分析,供大家参阅。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案 新版北师大版
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案新版北师大版一. 教材分析本次课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,主要讲述了两个一次函数图象的应用。
本节课的内容是学生学习一次函数的进一步延伸,通过分析两个一次函数图象的交点、斜率等特征,培养学生解决实际问题的能力。
二. 学情分析学生在学习了八年级数学上册前几章的内容后,对一次函数的基本概念、性质和图象已经有了一定的了解。
但在解决实际问题时,还需要进一步引导他们运用一次函数的知识进行分析。
此外,学生可能对两个一次函数图象的交点、斜率等特征的理解不够深入,需要通过实例进行讲解和练习。
三. 教学目标1.理解两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.培养学生的分析问题和解决问题的能力,提高他们的数学思维水平。
3.培养学生合作交流的能力,提高他们的团队协作能力。
四. 教学重难点1.重点:掌握两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.难点:如何引导学生运用一次函数的知识分析实际问题,并找出解决问题的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生运用一次函数的知识进行分析;通过案例讲解,让学生了解两个一次函数图象的交点、斜率等特征;通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的案例和问题,以便在课堂上进行讲解和练习。
2.准备多媒体教学设备,以便进行图象展示和讲解。
3.准备练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,引导学生运用一次函数的知识进行分析。
例如:某商店进行促销活动,商品的原价一次函数为y=2x+1,促销价一次函数为y=x+3。
问:当商品原价等于促销价时,商品的价格是多少?2.呈现(15分钟)通过多媒体展示两个一次函数图象,让学生观察并分析图象的交点、斜率等特征。
一次函数的实际应用(经典)
一次函数的应用用一次函数解决实际生活问题:常见类型:(1)求一次函数的解析式;(2)利用一次函数的图象与性质解决某些问题,如最大(小)值问题等.一次函数解决实际问题的步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题探究类型之一利用一个一次函数的方案选择例1:某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,购进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6 710元且不超过6 810元购进这两种商品共100件.(1)求这两种商品的进价;(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?类似性问题1.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的23,求该校本次购买A型和B 型课桌凳共有几种方案?哪种方案的总费用最低?2.建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如下表:设购买A种树苗x棵,绿化村道的总费用为y元.解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?探究类型之二利用两个一次函数的方案选择例3 川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式.(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.探究类型之三利用一次函数与不等式的关系进行方案选择例4 某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.(1)填空:甲种收费的函数关系式是___________________,乙种收费的函数关系式是___________________.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?类似性问题1、某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A和y B与x之间的关系式.(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.2、某工厂有甲种原料130 kg,乙种原料144 kg. 现用这两种原料生产出A,B 两种产品共30件. 已知生产每件A产品需甲种原料5 kg,乙种原料4 kg,且每件A产品可获利700元;生产每件B产品需甲种原料3 kg,乙种原料6 kg,且每件B产品可获利900元. 设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.探究类型之四利用一次函数与图像解决问题。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,这部分内容主要让学生学会利用两个一次函数图象解决实际问题。
教材通过生活实例引入两个一次函数图象的交点坐标,让学生理解交点坐标的意义,并学会如何求解交点坐标。
同时,教材还引导学生通过观察图象来判断两个函数的交点个数,以及如何利用交点坐标解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数图象的基本知识,包括一次函数的定义、图象的性质等。
但是,对于两个一次函数图象的交点坐标以及应用,可能还存在一定的困惑。
因此,在教学过程中,我将会重点引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
三. 说教学目标1.知识与技能目标:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.过程与方法目标:通过生活实例的引入,培养学生的观察能力和思维能力;通过小组合作探究,培养学生的合作意识和团队精神。
3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和热情。
四. 说教学重难点1.教学重点:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.教学难点:如何引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作探究法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题引入本节课的内容,让学生观察图象,引导学生思考两个函数的交点坐标有什么意义。
2.讲解新课:讲解两个一次函数图象的交点坐标的意义,以及如何求解交点坐标。
北师版八年级数学上册课件(BS) 第四章 一次函数 一次函数的应用 第3课时 两个一次函数图象的应用
(2)某出租车公司一次性改装了100辆出租车,正常营运多少天后共节省 燃料费40万元?
解:(2)由题意及图象可知每辆车改装前、后每天的燃料费分别为90元、 50元,所以该出租车公司一次性改装了100辆出租车,正常营运(400 000+ 100×4 000)÷[100×(90-50)]=200(天)后可节省燃料费40万元
(3)由(2)可得y2=7x+560,当y1=y2,即15x=7x+560时,解得x=70.所 以当每月的销售量为70件时,两种方案销售人员的月工资一样多
一、选择题(每小题6分,共6分) 6.如图①,甲、乙两个容器内都装了一定质量的水,现将甲容器中的 水匀速注入乙容器中,图②中的线段AB,CD分别表示两容器中的水的深 度h(cm)与注入时间t(min)之间的函数图象,下列结论错误的是( D ) A.注水前乙容器内水的高度是5 cm B.甲容器内的水4 min全部注入乙容器 C.注水2 min时,甲、乙两个容器中的水的深度相等 D.注水1 min时,甲容器中的水比乙容器中的水深5 cm
A.①②③ B.①② C.②③ D.③
2.(5分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车 同时出发,两车距甲地的距离y(km)与行驶时间x(h)之间的函数图象如图所 示,则下列说法中错误的是( D )
A.客车比出租车晚4 h到达目的地 B.客车的速度为60 km/h,出租车的速度为100 km/h C.两车出发后3.75 h相遇 D.两车相遇时客车距乙地还有225 km
北师版
第四章 一次函数
4 一次函数的应用
第3课时 两个一次函数图象的应用
1.(5分)如图是甲、乙两个探测气球所在位置的海拔y(m)关于上升时间 x(min)的函数图象,有下列结论:①当x=10时,两个探测气球位于同一高 度;②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高.其中 正确的结论有( A )
2020-2021学年人教版八年级数学下册第19章一次函数应用之图像专题 (三)
2020-2021学年人教版八年级数学下册第19章一次函数应用之图像专题(三)1.小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间x(时)的函数图象如图所示.(1)小张在路上停留小时,他从乙地返回时骑车的速度为千米/时;(2)小王与小张同时出发,按相同路线匀速前往乙地,距甲地的路程y(千米)与时间x(时)的函数关系式为y=12x+10.请作出此函数图象,并利用图象回答:小王与小张在途中共相遇次;(3)请你计算第一次相遇的时间.2.某地长途汽车客运公司规定每位旅客可随身携带一定的行李,如果超出规定,那么需要购买行李票,行李票y(元)是行李质量x(kg)的一次函数,其图象如图.求:(1)y与x之间的函数关系式;(2)每位旅客最多可免费携带行李的千克数.3.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.4.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.5.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?6.一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(4)请问这个水果贩子一共赚了多少钱?7.秋高气爽,宜登高望远,张老师从小区大门出发,匀速步行前往南山,出发8分钟,他发现手机落在了小区大门,立即原速返回,张老师出发8分钟时,邻居老朱也匀速步行,从小区大门出发沿相同路线前往南山,张老师回到起点后用了4分钟才找到手机,之后一路小跑去追赶老朱,最终两人同时到达南山,开始了愉快的爬山之旅,两人之间的距离y(米)与张老师出发所用时间x(分)之间的关系如图所示,结合图象信息解答下列问题:(1)张老师最初出发的速度为米/分,a=,老朱步行的速度为米/分;(2)b=,c=,张老师回到起点,找到手机之后的速度为米/分;(3)小区大门与南山之间的距离为多少?8.从甲地到乙地,先是一段上坡路,然后是一段平路,小冲骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小冲骑车在上坡、平路、下坡时分别保持匀速前进,已知小冲骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小冲出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)求小冲在平路上骑车的平均速度以及他在乙地的休息时间;(2)分别求线段AB、EF所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小冲两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.9.某景区售票处规定:非节假日的票价打a折售票;节假日根据团队人数x(人)实行分段售票:若x≤10,则按原展价购买;若x>10,则其中10人按原票价购买,超过部分的按原那价打b折购买.某旅行社带团到该景区游览,设在非节假日的购票款为y1元,在节假日的购票款为y2元,y1、y2与x之间的函数图象如图所示.(1)观察图象可知:a=,b=;(2)当x>10时,求y2与x之间的函数表达式;(3)该旅行社在今年5月1日带甲团与5月10日(非节假日)带乙团到该景区游览,两团合计50人,共付门票款3120元,已知甲团人数超过10人,求甲团人数与乙团人数.10.李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,多宝鱼价格z(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?11.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.12.周末,甲、乙两人从学校出发去公园游玩,甲骑自行车出发0.5小时后到达苏果超市,在超市里休息了一段时间,再以相同的速度前往公园.乙因为一些事情耽搁了一些时间,在甲出发小时后,乙驾驶电瓶车沿相同的路线前往公园,如图,是他们离学校的路程y (km)与行走的时间x(h)的函数图象.已知乙驾驶电瓶车的速度是甲骑自行车的2倍.(1)求甲的速度和在苏果超市休息的时间;(2)乙出发后多长时间追上甲?13.如图是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况:(1)摩托车从出发到最后停止共经过了多少时间?离家最远的距离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?14.diaoyudao自古就是中国领土,中国政府已对钓鱼开展常态化巡逻.某人,为按计划准点到达指定海拔,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,求该巡逻艇原计划准点到的时间.15.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?16.A、B两地相距600千米,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回,它们各自离A地的距离y(千米)与行驶时间x(时)之间的函数关系图象如图所示.(1)求甲车行驶过程中y与x之间的函数关系式;(2)当它们行驶了7小时时,两车相遇,求乙车的速度.17.周末,小明和弟弟从家出发,步行去吉林省图书馆学习.出发2分钟后,小明发现弟弟的数学书忘记带了,弟弟继续按原速前往图书馆,小明按原路原速返回家取书,然后骑自行前往图书馆,恰好与弟弟同时到达图书馆.小明和弟弟各自距家的路程y(m)与小明步行的时间x(min)之间的函数图象如图所示.(1)求a的值.(2)求小明取回书后y与x的函数关系式.(3)直接写出小明取回书后与弟弟相距100m的时间.18.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水不超过6吨时,求y与x的函数解析式;(2)该市人均月生活用水超过6吨时,求y与x的函数关系式;(3)若某个家庭有5人,六月份的生活用水费共75元,则该家庭这个月人均用了多少吨生活用水?19.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A的距离y(千米)与甲车行驶时间t(小时)之间的函数关系如图所示,根据图上信息回答.(1)A、B两城相距千米;乙车比甲车晚出发小时,却早到小时;(2)乙车出发后多少小时追上甲车?(3)多少小时甲、乙两车相距50千米时?20.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)图中点A表达的含义正确的是;(只填序号)①乙车出发时距离B地的路程.②甲车出发时距离A地的路程.③甲车出发时,乙车距离B地的距离.④乙车出发1小时后,距离B地的路程.(2)乙车的速度是千米/时,a=小时;甲车的速度是千米/时,t=小时.(3)在甲车到达C地之前,两车是否相遇?若相遇,求出在甲车出发后多久相遇?若没有相遇,说明理由.参考答案1.解:(1)由图象可知,小张在路上停留1小时,他从乙地返回时骑车的速度为:60÷(6﹣4)=30千米/时,故答案为:1,30;(2)如右图所示,图中虚线表示y=12x+10,由图象可知,小王与小张在途中相遇2次,故答案为:2;(3)设当2≤x≤4时,小张对应的函数解析式为y=kx+b,,得,∴当2≤x≤4时,小张对应的函数解析式为y=20x﹣20,∴,解得,,即小王与小张在途中第一次相遇的时间为小时.2.解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数关系式是y=x﹣6;(2)当y=0时,0=x﹣6,得x=30即每位旅客最多可免费携带行李30千克.3.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3)700÷30=(分钟),所以乌龟用了分钟追上了正在睡觉的兔子.(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5﹣2﹣2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.4.解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.5.解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C的横坐标为:1﹣8÷16=0.5,∴点C的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB对应的函数表达式为y=kx+b(k≠0),∵A(0.5,8),B(2.5,24),∴,解得:,∴线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);(3)当x=2时,y=8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.6.解:(1)由图可得农民自带的零钱为50元,答:农民自带的零钱为50元;(2)(330﹣50)÷80=280÷80=3.5元,答:降价前他每千克西瓜出售的价格是3.5元;(3)(450﹣330)÷(3.5﹣0.5)=120÷3=40(千克),80+40=120千克,答:他一共批发了120千克的西瓜;(4)450﹣120×1.8﹣50=184元,答:这个水果贩子一共赚了184元钱.7.解:(1)由函数图象可知,张老师出发8分钟行走了480米的路程,∴张老师最初出发的速度为:480÷8=60(m/min),由函数图象知,张老师出发a分钟后,与邻居老朱相距800米,此时为张老师回到起点的时候,∴a=8×2=16(min),老朱的速度为:800÷8=100(m/min),故答案为:60;16;100;(2)根据题意和图象可知,b分钟时张老师找到了手机,∴b=a+4=16+4=20(min),∵c为张老师找到手机时,两相距的路程,∴c=100×(20﹣8)=1200(m),由函数图象知,端点为(b,c)即(20,1200)和(22.5,800)的线段是张老师找到手机后两人相距的距离与张老师出发的时间的一段函数图象,∴张老师找到手机后的速度为:=260(m/min),故答案为:20;1200;260;(3)根据题意知,张老师找到手机后一路小跑去追上老朱时,所跑步的路程全是小区到南山的距离.=1950(m).答:小区大门与南山之间的距离为1950m.8.解:(1)小冲骑车上坡的速度为:(6.5﹣4.5)÷0.2=10(km/h),平路上的速度为:10+5=15(km/h);下坡的速度为:15+5=20(km/h),平路上所用的时间为:2(4.5÷15)=0.6h,下坡所用的时间为:(6.5﹣4.5)÷20=0.1h所以小冲在乙地休息了:1﹣0.1﹣0.6﹣0.2=0.1(h);(2)由题意可知:上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所对应的函数关系式为:y=6.5﹣10x,即y AB=﹣10x+6.5(0≤x≤0.2).线段EF所对应的函数关系式为y EF=4.5+20(x﹣0.9).即y EF=20x﹣13.5(0.9≤x≤1);(3)由题意可知:小冲第一次经过丙地在AB段,第二次经过丙地在EF段,设小冲出发a小时第一次经过丙地,则小冲出发后(a+0.85)小时第二次经过丙地,6.5﹣10a=20(a+0.85)﹣13.5,解得:a=.×10=1(千米).答:丙地与甲地之间的距离为1千米.9.解:(1)门票定价为80元/人,那么10人应花费800元,而从图可知实际只花费480元,是打6折得到的价格,所以a=6;从图可知10人之外的另10人花费640元,而原价是800元,可以知道是打8折得到的价格,所以b=8,故答案为:6,8;(2)当x>10时,设y=kx+b.2∵图象过点(10,800),(20,1440),∴,解得,=64x+160 (x>10),∴y2(3)设甲团有m人,乙团有n人.由图象,得y=48x,1当m>10时,依题意,得,解得,答:甲团有35人,乙团有15人.10.解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+300.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.(3)设多宝鱼价格z与上市时间x的函数解析式为z=mx+n,当5≤x≤15时,有,解得:,∴此时多宝鱼价格z与上市时间x的函数解析式为y=﹣2x+42.当x=10时,y=10×10=100,z=﹣2×10+42=22,当天的销售金额为:100×22=2200(元);当x=12时,y=10×12=120,z=﹣2×12+42=18,当天的销售金额为:120×18=2160(元).∵2200>2160,∴第10天的销售金额多.11.解:(1)3×40=120,乙车所用时间:=6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.12.解:(1)由图象得:甲骑车速度:10÷0.5=20(km/h);由函数图象得出,在苏果超市休息的时间是1﹣0.5=0.5h;(2)乙驾车速度:20×2=40(km/h)设直线OA的解析式为y=kx(k≠0),则10=0.5k,解得:k=20,故直线OA的解析式为:y=20x.∵甲走OA段与走BC段速度不变,∴OA∥BC.设直线BC解析式为y=20x+b,1=﹣10把点B(1,10)代入得b1∴y=20x﹣10,,把点D(,0),设直线DE解析式为y=40x+b2=﹣,代入得:b2∴y=40x﹣.∴,解得:x=.∴F点的横坐标为,﹣=,则乙出发小时追上甲.13.解:(1)摩托车从出发到最后停止共经过:100分钟;离家最远的距离是:40千米.(2)摩托车在20~50分钟内速度最快;最快速度是:30÷=60(千米/小时)14.解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行额全程有a海里,由题意,得=2+,解得:a=480,则原计划行驶的时间为:480÷80=6小时,解法二:设原计划行驶的时间为t小时,80t=80+100(t﹣2)解得:t=6,故计划准点到达的时刻为:7:00.15.解:(1)∵4.5﹣3.5=1(小时),∴货车在乙地卸货停留了1小时;(2)∵7.5﹣4.5=3<3.5,∴货车返回速度快,∵=70(千米/时),∴返回速度是70千米/时.16.解:(1)当0≤x≤6时,设甲车行驶过程中y与x之间的函数关系式为y=mx,把(6,600)代入y=mx,6m=600,解得m=100,∴y=100x;当6<x≤14时,设甲车行驶过程中y与x之间的函数关系式为y=kx+b,把(6,600)、(14,0)代入y=kx+b,得解得,∴y=﹣75x+1 050;即甲车行驶过程中y与x之间的函数关系式为:y=;(2)当x=7时,y=﹣75x+1 050解得,y=﹣75×7+1 050=525,525÷7=75(千米/时),即乙车的速度为75千米/时.17.解:(1)a=200÷2×8=800.(2)设小明取回书后y与x的函数关系式是y=kx+b.由题意,得解得(4分)∴小明取回书后y与x的函数关系式是y=200x﹣800.(3)由题意100x﹣(200x﹣800)=100,解得x=7∴7min后小明与弟弟相距100m.18.解:(1)该市人均月生活用水不超过6吨时,设y与x的函数解析式是y=kx,则9=6k,得k=1.5,即该市人均月生活用水不超过6吨时,y与x的函数解析式是y=1.5x;(2)该市人均月生活用水超过6吨时,设y与x的函数关系式是y=mx+n,则,解得,即该市人均月生活用水超过6吨时,y与x的函数关系式是y=3x﹣9;(3)由题意可得,人均月生活用水费为:75÷5=15,将y=15代入y=3x﹣9,得15=3x﹣9,解得,x=8,即该家庭这个月人均用了8吨生活用水.19.解:(1)由图可知,A、B两城相距300千米,乙车比甲车晚出发1小时,却早到1小时,故答案为:300,1,1;(2)设甲对应的函数解析式为:y=kx,300=5k解得,k=60,即甲对应的函数解析式为:y=60x,设乙对应的函数解析式为y=mx+n,解得,,即乙对应的函数解析式为y=100x﹣100,∴解得2.5﹣1=1.5,即乙车出发后1.5小时追上甲车;(3)由题意可得,当乙出发前甲、乙两车相距50千米,则50=60x,得x =,当乙出发后到乙到达终点的过程中,则60x﹣(100x﹣100)=±50,解得,x=1.25或x=3.75,当乙到达终点后甲、乙两车相距50千米,则300﹣50=60x,得x =,即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.20.解:(1)点A表达的含义正确的是甲车出发时,乙车距离B地的距离或乙车出发1小时后,距离B地的路程.故答案为③④.(2)乙车的速度是60千米/小时,a ==7小时,甲的速度==120千米/小时,t ==3小时.故答案为60,7,120,3.(3)相遇.设在甲车出发x小时后相遇.由题意(120+60)x=480﹣60解得x =,答:在甲车出发小时后相遇.21。
七上一次函数相遇与追及图像问题汇总分析Microsoft Office Word 97 - 2003 文档
一次函数相遇与追及图像问题汇总分析方下中学张效国一、相遇问题:1、一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发.设慢车的行驶时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图像进行以下探究:(1)甲乙两地之间的距离为。
(2)请解释图中点B的实际意义;(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系,并写出自变量x的取值范围.【详细分析与解答】:(1)从图像我们可知y表示的是两车之间的距离,当两车还没行驶时两车之间的距离是900千米,因此,甲乙两地之间的距离为900km。
(2)两车相向而行共同行使了4小时两车之间的距离是0,说明两车已经相遇。
因此,B处的实际意义是:在B处两车相遇.(3)设快车的速度是a慢车的速度是b;从图中可知两车4小时相遇,相遇时共同行使了900km,所以可得4a+4b=900;从图中可知相遇后两车继续行驶,慢车再行8小时到甲地,也就是慢车行驶8小时的路程快车行驶了4小时,从而得出快车的速度是慢车的2倍,即a=2b.因此,可得方程组:{449002a ba b+==,解之得{15075a b==,所以,快车的速度是150km/h,慢车的速度是75km/h.(4)要想求BC段的函数表达式,必须知道B,C两点的坐标,B点的坐标是(4,0),而C点需要去求出:由(3)中的解答可知,相遇时慢车行驶了4x75=300km,因此快车再行300÷150=2小时就到乙地,此时慢车也行驶了2小时,所以两车之间的距离是2(75+150)=450km因此C(6,450).设BC的表达式是y=kx+b,将B(4,0),C(6,450)代入得:{044506k b k b=+=+解之得{225900kb==-所以,BC的表达式是y=225x-900(4≤x≤6).2、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图像如图所示.(1)根据图像,写出,y1,y2与x的函数关系表达式;(2)分别求出当x=3,x=5,x=8时,两车之间的距离(3)若设两车间的距离为s(km)请写出s关于x的函数关系式【详细分析与解答】:(1)从图像看出:客车试过原点的直线,因此可设y1=k1x;出租车是不过原点的直线,因此可设y2=k2x+b.将(10,600)代入y1=k1x,可得k1=60,因此,y1=60x;将(6,0)(0,600)代入y2=k2x+b可得,k2=-100,b=600,因此,y2=-100x+600.实际上客车的速度是60千米/小时出租车的速度是100千米/小时. (2)因为两车相向而行600 ÷(100+60)=3.75小时相遇,当x=3时没有相遇,y 1=180, y 2=300,两车之间的距离是600-300-180=120千米;当x=5时两车相遇后又走了5-3.75=1.25小时,两车之间的距离是1.25(60+100)=200千米;当x=8时,出租车已到甲地,两车之间的距离只是客车行驶的路程,即60 ⨯8=480千米.(3)如上图右边行程示意图:分为相遇前、相遇后出租车未到甲地和相遇后出租车已到甲地三种情况解答:相遇前:s=600-(60x+100x )=600-160x (0≤ x ≤3.75)相遇后出租车未到甲地:s=(60x+100x )-600=160x-600(3.75≤ x ≤6) 相遇后出租车已到甲地:s=60x (6≤ x ≤8) 二、追及问题1、小明和小亮进行百米比赛,小明比小亮跑得快.如果两人同时起跑,小明肯定赢.现在小明让小亮先跑若干米.图中l 1 ,l 2分别表示两人的路程与小明追赶的时间的关系. (1)哪条线表示小明的路程与时间的关系? (2)小明让小亮先跑了多少米? (3)谁将赢得这场比赛?(4)对应的一次函数表达式中,一次函数的系数是多少?它的实际意义是什么?10t/s53510o【详细分析与解答】:⑴ 从图中可以看出两人同时但不同地起跑,但一个在前10米处,因此,在后面的l 2应该是小明的.⑵ 从图中看,l 1的图像的起始点是(0,10),所以小明让小亮先跑了10米.⑶ 从图中的趋势看l 1 ,l 2再向上就相交,交点的横坐标就是追上的时间,纵坐标就是追上的路程,因此求出交点就能判断谁将赢得这场比赛.设l 1 ,l 2的表达式分别为s 1=k 1t+10,s 2=k 2t,将(5,40)(5,35)分别代入s 1 ,s 2,得s 1=6t+10,s 2=7t. s 1 =s 2时追上,即7t=6t+10,解得t=10,s 1 =s 2=70,也就是在离终点30米处小明追上了小亮,所以还是小明赢得这场比赛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章一次函数
利用两个一次函数的图像解决问题
一、学生起点分析
在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.
二、教学任务分析
本节课是北师大版义务教育教科书八年级(上)第四章《一次函数》第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础.
教学目标
1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;
2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;
3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.
教学重点
一次函数图象的应用
教学难点
从函数图象中正确读取信息
三、教法学法
1.教学方法:“问题情境—建立模型—应用与拓展”
2.课前准备:
教具:教材,课件,电脑
学具:教材,练习本,铅笔,直尺
四、教学过程:
本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置.
第一环节:情境引入
内容:一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,
按市场价售出一些后,又降价出售,售出的土豆千克
数与他手中持有的钱数(含备用零钱)的关系,如图所
示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前 y 与 x 之间的关系
(3)由表达式你能求出降价前每千克的土豆价格是多
少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
活动目的:通过与上一课时相似的问题,回顾旧知,导入新知学习。
活动效果:由于问题与上一课时问题相近,学生很快明确并解决了问题。
第二环节:问题解决
内容1:例1
小聪和小慧去某风景区游览,约好在“飞瀑”见
面,上午7:00小聪乘电动汽车从“古刹”出发,
沿景区公路去“飞瀑”,车速为 36km /h ,小慧
也于上午7:00从“塔林”出发,骑电动自行车
沿景区公路去“飞瀑”,车速为26km /h .
(1)当小聪追上小慧时,他们是否已经过了“草
甸”?
(2)当小聪到达“飞瀑”时,小慧离“飞瀑”
还有多少千米?
分析:
当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?
解:设经过t 时,小聪与小慧离“古刹”的路程分别为1S 、2S ,
由题意得:t S 361=,10262+=t S 将这两个函数解析式画在同一个直角坐标系上,观察图象,得
⑴两条直线t S 361= ,10262+=t S 的交点坐标为(1,36)
这说明当小聪追上小慧时,1236km S S ==,即离“古刹”36km ,已超过35km ,也就是说,他们已经过了“草甸”
⑵当小聪到达“飞瀑”时,即145km S =,此时242.5km S = .
所以小慧离“飞瀑”还有45-42.5=2.5(km )
思考:用解析法如何求得这两个问题的结果?小聪、小慧运行时间与路程之间的关系式分别是什么(小聪的解析式为t S 361= ,小慧的解析式为10262+=t S )?
内容2:深入探究
例2 我边防局接到情报,近海处有一可疑
船只A 正向公海方向行驶.边防局迅速派
出快艇 B 追赶(如图),下图中1l , 2l 分
别表示两船相对于海岸的距离s (海里)
与追赶时间t (分)之间的关系.
根据图象回答下列问题:
(1)哪条线表示B 到海岸的距离与时间之间的
关系?
解:观察图象,得当0=t 时,B 距海岸0 n mile ,
即0=S ,故1l 表示B 到海岸的距离与追赶时间
之间的关系;
(2)A ,B 哪个速度快?
解:从0增加到10时,2l 的纵坐标增加了2,而1l 的纵坐标增加了5,即10 min 内,A 行驶了2海里,B 行驶了5 n mile ,所以B 的速度快.
(3)15 min 内B 能否追上A ?
解:可以看出,当15=t 时,1l 上对应点在2l
上对应点的下方,
(4)如果一直追下去,那么B 能否追上A ?
解:如图1l ,2l 相交于点P .因此,如果一直追
下去,那么B 一定能追上A .
(5)当A 逃到离海岸2l 海里的公海时,B 将无
法对其进行检查.照此速度,B 能否在A 逃到公
海前将其拦截?
解:从图中可以看出,1l 与2l 交点P 的纵坐标小
于2l ,这说明在A 逃入公海前,我边防快艇B 能
够追上A .
海 岸 公 海 A
B
第三环节:反馈练习
内容:观察甲、乙两图,解答下列问题
1.填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节.
3.根据1中所填答案的图象求:
(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围);
(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?
4.请你根据另一幅图表,充分发挥你的想象,自编一则新的“龟免赛跑”的寓言故事,要求如下:
(1)用简洁明快的语言概括大意,不能超过200字;
(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.
意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。
5. 如图,A l 与 B l 分别表示A 步行与B 骑车同一路上行驶的路程S 与时间t 的关系.
(1)B 出发时与A 相距多少千米?
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?
(3)B 出发后经过多少小时与A 相遇? (4)若B 的自行车不发生故障,保持出发时的速度前进, 那么经过多少时间与A 相遇?相遇点离B 的出发点多远?
你能用哪些方法解决这个问题?在图中表示出这个相遇点C .
6.甲.乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为
y 甲(棵),乙班植树的总量为y 乙(棵),
两班一起植树所用的时间(从甲班开始植树时计时)为x (时),
y 甲.y 乙分别与x 之间的部分函数图象如图所示.
(1)当06x ≤≤时,分别求y 甲.y 乙与x 之间的函数关系式.
(2)如果甲.乙两班均保持前6 h 的工作效率,通过计算说明,当8x =时,甲.乙两班植树的总量之和能否超过260棵.
(3)如果6 h 后,甲班保持前6 h 的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当8
x =时,两班之间植树的总量相差20棵,求乙班增加
人数后平均每小时植树多少棵.
第四环节:课时小结
内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。
通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
第五环节:作业布置
作业:习题4.7
六、教学设计反思
设计理念
函数是研究现实世界变化规律的一个重要模型,是初中阶段数学学习的一个重要内容.在本节教学设计中,进一步体现了“问题情境——建立数学模型——应用与拓展”的模式.让学生从实际问题中抽象出函数及一次函数的概念、图象、性质,进而利用一次函数及其图象解决有关现实问题.
y )。