温度传感器报告

合集下载

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告实验报告:温度传感器实验一、实验目的本实验旨在探究温度传感器的工作原理和特性,通过实际操作来了解温度传感器在温度测量中的应用。

二、实验原理温度传感器是一种将温度变化转化为可测量电信号的装置。

根据测量原理,温度传感器可分为多种类型,如热电偶、热敏电阻、红外线温度传感器等。

本实验中,我们将使用热电偶温度传感器进行实验。

热电偶温度传感器基于热电效应原理,将温度变化转化为热电势差信号。

热电偶由两种不同材料的导体组成,当两种导体连接在一起时,如果它们之间存在温差,就会在电路中产生电动势。

当温度发生变化时,热电势也会相应变化,从而实现对温度的测量。

三、实验步骤1.准备实验器材(1)热电偶温度传感器(2)数据采集器(3)恒温水槽(4)计时器(5)实验用的不同温度的水2.进行实验操作(1)将热电偶温度传感器连接到数据采集器上。

(2)将恒温水槽中的水加热至一定温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(3)将恒温水槽中的水降温至另一不同温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(4)重复步骤(3),直至记录下不同温度下的数据。

(5)将实验数据整理成表格,并进行数据分析。

四、实验数据分析实验数据如下表所示:根据热电偶温度传感器的测量原理,我们可以计算出每一组数据的热电势差值ΔT。

将所有热电势差值进行平均,得到平均热电势差值ΔTave。

根据公式T = ΔT / ΔTave × Tref,我们可以计算出实验测量的温度值T。

其中,Tref为参考温度值,本实验中取为25℃。

根据上述公式,我们计算得到实验测量的温度值如下表所示:通过对比实验测量的温度值与实际温度值之间的误差,我们可以评估实验结果的准确性。

同时,我们还可以分析实验数据的变化趋势,例如在不同温度范围内热电势的变化趋势等。

五、实验结论通过本次实验,我们了解了温度传感器的原理和特性,并掌握了热电偶温度传感器的使用方法。

温度传感器测试报告

温度传感器测试报告

温度传感器测试报告1. 引言温度传感器是一种检测和测量周围环境温度的设备。

本报告旨在介绍对温度传感器进行的测试,以确保其准确性和可靠性。

2. 测试目标本次测试的主要目标是评估温度传感器的以下性能指标: - 准确性:传感器测量结果与实际温度之间的偏差。

- 稳定性:传感器在长时间使用过程中的测量稳定性。

- 响应时间:传感器对温度变化的快速响应能力。

3. 测试设备和环境为了进行测试,我们使用了以下设备和环境: - 温度传感器:型号XYZ,具有数字输出接口。

- 控制器:用于记录和控制温度传感器的测试环境。

- 温度计:作为参考标准,用于测量真实温度值。

- 温度稳定室:用于提供稳定的温度环境。

4. 测试步骤步骤一:准备工作1.确保所有测试设备和仪器都处于正常工作状态。

2.将温度传感器连接到控制器,并确保连线正确无误。

3.使用温度计校准控制器,以确保其准确测量真实温度。

步骤二:准确性测试1.将温度传感器放置在温度稳定室中,并设置室温为25°C。

2.记录温度传感器的测量结果,并与温度计的读数进行比较。

3.重复步骤1和2,分别将温度稳定室的温度设置为20°C、30°C、35°C等不同温度值。

4.统计并计算传感器测量结果与实际温度之间的偏差。

步骤三:稳定性测试1.将温度传感器放置在温度稳定室中,并设置室温为25°C。

2.持续记录传感器的测量结果,并观察其变化情况。

3.在一段时间内,逐渐增加或减少室温,以模拟实际使用中的温度变化。

4.观察传感器是否能够稳定地测量温度,并记录其响应时间。

步骤四:响应时间测试1.在温度稳定室中,将温度设置为一个已知的目标值。

2.突然改变目标温度值,并记录传感器的测量结果。

3.通过比较目标温度变化和传感器测量结果之间的时间差,计算传感器的响应时间。

5. 测试结果与分析根据我们的测试数据和分析,我们得出以下结论: - 温度传感器在25°C的环境下,准确度达到了±0.5°C。

温度传感器特性的研究实验报告

温度传感器特性的研究实验报告

温度传感器特性的研究实验报告温度传感器特性研究实验报告一、实验目的本实验旨在研究温度传感器的特性,包括其灵敏度、线性度、迟滞性以及重复性等,通过对实验数据的分析,以期提高温度传感器的性能并为相关应用提供理论支持。

二、实验原理温度传感器是一种将温度变化转化为电信号的装置,其特性受到材料、结构及环境因素的影响。

本次实验将重点研究以下特性:1.灵敏度:温度传感器对温度变化的响应程度;2.线性度:温度传感器输出信号与温度变化之间的线性关系;3.迟滞性:温度传感器在升温与降温过程中,输出信号与输入温度变化之间的关系;4.重复性:温度传感器在多次重复测量同一温度时,输出信号的稳定性。

三、实验步骤1.准备材料与设备:包括温度传感器、恒温水槽、加热装置、数据采集器、测温仪等;2.将温度传感器置于恒温水槽中,连接数据采集器与测温仪;3.对温度传感器进行升温、降温操作,并记录每个过程中的输出信号;4.在不同温度下重复上述操作,收集足够的数据;5.对实验数据进行整理与分析。

四、实验结果及数据分析1.灵敏度:通过对比不同温度下的输出信号,发现随着温度的升高,输出信号逐渐增大,灵敏度整体呈上升趋势。

这表明该温度传感器具有良好的线性关系。

2.线性度:通过对实验数据的线性拟合,得到输出信号与温度之间的线性关系式。

结果表明,在实验温度范围内,输出信号与温度变化之间具有较好的线性关系。

3.迟滞性:在升温与降温过程中,发现输出信号的变化存在一定的差异。

升温过程中,输出信号随着温度的升高而逐渐增大;而在降温过程中,输出信号却不能完全恢复到初始值。

这表明该温度传感器具有一定的迟滞性。

4.重复性:通过对同一温度下的多次测量,发现输出信号具有良好的重复性。

这表明该温度传感器在重复测量同一温度时具有较高的稳定性。

五、结论与建议本次实验研究了温度传感器的特性,发现该传感器具有良好的灵敏度和线性度,但在降温过程中存在一定的迟滞性。

此外,该温度传感器具有良好的重复性。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告温度传感器是一种重要的工具,可以用来测量温度变化。

在本次实验中,我们使用了一款新的温度传感器,并对其进行了详细的测试和分析。

本报告将对这款温度传感器的性能进行简要概述,以及实验中面临的一些问题和改进措施。

一、温度传感器简介温度传感器是一种测量和控制温度变化的装置,它具有准确、稳定、较快的响应速度以及可调节的灵敏度等特点。

本次实验涉及到的温度传感器是一款智能型温度传感器,采用了特殊的传感材料,可以满足不同的温度测量范围,并具有较高的精度。

二、实验过程及结果本次实验的测量范围为0℃至100℃,共采样200次。

经过图表分析,实验结果显示:温度传感器的测量精度较高,变化范围在±0.1℃内,且抗干扰能力良好;响应速度在30毫秒内,可在较短时间内完成测量;数据处理能力强,可以根据实际需要对数据进行实时处理。

三、问题与改进措施在实验过程中,我们发现了几个问题:1)由于温度传感器的灵敏度不够高,在极端的温度环境中会出现较大的测量偏差。

2)虽然温度传感器的响应速度较快,但响应曲线的拐点时间间隔较大,不够连续,会影响测量结果。

为了解决这些问题,可以采取以下改进措施:1)增加温度传感器的灵敏度,使其能够在极端温度环境中进行准确的测量;2)重新调整温度传感器的响应曲线,缩短拐点间隔,提高测量连续性;3)开发新的数据分析算法,加快数据处理速度,提高测量准确度。

四、结论经过本次实验,证明了温度传感器具有良好的测量性能和抗干扰能力,而且具有良好的可靠性,可以用于温度测量。

但实验也发现了几个问题,提出了一些改进建议,以提高温度传感器的性能和使用效率。

最后,我们对本次实验结果表示肯定,也希望今后的研究可以继续改进温度传感器的设计,以实现更加准确、可靠的测量。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告一、实验目的。

本实验旨在通过使用温度传感器,对不同温度下的电压信号进行测量和分析,从而掌握温度传感器的工作原理和特性,提高实验操作和数据处理能力。

二、实验仪器与设备。

1. Arduino开发板。

2. LM35温度传感器。

3. 连接线。

4. 电脑。

5. 串口数据线。

三、实验原理。

LM35是一种精密温度传感器,其输出电压与摄氏温度成线性关系。

在本实验中,我们将使用LM35温度传感器测量不同温度下的输出电压,并通过Arduino开发板将数据传输至电脑进行分析处理。

四、实验步骤。

1. 将LM35温度传感器与Arduino开发板连接,将传感器的输出端(中间脚)连接到Arduino的模拟输入引脚A0,将传感器的VCC端连接到Arduino的5V电源引脚,将传感器的地端连接到Arduino的地引脚。

2. 编写Arduino程序,通过模拟输入引脚A0读取LM35传感器的输出电压,并将其转换为摄氏温度值。

3. 将Arduino开发板通过串口数据线与电脑连接,将温度数据传输至电脑端。

4. 在电脑上使用串口通讯软件监测并记录温度数据。

5. 将LM35传感器分别置于不同温度环境下(如冰水混合物、常温水、温水等),记录并分析传感器输出的电压和对应的温度数值。

五、实验数据与分析。

通过实验测得的数据,我们可以绘制出LM35温度传感器的电压输出与温度之间的线性关系图。

通过分析图表数据,可以得出传感器的灵敏度、稳定性和线性度等特性参数。

六、实验结论。

通过本次实验,我们深入了解了LM35温度传感器的工作原理和特性,掌握了使用Arduino开发板对传感器输出进行数据采集和分析的方法。

同时,我们也了解到了温度传感器在不同温度环境下的表现,为今后的工程应用提供了重要参考。

七、实验总结。

温度传感器是一种常用的传感器元件,具有广泛的应用前景。

通过本次实验,我们不仅学会了对温度传感器进行实验操作,还掌握了数据采集和分析的方法,为今后的实验和工程应用打下了坚实的基础。

温度传感实验报告

温度传感实验报告

一、实验目的1. 了解温度传感器的基本原理和种类。

2. 掌握温度传感器的测量方法及其应用。

3. 分析不同温度传感器的性能特点。

4. 通过实验验证温度传感器的测量精度和可靠性。

二、实验器材1. 温度传感器实验模块2. 热电偶(K型、E型)3. CSY2001B型传感器系统综合实验台(以下简称主机)4. 温控电加热炉5. 连接电缆6. 万用表:VC9804A,附表笔及测温探头7. 万用表:VC9806,附表笔三、实验原理1. 热电偶测温原理热电偶是由两种不同金属丝熔接而成的闭合回路。

当热电偶两端处于不同温度时,回路中会产生一定的电流,这表明电路中有电势产生,即热电势。

热电势与热端和冷端的温度有关,通过测量热电势,可以确定热端的温度。

2. 热电偶标定以K型热电偶作为标准热电偶来校准E型热电偶。

被校热电偶的热电势与标准热电偶热电势的误差可以通过以下公式计算:\[ \Delta E = \frac{E_{\text{标}} - E_{\text{校}}}{E_{\text{标}}}\times 100\% \]其中,\( E_{\text{标}} \) 为标准热电偶的热电势,\( E_{\text{校}} \) 为被校热电偶的热电势。

3. 热电偶冷端补偿热电偶冷端温度不为0,因此需要通过冷端补偿来减小误差。

冷端补偿可以通过测量冷端温度,然后通过计算得到补偿后的热电势。

4. 铂热电阻铂热电阻是一种具有较高稳定性和准确性的温度传感器。

其电阻值与温度呈线性关系,常用于精密温度测量。

四、实验内容1. 热电偶测温实验将K型热电偶和E型热电偶分别连接到实验台上,通过调节加热炉的温度,观察并记录热电偶的热电势值。

同时,使用万用表测量加热炉的实际温度,分析热电偶的测量精度。

2. 热电偶标定实验以K型热电偶为标准热电偶,对E型热电偶进行标定。

记录标定数据,计算误差。

3. 铂热电阻测温实验将铂热电阻连接到实验台上,通过调节加热炉的温度,观察并记录铂热电阻的电阻值。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告
一、实验目的
本实验旨在通过使用温度传感器来检测不同环境下的温度变化,并通过实验数据分析温度传感器的性能和准确度。

二、实验仪器
1. Arduino Uno控制板
2. DS18B20数字温度传感器
3. 杜邦线
4. 电脑
三、实验步骤
1. 连接DS18B20温度传感器到Arduino Uno控制板上。

2. 使用Arduino软件编写读取温度传感器数据的程序。

3. 通过串口监视器读取传感器采集到的温度数据。

4. 将温度传感器放置在不同环境温度下,记录数据并进行分析。

四、实验数据
在室内环境下,温度传感器读取的数据平均值为25摄氏度;在户外阳光下,温度传感器读取的数据平均值为35摄氏度。

五、实验结果分析
通过实验数据分析可知,DS18B20温度传感器对环境温度有较高的
敏感度和准确性,能够较精准地反映环境温度的变化。

在不同环境温
度下,传感器能够稳定地输出准确的温度数据。

六、实验结论
本实验通过对DS18B20温度传感器的测试和分析,验证了其在温
度检测方面的可靠性和准确性。

温度传感器可以广泛应用于各种领域,如气象监测、工业控制等。

通过本次实验,我们对温度传感器的性能
有了更深入的了解。

七、参考文献
1. DS18B20温度传感器数据手册
2. Arduino Uno官方网站
以上为实验报告内容,谢谢!。

温度传感器实训报告

温度传感器实训报告

温度传感器实训报告一、引言温度传感器是一种用来测量环境温度的设备,广泛应用于工业自动化、气象、医疗、农业等领域。

本实训旨在通过使用温度传感器,学习其工作原理和应用技巧,并实现温度测量和数据显示功能。

二、实训目的1. 了解温度传感器的基本原理和分类;2. 掌握温度传感器的接线方法和使用技巧;3. 学习如何使用开发板进行温度传感器的数据采集和处理;4. 实现温度传感器数据的显示和存储。

三、实训内容1. 温度传感器的原理与分类温度传感器根据测量原理的不同,可以分为接触式和非接触式两种类型。

接触式温度传感器通过与待测物体接触,通过物体的导热性质来测量温度;非接触式温度传感器则是通过测量物体辐射的红外线来推算温度。

2. 温度传感器的接线和使用温度传感器一般有3个引脚,分别是VCC、GND和OUT。

其中,VCC和GND分别用于连接电源正负极,OUT则是用来输出温度信号。

在实际接线时,需要根据具体传感器的引脚定义进行连接。

3. 温度传感器的数据采集和处理在实训中,我们将使用开发板进行温度传感器数据的采集和处理。

首先,将温度传感器与开发板连接好,并通过编程设置相应的引脚模式和通信协议。

然后,通过指令或程序读取传感器输出的模拟信号,并进行模数转换得到数字温度值。

最后,根据需要可以对数据进行进一步的处理,如单位转换、数据滤波等。

4. 温度传感器数据的显示和存储为了实现温度数据的显示和存储,我们可以通过连接显示屏或使用串口通信等方式将数据输出到外部设备。

同时,可以将数据存储到开发板的存储器中,或通过网络传输到云平台进行进一步的分析和处理。

四、实训结果通过本次实训,我们成功实现了温度传感器的数据采集和处理,并将数据显示在了外部设备上。

同时,我们还实现了数据的存储和传输功能,方便后续的数据分析和应用。

五、实训总结本次实训使我们对温度传感器有了更深入的了解,并掌握了其使用方法和技巧。

通过实际操作,我们不仅提高了对传感器的实际应用能力,也加深了对传感器原理和数据处理的理解。

温度传感器特性研究实验报告

温度传感器特性研究实验报告

温度传感器特性研究实验报告摘要:本实验通过研究温度传感器的特性,使用不同温度下的校准器对传感器进行校准,得到不同温度下传感器的输出电压,进而建立传感器输出电压与温度之间的关系。

实验结果表明,在一定范围内,温度传感器的输出电压与温度呈线性关系,并且可以通过简单的线性拟合方程进行温度的测量。

1.引言2.实验目的-研究温度传感器的特性,了解其输出电压与温度之间的关系。

-通过实验校准温度传感器,获得传感器的输出电压与温度的关系方程。

3.实验装置与方法-实验装置:温度传感器、温度校准器、数字万用表、温控槽等。

-实验步骤:1.将温度传感器和校准器连接起来,校准器设置为不同的温度。

2.使用数字万用表测量传感器的输出电压。

3.记录不同温度下传感器的输出电压。

4.将实验数据进行整理和分析,得出传感器的特性。

4.实验结果与分析通过实验我们得到了不同温度下传感器的输出电压,如下表所示:温度(℃)输出电压(V)-100.200.5100.8201.0301.3401.6根据实验数据,我们可以得到传感器的输出电压与温度之间的关系。

通过绘制散点图,并进行线性拟合,我们得到下面的结果:传感器输出电压(V)=0.05*温度(℃)+0.5可以发现,传感器的输出电压与温度之间呈线性关系,且经过简单的线性拟合,我们可以得到传感器输出电压与温度之间的关系方程。

这为后续的温度测量提供了便利。

5.总结与展望本实验通过研究温度传感器的特性,得到了传感器输出电压与温度之间的关系。

实验结果表明,温度传感器在一定范围内可以通过线性拟合得到与温度相关的输出电压方程。

这为后续的温度测量提供了便利。

未来的研究可以进一步探索不同类型的温度传感器的特性,并进行更加精确的测量与分析。

大学物理实验温度传感器实验报告

大学物理实验温度传感器实验报告

大学物理实验_温度传感器实验报告大学物理实验报告:温度传感器实验一、实验目的1.学习和了解温度传感器的原理和应用。

2.掌握实验方法,提高实验技能。

3.探究温度变化对传感器输出的影响。

二、实验原理温度传感器是一种将温度变化转换为电信号的装置。

根据热敏电阻的阻值随温度变化的特性,当温度发生变化时,热敏电阻的阻值会相应地改变,从而输出与温度成比例的电信号。

常见的温度传感器有热电偶、热敏电阻等。

本实验采用热敏电阻作为温度传感器。

三、实验步骤1.准备实验器材:热敏电阻、数据采集器、恒温水槽、温度计、导线若干。

2.将热敏电阻置于恒温水槽中,连接导线至数据采集器。

3.将数据采集器与计算机连接,打开数据采集软件。

4.设置实验参数:采样频率、采样点数等。

5.将恒温水槽加热至预设温度,观察并记录实验数据。

6.改变恒温水槽的温度,重复步骤5。

7.对实验数据进行处理和分析。

四、实验结果与分析1.实验数据记录:在实验过程中,记录不同温度下的热敏电阻阻值和数据采集器的输出电压。

如下表所示:温度与数据采集器输出电压的关系图。

结果表明,随着温度的升高,热敏电阻阻值逐渐减小,数据采集器的输出电压逐渐增大。

这符合热敏电阻的特性。

3.误差分析:在实验过程中,可能存在以下误差来源:恒温水槽的温度波动、热敏电阻的灵敏度差异、导线连接不良等。

为了减小误差,可以采取以下措施:使用高精度温度计、提高导线连接的稳定性、多次测量取平均值等。

4.思考题:在本次实验中,我们采用了简单的数据采集器和热敏电阻进行温度测量。

在实际应用中,还可以通过其他方式进行温度测量,如采用单片机结合热敏电阻实现智能温度测量。

请思考:如何将热敏电阻与单片机连接?如何通过程序控制温度测量?如何实现温度数据的实时显示或传输?在实际应用中,还需要考虑哪些因素会影响测量精度?如何减小误差?五、结论与总结本实验通过热敏电阻和数据采集器测量了不同温度下的阻值和输出电压,验证了热敏电阻的阻值随温度变化的特性。

温度传感器实验报告

温度传感器实验报告

一、实验目的1. 了解温度传感器的原理和分类。

2. 掌握温度传感器的应用和特性。

3. 学习温度传感器的安装和调试方法。

4. 通过实验验证温度传感器的测量精度。

二、实验器材1. 温度传感器:DS18B20、热电偶(K型、E型)、热敏电阻(NTC)等。

2. 测量设备:万用表、数据采集器、温度调节器等。

3. 实验平台:温度传感器实验模块、单片机开发板、PC机等。

三、实验原理温度传感器是将温度信号转换为电信号的装置,根据转换原理可分为接触式和非接触式两大类。

本实验主要涉及以下几种温度传感器:1. DS18B20:一款数字温度传感器,具有高精度、高可靠性、易于接口等优点。

2. 热电偶:利用两种不同金属导体的热电效应,将温度信号转换为电信号。

3. 热敏电阻:利用温度变化引起的电阻值变化,将温度信号转换为电信号。

四、实验步骤1. DS18B20温度传感器实验1. 连接DS18B20传感器到单片机开发板。

2. 编写程序读取温度值。

3. 使用数据采集器显示温度值。

4. 验证温度传感器的测量精度。

2. 热电偶温度传感器实验1. 连接热电偶传感器到数据采集器。

2. 调节温度调节器,使热电偶热端温度变化。

3. 使用数据采集器记录热电偶输出电压。

4. 分析热电偶的测温特性。

3. 热敏电阻温度传感器实验1. 连接热敏电阻传感器到单片机开发板。

2. 编写程序读取热敏电阻的电阻值。

3. 使用数据采集器显示温度值。

4. 验证热敏电阻的测温特性。

五、实验结果与分析1. DS18B20温度传感器实验实验结果显示,DS18B20温度传感器的测量精度较高,在±0.5℃范围内。

2. 热电偶温度传感器实验实验结果显示,热电偶的测温特性较好,输出电压与温度呈线性关系。

3. 热敏电阻温度传感器实验实验结果显示,热敏电阻的测温特性较好,电阻值与温度呈非线性关系。

六、实验总结通过本次实验,我们了解了温度传感器的原理和分类,掌握了温度传感器的应用和特性,学会了温度传感器的安装和调试方法。

温度传感器调研报告

温度传感器调研报告

温度传感器调研报告1. 引言温度传感器是一种用于测量环境温度的设备,应用广泛于工业、农业、医疗等领域。

随着物联网的发展,对温度传感器的需求越来越大。

本调研报告将对目前市场上常见的温度传感器进行调研和比较,以便更好地了解温度传感器的特点和应用。

2. 传感器类型2.1 热电偶热电偶是一种基于热电效应的温度传感器,由两条不同金属材料的导线焊接而成。

它的优点是测量范围广,可达到2000C以上,并且对环境湿度、电磁辐射等有良好的适应性。

然而,由于其输出信号微弱,需要进行放大和线性化处理。

2.2 热敏电阻热敏电阻是一种基于材料的电阻随温度变化而变化的原理进行温度测量的传感器。

常见的热敏电阻有铂热敏电阻和石墨热敏电阻。

它的优点是结构简单, 响应速度较快,适用于测量较低温度。

然而,热敏电阻的灵敏度较低,需要进行较多的温度补偿。

2.3 红外温度传感器红外温度传感器利用物体辐射出的红外线进行非接触式测温,常见的有红外温度传感器和红外线阵列传感器。

它的优点是测量非接触,适用于需要测量高温或不能直接接触的物体。

然而,红外温度传感器在测量过程中受到环境干扰的影响较大。

3. 比较分析3.1 精度和稳定性热电偶和热敏电阻具有较高的测量精度和稳定性,热电偶的测量精度可以达到0.1C,而热敏电阻的测量精度可以达到0.01C。

红外温度传感器的测量精度较低,通常在1C左右。

3.2 响应时间热敏电阻响应时间比较短,可以在几十毫秒内测量到温度变化。

而热电偶和红外温度传感器的响应时间相对较长,通常在几百毫秒到几秒钟之间。

3.3 应用范围热电偶和热敏电阻适用于广泛的温度测量范围,能够满足工业、医疗等领域的需求;而红外温度传感器适用于非接触式测温,特别适合测量高温或有辐射的物体。

3.4 成本热敏电阻具有较低的成本,适用于成本敏感的场合;而热电偶和红外温度传感器的成本较高。

4. 结论根据以上比较分析,不同类型的温度传感器各有优劣,需要根据具体需求选择合适的传感器。

温度传感器实验实训报告

温度传感器实验实训报告

1. 理解温度传感器的基本工作原理和类型。

2. 掌握温度传感器的应用和配置方法。

3. 通过实验验证不同类型温度传感器的性能和特点。

4. 学会使用温度传感器进行实际测量和数据分析。

二、实验原理温度传感器是一种能够将温度信号转换为电信号的装置,广泛应用于工业、医疗、科研等领域。

根据工作原理,温度传感器主要分为以下几类:1. 热电偶:基于塞贝克效应,将温度差转换为电动势。

2. 热敏电阻:基于温度对电阻值的影响,将温度变化转换为电阻变化。

3. 红外温度传感器:基于物体辐射原理,通过检测物体辐射的红外线强度来测量温度。

4. 数字温度传感器:将温度信号转换为数字信号,便于处理和传输。

三、实验仪器与材料1. 实验仪器:温度传感器(热电偶、热敏电阻、红外温度传感器)、数据采集器、示波器、万用表、电源等。

2. 实验材料:实验电路板、连接线、导线等。

四、实验内容1. 热电偶实验:将热电偶分别插入不同温度的水中,记录对应的电动势值,绘制电动势-温度曲线,分析热电偶的线性度和灵敏度。

2. 热敏电阻实验:将热敏电阻分别插入不同温度的水中,记录对应的电阻值,绘制电阻-温度曲线,分析热敏电阻的线性度和灵敏度。

3. 红外温度传感器实验:将红外温度传感器对准不同温度的物体,记录对应的温度值,分析红外温度传感器的测量范围和精度。

4. 数字温度传感器实验:使用数字温度传感器测量环境温度,记录数据,分析其性能和特点。

1. 热电偶实验:(1)搭建实验电路,连接数据采集器和示波器。

(2)将热电偶分别插入不同温度的水中,记录对应的电动势值。

(3)将数据导入计算机,绘制电动势-温度曲线。

(4)分析热电偶的线性度和灵敏度。

2. 热敏电阻实验:(1)搭建实验电路,连接数据采集器和示波器。

(2)将热敏电阻分别插入不同温度的水中,记录对应的电阻值。

(3)将数据导入计算机,绘制电阻-温度曲线。

(4)分析热敏电阻的线性度和灵敏度。

3. 红外温度传感器实验:(1)搭建实验电路,连接数据采集器和示波器。

温度传感器检验报告

温度传感器检验报告

温度传感器检验报告1.引言温度传感器是一种测量周围环境温度的设备,广泛应用于工业控制、物流监测、气象预测、医疗设备等领域。

本报告旨在对某温度传感器进行全面检验,以评估其性能和稳定性,并确保其符合相关标准和规范要求。

2.检验方案本次检验采用以下步骤和方法:(1)外观检查:检查温度传感器的外观是否完好,无损伤或变形。

(2)尺寸测量:测量温度传感器的各个尺寸参数是否符合设计要求。

(3)灵敏度测试:使用标准温度源,通过改变温度源的温度,检验温度传感器对温度变化的灵敏度。

(4)响应时间测试:通过改变温度源的温度,检验温度传感器的响应时间,即从温度变化发生后到传感器输出反应的时间。

(5)精度测试:将温度传感器与标准温度计进行对比测试,检验其测量结果的准确性。

(6)稳定性测试:使用温度传感器连续测量一段时间,检验其输出是否稳定,并记录稳定性参数。

3.检验结果(1)外观检查:经过仔细检查,温度传感器外观无明显损伤或变形,符合要求。

(2)尺寸测量:经测量,温度传感器的尺寸与设计要求一致,符合标准。

(3)灵敏度测试:改变标准温度源的温度,温度传感器的输出变化符合预期,灵敏度良好。

(4)响应时间测试:经测试,温度传感器对温度变化的响应时间稳定在1秒内,满足要求。

(5)精度测试:将温度传感器与标准温度计进行对比测试,结果表明温度传感器的测量结果与标准温度计相符,精度达到要求。

(6)稳定性测试:温度传感器连续测量一段时间,输出稳定,无明显波动,稳定性良好。

4.结论经过全面检验,某温度传感器符合设计要求和相关标准,性能稳定可靠。

本次检验结果表明该温度传感器适用于工业控制、物流监测、气象预测、医疗设备等领域的应用。

5.建议为了进一步提升温度传感器的性能和稳定性,建议生产厂商:(1)加强生产过程中的质量控制,确保每个温度传感器都符合设计要求。

(2)定期进行设备检修和维护,确保传感器的长期稳定运行。

(3)持续关注和采集用户反馈,及时改进产品性能和用户体验。

温度传感器的研究实验报告

温度传感器的研究实验报告

温度传感器的研究实验报告温度传感器的研究实验报告一、引言温度传感器是一种广泛应用于各个领域的关键设备,用于测量和监控环境中的温度变化。

本实验旨在研究不同类型的温度传感器及其性能特点,以便更好地理解和应用这一技术。

二、实验目的1. 研究不同类型的温度传感器的工作原理;2. 测量不同温度下温度传感器的响应特性;3. 分析温度传感器的精度和稳定性。

三、实验方法1. 实验器材:温度传感器、温度控制装置、数字温度计、数据采集系统等;2. 实验步骤:a. 将温度传感器与温度控制装置连接,并设置不同的温度值;b. 使用数字温度计测量传感器输出的温度值;c. 使用数据采集系统记录传感器的输出数据;d. 重复以上步骤,以获取更多的数据。

四、实验结果与分析1. 温度传感器的工作原理:温度传感器根据不同的工作原理可以分为热敏电阻、热电偶、半导体温度传感器等。

热敏电阻是利用材料的电阻随温度变化而变化的特性来测量温度的;热电偶则是利用两种不同金属的热电势差随温度变化而变化的原理来测量温度的;半导体温度传感器则是利用半导体材料的电阻随温度变化而变化的特性来测量温度的。

2. 温度传感器的响应特性:实验中我们分别测试了不同类型的温度传感器在不同温度下的响应特性。

结果显示,热敏电阻的响应速度较慢,但精度较高;热电偶的响应速度较快,但精度较低;半导体温度传感器则具有较好的响应速度和精度。

3. 温度传感器的精度和稳定性:在实验中,我们通过比较不同类型的温度传感器的输出数据与数字温度计的测量结果,评估了它们的精度和稳定性。

结果显示,热敏电阻的精度和稳定性较高,适用于对温度变化要求较高的场景;热电偶的精度和稳定性较低,但适用于高温环境;半导体温度传感器具有较好的精度和稳定性,适用于多种应用场景。

五、结论通过本实验,我们研究了不同类型的温度传感器及其性能特点。

热敏电阻具有较高的精度和稳定性,适用于对温度变化要求较高的场景;热电偶适用于高温环境,但精度较低;半导体温度传感器具有较好的精度和稳定性,适用于多种应用场景。

温度传感器实训报告

温度传感器实训报告

温度传感器实训报告一、实训目的和背景近年来,随着工业自动化水平的不断提高和人们对环境温度的要求越来越高,温度传感器的应用越来越广泛。

本次实训旨在通过了解温度传感器的工作原理、实际操作和数据处理等环节,培养学生对温度传感器的应用与开发能力。

二、实训内容和过程1.温度传感器的工作原理根据实际情况,我们选择了常用的热敏电阻温度传感器作为实验对象。

首先,我们介绍了热敏电阻的原理和特点,即温度变化引起电阻值变化的原理。

然后,我们学习了利用电桥测量电阻值的方法,通过测量电阻值和温度之间的关系,了解了电阻值与温度的关系曲线。

2.实际操作在实际操作环节中,我们使用了实验箱和相应的电路板,将温度传感器与电桥和测量仪器连接起来。

我们使用了模拟示波器和数字多用表来测量电压和电阻值,通过实时观察波形和读取数据,了解了温度变化对电阻值和电压的影响。

3.数据处理与分析在数据处理与分析环节中,我们利用Excel软件绘制了电阻-温度曲线,并使用线性回归方法得到了温度传感器的线性方程。

通过拟合曲线和测量数据的对比,我们发现实验结果与理论值基本一致,说明温度传感器的工作与理论模型相符。

三、实训成果和收获通过本次实训,我们掌握了温度传感器的基本工作原理,了解了温度传感器的应用领域和开发方法。

在实际操作中,我们熟悉了电路连接和测量仪器的使用,培养了实际操作能力。

在数据处理与分析中,我们学会了利用Excel软件处理数据和绘制曲线,掌握了数据处理的方法。

同时,本次实训还培养了我们的团队合作能力和解决问题的能力。

在实际操作中,我们遇到了电路连接错误和数据读取不准确等问题,通过相互讨论和合作,最终找到了解决方法。

四、改进建议和展望尽管本次实训取得了一定的成绩,但也存在一些不足之处。

首先,实训时间较为有限,只能对温度传感器进行基本的了解和操作。

此外,对于其他类型的温度传感器,实训内容较少,有待进一步扩展。

此外,在数据处理和分析上,我们仅进行了线性回归分析,对于非线性传感器的处理能力还有待提高。

温度传感器特性的研究实验报告

温度传感器特性的研究实验报告

温度传感器特性的研究实验报告温度传感器特性的研究实验报告1. 引言温度传感器是一种广泛应用于工业、农业、医疗等领域的重要传感器。

它能够将温度转化为电信号,实现温度的测量和监控。

本实验旨在研究不同类型的温度传感器的特性,分析其优缺点,为实际应用提供参考。

2. 实验方法本实验选择了三种常见的温度传感器进行研究:热电偶、热敏电阻和红外线温度传感器。

实验中,我们使用了温度控制装置和数据采集仪器,通过改变温度控制装置的设置,记录下不同温度下传感器的输出信号,并进行数据分析。

3. 实验结果与分析3.1 热电偶热电偶是一种基于热电效应的温度传感器。

实验中,我们将热电偶与温度控制装置接触,通过测量热电偶产生的电压信号来确定温度。

实验结果显示,热电偶具有较高的灵敏度和较宽的测量范围,但其响应时间较长,不适合对温度变化较快的场景。

3.2 热敏电阻热敏电阻是一种基于材料电阻随温度变化的原理的温度传感器。

实验中,我们通过测量热敏电阻的电阻值来确定温度。

实验结果显示,热敏电阻具有较好的线性特性和较快的响应时间,但其精度受到环境温度的影响较大。

3.3 红外线温度传感器红外线温度传感器是一种基于物体发射的红外辐射功率与温度之间的关系的温度传感器。

实验中,我们通过测量红外线温度传感器接收到的红外辐射功率来确定温度。

实验结果显示,红外线温度传感器具有非接触式测量、快速响应和较高的精度等优点,但其测量范围受到物体表面特性和环境条件的限制。

4. 结论通过对三种不同类型的温度传感器进行研究,我们得出以下结论:- 热电偶具有较高的灵敏度和较宽的测量范围,适用于对温度变化较慢的场景;- 热敏电阻具有较好的线性特性和较快的响应时间,适用于对温度变化较快的场景;- 红外线温度传感器具有非接触式测量、快速响应和较高的精度等优点,适用于特殊环境下的温度测量。

综上所述,不同类型的温度传感器各有优缺点,应根据实际需求选择合适的传感器进行应用。

此外,温度传感器的特性研究还可以进一步扩展,例如研究不同环境条件下的传感器性能、传感器与其他设备的配合等方面,以提高温度测量的准确性和可靠性。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告一、实验目的:1、 了解各种电阻的特性与应用2、 了解温度传感器的基本原理与应用 二、实验器材传感器特性综合实验仪 温度控制单元 温度模块 万用表 导线等 三、实验步骤1、 AD590温度特性1、将主控箱上总电源关闭,把主控箱中温度检测与控制单元中的恒流加热电源输出与温度模块中的恒流输入连接起来;2、将温度模块中的温控Pt100与主控箱的Pt100输入连接起来;3、将温度模块中左上角的AD590接到传感器特性综合实验仪电路模块的a 、b 上正端接a,负端接b,再将b 、d 连接起来,接成分压测量形式;4、将主控箱的+5V 电源接入a 和地之间;5、将d 和地与主控箱的电压表输入端相连即测量1K 电阻两端的电压;6、开启主电源,改变温度控制器的SV 窗口的温度设置,以后每隔C 010设定一次,即Δt=C 010,读取数设定温度,因此可得测量温度与设定温度对照表如下:四、实验中应注意的事项1、加热器温度不能太高,控制在120℃以下,否则将可能损坏加热器;2、采用放大电路测量时注意要调零;3、在测量AD590时,不要将AD590的+、-端接反,因为反向电压输出数值是错误的,而且可能击穿AD590;五、实验总结从这个实验中使我充分认识了AD590、PTC、NTC和PT100的温度特性和应用原理,学会了如何制作简单的温度计,也意识到了这些电阻由于会随温度而改变可以利用这一点来制作温度开关,通过温度的变化而使开关自动化,或通过改变温度而控制开关的通断;传感器这一门很新奇,我渴望学会更多的知识,看到更多稀奇的东西,学好传感器这一门学科,与其他学科知识相结合,提升自己的能力,希望有一天我能亲自开发出更有用、更先进的传感器;。

温度传感器特性研究实验报告

温度传感器特性研究实验报告

温度传感器特性研究实验报告温度传感器特性研究实验报告摘要:本实验通过对温度传感器的特性研究,探讨了温度传感器在不同环境条件下的响应特性和精度。

实验结果表明,温度传感器具有良好的线性响应特性和较高的精度,适用于各种温度测量场合。

1. 引言温度传感器是一种用于测量环境温度的重要设备,广泛应用于工业控制、医疗仪器、气象观测等领域。

了解温度传感器的特性对于准确测量和控制温度具有重要意义。

2. 实验方法本实验选用了一种热敏电阻温度传感器,通过改变环境温度以及外界干扰条件,对传感器的响应特性和精度进行了测试。

实验中使用了温度控制箱、数字温度计和数据采集系统等设备。

3. 实验结果3.1 温度传感器的线性特性实验中通过改变温度控制箱的设定温度,记录传感器输出电压并绘制了温度-电压曲线。

实验结果表明,传感器的输出电压与温度呈线性关系,符合热敏电阻的特性。

在所测温度范围内,传感器的线性误差在0.5%以内。

3.2 温度传感器的响应时间为了测试传感器的响应时间,我们将传感器置于不同温度环境中,并记录传感器输出电压的变化过程。

实验结果显示,传感器的响应时间约为5秒,具有较快的响应速度。

3.3 温度传感器的稳定性为了研究传感器的稳定性,我们将传感器长时间置于恒定温度环境中,并记录传感器输出电压的变化。

实验结果表明,传感器的输出电压变化较小,稳定性较好。

在所测温度范围内,传感器的稳定性误差在0.2%以内。

4. 讨论通过对温度传感器的特性研究,我们发现该传感器具有良好的线性响应特性、较快的响应时间和较好的稳定性。

这些特性使得该传感器适用于各种温度测量场合。

然而,传感器的精度受到环境温度、供电电压等因素的影响,需要在实际应用中加以考虑。

5. 结论本实验通过对温度传感器的特性研究,得出以下结论:(1)温度传感器具有良好的线性响应特性;(2)温度传感器具有较快的响应时间;(3)温度传感器具有较好的稳定性。

总结:温度传感器是一种性能优良的温度测量设备,具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度传感器报告
温度传感器是指能感受温度并能转换成可用输出信号的传感器。

温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。

温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。

要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。

据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。

温度传感器的特点
作为一个理想的温度传感器,应该具备以下要求:测量范围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。

但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。

这是因为不同的温度传感器具有不同的特点。

● 不同的温度传感器测量范围和特点是不同的。

几种重要类型的温度传感器的温度测量范围和特点,如表1所示。

● 测温的准确度与测量方法有关。

根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如
● 不同的测温元件应采用不同的测量电路。

通常采用的测量电路有三种。

“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。

“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。

“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。

温度测量的最新进展
● 研制适应各种工业应用的测温元件和温度传感器。

铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。

多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精
度。

谐振式石英音叉温度传感器温度分辨率可达0.0009℃,准确度可达0.02℃,测量范围可达-200~260℃,线性度可达0.1~0.05%。

Z-元件构成的新型温控器件具有电路结构简单、精度高、速度快、低功耗、低成本等特点。

集成温度传感器利用扩散硅技术制作,适合批量生产,一致性好,灵敏度达11.3/℃。

W-Re温度传感器利用W-Re热电偶制作的高温传感器,能检测上限温度为2300℃,适用于还原、惰性、真空、核幅射等环境的高温测量。

智能温度传感器利用MEMS技术,将典型的测温元件、信号调理电路、带数字总线接口的微处理器组合为一整体而构成智能温度传感器系统。

● 测温技术实现从“有线”向“无线”发展。

传统的温度测量通常采用带有电缆的有线连接方式,但对于有些场合,如旋转或移动物体的温度测量、环境恶劣人员无法涉足之处、不宜采用有线的环境,随着智能温度传感器的应用,并从节省布线成本考虑,测温技术开始从“有线”向“无线”发展。

采用无源声表面波谐振器的无线温度测量虚拟仪器系统引入信号处理方法和反馈控制,降低了系统成本,提高了测量精度和测量距离,结合通用计算机平台和数据I/O板卡,通过软件进行灵活控制,可根据不同环境以及测量过程自动调节测量参数,实现自适应检测。

当发射功率为100mW时,无线检测距离为4m处,谐振频率重复测量的不确定度约为0.09kHz,3m处对温度测量灵敏度的不确定度约为0.1℃。

空调用温度、湿度传感器系统该系统有主机与分机两部分。

分机定期将置于内部的温、湿度传感器所测数据以无线方式传送给主机。

主机通过输出单元将其转换成电信号,送给控制装置。

由于分机采用电池供电,可放置在任何地方,并将控制信号以无线方式传递,十分方便。

无线巡回检测系统对于安装在现场的传感器测得的数据,不用巡检人员到现场目测或记录,而是通过无线数据收集系统,对带有无线传输模式的现场用传感器进行无线巡回检测。

这种检测系统对于危险场所及高部位的检测将十分方便。

● 测温技术实现“由点到线、由线到面、由表到里”的方向发展。

多芯热电偶传统的温度测量主要是基于“点”的温度测量,然而人们往往需要关注整个温度场的温度分布,如整个炉窑的温度分布、扩散炉内的温场、仓库各
点的温度,因此出现了多芯铠装热电偶,或用测温电缆,沿电缆线组装多支热电偶或热电阻测量“线”状温度分布。

光纤式温度分布测量技术光纤式温度分布测量技术是用一支传感器就能测出线状温度分布的划时代技术。

该技术的基本原理是将激光脉冲射到光纤中,依据到达各处返回的散射光中斯托克及反斯托克光之比,求其温度。

这种光纤式温度分布测量技术最长可测量30Km以内的温度分布。

用于测量油井从地面到地下深度方向的温度分布是很理想的。

用辐射温度计或热像仪测量表面温度分布对于物体表面温度的测量和控制,过去多用辐射温度计和热像仪,如用热像仪测量钢铁厂高炉外表层的温度分布,用红外辐射温度计测量水泥行业回转炉表面温度监视等。

但如用光纤式温度分布测量技术不仅可提高测量精度,而且可大幅度降低成本。

深部温度测量可用加长热电偶的方法,但使用极不方便。

可采用深部温度测量特殊装置,该装置有加热器、金属框、绝热层、测温元件(如热敏电阻)组成。

其原理是在加热器的表面,能消除其温度梯度,并能测出其表面温度,从而知道其深部温度。

2 新型温度传感器
2.1 用廉金属替代贵金属铂铑热电偶
我国工业炉窑的温度测量,尤其是在1300℃以上的高温领域,多采用铂铑系热电偶。

每年测温消耗的铂大约500kg。

我国是铂资源贫乏的国家,几乎全靠进口,而且价格不断飙升。

2.2 N型温度传感器
(1)N型热电偶的名义成分与性能
1)成分:NP Cr,14.2%;Si,1.4%;余Ni;NNMg,1.0%;Si,4.4%;余Ni。

2)特点:高温抗氧化性能强,250℃~550℃范围内,热循环稳定性好;使用温度高达1300℃。

2.3 新型WRe温度传感器
(1)钨铼热电偶的主要特点
1)热电极熔点高(3300℃)、强度大、极易氧化;
2)热电动势大、灵敏度高、热电动势率为S 型热电偶的2倍,B型3倍;
3)价格便宜,仅为S型热电偶的1/20,B型热电偶的1/25。

(2)钨铼热电偶的分类
美国ASTM将WRe热电偶标准等级分为3类:
1)标准化系列,有C型(WRe5-WRe26),其标准化的地位与B、S、R、N、K、J、E、T等成熟热电偶相同;
2)标准热电偶系列,有D型(WRe3-WRe25);
3)非标体系,有G型(W-WRe26)。

国内以前多采用D型,目前消耗型热电偶仍以D型为主,但工业用钨铼热电偶则为以C型为主。

(3)钨铼热电偶使用气氛
1)适用气氛:真空、惰性气体及干燥氢气;
2)防氧化技术:抽空技术、实体化技术。

(4)新型WRe温度传感器
新型WRe温度传感器在实体化技术的基础上,又添加功能材料,进一步提高钨铼热电偶的抗氧化性。

特种WRe温度传感器经省科技厅鉴定:“在设计理念上具有原创性,在氧化及还原气氛中应用居国际领先水平”。

2009年荣获中国仪器仪表学会科技二等奖,并作为科技成果收录在2008~2009年国家科技发展报告中。

现有用户260多家,总产量超万只
(5)应用
1)氧化性气氛:锦州烧制铬刚玉砖的梭式窑中(温度为1450℃),原采用双铂铑热电偶,现已被WRe取代,使用寿命接近B型,但价格为B 型的1/10,用户很满意;
2)还原性气氛:攀钢VN合金生产温度为1600℃,CO、N2等还原性气氛,用新型WRe温度传感器其寿命为普通热电偶的10倍;
3)真空炉:采用单层或双层实体化结构严格密封,在用于10-5Pa以上的超高真空,即使保护管被折断也绝不会破坏体系真空度。

玻璃行业中的非接触式测温技术在所有工业领域,温度测量是其中一种重要的物理测量方式。

同样在玻璃工业这也是生产工艺过程控制的必要手段。

非接触式测温因其下列优点正不断地受到重视:
- 操作简单
- 响应时间快
- 不会老化,漂移最小
- 配置灵活,价格合理
- 不会污染玻璃溶液
在玻璃工业中需对透明及不透明的物体进行测温。

不透明的物体包括模具,穹顶及玻璃熔炼炉的侧壁。

非接触式测温技术在玻璃熔炉,熔化槽和玻璃喂料器越来越多地取代传统的热电偶测温,热电偶与测温仪相比在很高的工作温度和侵蚀性的环境条件下很快就会老化和漂移,为了保护热电偶,有些地方需要用铂金属做保护外壳,这样成本就会上升许多。

相关文档
最新文档