初中数学基本知识点总结(精简版)
初中数学知识点归纳总结(全)
初中数学知识点1、一元一次方程根的情况△=b2-4ac当△〉0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△〈0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线.③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形.矩形与正方形:①有一个内角是直角的平行四边形叫做矩形.②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形.④正方形具有平行四边形,矩形,菱形的一切性质.⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N—2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆.110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r ②两圆外切d=R+r ③两圆相交R-r﹤d﹤R+r(R﹥r) ④两圆内切d=R—r(R﹥r)⑤两圆内含d﹤R—r(R﹥r)136、定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n—2)180°/n=360°化为(n—2)(k—2)=4144、弧长计算公式:L=n兀R/180145、扇形面积公式:S扇形=n兀R^2/360=LR/2 146、内公切线长= d—(R—r) 外公切线长= d-(R+r)三、常用数学公式公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2) a3-b3=(a—b(a2+ab+b2)一元二次方程的解-b+√(b2—4ac)/2a -b-√(b2—4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a 注:韦达定理某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角。
初中数学知识点最全总结(精选)
初中数学知识点最全总结(精选)初中数学知识点最全总结(精选)小伙伴们处在中考复习阶段,我们好好梳理知识点是非常重要的一个环节。
数学知识点是很重要的,下面小编给大家整理了关于初中数学知识点最全总结的内容,欢迎阅读,内容仅供参考!初中数学知识点最全总结1圆的基本性质1.半圆或直径所对的圆周角是直角。
2.任意一个三角形一定有一个外接圆。
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4.在同圆或等圆中,相等的圆心角所对的弧相等。
5.同弧所对的圆周角等于圆心角的一半。
6.同圆或等圆的半径相等。
7.过三个点一定可以作一个圆。
8.长度相等的两条弧是等弧。
9.在同圆或等圆中,相等的圆心角所对的弧相等。
10.经过圆心平分弦的直径垂直于弦。
直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
2平行线的两条判定定理(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
3投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。
24、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指主视图、俯视图、左视图。
初中数学基本知识点总结精简版
初中数学基本知识点总结精简版一、数与代数。
1. 有理数。
- 有理数的分类:整数(正整数、0、负整数)和分数(正分数、负分数)。
- 数轴:规定了原点、正方向、单位长度的直线。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数互为相反数,a的相反数是-a,0的相反数是0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即| a|=a(a≥0) -a(a < 0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都得0。
- 乘方:a^n表示n个a相乘,其中a是底数,n是指数。
2. 实数。
- 无理数:无限不循环小数,如√(2)、π等。
- 实数的分类:有理数和无理数。
- 实数与数轴上的点一一对应。
- 实数的运算:在进行实数运算时,有理数的运算律和运算法则同样适用。
3. 代数式。
- 代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式,单项式中的数字因数叫做单项式的系数,单项式中所有字母的指数和叫做单项式的次数。
- 多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里次数最高项的次数叫做多项式的次数。
- 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
初中数学知识点 初中数学知识点总结归纳(完整版)
初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数易错点1:各个待定系数表示的意义。
初中数学知识点大全
初中数学知识点大全一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 有理数的加法、减法、乘法、除法- 绝对值- 有理数的比较2. 整数- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 合并同类项- 代数式的简化4. 一元一次方程- 方程的建立与解法- 解方程的应用题5. 二元一次方程组- 代入法与消元法- 方程组的解的几何意义6. 不等式与不等式组- 不等式的建立与解集- 不等式的性质- 解一元一次不等式及不等式组7. 函数- 函数的概念- 一次函数与二次函数的图像与性质 - 函数的应用二、几何1. 平面图形- 点、线、面的基本性质- 角的分类与性质- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质与圆周角2. 几何图形的计算- 面积与体积的计算公式- 相似三角形的性质与应用- 勾股定理及其应用3. 变换几何- 平移、旋转、对称- 坐标系与图形的变换三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率- 随机事件的概率- 概率的计算- 用树状图解决简单概率问题四、综合应用题1. 数列的基本概念与简单计算2. 函数与方程在实际问题中的应用3. 几何知识解决实际问题4. 统计与概率在实际生活中的应用请注意,以上内容为初中数学知识点的概览,具体的教学和学习应结合教材和实际课程标准进行。
每个知识点都需要通过大量的练习来巩固和深化理解。
教师和学生可以根据实际情况调整学习的重点和难度,以达到最佳的学习效果。
初中数学知识点总结(全)
初中数学公式定理代数部分第一章有理数及其运算1 自然数及其运算11 自然数零的符号是“0”,它表示没有数量或进位制上的空位除0之外,任何自然数都是由若干个“1”组成的,“1”是数个数的单位,称作自然数的单位自然数的全体:0,1,2,3,4,…,n…,叫做自然数的集合,简称自然数集能被2整除的数叫做偶数;不能被2整除的数叫做奇数12 自然数的运算1 加法: 求和的运算叫做加法2 减法: 减法是加法的逆运算3 乘法: 同一个自然数的连加运算,就叫做乘法4 除法: 除法是乘法的逆运算,零不能做除数13 自然数的运算性质用字母表示任一个自然数,来说明对于任何自然数的运算普遍成立的运算规律和运算特征即它们的共同性质,并简称为运算通性或运算律1 加法交换律:a+b=b+a2 加法结合律:(a+b)+c=a+(b+c)3 乘法交换律:a·b=b·a4 乘法对加法的分配律:(a+b)·c=a·c+b·c求同一个数得连乘运算,叫做乘方运算a^n(a n)中,a叫做底数,自然数n叫做指数,乘方的结果a^n叫做幂(读作“a 的n次幂”或“a的n次方”)零的n次方总等于零,1的n次方总等于1同底数幂相乘,底数不变,只是指数相加指数运算律(一)同底数幂相乘,指数相加,底数不变,即a^m·a^n=a^(m+n),指数运算律(二)乘积的幂,等于各因数的幂的乘积,即(a·b)^n=a^n·b^n指数运算律(三)幂的乘方,指数相乘,底数不变,即(a^m)^n=a^(mn)指数运算律(四)同底数幂相除,指数相减,底数不变,即a m/a n=a m-n其中m>n,a≠0两个同底数(不为0)、同指数的幂相除,其商等于a0=1 ,(a≠0)分数的意义与特点a/b·b=(a·1/b)·b=(b·1/b)·a=1·a=aa/b=am/bm ,(m≠0)a/b=(a/b)/(b/n) ,(n≠0)分数有一个重要的基本性质:一个分数的分子、分母同时乘以或除以同一个不为零的数,分数的值不变22 分数的运算及运算律加、减法 a/b(+,-)c/d=ad/bd(+,-)bc/bd=(ad(+,-)bc)/bd乘法 a/b·c/d=ac/bd除法(a/b)/(c/d)=(a/b)·(d/c)=ad/bc乘方(a/b)^m=(a/b)·(a/b)…(a/b){m个括号}=(a^m)/(b^m)分数加法的交换律是a/b+c/d=c/d+a/b3 有理数的意义31 相反意义的量在研究两者的总效果时,可以互相抵消或一部分抵消32 正数和负数、相反数带有正号的数叫做正数(“+”号也可省略不写);带有负号的数叫做负数负数与正数合并时,其结果可以相消或部分抵消数零,既不是正数,也不是负数对任一个数a,总能有一个数-a,使它们可以相消,像这样只是符号不同的两整数包括正整数、负数和零分数包括正分数、负分数整数和分数,统称为有理数全体有理数组成的集合,称为有理数集合全体整数组成的集合,称为整数集合全体自然数组成自然数集合有理数可以用一条直线上的点来表示规定了原点、正方向和单位程度的直线叫做数轴对于任一个有理数,在数轴上都可以有一个确定的点表示它正数和负数,可表示“相反意义”的量,而数零是它们的界限互为相反数的一对数,在数轴上总是表示到原点距离相等的一对点零与它们的相反数都用原点表示34 绝对值一个有理数在数轴上所对应的点至原点的距离叫做绝对值一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零4 有理数的运算41 有理数的加法与减法加法(1)符号相同的两个有理数相加,只要将两数的绝对值相加,符号仍取原来的符号(2)两个符号相反的有理数相加,将较大的绝对值减去较小的绝对值,符号取绝对值较大的加数的符号减法减法是加法的逆运算减法法则是减去一个数,等于加上这个有理数的相反数在有理数范围内,减法运算也是畅通无阻的42 代数和含有加减运算的式子,都能转化成井含有加法运算的式子,我们称它为“代数和”去括号法则:去掉紧接正号后面的括号时,括号里的各项都不变;去掉紧接负号后面的括号时,括号里的各项都要变号添括号法则:紧接正号后面添加括号时,括号到括号里的各项都不变;紧接符号后面添加括号时,括到括号里的各项都要变号43 有理数的乘法与除法乘法异号(一负一正)两有理数相乘,将绝对值相乘,符号取负两个负有理数相乘,将绝对值相乘,符号取正乘法法则:将绝对值相乘,积的符号是:同号得正,异号得负当负乘数有奇数个时,成积为负;当负乘数有偶数个时,成积为正;只要有一个乘数为零,那么乘积必定是零除法除法法则:将绝对值相除,商的符号是:同号相除得正,异号相除得负零除以任一个非零有理数,其商仍为零零不能作除数任一个非零有理数x,除1所得的商1/x,叫做这个数x的倒数与1/x互为倒数,其特征性质是x·1/x=1,就等于乘以这个数的倒数a/b=a·1/b=a/b44 有理数的乘方非零有理数的乘方,将其绝对值乘方,而结果的符号是:正数的任何次乘方都取正号;负数的奇数乘方取负号,负号的偶次乘方取正号零的非零次都0;零的零次方没有意义45 有理数的混合运算先乘方,再乘除,后加减;若有括号,则“先里后外”去括号,逐步计算46 近似数和有效数字与实际相符的数,叫做准确数与实际接近的数,叫近似数一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。
初中数学知识点归纳汇总
初中数学知识点归纳汇总初中数学是我们基础教育中的一门重要学科,是培养学生逻辑思维能力,培养学生数学思维和方法的重要环节。
下面将对初中数学的知识点进行归纳汇总。
一、整数运算1.整数的加减乘除运算2.整数的绝对值和相反数二、有理数1.有理数的基本概念2.有理数的大小比较3.有理数的加减乘除运算4.有理数的乘方运算三、代数式与简单方程1.代数式的概念及其性质2.代数式的四则运算3.简单方程的基本概念及其解法4.一元一次方程的概念及其解法四、分式1.分式的基本概念及其性质2.分式的四则运算3.分式方程的概念及其解法五、多项式1.多项式的基本概念及其性质2.多项式的加减乘除运算3.多项式的因式分解及其应用六、一次函数1.函数的概念及其性质2.一次函数的基本特征3.一次函数的图像与性质4.一次函数的应用七、平面图形1.平面图形的基本概念及其性质2.三角形的基本概念及其性质3.三角形的内角和定理和外角和定理4.三角形的面积计算公式5.四边形的基本概念及其性质6.正方形、长方形、菱形、平行四边形的性质与应用八、圆1.圆的基本概念及其性质2.圆周角的性质与应用3.圆的面积与周长计算公式4.弧与弦的性质九、空间几何1.空间图形的基本概念及其性质2.空间图形的三视图与投影3.空间直角坐标系4.空间几何体的表面积与体积计算公式十、概率与统计1.概率的基本概念及其性质2.事件的概念及其性质3.事件的计算方法4.统计的基本概念及其性质5.统计图表的制作与分析以上是初中数学的主要知识点的概述,每个知识点都包含了更具体的内容和应用。
学生在学习初中数学时,需要掌握这些知识点,理解其基本概念和性质,掌握运算方法和解题技巧,并能灵活运用这些知识解决问题。
初中数学的学习不仅仅是为了应付考试,更重要的是培养学生的数学思维和逻辑思维能力。
在学习中,要善于思考,善于分析问题,多与同学们探讨归纳,积极参与课堂讨论和问题解答,提高自己的学习能力。
初中生必看知识点总结数学
初中生必看知识点总结数学一、代数1. 代数式代数式是由数字、字母和运算符号组成的数学表达式。
例如:3x+4y-2z。
2. 代数方程代数方程是含有一个或多个未知数的等式。
例如:2x+5=11。
3. 代数不等式代数不等式是用不等号表示两个代数式之间的关系。
例如:3x+4<10。
4. 代数式的加减将同类项相加减,并保持代数式中字母的位置不变。
例如:3x+4y-2x-5y= x-y。
5. 代数式的乘除将代数式中的数字与字母分别相乘,然后将结果相加。
例如:3a*4=12a。
6. 通分当两个或多个分数的分母不相同时,可以通过找到它们的最小公倍数,将它们的分子和分母统一化为相同的值。
例如:3/4+5/6=9/12+10/12=19/12。
7. 因式分解将代数式分解为若干个因式的积的形式。
例如:6x^2-9x=3x(2x-3)。
8. 分式分式是一个整体式的分数表示形式。
例如:1/2。
9. 方程的解求方程的解,就是找出使得方程成立的未知数的值。
例如:2x+5=11的解是x=3。
10. 一元一次方程一元一次方程是形如ax+b=0的方程,其中a和b是已知的常数,而x是未知数。
例如:2x+3=7。
11. 一元二次方程一元二次方程是形如ax^2+bx+c=0的方程,其中a、b和c是已知的常数,而x是未知数。
例如:3x^2+4x+1=0。
二、几何1. 直线与线段直线是由一对端点确定的无限延伸的几何图形;线段是由两端点确定且有限长的几何图形。
例如:AB表示线段,而AB表示直线。
2. 角角是由两条线段的端点所确定的几何图形。
例如:∠ABC。
3. 直角三角形、等腰三角形、等边三角形直角三角形是一种有一个角为直角的三角形;等腰三角形是一种有两边相等的三角形;等边三角形是一种三边相等的三角形。
4. 圆圆是一个平面上到一点距离等于圆心到这点的距离的点的集合。
5. 圆的面积和周长圆的周长是圆的边界的长度,圆的面积是圆所包含的平面区域的大小。
初中数学知识点总结系列
初中数学知识点总结系列一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值2. 整数的性质- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 分数与小数- 分数的基本性质- 小数与分数的互化- 四则运算规则- 小数的近似与有效数字4. 代数表达式- 单项式与多项式- 合并同类项- 代数式的加减运算- 乘法公式(平方差、完全平方等)5. 一元一次方程- 方程的建立与解法- 含分数的一元一次方程- 含绝对值的一元一次方程6. 二元一次方程组- 代入法与消元法- 方程组的解的情况分析7. 不等式与不等式组- 不等式的性质- 解一元一次不等式- 解一元一次不等式组二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类(邻角、对顶角、同位角等) - 直线与射线- 角的度量与作图2. 三角形- 三角形的基本性质- 等边三角形、等腰三角形的性质- 三角形的内角和外角性质- 三角形的中线、高线、角平分线、中位线3. 四边形- 矩形、正方形的性质- 平行四边形的性质- 梯形的性质- 四边形的面积计算公式4. 圆- 圆的基本性质- 圆的直径、弦、弧、切线- 圆周角、圆心角的关系- 扇形、弓形的面积5. 几何图形的变换- 平移、旋转、对称(轴对称、中心对称)- 相似图形与全等图形- 几何图形的计算(周长、面积、体积)6. 空间几何- 立体图形的认识(立方体、长方体、圆柱、圆锥、球) - 立体图形的表面积与体积计算三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算- 等可能事件的概率四、函数1. 函数的概念- 函数的定义- 函数的表示方法(表格、图形、解析式)2. 一次函数与反比例函数- 一次函数的图象与性质- 反比例函数的图象与性质- 函数的应用问题3. 二次函数- 二次函数的图象与性质- 顶点、对称轴的求法- 实际问题中的二次函数应用以上是初中数学的主要知识点总结,涵盖了数与代数、几何、统计与概率、函数等四个领域的基础知识。
整理初中数学知识要点
整理初中数学知识要点初中数学是学生在数学学科中的基础阶段,掌握好初中数学的知识点对学生以后的学习和发展具有重要意义。
在这里,我将为大家整理初中数学的知识要点。
一、整数与有理数1. 整数的概念:整数是由正整数、零和负整数组成的数集。
2. 整数的四则运算:加法、减法、乘法和除法。
3. 整数的绝对值:一个数与它本身的相反数之间的距离。
4. 有理数的概念:有理数是整数与分数的统称,可以表示为有限小数或无限循环小数。
5. 有理数的比较大小:同样形式的有理数,分子越大,数值越大;同样分子的有理数,分母越大,数值越小。
二、代数式与方程式1. 代数式的概念:由数、字母和运算符号组成的式子。
2. 代数式的运算:加法、减法、乘法和除法。
3. 代数式的合并与提取:合并同类项、提取公因式。
4. 方程式的概念:含有未知数的等式。
5. 方程式的解:使等式成立的数值。
三、平面与图形1. 平面坐标系:由横轴和纵轴组成的平面上的直角坐标系。
2. 平面图形的性质:点、线、面、角的定义和性质。
3. 三角形的性质:三边和三角的关系,三角形分类及其性质。
4. 四边形的性质:平行四边形、矩形、正方形、菱形和梯形的性质。
四、比例与相似1. 比例的概念:两个有相同单位的量之间的对应关系。
2. 比例的四种关系:等比例、正比例、反比例、反比例的平方关系。
3. 相似的概念:具有相同形状但不同大小的图形。
4. 相似图形的判别:对应角相等,对应边成比例。
5. 相似图形的性质:对应角相等,对应边成比例。
五、函数与方程1. 函数的概念:一种特殊的关系,每个输入值对应唯一的输出值。
2. 函数的表达方式:函数表、输入输出关系式、解析式。
3. 方程式的解法:解方程的基本步骤和方法。
4. 一次函数的图象与性质:直线,通过两个点可以唯一确定一条直线。
5. 二次函数的图象与性质:开口方向,顶点,零点和对称轴。
六、统计与概率1. 统计的概念:收集、整理和分析数据的过程。
初中数学知识点总结(完整版)
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:任何一个有理数都可以用数轴上的一个点来表示。
如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
有理数的运算:①同号相加,取相同的符号,把绝对值相加。
异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数与0相加不变。
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘得0。
乘积为1的两个有理数互为倒数。
0不能作除数。
先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:一个正数有2个平方根/0的平方根为0/负数没有平方根。
立方根:正数的立方根是正数、0的立方根是0、负数的立方根是负数。
实数:实数分有理数和无理数。
每一个实数都可以在数轴上的一个点来表示。
3、代数式代数式:单独一个数或者一个字母也是代数式。
合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
在合并同类项时,把同类项的系数相加,字母和字母的指数不变。
4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
(完整版)初中数学知识点归纳总结(精华版)(最新整理)
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
考点二、角(3分)1、角的度量:角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’=60”2、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
第五章相交线与平行线考点一、平行线(3~8分)1、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
2、平行线的判定平行线的判定公理:同位角相等,两直线平行。
平行线的两条判定定理:(1)内错角相等,两直线平行。
(2)同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
3、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
考点二、命题、定理、证明(3~8分)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
考点三、投影与视图(3分)1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
完整版初中数学知识点归纳总结精华版
初中数学知识点归纳总结一元一次方程1.概念:含有一个未知数,未知数的最高次数为1,这样的方程叫一元一次方程。
2.形式:ax + b = 0(a、b是常数,且a≠0)3.解法:移项、合并同类项、化简系数二元一次方程1.概念:含有两个未知数,未知数的最高次数为1,这样的方程叫二元一次方程。
2.形式:ax + by = c(a、b、c是常数,且a、b≠0)3.解法:消元法、代入法、行列式法一元一次不等式1.概念:含有一个未知数,未知数的最高次数为1,这样的不等式叫一元一次不等式。
2.形式:ax > b(a、b是常数,且a≠0)3.解法:同解一元一次方程,注意不等号的方向4.概念:分式是指形如a/b的表达式,其中a、b是整式,且b≠0。
5.性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。
6.运算:加减乘除、分式的乘方点、线、面1.点:没有长度、宽度、高度的物体。
2.线:只有长度,没有宽度、高度的物体。
3.面:只有长度和宽度,没有高度的物体。
直线方程1.点斜式:y - y1 = k(x - x1)(k是直线的斜率,(x1, y1)是直线上的一点)2.截距式:y = kx + b(k是直线的斜率,b是直线在y轴上的截距)三角形1.概念:由三条线段首尾顺次连接所组成的图形叫三角形。
2.性质:三角形的内角和为180°,三角形的对边相等。
3.分类:不等边三角形、等腰三角形、等边三角形四边形1.概念:由四条线段首尾顺次连接所组成的图形叫四边形。
2.性质:四边形的内角和为360°,四边形的对边相等。
3.分类:矩形、平行四边形、梯形、菱形4.概念:平面上到一个固定点距离相等的所有点的集合叫圆。
5.性质:圆的半径相等,圆心到圆上任意一点的距离相等。
6.公式:圆的周长C = 2πr,圆的面积S = πr²概率与统计1.概念:事件发生的可能性叫概率。
2.求法:列举法、树状图法、列表法3.概念:统计学是研究数据收集、处理、分析、解释的科学。
全面总结初中数学知识点
全面总结初中数学知识点初中数学是一个承前启后的阶段,它在小学数学的基础上拓展了更多的概念、理论和应用,同时也为高中数学打下坚实的基础。
以下是初中数学的主要知识点的全面总结:# 1. 数与代数- 有理数:包括整数、分数、小数,以及它们的四则运算规则和性质。
- 整式与分式:涉及单项式、多项式的概念,以及它们的加减乘除运算;分式的化简、通分和约分。
- 方程与不等式:一元一次方程、二元一次方程组的解法;一元一次不等式及其解集。
- 函数:函数的概念、性质、图象(如直线、抛物线);函数的基本运算,包括加法、减法、乘法和除法。
# 2. 几何- 平面几何:点、线、面的基本性质;角的概念和分类;三角形、四边形的性质和计算,包括面积和周长。
- 圆的性质:圆的基本性质,圆周角、圆心角、弦、切线等的概念和定理。
- 相似与全等:全等三角形的判定和性质;相似三角形的判定、性质和比例线段。
- 几何变换:平移、旋转、轴对称等几何变换的性质和影响。
# 3. 统计与概率- 统计:数据的收集、整理和描述;平均数、中位数、众数、方差等统计量的计算和意义。
- 概率:概率的基本概念,如随机事件、概率的计算和表示方法。
# 4. 应用题- 数学建模:将实际问题抽象成数学问题进行解决的过程,包括列方程、解方程等。
- 综合应用:涉及多个知识点的综合性问题,要求学生能够灵活运用所学知识解决实际问题。
# 5. 数学思维与方法- 逻辑推理:培养学生的逻辑思维能力,通过证明和推理来理解和掌握数学概念。
- 数学语言:理解和使用数学符号、图形和文字表达数学思想和过程。
- 解题策略:包括分类讨论、归纳总结、转化化归等解题方法和技巧。
# 6. 数学实践活动- 测量与设计:通过实际测量和设计活动,让学生体验数学在实际生活中的应用。
- 探索与发现:鼓励学生通过实验、探索来发现数学规律和定理。
# 7. 数学文化- 数学史:了解数学的发展历程和重要数学家的成就,增加学生对数学的兴趣和认识。
初中数学知识点归纳总结(精华版)
初中数学知识点归纳总结(精华版)初中数学知识点归纳总结(精华版)作为初中学生,掌握数学基础知识是非常重要的。
数学不仅是一门学科,更是一种思维方式,培养我们的逻辑思维和分析能力。
在这篇文章中,我将对初中数学的各个重要知识点进行归纳总结,帮助你系统地掌握数学知识。
一、数的性质1.自然数、整数、有理数、无理数和实数的概念及其在数轴上的表示。
自然数是从1开始的正整数,整数是自然数和它们的相反数,有理数是可以表示为两个整数的比,无理数是不能表示为两个整数的比。
实数包括有理数和无理数,并可以在数轴上表示出来。
2.倍数、因数、质数和合数的概念。
一个数如果能够被另一个数整除,那么前一个数就是后一个数的因数,而后一个数就是前一个数的倍数。
质数是只有1和它本身作为因数的数,而合数是有除了1和它本身以外的因数的数。
3.最大公约数和最小公倍数的求法。
最大公约数是指两个或多个数的公共因数中最大的一个,而最小公倍数则是指能被两个或多个数整除的最小的数。
二、代数运算1.整式的加减和乘除运算。
整式是由数和字母通过加减乘除的运算构成的表达式,可以进行加减乘除运算。
在运算中,需要注意同类项的合并和约分。
2.代数式的因式分解和分式的求值。
因式分解是将一个代数式写成几个因式相乘的形式,而分式的求值是将代入具体数值后进行求解。
3.一元一次方程式及其应用。
一元一次方程式是指未知量的次数为一,且方程式中只有一个未知量的方程。
根据方程式的含义,可以解方程,求得未知量。
三、图形与几何1.平面图形的名称、性质和特点。
平面图形包括三角形、四边形、圆等,每个图形都有其特有的性质和特点,我们要了解它们的名称以及相应的性质。
2.线段、角、平行线和垂线的关系和性质。
线段是两个点间的线段,角是由两条射线的相交部分组成的图形,平行线是在同一个平面内永不相交的两条直线,垂线是与平行线相交并成直角的线。
3.相似和全等三角形的判定条件。
如果两个三角形的对应角相等并且对应边成比例,那么它们就是相似三角形。
初中数学基本知识点总结(精简版)
初中数学基本知识点总结代数部分:1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0则丨a丨=a;a≤0则丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、近似数:一个数与准确数相近,且比准确数略多或略少些,这一个数称之为近似数。
从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,所以有两个有效数字6,0.4、科学计数法:把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=.⑥a-n=1na,()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(2-3)0=1.7、二次根式(平方根,算术平方根,立方根):①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如(3)2=45.=6.a<0时,=-a.的平方根=4的平方根=±2.8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x =42b a-±,其中△=b 2-4ac 叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x 1和x 2,则二次三项式ax 2+bx +c 可分解为a (x -x 1)(x -x 2).③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0.9、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;③方差:数据1x ,2x ……,n x 的方差为2s ,则2s =((()222121.....n x x x x x x n-+-++-标准差:方差的算术平方根.数据1x ,2x ……,n x 的标准差s ,则s =一组数据的方差越大,这组数据的波动越大,越不稳定。
初中数学知识点归纳及总结
初中数学知识点归纳及总结初中数学是学生数学学习的重要阶段,它为高中及以后的数学学习打下坚实的基础。
初中数学主要包括数与代数、几何、统计与概率三个部分。
以下是初中数学的主要知识点归纳及总结。
一、数与代数1. 有理数- 有理数的定义:包括整数和分数,可以表示为a/b的形式,其中a、b为整数,b≠0。
- 有理数的运算:加法、减法、乘法、除法和乘方。
需要注意的是除法和乘方的运算规则。
- 绝对值:一个数的绝对值表示为它的非负值,即|a|≥0。
2. 整式与分式- 整式的加减乘除:包括单项式与多项式,需要掌握分配律、结合律和交换律。
- 分式的运算:分式的加减需要通分,乘除则需要约分。
- 整式的因式分解:包括提取公因式、使用公式法和分组分解法。
3. 线性方程与不等式- 一元一次方程:形式为ax+b=0,解法为x=-b/a。
- 二元一次方程组:通过代入法、消元法求解。
- 不等式的性质和解法:包括基本的不等式性质,如不等式的加法和乘法性质。
4. 函数- 函数的概念:描述变量之间关系的数学对象,通常表示为y=f(x)。
- 线性函数和二次函数:线性函数的图像是一条直线,二次函数的图像是一个抛物线。
- 函数的性质:包括函数的单调性、对称性等。
二、几何1. 平面几何- 点、线、面的基本性质。
- 角的概念和分类:包括邻角、对角、同位角等。
- 三角形:包括三角形的分类、性质、内角和定理。
- 四边形:包括平行四边形、矩形、菱形、正方形的性质和计算。
2. 圆的基本性质- 圆的定义和性质:包括圆心、半径、直径、弦、弧等。
- 圆的面积和周长计算公式。
- 切线和割线的性质。
3. 空间几何- 空间图形的基本概念:包括点、线、面在三维空间中的表示。
- 立体图形的性质和计算:包括长方体、正方体、圆柱、圆锥、球等。
三、统计与概率1. 统计- 数据的收集和整理:包括分类、制表、绘制图表等。
- 描述性统计量:包括平均数、中位数、众数、方差、标准差等。
最全面初中数学知识点归纳总结(全)(精华版)
知识点归纳初中数学知识点1、一元一次方程根的情况2△ =b -4ac当厶〉。
时,一元二次方程有2个不相等的实数根;当△=()时,一元二次方程有2个相同的实数根;当AvO时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形 /四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N・2) 180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数Xi, X2X N,我们把(X 1+X2+ +X N)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权, 这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、 同角或等角的补角相等4、 同角或等角的余角相等5、 过一点有且只有一条直线和已知直线垂直6、 直线外一点与直线上各点连接的所有线段屮,垂线段最短7、 平行公理经过直线外一点,有且只有一条直线与这条直线平行8、 如果两条直线都和第三条直线平行,这两条直线也互相平行9、 同位角相等,两直线平行10、 内错角相等,两直线平行11、 同旁内角互补,两直线平行12、 两直线平行,同位角相等13、 两直线平行,内错角相等14、 两直线平行,同旁内角互补15、 定理三角形两边的和大于第三边16、 推论三角形两边的差小于第三边17、 三角形内角和定理 三角形三个内角的和等于 180°18、 推论1直角三角形的两个锐角互余19、 推论2三角形的一个外角等于和它不相邻的两个内角的和20、 推论3三角形的一个外角大于任何一个和它不相邻的内角21、 全等三角形的对应边、对应角相等(SAS )有两边和它们的夹角对应相等的两个三角形全等23、 角边角公理(ASA )有两角和它们的夹边对应相等的 两个三角形全等24、 推论(AAS )有两角和其中一角的对边对应相等的两个三角形全等26、 斜边、直角边公理(HL )有斜边和一条直角边对应相等的两个直角三角形全等27、 定理1在角的平分线上的点到这个角的两边的距离相等28、 定理2到一个角的两边的距离相同的点,在这个角的平分线上29、 角的平分线是到角的两边距离相等的所有点的集合30、 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)22、边角边公理 25、边边边公理 (SSS )有三边对应相等的两个三角形全等31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的屮线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60。
初中数学知识点全总结(精简版)
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章 整式的加减二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学基本知识点总结(精简版)1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=24b b ac-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。
12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值; 13、锐角三角函数:①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =,∠A 的正切:tan A =.并且sin 2A +cos 2A =1.0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小. ②余角公式:sin (90º-A )=cos A ,cos (90º-A )=sin A . ③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=, tan30º=,tan45º=1,tan60º=.④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tan α=.14、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P 1(a ,-b ),P 关于y 轴对称的点为P 2(-a ,b ),关于原点对称的点为P 3(-a ,-b ).(2)坐标平移:若直角坐标系内一点P (a ,b )向左平移h 个单位,坐标变为P (a -h ,b ),向右平移h 个单位,坐标变为P (a +h ,b );向上平移h 个单位,坐标变为P (a ,b +h ),向下平移h 个单位,坐标变为P (a ,b -h ).如:点A (2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A (7,1).lα15、二次函数的有关知识:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .4.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔(0>∆)⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切; ③没有交点⇔(0<∆)⇔抛物线与x 轴相离. (3)平行于x 轴的直线与抛物线的交点同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐 标为k ,则横坐标是k c bx ax =++2的两个实数根.(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB xx =-1、多边形内角和公式:n 边形的内角和等于(n -2)180º(n ≥3,n 是正整数),外角和等于360º2、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
如图:a ∥b ∥c ,直线l 1与l 2分别与直线a 、b 、c 相交与点A 、B 、C D 、E 、F ,则有,,AB DE AB DE BC EFBC EF AC DF AC DF===(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。