分数乘除法
分数的乘除法教案8篇
分数的乘除法教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!分数的乘除法教案8篇写教案的目的在于活跃课堂,让孩子们爱上学习,在写教案的时候,需要遵照艺术性准则,下面是本店铺为您分享的分数的乘除法教案8篇,感谢您的参阅。
分数的乘除运算掌握分数的乘除法运算规则
分数的乘除运算掌握分数的乘除法运算规则分数的乘除运算——掌握分数的乘除法运算规则分数是数学中常见的一个概念,它由一个整数分子和一个非零整数分母组成,表示的是部分与整体的关系。
在数学运算中,我们常常需要对分数进行乘除运算。
本文将介绍分数的乘除法运算规则,帮助读者掌握这一重要的数学技巧。
一、分数的乘法运算规则对于两个分数的乘法运算,我们需要分别将它们的分子和分母相乘,然后将结果化简至最简形式。
以下是分数乘法的具体步骤:1. 将两个分数的分子相乘,得到新的分子;2. 将两个分数的分母相乘,得到新的分母;3. 将新得到的分子和分母化简至最简形式。
例如,计算1/2乘以3/4的结果:1/2 × 3/4 = (1 × 3) / (2 × 4) = 3 / 8所以,1/2乘以3/4的结果为3/8。
二、分数的除法运算规则对于两个分数的除法运算,我们需要将被除数乘以倒数来实现。
具体步骤如下:1. 将除数的分子与被除数的分母相乘,得到新的分子;2. 将除数的分母与被除数的分子相乘,得到新的分母;3. 将新得到的分子和分母化简至最简形式。
举个例子,计算2/3除以4/5的结果:2/3 ÷ 4/5 = (2 × 5) / (3 × 4) = 10 / 12化简至最简形式:10/12 = 5/6所以,2/3除以4/5的结果为5/6。
三、分数的乘除运算综合应用在实际的数学问题中,乘除运算往往是综合应用的。
以下是一个例子,帮助读者更好地理解分数的乘除运算规则:假设小明买了3袋鸡蛋,每袋有1/2千克,他想知道总共有多少千克的鸡蛋。
首先,我们需要将每袋鸡蛋的重量1/2千克乘以袋数3。
按照乘法运算规则:1/2 × 3 = (1 × 3) / (2 × 1) = 3 / 2然后,我们将乘积3/2化简至最简形式:3/2 = 1 1/2所以,小明买的鸡蛋总重为1又1/2千克。
分数乘除法计算方法总结
分数乘除法计算方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII分数乘除法计算方法总结一、分数乘法:1.分数乘整数意义:分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
计算方法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
2.分数(整数)乘分数,即一个数乘以分数意义:求一个数的几分之几是多少。
计算方法:分数乘分数,分子相乘的积作新分子,分母相乘的积作新分母。
能约分的要先约分,再计算,结果要试最简分数。
约分过程中,一定是分子和分母约分,整数和分母约分。
是带分数的要先化成假分数再按照计算方法进行计算。
3.乘积相等的几组乘法算式中,一个因数越大,另一个因数就越小4.倒数:乘积是“1”的两个数互为倒数。
“1”的倒数是“1”,“0”没有倒数。
5.求一个数的倒数的方法:用“1”除以这个数。
真分数(假分数)的倒数,直接交换分子和分母的位置;求带分数的倒数,要先把带分数化成假分数,再交换分子和分母的位置;求小数的倒数,要先把小数化成分数,再交换分子和分母的位置;求整数的倒数,把整数写作分母,分子为“1”。
二、分数除法意义1:与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。
[理解]:把一个数平均分成几份,每份是这个数的几份之一。
求每份数是多少(每份数=一个数÷几份或每份数=一个数×几份之一)。
1、分数除以整数:A,可以用分子除以整数(0除外)的商作分子,分母不变。
B,分数除以整数(0除外),等于分数乘这个整数的倒数。
2、分数(整数)除以分数,即一个数除以分数A,可以用分子除以分子的商作新分子,分母除以分母的商作新分母。
B,一个数除以分数(0除外),等于这个数乘以分数的倒数。
分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
三、分数乘、除法混合运算顺序整数、小数、分数的混合运算顺序都是一样的。
分数乘除法简便运算100题有答案
分数乘除法简便运算100题有答案分数乘除法的简便运算在数学学习中是一项非常重要的技能,它能够帮助我们快速而准确地解决各种数学问题。
下面为您呈现 100 道分数乘除法简便运算题目及答案,希望对您的学习有所帮助。
一、乘法交换律1、 1/2 × 3/4 × 4/3 = 1/2 ×(3/4 × 4/3)= 1/2 × 1 = 1/22、 2/3 × 5/6 × 6/5 = 2/3 × 1 = 2/33、 3/5 × 7/8 × 8/7 = 3/5 × 1 = 3/5二、乘法结合律1、(1/3 × 2/5)× 5/6 = 1/3 ×(2/5 × 5/6)= 1/3 × 1/3 = 1/92、(2/7 × 3/8)× 8/3 = 2/7 × 1 = 2/73、(3/11 × 4/9)× 9/4 = 3/11 × 1 = 3/11三、乘法分配律1、 1/2 ×(1/3 + 1/4)= 1/2 × 7/12 = 7/242、 2/3 ×(1/4 + 1/5)= 2/3 × 9/20 = 3/103、 3/4 ×(1/5 + 1/6)= 3/4 × 11/30 = 11/40四、除法的性质1、 1/2 ÷ 3/4 ÷ 4/3 = 1/2 ÷(3/4 × 4/3)= 1/2 ÷ 1 = 1/22、 2/3 ÷ 5/6 ÷ 6/5 = 2/3 ÷ 1 = 2/33、 3/5 ÷ 7/8 ÷ 8/7 = 3/5 ÷ 1 = 3/5五、拆分法1、 1/2 × 15 = 1/2 ×(16 1)= 1/2 × 16 1/2 × 1 = 8 1/2 = 7 又1/22、 2/3 × 21 = 2/3 ×(20 + 1)= 2/3 × 20 + 2/3 × 1 = 14 + 2/3 = 14 又 2/33、 3/4 × 36 = 3/4 ×(32 + 4)= 3/4 × 32 + 3/4 × 4 = 24 + 3 =27六、约分法1、 12/25 × 5/18 = 2/152、 18/35 × 7/27 = 2/153、 24/39 × 13/32 = 1/4七、转化法1、 1/4 ÷ 2/5 = 1/4 × 5/2 = 5/82、 2/7 ÷ 4/9 = 2/7 × 9/4 = 9/143、 3/8 ÷ 6/11 = 3/8 × 11/6 = 11/16八、综合运用1、 1/2 × 3/4 + 1/2 × 1/4 = 1/2 ×(3/4 + 1/4)= 1/2 × 1 = 1/22、 2/3 × 5/6 2/3 × 1/6 = 2/3 ×(5/6 1/6)= 2/3 × 2/3 = 4/93、 3/4 ÷ 5/8 × 4/5 = 3/4 × 8/5 × 4/5 = 24/25接下来是剩下的题目及答案:4、 4/5 × 5/6 × 6/7 = 4/75、 5/7 × 7/8 × 8/9 = 5/96、 6/11 × 11/12 × 12/13 = 6/137、 1/3 ×(1/2 1/5)= 1/108、 2/5 ×(1/3 + 1/4)= 7/309、 3/7 ×(1/4 1/5)= 3/14010、 1/2 ÷ 4/5 ÷ 5/6 = 3/411、 2/3 ÷ 5/6 ÷ 6/7 = 14/1512、 3/4 ÷ 7/8 ÷ 8/9 = 27/2813、 1/2 × 20 = 1014、 2/3 × 27 = 1815、 3/5 × 40 = 2416、 15/28 × 7/9 = 5/1217、 21/32 × 8/27 = 7/3618、 27/44 × 11/18 = 3/819、 1/3 ÷ 3/5 = 5/920、 2/5 ÷ 6/7 = 7/1521、 3/7 ÷ 9/11 = 11/2122、 1/2 × 4/5 1/2 × 1/5 = 3/1023、 2/3 × 6/7 + 2/3 × 1/7 = 2/324、 3/4 × 8/9 3/4 × 1/9 = 2/325、 7/8 × 8/9 × 9/10 = 7/1026、 8/11 × 11/12 × 12/14 = 4/727、 9/13 × 13/15 × 15/17 = 9/1728、 1/4 ×(1/3 + 1/6)= 1/829、 2/7 ×(1/4 + 1/5)= 9/7030、 3/8 ×(1/5 1/6)= 1/8031、 1/2 ÷ 5/6 ÷ 6/7 = 7/1032、 2/3 ÷ 6/7 ÷ 7/8 = 8/933、 3/4 ÷ 7/8 ÷ 8/9 = 27/2834、 1/2 × 30 = 1535、 2/3 × 36 = 2436、 3/5 × 50 = 3037、 18/35 × 7/20 = 9/10038、 24/39 × 13/36 = 2/939、 30/47 × 47/60 = 1/240、 1/4 ÷ 4/7 = 7/1641、 2/7 ÷ 7/9 = 18/4942、 3/8 ÷ 8/11 = 33/6443、 1/2 × 5/6 + 1/2 × 1/6 = 1/244、 2/3 × 7/8 2/3 × 1/8 = 1/245、 3/4 × 9/10 + 3/4 × 1/10 = 3/446、 10/11 × 11/12 × 12/13 = 10/1347、 11/14 × 14/15 × 15/16 = 11/1648、 12/17 × 17/18 × 18/19 = 12/1949、 1/5 ×(1/4 + 1/5)= 9/10051、 3/8 ×(1/6 1/7)= 3/33652、 1/2 ÷ 6/7 ÷ 7/8 = 4/353、 2/3 ÷ 7/8 ÷ 8/9 = 24/2154、 3/4 ÷ 8/9 ÷ 9/10 = 15/855、 1/2 × 40 = 2056、 2/3 × 45 = 3057、 3/5 × 60 = 3658、 21/32 × 8/24 = 7/3259、 27/40 × 10/27 = 1/460、 33/48 × 16/33 = 1/361、 1/5 ÷ 5/8 = 8/2562、 2/7 ÷ 7/10 = 20/4963、 3/8 ÷ 8/13 = 39/6464、 1/2 × 6/7 1/2 × 1/7 = 5/1465、 2/3 × 8/9 + 2/3 × 1/9 = 2/366、 3/4 × 10/11 3/4 × 1/11 = 3/468、 14/17 × 17/18 × 18/19 = 14/1969、 15/20 × 20/21 × 21/22 = 15/2270、 1/6 ×(1/5 + 1/6)= 11/18071、 2/8 ×(1/6 + 1/7)= 26/33672、 3/9 ×(1/7 1/8)= 1/21673、 1/2 ÷ 7/8 ÷ 8/9 = 9/774、 2/3 ÷ 8/9 ÷ 9/10 = 5/375、 3/4 ÷ 9/10 ÷ 10/11 = 11/476、 1/2 × 50 = 2577、 2/3 × 55 = 110/378、 3/5 × 70 = 4279、 24/35 × 7/28 = 3/3580、 30/41 × 11/30 = 11/4181、 36/49 × 7/36 = 1/782、 1/6 ÷ 6/10 = 5/1883、 2/8 ÷ 8/12 = 3/884、 3/9 ÷ 9/14 = 14/2785、 1/2 × 7/8 + 1/2 × 1/8 = 1/286、 2/3 × 9/10 2/3 × 1/10 = 2/387、 3/4 × 11/12 + 3/4 × 1/12 = 3/488、 16/17 × 17/18 × 18/19 = 16/1989、 17/20 × 20/21 × 21/22 = 17/2290、 18/23 × 23/24 × 24/25 = 18/2591、 1/7 ×(1/6 + 1/7)= 13/29492、 2/8 ×(1/7 + 1/8)= 30/22493、 3/9 ×(1/8 1/9)= 1/21694、 1/2 ÷ 8/9 ÷ 9/10 = 5/495、 2/3 ÷ 9/10 ÷ 10/11 = 22/2796、 3/4 ÷ 10/11 ÷ 11/12 = 9/1097、 1/2 × 60 = 3098、 2/3 × 65 = 130/399、 3/5 × 80 = 48100、 27/40 × 10/30 = 9/40希望这些题目和答案能够帮助您熟练掌握分数乘除法的简便运算方法,提高数学运算能力。
分数乘除法运算
分数乘除法运算是指对分数进行乘法或除法的运算,包括分数乘法和分数除法两种方法。
分数乘法:
(1)概念:分数乘法是指两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)运算法则:a/b*c/d=ac/bd,其中a、b、c、d分别代表分数的分子和分母。
(3)例题:比如2/3乘以3/4,就是2乘以3再除以(3乘以4),结果等于1/2。
分数除法:
(1)概念:分数除法是指用一个分数去除另一个分数,等于乘以那个分数的倒数。
(2)运算法则:a/b÷c/d=a/b*d/c,其中a、b、c、d分别代表分数的分子和分母。
(3)例题:比如2/3除以3/4,就是2/3乘以4/3,结果等于8/9。
另外,分数乘除法运算还有一些规则需要注意:
1.分子和分母能约分的要先约分;
2.除以一个数等于乘以这个数的倒数;
3.结果要求化为最简;
4.分数乘除混合运算顺序与分数乘除法相同,先乘除后加减,有括号的先算括
号里面的。
分数乘除法的运算规则
分数乘除法的运算规则1. 嘿,分数乘法可简单啦!比如 1/2 乘以 3/4,那就是分子乘分子,分母乘分母呀,结果就是 3/8。
就像你有一半的苹果,再从这一半里拿出四分之三份,那不就是总共拿出八分之三份嘛,是不是很好理解呀!2. 哎呀呀,分数除法也不难哦!像 1/3 除以 2/5,就等于 1/3 乘以5/2 呀,得到5/6。
这就好比你要把三分之一的东西分给五分之二那么多份,其实就是乘以它的倒数啦,懂了吧!3. 你想想看,分数乘除法里,约分多重要呀!比如 2/4 乘以 3/5,约分后就是 1/2 乘以 3/5,结果就是 3/10 啦。
这就像把复杂的事情简化一下,多轻松呀,你说是不是!4. 嘿,要是遇到带分数可别慌呀!先把带分数化成假分数,再进行计算。
像 2 又 1/3 乘以 4/5,那就把 2 又 1/3 变成 7/3 再算,最后得到 28/15。
就像把一个大包裹拆开来再处理,不就好下手啦!5. 啊哈,计算分数乘除法时一定要仔细呀!比如 3/5 乘以 1/4,可不能马虎看成 3/20,不然就错啦!这就跟做一件精细的活儿似的,得用心,对吧!6. 你知道吗,分数乘除法在生活中也常常用到呢!像分东西呀,计算比例呀。
比如把一个蛋糕的 2/3 分给 4 个人,每个人能分到多少,这不就得用分数除法呀,这多有意思呀!7. 哇塞,分数乘除法的计算规则就像一把钥匙,能打开好多问题的大门呢!假如你有一半的巧克力,想知道分成三份每份多少,用分数除法一算就知道啦!8. 嘿呀,大家一定要把分数乘除法的规则记牢呀!不然做错题就糟糕咯!就像走路不能走错方向一样重要呢!9. 总之呢,分数乘除法其实不复杂,只要掌握了规则,多练习,就肯定能学会,能算得又快又准!。
分数乘除法算理
分数乘除法算理
我们要探讨分数乘除法的算理。
首先,我们需要理解分数乘法和除法的本质。
分数乘法可以理解为将一个分数重复多次,例如:2/3 × 2 就是将2/3重复两次。
分数除法可以理解为将一个分数与另一个分数相乘,例如:2/3 ÷ 2 就是将2/3与1/2相乘。
为了更好地理解分数乘除法,我们可以使用以下数学模型:
1. 分数乘法:a/b × c = a/b × c = a×c/b×c = (a×c)/(b×c)
2. 分数除法:a/b ÷ c = a/b × 1/c = a/(b×c)
通过以上模型,我们可以看到分数乘法和除法的核心思想。
分数乘法的例子:
2/3 × 1/2 = 1/3
分数除法的例子:
2/3 ÷ 1/2 = 4/3
通过以上例子,我们可以看到分数乘法和除法的算理。
分数乘法是重复一个分数多次,而分数除法是将一个分数与另一个分数的倒数相乘。
分数乘除法口诀
分数乘除法口诀分数乘除法是数学中重要的运算法则,不仅能够计算复杂的有理数,还能帮助学生理解数的大小关系。
学习数学时,学习分数乘除法口诀也是非常重要的。
下面为大家分享一些分数乘除法口诀:1、“乘以分母,分子不变,乘以分子,分母不变。
”这句口诀告诉我们,当分数乘以分数时,乘以分母,分子不变,乘以分子,分母不变。
2、“除以分母,分子不变,除以分子,分母不变。
”这句口诀告诉我们,当分数除以分数时,除以分母,分子不变,除以分子,分母不变。
3、“乘分母相同,再将分子相乘;除分子相同,再将分母相除。
”这句口诀告诉我们,当分数乘以分数或除以分数时,乘分母相同,再将分子相乘;除分子相同,再将分母相除。
4、“乘以分子,再将分母相乘;除以分母,再将分子相除。
”这句口诀告诉我们,当分数乘以分数或除以分数时,乘以分子,再将分母相乘;除以分母,再将分子相除。
5、“乘分母,不管分子;除分子,不管分母。
”这句口诀告诉我们,当分数乘以分数或除以分数时,乘分母,不管分子;除分子,不管分母。
以上就是一些学习分数乘除法的口诀,学习数学时,背诵这些口诀是非常有必要的,它能帮助我们更好的理解数学,提升我们的数学水平,帮助我们更好地应对分数乘除法的考题。
当然了,要想掌握分数乘除法,口诀只是一个入门级的学习方法,更重要的还是要付诸实践。
我们可以多练习一些分数乘除法的练习题,有意识地去找准解题思路,并将口诀与实践结合起来,这样才能够有效的掌握分数乘除法,提高自己的数学水平。
另外,在学习分数乘除法时,也可以利用一些数学素材,如分数乘除法的几何图形,这有助于学生更加直观地理解数学知识,以更加有效、简便的方式学习分数乘除法,加深对分数乘除法的理解。
总而言之,学习分数乘除法时,背诵分数乘除法口诀能够帮助我们更好地理解数学知识;多练习分数乘除法的题目,有意识地去找准答题思路;利用几何图形等素材,帮助学生更加直观地理解数学知识,这样才能够真正掌握分数乘除法,提高自己的数学水平。
分数的乘除混合运算
分数的乘除混合运算在数学中,我们经常会遇到分数的乘除混合运算。
这种运算涉及到了分数的乘法和除法,需要我们灵活运用相关规则和技巧来求解。
本文将详细介绍分数的乘除混合运算,并通过例题帮助读者更好地理解和应用这些知识。
一、分数的乘法运算1. 分数相乘的基本原理分数相乘的基本原理是将两个分数的分子相乘、分母相乘。
比如,对于两个分数a/b和c/d来说,它们的乘积可以表示为(a * c)/(b * d)。
2. 乘法运算的简便方法简便方法之一是将两个分数的分子和分母分别相乘,然后再化简得到最简形式。
当然,在进行乘法运算前,我们也可以先化简分数,然后再进行相乘。
这样能够减少中间步骤和复杂度。
3. 乘法运算的注意事项在进行分数的乘法运算时,需要注意以下几点:- 运用化简技巧,尽量将分数化简为最简形式;- 若分子或分母存在负号,应在计算结果中予以保留。
二、分数的除法运算1. 分数相除的基本原理分数相除的基本原理是将除数的倒数乘以被除数。
比如,对于两个分数a/b和c/d来说,它们的商可以表示为(a/b)/(c/d)=(a/b)*(d/c)。
2. 除法运算的简便方法简便方法之一是将除数和被除数都化为乘法形式,然后再进行相乘。
这样能够简化运算步骤和复杂度。
另外,我们也可以在进行除法运算前,先将分数化简为最简形式,然后再进行计算。
3. 除法运算的注意事项在进行分数的除法运算时,需要注意以下几点:- 当除数为0时,除法运算无意义;- 同样需要运用化简技巧,尽量将分数化简为最简形式;- 若分子或分母存在负号,应在计算结果中予以保留。
三、分数的乘除混合运算是指在一个式子中同时进行分数的乘法和除法运算。
在进行混合运算时,需要按照运算法则和优先级进行计算,确保正确性。
例如,我们考虑如下的乘除混合运算式:a/b * c/d ÷ e/f。
按照乘除法的优先级,首先计算乘法运算,然后再进行除法运算。
具体步骤如下:1. 计算乘法:(a * c)/(b * d)÷ e/f;2. 化简乘法运算:(a * c)/(b * d)* f/e;3. 将乘法转为除法:(a * c * f)/(b * d * e)。
分数的乘除法计算方法
分数的乘除法计算方法
先说说分数乘法哈。
分数乘法其实很简单的哟。
比如说咱有两个分数,(2)/(3)乘以(4)/(5)。
这就相当于把这两个分数的分子和分母分别相乘呢。
分子就是上面的数字,分母就是下面的数字。
那算出来就是(2×4)/(3×5)=(8)/(15)。
是不是超级好理解呀?如果是整数和分数相乘呢,比如说3乘以(2)/(5),这个整数就可以看成是分母为1的分数,也就是(3)/(1)乘以(2)/(5),按照分子分母分别相乘的方法,就得到
(3×2)/(1×5)=(6)/(5),要是能化成带分数就化成带分数,这里就是1(1)/(5)。
再聊聊分数除法。
分数除法就像是分数乘法的小调皮鬼变了个身。
你看啊,一个分数除以另一个分数,就等于这个分数乘以另一个分数的倒数。
啥是倒数呢?就是把分数的分子分母交换位置。
比如说(3)/(4)除以(2)/(3),那就等于(3)/(4)乘以(3)/(2),然后按照分数乘法的方法来算,就是(3×3)/(4×2)=(9)/(8),也就是1(1)/(8)。
如果是整数除以分数呢,像4除以(2)/(3),4就看成(4)/(1),然后就变成(4)/(1)乘以(3)/(2),算出来就是(4×3)/(1×2)=6。
宝子们,分数乘除法就这么点事儿。
刚开始可能觉得有点绕,但是多做几道题就会发现,这就跟玩游戏一样简单。
你只要记住分数乘法是分子乘分子,分母乘分母,分数除法是乘以除数的倒数,就可以在分数的小世界里畅游啦。
可别被它吓住了哦,加油呀!。
分数乘除法巧算
分数乘除法巧算【知识点播】分数乘法:分数乘以整数,分母不变,分子乘以整数,最后结果化成最简分数;分数乘以分数,分子与分子相乘,分母与分母相乘,最后结果化成最简分数。
分数除法:除以一个分数,等于乘以这个数的倒数。
【经典例题】(1)乘法:例 1 84×(3-1)7 35 45 4 3 10 36 704 5 2例 2 39 (13 2)(2)7×49+7×49(2)除法:7 1 6 6 2例 1 13 ÷9+9×13 6 ÷7÷ 5例 2 238 238 2381666 16661666 239 1667(3)乘除混淆运算:例 1216 23 -8×3÷1 3.29 4 2715例 2 2.5 5.6 1.4 2 11 ÷ 1+ 13 ×85 12 8 12讲堂小测姓名成绩1.33 14 2006 2007 2008 42 55 2007 2008 20092.11 ÷ 1+ 13 × 8 99 (1010)12 8 12 113.35 60 2004 2004200484 63 20054.12 × 3 + 4 × 12 + 12 3.6 2 1813 7 7 13 13 15课后作业月 日 姓 名成 绩1.34 × 4 - 4 × 939 45 250775080 78 32. 2887 28891.5 3.6 6.1 2 0.3 1 128883 24 2 15 7 11 553. (- )×18÷+×532518 111 1 7 (38×4 +17×4 )÷ 83.解方程。
5X - 5 =52X - 1X = 1X+ 7X =46 12 3 593解决实质问题1、织一批布,第一天织了总数的1,次日织了 100米,还剩下总数的7。
分数乘除法计算方法总结-分数的乘除法总结
分数乘除法计算方法总结一、分数乘法:1.分数乘整数意义:分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
计算方法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
2.分数(整数)乘分数,即一个数乘以分数意义:求一个数的几分之几是多少。
计算方法:分数乘分数,分子相乘的积作新分子,分母相乘的积作新分母。
能约分的要先约分,再计算,结果要试最简分数。
约分过程中,一定是分子和分母约分,整数和分母约分。
是带分数的要先化成假分数再按照计算方法进行计算。
3.乘积相等的几组乘法算式中,一个因数越大,另一个因数就越小(大配小,小配大)。
4.倒数:乘积是“1”的两个数互为倒数。
“1”的倒数是“1”,“0”没有倒数。
5.求一个数的倒数的方法:用“1”除以这个数。
真分数(假分数)的倒数,直接交换分子和分母的位置;求带分数的倒数,要先把带分数化成假分数,再交换分子和分母的位置;求小数的倒数,要先把小数化成分数,再交换分子和分母的位置;求整数的倒数,把整数写作分母,分子为“1”。
二、分数除法意义1:与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。
[理解]:把一个数平均分成几份,每份是这个数的几份之一。
求每份数是多少(每份数=一个数÷几份或每份数=一个数×几份之一)。
1、分数除以整数:A,可以用分子除以整数(0除外)的商作分子,分母不变。
B,分数除以整数(0除外),等于分数乘这个整数的倒数。
2、分数(整数)除以分数,即一个数除以分数A,可以用分子除以分子的商作新分子,分母除以分母的商作新分母。
B,一个数除以分数(0除外),等于这个数乘以分数的倒数。
分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
三、分数乘、除法混合运算顺序整数、小数、分数的混合运算顺序都是一样的。
1.只含有同级运算的,按从左往右的顺序依次计算。
2.只含有两级运算的,先算第二级运算(乘除法),再算第一级运算(加减法)。
分数乘除法巧算
分数乘除法巧算【知识点播】分数乘法:分数乘以整数,分母不变,分子乘以整数,最后结果化成最简分数;分数乘以分数,分子与分子相乘,分母与分母相乘,最后结果化成最简分数。
分数除法:除以一个分数,等于乘以这个数的倒数。
【经典例题】(1)乘法:例1 84×(43-31) 70453635107⨯⨯例2 )(213439+⨯ (2)57 ×49+27 ×49(2)除法:例1 713 ÷9+19 ×613 6÷67 ÷25例2 239238238238÷ 1667166616661666÷(3)乘除混合运算:例1 161522.3÷⨯ 23- 89 × 34 ÷127例2 524.16.55.2÷+⨯ 1211 ÷81+1213×8课堂小测姓 名 成 绩1.55144233⨯ 200920082008200720072006⨯⨯2.1211 ÷81+1213×8 )(10111099+⨯3.63608435÷ 2005200420042004÷4.1312×73+74×1312+1312 181526.3÷⨯课后作业月 日 姓 名 成 绩 1.5034×74-74×509 3278458039⨯⨯2.288928882887⨯ 2113.0321.66.35.1⨯+÷+⨯3.(45 -23 )×152 718 ÷115 +518 ×511 (38×14 +17×14 )÷783.解方程。
5X -65=125 32X -51X =1 X +97X =34解决实际问题1、织一批布,第一天织了总数的51,第二天织了100米,还剩下总数的157。
分数乘除法简便计算大全
分数乘除法简便计算大全
分数初探
分数是数学中的重要概念,指分子与分母的比值。
如 3/4 就是
分子为3,分母为4的分数。
分数在数学计算中占有重要地位,尤其是在乘除法中。
下面将
介绍一些简便的计算方法。
乘法
1.相乘后约分
当两个分数相乘时,我们可以将它们相乘,然后再将结果约分,例如:
2/3 x 3/4 = 6/12 = 1/2
2.分子分母分别相乘
另一种乘法的方法是将一个分数的分子与另一个分数的分子相乘,然后再将分母相乘,例如:
2/3 x 3/4 = (2 x 3) / (3 x 4) = 6/12 = 1/2
3.交叉相乘
还有一种方法是将一个分数的分子与另一个分数的分母相乘,然后将另一个分数的分子与该分数的分母相乘,最后将两个结果相除,例如:
2/3 x 3/4 = (2 x 4) / (3 x 3) = 8/9
除法
1.相乘倒数
除法可以转化为乘法,即分数A除以分数B可以转化为A乘以B的倒数,例如:
2/3 ÷ 3/4 = 2/3 x 4/3 = 8/9
2.约分倒数
除法也可以转化为约分后的乘法,即分数A除以分数B可以先约分,然后将A与B的倒数相乘,例如:
2/3 ÷ 3/4 = 8/12 ÷ 3/4 = (8/12 x 4/3) / (3/4 x 4/3) = 32/36 = 8/9
以上是分数乘除法的简便计算方法。
掌握这些方法可以使我们在实际计算中更加高效,更加灵活地运用分数。
(完整版)分数乘除法计算方法汇总
(完整版)分数乘除法计算⽅法汇总分数乘除法的计算⼀、知识梳理1.意义:⼀个数乘分数,表⽰求这个数的⼏分之⼏是多少。
2.分数乘分数计算法则:分数乘分数,⽤分⼦乘分⼦,分母乘分母。
3.倒数的意义:乘积是1的两个数互为倒数。
4.分数除法的意义和整数除法的意义相同,都是已知两个因数的积与其中⼀个因数,求另⼀个因数的运算。
5.⽆论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以⼀个不等于0的数,等于乘上这个数的倒数。
⼆、⽅法归纳c b a ?=b acd c b a ?=bd ac ÷b a d c =c d b a ?=bcad三、课堂精讲:【课前复习】1. 5+5+5=()×()=(),表⽰:。
整数乘法的意义:求⼏个相同加数的和的简便运算.2.计算:⽤加法算:92+92+92=9222++=96=32⽤乘法算:92×()3.整数除法的意义是什么?4.根据算式32×25=800写出两道除法算式。
5.填空。
(1)30÷5表⽰把30平均分成( )份,求其中( )份是多少。
(2)求18的31是多少,可以⽤算式18×( ),也可以⽤算式18÷( ),所以18÷3=18×( )。
【新授】(⼀).分数乘法的意义及法则: 1、分数乘整数(1)分数乘整数的意义可以理解为求这个整数的⼏分之⼏是多少或⼏个相同加数的和或表⽰⼀个数的⼏倍是多少。
(2)分数乘整数的计算法则:分数乘整数,⽤作分⼦,分母。
分数乘分数,⽤作分⼦,作分母. 2、分数乘分数(1)意义:⼀个数乘分数,表⽰求这个数的⼏分之⼏是多少。
(2)分数乘分数计算法则:分数乘分数,⽤分⼦乘分⼦,分母乘分母。
例1.说出下⾯各题的意义和得数。
1×7 32×4 15×1576×85【规律⽅法】巩固分数乘法的意义,会运⽤分数乘整数的计算法则。
第11讲 分数的乘除法(3种题型)(原卷版)
第11讲 分数的乘除法(3种题型)【知识梳理】一:分数的乘法1.分数与分数相乘两个分数相乘,将分子相乘的积作积的分子,分母相乘的积作积的分母.即:p m p m q n q n⨯⨯=⨯(0q ≠,0n ≠) 2.整数与分数相乘整数与分数相乘,整数与分数的分子的积作积的分子,分母不变.即:m a m a n n⨯⨯=(0n ≠) 3.分数的乘法的运用整数a 的m n 可列式为:m a n⨯(0n ≠); 分数p q 的m n 可列式为:p m q n ⨯(0q ≠,0n ≠). 二:分数的除法1、倒数1除以一个不为零的数得到的商,叫做这个数的倒数.a 的倒数是1a(0a ≠),p q 的倒数是q p (0p ≠,0q ≠). 互为倒数的两个数的乘积是1.2.分数除法的运算法则甲数除以乙数(0除外),等于甲数乘以乙数的倒数.用字母表示就是:m p m q n q n p÷=⨯(0n ≠,0p ≠,0q ≠) 3.分数的除法的运用 已知某数的m n 等于a ,则:某数 = m a n÷. 【考点剖析】题型一:分数的乘法例1.(1)3354⨯; (2)4578⨯; (3)3954⨯; (4)2934⨯.例2.(1)5612⨯;(2)1136⨯;(3)1422⨯.例3.(1)23354⨯;(2)26437⨯;(3)5232713⨯.例4.下列运算正确的是()A.482510⨯= B.236777⨯=C.228855⨯=D.100个38就是38的100倍例5. 5米的29和2米的59()A.一样长B.5米的29长C.2米的59长D.无法比较例6.小智每天早上起床后,用25小时晨练,那么一个周小智用多长时间晨练?例7.正方形的边长是34米,它的周长是多少?面积是多少?例8.1小时的34是______分钟;5吨大米的125是______千克.例9.123可以看作是由______个112组成的分数;______个16组成分数526.例10.比12米的15少12米的线段长______米.例11.在括号中填入“<”、“>”或“=”.(1)2435⨯()23;(2)6574⨯()67;(3)3152526⨯()32.例12.计算:(1)31512352618⨯⨯;(2)47315242⎛⎫-⨯⎪⎝⎭;(3)21132542⨯⨯⨯;(4)8370.259416⎡⎤⎛⎫⨯--⎪⎢⎥⎝⎭⎣⎦.例13.修一条公路,第一天修完全长的14,第二天修了余下的23,第二天修了全长的几分之几?例14.地球上1千克的物体,在月球上只有16千克;小智的体重是38千克,如果到了月球上,他的体重比在地球上轻了多少千克?例15.100米长的绳子,先剪去它的25还多5米,再剪去余下的25,还剩下绳子多少米?题型二:分数的除法例1.写出以下各数的倒数:23、125、7、123、n (0n ≠).例2.填空:(1)()454969÷=⨯;(2)()1414315154÷=⨯; (3)()335853÷=⨯; (4)()1111010211÷=⨯. 例3.计算:(1)5445÷; (2)5728÷; (3)51059÷;(4)1118118÷; (5)32273÷; (6)113146÷.例4.解方程:(1)5157x =; (2)791814x =.例5.14中包含______个1100;334由______个38组成. 例6.如果8是某数的15,那么某数是______. 例7.下列各种表达正确的是( )A .真分数的倒数一定是假分数B .假分数的倒数一定是真分数C .任何不等于0的数的倒数都大于这个数D .正整数的倒数一定是真分数例8.如果一节课的时间是34个小时,那么______节课的时间是6小时. 例9.如果x 是y 的35,则y 是x 的______. 例10.小智想去看电影《功夫熊猫》,他家距离电影院437千米,他计划用47个小时骑自行车到达电影院.那么小智骑自行车的平均速度是每小时多少千米?例11.小方在做分数除法练习时,把“除以23”错写成“除以32”,得到的答案是512,你能告诉小方这道题的正确答案吗?题型三:分数乘除混合运算例1.计算:115513344⨯-÷;例2.计算:32412)]41167(43[⨯÷--例3. 计算: 132132483⎛⎫-÷+ ⎪⎝⎭.例4.计算:(1)1143213155÷⨯;(2)1385316÷⨯;(3)313212555⎛⎫÷÷⎪⎝⎭;(4)15114149⎛⎫÷÷⎪⎝⎭.例5.计算:53185 84458⨯+÷+.例6.计算:342311 453102⎛⎫⨯-+÷⎪⎝⎭.例7.解方程:531 +x=2 646.【过关检测】一.选择题(共4小题)1.(2022秋•杨浦区期末)把一根绳子剪成两段,第一段长米,第二段占全长的,那么下列说法中正确的是()A.第一段长B.第二段长C.两段一样长D.无法确定哪段更长2.(2022秋•杨浦区期中)下列运算正确的是()A.B.C.D.3.(2020秋•浦东新区期末)计算:7×÷7×的值等于()A.1B.C.49D.4.(2022秋•杨浦区期中)甲、乙两位同学看同一本书,甲20分钟看12页,乙15分钟看8页,问两人中阅读速度较快的是()A.甲B.乙C.一样快D.无法判断二.填空题(共13小题)5.(2022秋•青浦区期中)计算:1=.6.(2021秋•嘉定区期中)计算:=.7.(2022秋•杨浦区期中)某数的是60,那么这个数是.8.(2022秋•奉贤区校级期中)的相当于30的.9.(2021秋•普陀区期末)2中有个.10.(2022秋•松江区期中)里有个.11.(2021秋•静安区校级期中)小马虎在做分数练习时,把一个分数除以错看成加上,由此得出的结果是,那么这道题正确的结果应该是.12.(2022秋•杨浦区期末)在北京举办的第二十四届冬季奥运会上,我国获得了9枚金牌,占获得奖牌总数的,那么在本届冬奥会上我国总共获得枚奖牌.13.(2022秋•徐汇区校级期中)甲工程队负责修理一段5千米的道路,预计13天修完,则甲工程队平均每天要修千米,每天修这段路的.(填几分之几)14.(2022秋•嘉定区期中)把一筐重5千克的苹果平均分成8份,那么每份是总体的(填几分之几).15.(2021秋•徐汇区校级期中)一筐橙子50斤平均分成5份,每一份是这筐橙子的.(用分数表示)16.(2022秋•黄浦区期中)比米的多米等于米.17.(2021秋•黄浦区期中)把2磅的蛋糕平均分成7份,每份是原蛋糕的.(填几分之几)三.解答题(共9小题)18.(2022秋•浦东新区校级期中)计算:1×2×.19.(2021秋•金山区期末)计算:÷1×3.20.(2022秋•浦东新区校级期中)计算:3÷2.21.(2021秋•嘉定区期中)计算:.22.(2022秋•浦东新区校级期中)小明在做分数除法计算时,把某数除以,误认为等于除以某数,从而得到的答案是,那么这道题原来的正确答案是多少?23.(2021秋•长宁区校级期中)小明在做分数乘除法计算时,误以为某数除以可以写成除以某数,从而得到的答案是,那么这道题的正确答案本应该是多少?24.(2020秋•浦东新区校级期中)一辆汽车小时行驶24千米,平均每小时行驶多少千米?行驶1米需要多少秒?25.(2020秋•浦东新区校级期中)一批货物,汽车每次可运走它的,4次可运走它的几分之几?如果这批货物重116吨,4次已经运走了多少吨?26.(2022秋•浦东新区校级期中)一个数的是5与1的和,求这个数.。
分数乘除法的知识点总结和归纳练习
分数乘除法的知识点总结和归纳练习分数乘除法的知识点归纳和总结练一、分数乘法一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如,88/9 × 5表示求5个9的和是多少。
2.分数乘分数是求一个数的几分之几是多少。
例如,83/83 × 4表示求9的4分之几是多少。
二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变(整数和分母约分)。
2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
练一、分数与整数相乘:5/12 × 4 = 2 6/11 × 6/13 = 15/24 × 13/48 = 2/21 × 7 = 6/10 ×20 = 4/25 × 15 = 79/18 × 12 = 16/20练二、分数和分数相乘:注意:能约分的先约分,再计算。
2/5 × 3/4 = 3/1067/58 × 7/8 = 469/2329/11 × 7/15 = 21/551215/49 × 16/25 = 972/2455/1 × 10/1 = 5013/19 × /1217 = 5070/221三)规律:(乘法中比较大小时)一个数(除外)乘大于1的数,积大于这个数。
一个数(除外)乘小于1的数(除外),积小于这个数。
一个数(除外)乘1,积等于这个数。
练三、比较大小:5/6 × 4 < 5/69/.3/98 × 2/86/3.5/四)分数混合运算的运算顺序和整数的运算顺序相同。
练四、分数乘、加、减混合:/155 × (63-7)/5 × 16/14 = 4608/2175/16 × 14 + 325/46 × 4 + 1/3 + 12 × 15/9 - 14/5 × 27/35 - (1-18/19) × 38/45 - 6/15 × (5-19/13) × 91 + 13/9 = -1005/46五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
分数乘除法简便计算
分数乘除法简便计算1. 引言分数乘除法是数学中常见的运算方法之一,但有时候可能会让人感到困惑和繁琐。
本文将介绍一些简便的计算方法,帮助您更快速、准确地进行分数的乘除运算。
2. 分数乘法计算方法2.1 乘法原理分数的乘法是基于以下原理进行计算:原理:两个分数相乘时,可以将分子乘以分子、分母乘以分母,然后简化得到最终结果。
2.2 乘法步骤以下是一种简便的分数乘法计算步骤:1. 将两个分数的分子相乘,得到新的分子;2. 将两个分数的分母相乘,得到新的分母;3. 对新的分子和分母进行简化,得到最终结果。
举例说明:3/4 × 2/5 = (3 × 2) / (4 × 5) = 6 / 20 = 3 / 103. 分数除法计算方法3.1 除法原理分数的除法是基于以下原理进行计算:原理:两个分数相除时,可以将除法转化为乘法,即将被除数乘以倒数作为除数,然后按照分数乘法的方法进行计算。
3.2 除法步骤以下是一种简便的分数除法计算步骤:1. 将被除数乘以除数的倒数,得到一个新的分数;2. 根据乘法的计算方法,对新的分数进行乘法运算;3. 对新的分子和分母进行简化,得到最终结果。
举例说明:3/4 ÷ 2/5 = (3/4) × (5/2) = (3 × 5) / (4 × 2) = 15 / 84. 总结本文介绍了分数乘法和除法的简便计算方法。
通过运用乘法原理和除法转化为乘法的原理,我们可以快速、准确地进行分数的乘除运算。
希望这些方法能帮助您更轻松地处理分数计算,提高数学运算的效率。
> 注意:以上方法适用于一般情况下,若涉及到复杂分数,或者需要精确计算时,建议使用更具体的数学方法和工具进行计算。
小学数学分数乘除法教案5篇
小学数学分数乘除法教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、述职报告、合同协议、心得体会、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, job reports, contract agreements, personal experiences, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!小学数学分数乘除法教案5篇在制定教案时,我们要注重培养学生的思辨和创造能力,教案编写过程中,我们应该根据学生的学习能力和学习需求,合理安排教学步骤和时间分配,下面是本店铺为您分享的小学数学分数乘除法教案5篇,感谢您的参阅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数乘除法Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT一.分数乘法(一)分数乘整数1、分数乘整数的意义:表示求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、计算方法:分母不变,分子乘整数。
(二)分数乘分数1、意义:表示求一个分数的几分之几是多少。
2、计算方法:分子乘分子,分母乘分母,能约分的要先约分。
一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a (三)分数乘加、乘减混合运算及简算1、分数混合运算的运算顺序与整数混合运算的运算顺序相同。
2、整数乘法的运算定律对于分数乘法也同样适用。
3、合理地应用运算定律,可以使一些分数计算变得简便。
(四)求一个数的几分之几是多少的问题解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
4、写数量关系式技巧:(1)“的” 相当于“×” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:(1)“的” 相当于“×” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量二.分数除法(一)倒数的认识1、乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求一个数(0除外)的倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0,(分母不能为0)4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
(二)分数除法1、意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。
(三)已知一个数的几分之几是多少,求这个数的问题的解法1、除法:多少÷一个数2、方程解法:设这个数为x,几分之几 × x = 多少(四)已知比一个数多(或少)几分之几的数是多少,求这个数的问题的解法1、组合除法:多少÷(1±几分之几)2、方程解法:设这个数为x, x ±几分之几 × x = 多少三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0,(分母不能为0)4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
分数除法一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“ ”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数– 1 ②求少几分之几: 1 - 小数÷大数或①求多几分之几(大数-小数)÷小数②求少几分之几:(大数-小数)÷大数三.比(一)比的意义1、比的意义:两个数相除又叫两个数的比。
2、比与分数、除法的关系:3、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
4、根据分数与除法的关系,两个数的比也可以写成分数形式。
5、比和除法、分数的联系:比前项比号“:” 后项比值除法被除数除号“÷”除数商分数分子分数线“—” 分母分数值6、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
7、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)比的基本性质1,比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2,化简比:把两个数的比化成最简单的整数比。
(1)按化简整数比的方法来化简。
①用比的前项和后项同时除以它们的最大公因数。
②两个分数的比:用前项后项同时乘分母的最小公倍数,再③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
注意: 最后结果要写成比的形式。
如: 15∶10 = 15÷10 = = 3∶2(三)比的应用按比例分配问题的解题方法:先求出总份数,再求各部分量占总量的几分之几,最后求出各部分量。
三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)∶∶∶∶前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比前项比号“:” 后项比值除法被除数除号“÷” 除数商分数分子分数线“—” 分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:①用比的前项和后项同时除以它们的最大公因数。
(1)②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
注意: 最后结果要写成比的形式。
如: 15∶10 = 15÷10 = = 3∶25.按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
如:已知两个量之比为,则设这两个量分别为。
6、路程一定,速度比和时间比成反比。
(如:路程相同,速度比是4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)。