2021年中考数学全真模拟试卷一(含答案)

合集下载

备考2021年中考数学全真模拟题(含详解)

备考2021年中考数学全真模拟题(含详解)

2021年初中数学中考全真模拟题考试时间:120分钟 满分:120分一、选择题:(本大题共10个小题,每小题3分,共30分) 1.如果收入10元记作+10元,那么支出10元记作( ) A .+20 元B .+10元C .﹣10元D .﹣20元2.2019新型冠状病毒的直径是0.00012mm ,将0.00012用科学记数法表示是( ) A .610120-⨯B .4102.1-⨯C .31012-⨯D .5102.1-⨯3.下列图形是中心对称图形的是( )A .B .C .D .4.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )A .调查B .实验C .直接观察D .测量 5.下列计算正确的是( ) A .8a ﹣a =7B .a 2+a 2=2a 4C .a 6÷a 2=a 3D .2a •3a =6a 26.菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A .5B .20C .24D .327.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( ) A .6B .7C .8D .98.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西55°方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形第8题图 第9题图9.如图,在△ABC 中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .30B .25C .20D .1510.已知二次函数y =ax 2+bx +c 的图象经过(﹣3,0)与(1,0)两点,关于x 的方程ax 2+bx +c +m =0(m >0)有两个根,其中一个根是3.则关于x 的方程ax 2+bx +c +n =0 (0<n <m )有两个整数根,这两个整数根是( ) A .﹣2或0B .﹣4或2C .﹣5或3D .﹣6或4二、填空题:本大题共6个小题,每小题4分,共24分,把答案直接填在答题卷的横线上. 11.分解因式:a 3﹣a = .12.如图,在数轴上表示的x 的取值范围是 .13.方程21121-=+x x 的解是x = . 14.如图,AB 是⊙O 的直径,点C ,D ,E 都在⊙O 上,∠1=55°,则∠2= °.第14题图 第15题图 第16题图15.如图,在边长为3的正六边形ABCDEF 中,将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处,此时边AD ′与对角线AC 重叠,则图中阴影部分的面积是 .16.如图,在边长为32的菱形ABCD 中,∠C =60°,点E ,F 分别是AB ,AD 上的动点,且AE =DF ,DE 与BF 交于点P .当点E 从点A 运动到点B 时,则点P 的运动路径长为 . 三、解答题:本大题共8个小题,共66分,解答题应写出文字说明、证明过程或演算步骤. 17.(本题6分)计算:()0o22021+8sin 45----.18.(本题6分)先化简,再计算:221211a a a a a -+-+-,其中a =2.19.(本题6分)如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF . (1)求证:△ABC ≌△DEF ;(2)连接AD ,求证:四边形ABED 是平行四边形.20.(本题8分)在镇、村两委及帮扶人大力扶持下,贫困户周大叔与某公司签订了农产品销售合同,并于今年春在自家荒坡上种植了A,B,C,D四种不同品种的果树苗共300棵,其中C品种果树苗的成活率为90%,几个品种的果树苗种植情况及其成活情况分别绘制在如图①和图②两个尚不完整的统计图中.(1)种植B品种果树苗有棵;(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个品种的果树苗成活率最高?21.(本题8分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?22.(本题8分)如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是弧BD的中点,EF∥BC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.23.(本题10分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB 的面积.24.(本题12分)如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案一、选择题(每题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案 CBDADBDACB二、填空题(每题4分)11.()()11-+a a a ; 12.x <1; 13.-3; 14.35; 15.3π; 16.43π;三、解答题(共46分)17.(本题满分6分) 18.(本题满分6分)原式=1225- 原式=11-+a a ,当a =2时,原式=319.(本题满分6分) 证明:(1)∵BE =CF ∴BE +EC =CF +EC ∴BC =EF在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF (SSS ) (2)由(1)中△ABC ≌△DEF ∴∠B =∠DEF ∴AB ∥DE又∵AB =DE ∴四边形ABED 是平行四边形 20.(本题满分8分)解:(1)300×(1﹣35%﹣20%﹣20%)=300×25%=75(棵) 故答案为:75(2)300×20%×90%=54(棵)补全统计图如图所示: (3)A 品种的果树苗成活率:%3530084⨯×100%=80%品种的果树苗成活率:7560×100%=80% ;C 品种的果树苗成活率:90% D 品种的果树苗成活率:%2030051⨯×100%=85%,所以,C 品种的果树苗成活率最高.解:(1)设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100﹣x )支根据题意,得:6x +10(100﹣x )=1300﹣378 解得x =19.5因为钢笔的数量不可能是小数,所以学习委员搞错了(2)设笔记本的单价为a 元,根据题意,得:6x +10(100﹣x )+a =1300﹣378 整理,得:x =23941+a 因为0<a <10,x 随a 的增大而增大,所以19.5<x <22 ∵x 取整数∴x =20,21。

浙江省台州市2021-2022学年中考数学全真模拟试题含解析

浙江省台州市2021-2022学年中考数学全真模拟试题含解析

2021-2022中考数学模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(共10小题,每小题3分,共30分)1.一元二次方程2240x x ++=的根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根2.在Rt △ABC 中,∠ACB=90°,AC=12,BC=9,D 是AB 的中点,G 是△ABC 的重心,如果以点D 为圆心DG 为半径的圆和以点C 为圆心半径为r 的圆相交,那么r 的取值范围是( )A .r <5B .r >5C .r <10D .5<r <10 3.要使式子2a a +有意义,a 的取值范围是( ) A .0a ≠ B .且0a ≠ C .2a >-. 或0a ≠ D .2a ≥- 且0a ≠4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=15.如图,△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°6.在下列网格中,小正方形的边长为1,点A 、B 、O 都在格点上,则A ∠的正弦值是()A .55B .510C .255D .127.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )A .6B .2C .-2D .-68.点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在反比例函数y =1x 的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 39.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为( )A .4.67×107B .4.67×106C .46.7×105D .0.467×107 10.如图,点F 是ABCD 的边AD 上的三等分点,BF 交AC 于点E ,如果△AEF 的面积为2,那么四边形CDFE的面积等于( )A .18B .22C .24D .46二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=_____度.12.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x 个,则根据题意,可列出方程:__________.13.若式子x1x+有意义,则x的取值范围是.14.已知,则=_______.15.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).16.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.三、解答题(共8题,共72分)17.(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星6C 卫星发射升空,卫星进入预定轨道.如图,火星从地面C处发射,当火箭达到A点时,从位于地面雷达站D处测得DA 的距离是6km,仰角为42.4︒;1秒后火箭到达B点,测得DB的仰角为45.5︒.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求发射台与雷达站之间的距离CD;(Ⅱ)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?18.(8分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC 的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.19.(8分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?20.(8分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣32与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.21.(8分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?22.(10分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?23.(12分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=27,AC=22,求AD的长.24.一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.2、D【解析】延长CD 交⊙D 于点E ,∵∠ACB=90°,AC=12,BC=9,∴AB=22AC BC +=15, ∵D 是AB 中点,∴CD=115AB=22, ∵G 是△ABC 的重心,∴CG=2CD 3=5,DG=2.5, ∴CE=CD+DE=CD+DF=10,∵⊙C 与⊙D 相交,⊙C 的半径为r ,∴ 510r <<,故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG 的长是解题的关键.3、D【解析】根据二次根式和分式有意义的条件计算即可.【详解】解:∵2a a+ 有意义, ∴a+2≥0且a≠0,解得a≥-2且a≠0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.4、B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .5、A【解析】根据线段垂直平分线的性质得到AD=DC ,根据等腰三角形的性质得到∠C=∠DAC ,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN 是AC 的垂直平分线,则AD=DC ,故∠C=∠DAC ,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A .【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键. 6、A【解析】由题意根据勾股定理求出OA ,进而根据正弦的定义进行分析解答即可.【详解】解:由题意得,2OC =,4AC =,由勾股定理得,2225AO AC OC+=5OCsinAOA∴==故选:A.【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7、A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.8、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=1x中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.9、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将4670000用科学记数法表示为4.67×106,故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.10、B【解析】连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE 的面积.【详解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴AFBC=AEEC=13,∵△AEF与△EFC高相等,∴S△EFC=3S△AEF,∵点F是□ABCD的边AD上的三等分点,∴S△FCD=2S△AFC,∵△AEF 的面积为2,∴四边形CDFE 的面积=S △FCD + S △EFC =16+6=22.故选B.【点睛】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.二、填空题(本大题共6个小题,每小题3分,共18分)11、30°【解析】根据旋转的性质得到∠BOD=45°,再用∠BOD 减去∠AOB 即可.【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后,得到△COD ,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD -∠AOB=45°-15°=30°. 故答案为30°. 12、300200(110%)20x x =⨯-- 【解析】 【分析】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据甲检测300个比乙检测200个所用的时间少10%,列出方程即可. 【解答】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据题意有: ()300200110%20x x =⨯--. 故答案为()300200110%.20x x =⨯-- 【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.13、x 1≥-且x 0≠【解析】∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.14、3【解析】依据可设a=3k,b=2k,代入化简即可.【详解】∵,∴可设a=3k,b=2k,∴=3故答案为3.【点睛】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.15、增大.【解析】根据二次函数的增减性可求得答案【详解】∵二次函数y=x2的对称轴是y轴,开口方向向上,∴当y随x的增大而增大.故答案为:增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.16、(2,3)【解析】作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.【详解】如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,∵点A 、B 的坐标分别为(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC ≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.三、解答题(共8题,共72分)17、 (Ⅰ)发射台与雷达站之间的距离CD 约为4.44km ;(Ⅱ)这枚火箭从A 到B 的平均速度大约是0.51/km s .【解析】(Ⅰ)在Rt △ACD 中,根据锐角三角函数的定义,利用∠ADC 的余弦值解直角三角形即可;(Ⅱ)在Rt △BCD 和Rt △ACD 中,利用∠BDC 的正切值求出BC 的长,利用∠ADC 的正弦值求出AC 的长,进而可得AB 的长,即可得答案.【详解】(Ⅰ)在Rt ACD 中,6DA km =,42.4A CD ADC cos DC AD∠∠=︒=,≈0.74, ∴()642.4 4.44km CD AD cos ADC cos ∠=⋅=⨯︒≈.答:发射台与雷达站之间的距离CD 约为4.44km . (Ⅱ)在Rt BCD 中, 4.44km 45.5,BC CD BDC tan BDC CD∠∠==︒=,, ∴()4.4445.5 4.44 1.02 4.5288km BC CD tan BDC tan ∠=⋅=⨯︒≈⨯=.∵在Rt ACD 中,AC sin ADC AD∠=, ∴()642.4 4.02km AC AD sin ADC sin ∠=⋅=⨯︒≈.∴()4.5288 4.020.50880.51km AB BC AC =-=-=≈.答:这枚火箭从A 到B 的平均速度大约是0.51/km s .【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.18、(1)见解析 (2)见解析【解析】(1)由三角形中位线知识可得DF ∥BG ,GH ∥BF ,根据菱形的判定的判定可得四边形FBGH 是菱形;(2)连结BH ,交AC 于点O ,利用平行四边形的对角线互相平分可得OB=OH ,OF=OG ,又AF=CG ,所以OA=OC .再根据对角线互相垂直平分的平行四边形得证四边形ABCH 是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F 、G 是边AC 的三等分点,∴AF=FG=GC .又∵点D 是边AB 的中点,∴DH ∥BG .同理:EH ∥BF .∴四边形FBGH 是平行四边形,连结BH ,交AC 于点O ,∴OF=OG ,∴AO=CO ,∵AB=BC ,∴BH ⊥FG ,∴四边形FBGH 是菱形;(2)∵四边形FBGH 是平行四边形,∴BO=HO ,FO=GO .又∵AF=FG=GC ,∴AF+FO=GC+GO ,即:AO=CO .∴四边形ABCH 是平行四边形.∵AC ⊥BH ,AB=BC ,∴四边形ABCH 是正方形.【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.19、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人,骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人;(2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.20、(1)y =12x 2+x ﹣32;(2)y =﹣x +1;(3)当x =﹣2时,最大值为94;(4)存在,点D 的横坐标为﹣37或﹣7. 【解析】 (1)设二次函数的表达式为:y =a (x +3)(x ﹣1)=ax 2+2ax ﹣3a ,即可求解;(2)OC ∥DF ,则1,5AC AO CD OF == 即可求解; (3)由S △ACE =S △AME ﹣S △CME 即可求解;(4)分当AP 为平行四边形的一条边、对角线两种情况,分别求解即可.【详解】(1)设二次函数的表达式为:y =a (x +3)(x ﹣1)=ax 2+2ax ﹣3a ,即:332a -=-,解得:12a =, 故函数的表达式为: 21322y x x =+-①; (2)过点D 作DF ⊥x 轴交于点F ,过点E 作y 轴的平行线交直线AD 于点M ,∵OC ∥DF ,∴1,5AC AO CD OF ==OF =5OA =5, 故点D 的坐标为(﹣5,6),将点A 、D 的坐标代入一次函数表达式:y =mx +n 得:650m n m n =-+⎧⎨=+⎩,解得:11.m n =-⎧⎨=⎩即直线AD 的表达式为:y =﹣x +1,(3)设点E 坐标为213,22x x x ⎛⎫+- ⎪⎝⎭, 则点M 坐标为(),1x x -+, 则221315122222EM x x x x x =-+--+=--+, ()211912244ACE AME CME S S S EM x ,=-=⨯⨯=-++ ∵104a =-<,故S △ACE 有最大值, 当x =﹣2时,最大值为94; (4)存在,理由:①当AP 为平行四边形的一条边时,如下图,设点D 的坐标为213,22t t t ⎛⎫+- ⎪⎝⎭, 将点A 向左平移2个单位、向上平移4个单位到达点P 的位置,同样把点D 左平移2个单位、向上平移4个单位到达点Q 的位置,则点Q 的坐标为215222t t t ⎛⎫-++ ⎪⎝⎭,, 将点Q 的坐标代入①式并解得:3t ;=- ②当AP 为平行四边形的对角线时,如下图,设点Q 坐标为213,22t t t ⎛⎫+- ⎪⎝⎭,点D 的坐标为(m ,n ), AP 中点的坐标为(0,2),该点也是DQ 的中点,则:20213222,2m t n t t +⎧=⎪⎪⎨++-⎪=⎪⎩ 即: 2111,22m t n t t =-⎧⎪⎨=--+⎪⎩将点D 坐标代入①式并解得:7m =.故点D 的横坐标为:3-77.【点睛】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.21、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.【解析】(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.【详解】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等;当顾客消费少于1500元时,300+0.8x>x不买卡合算;当顾客消费大于1500元时,300+0.8x<x买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.【点睛】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22、18 60分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;(3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x,则:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)4183P 6010==∴第天,抽到第4天回收问卷的概率是310; (4)第4天收回问卷获奖率105189=,第6天收回问卷获奖率23. ∵5293<, ∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.23、(1)证明见解析;(2)AD=214.【解析】(1)如图,连接OA ,根据同圆的半径相等可得:∠D=∠DAO ,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO ,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA ⊥BC ,由垂径定理得:AB AC =,FB=12BC ,根据勾股定理计算AF 、OB 、AD 的长即可. 【详解】(1)如图,连接OA ,交BC 于F ,则OA=OB ,∴∠D=∠DAO ,∵∠D=∠C ,∴∠C=∠DAO ,∵∠BAE=∠C ,∴∠BAE=∠DAO ,∵BD 是⊙O 的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE ⊥OA ,∴AE 与⊙O 相切于点A ;(2)∵AE ∥BC ,AE ⊥OA ,∴OA ⊥BC ,∴AB AC =,FB=12BC , ∴AB=AC ,∵BC=27,AC=22,∴BF=7,AB=22,在Rt △ABF 中,AF=()()22227-=1,在Rt △OFB 中,OB 2=BF 2+(OB ﹣AF )2,∴OB=4,∴BD=8,∴在Rt △ABD 中,AD=22648214BD AB -=-=.【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.24、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.考点:列表法与树状图法.。

2021年广东省深圳市中考数学模拟试卷(一) 解析版

2021年广东省深圳市中考数学模拟试卷(一)  解析版

2021年广东省深圳市中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.2的相反数是()A.﹣B.C.2D.﹣22.据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为()A.37×105B.3.7×105C.3.7×106D.0.37×1073.计算m6÷m2的结果是()A.m3B.m4C.m8D.m124.下列几何体中,从左面看到的图形是圆的是()A.B.C.D.5.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2B.3C.4D.56.下列说法正确的是()A.若点C是线段AB的黄金分割点,AB=2,则AC=﹣1B.平面内,经过矩形对角线交点的直线,一定能平分它的面积C.两个正六边形一定位似D.菱形的两条对角线互相垂直且相等7.如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为()A.9B.10C.11D.128.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.69.如图,等腰直角三角形ABC以1cm/s的速度沿直线l向右移动,直到AB与EF重合时停止.设xs时,三角形与正方形重叠部分的面积为ycm2,则下列各图中,能大致表示出y 与x之间的函数关系的是()A.B.C.D.10.如图,在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,得到△PGC,边CG交AD于点E,连接BE,∠BEC=90°,BE交PC于点F,那么下列选项正确的有()①BP=BF;②若点E是AD的中点,则△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④当AD=25,可得sin∠PCB=;⑤当BP=9时,BE•EF=108.A.5个B.4个C.3个D.2个二、填空题(本大题共5小题,每小题3分,共15分)11.若+|tan B﹣|=0,那么△ABC的形状是.12.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.13.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2021次后,顶点A在整个旋转过程中所经过的路程之和是.14.如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y 轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F 点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF沿EF对折后,C点恰好落在OB上的点D处,则k的值为.15.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.三、解答题:(本大题共7小题,其中第16题5分,第17题6分,第18题8分,第19题8分,第20题8分,第21题10分,第22题10分,共55分)16.(5分)计算:|1﹣|﹣()﹣1+(2020﹣π)0﹣2cos45°.17.(6分)先化简,再求值:÷(2+),其中a=2.18.(8分)深圳某中学为了解九年级学生的体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了名学生.(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学九年级共有700名学生,请你估计该中学九年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.19.(8分)如图,⊙O是△ABC的外接圆,弦AE交BC于点D,且.(1)求证:AB=AC;(2)连接BO并延长交AC于点F,若AF=4,CF=5,求⊙O的半径.20.(8分)在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式;每天所得销售利润w(元)与销售单价x(元)之间的函数关系式.(2)若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)若每天销售量不少于100袋,且每袋口罩的销售利润至少为17元,则销售单价定位多少元时,此时利润最大,最大利润是多少?21.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)求点F到直线CA的距离;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)并求出该图形的面积;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.22.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;(3)在(2)的条件下,点F的坐标为(0,),点M在抛物线上,点N在直线BC上.当以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.2021年广东省深圳市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.2的相反数是()A.﹣B.C.2D.﹣2【分析】根据相反数的概念作答即可.【解答】解:根据相反数的定义可知:2的相反数是﹣2.故选:D.2.据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为()A.37×105B.3.7×105C.3.7×106D.0.37×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于3700000人有7位,所以可以确定n=7﹣1=6.【解答】解:3700000=3.7×106,故选:C.3.计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【分析】利用同底数幂的除法运算法则计算得出答案.【解答】解:m6÷m2=m6﹣2=m4.故选:B.4.下列几何体中,从左面看到的图形是圆的是()A.B.C.D.【分析】分别得出各个几何体的左视图,进行判断即可.【解答】解:选项A中的几何体的左视图为三角形,因此不符合题意;选项B中的几何体其左视图为等腰三角形,因此选项B不符合题意;选项C中的几何体的左视图是长方形,因此选项C不符合题意;选项D中的几何体,其左视图为圆,因此选项D符合题意,故选:D.5.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2B.3C.4D.5【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,根据相似三角形的性质定理计算即可.【解答】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴=,即=,解得,CE=4,则OE=CE﹣OC=3,∴点B'的横坐标是3,故选:B.6.下列说法正确的是()A.若点C是线段AB的黄金分割点,AB=2,则AC=﹣1B.平面内,经过矩形对角线交点的直线,一定能平分它的面积C.两个正六边形一定位似D.菱形的两条对角线互相垂直且相等【分析】根据黄金分割、中心对称图形、位似变换、菱形的性质判断即可.【解答】解:A、若点C是线段AB的黄金分割点,AB=2,当AC>BC时,AC=﹣1,当AC<BC时,AC=3﹣,本选项说法错误;B、平面内,经过矩形对角线交点的直线,一定能平分它的面积,本选项说法正确;C、两个正六边形不一定位似,本选项说法错误;D、菱形的两条对角线互相垂直,但不一定相等,本选项说法错误;故选:B.7.如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为()A.9B.10C.11D.12【分析】根据轴对称的性质得到:AD=DE,AC=CE,结合已知条件和三角形周长公式解答.【解答】解:∵点A与点E关于直线CD对称,∴AD=DE,AC=CE=9,∵AB=7,AC=9,BC=12,∴△DBE的周长=BD+DE+BE=BD+AD+BC﹣AC=AB+BC﹣AC=7+12﹣9=10.故选:B.8.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【分析】根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.9.如图,等腰直角三角形ABC以1cm/s的速度沿直线l向右移动,直到AB与EF重合时停止.设xs时,三角形与正方形重叠部分的面积为ycm2,则下列各图中,能大致表示出y 与x之间的函数关系的是()A.B.C.D.【分析】分别求出x≤2时与2≤x≤4时的函数解析式,然后根据相应的函数图象找出符合条件的选项即可.【解答】解:如图1,当x≤2时,重叠部分为三角形,面积y=•x•x=x2,如图2,当2≤x≤4时,重叠部分为梯形,面积y=×2×2﹣×(x﹣2)2=﹣(x ﹣2)2+4,所以,图象为两段二次函数图象,纵观各选项,只有A选项符合.故选:A.10.如图,在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,得到△PGC,边CG交AD于点E,连接BE,∠BEC=90°,BE交PC于点F,那么下列选项正确的有()①BP=BF;②若点E是AD的中点,则△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④当AD=25,可得sin∠PCB=;⑤当BP=9时,BE•EF=108.A.5个B.4个C.3个D.2个【分析】①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;③判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16;④再判断出△ECF∽△GCP,进而求出PC,即可得出结论;⑤判断出四边形BPGF是菱形,即可得出结论.【解答】解:①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE===20,BE===15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=∴BP=,在Rt△PBC中,PC===,∴sin∠PCB==,故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108;故⑤正确,所以本题正确的有①②③⑤,共4个,故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11.若+|tan B﹣|=0,那么△ABC的形状是锐角三角形.【分析】利用特殊角的三角函数值可得∠A和∠B的度数,进而可得答案.【解答】解:由题意得:cos2A﹣=0,tan B﹣=0,则∠A=45°,∠B=60°,∴∠C=180°﹣60°﹣45°=75°,∴△ABC的形状是锐角三角形.故答案为:锐角三角形.12.已知二次函数y=2x2+bx+4顶点在x轴上,则b=±4.【分析】根据二次函数y=2x2+bx+4顶点在x轴上,可知顶点的坐标为0,即可得到=0,从而可以得到b的值.【解答】解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.13.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2021次后,顶点A在整个旋转过程中所经过的路程之和是3032π.【分析】矩形旋转一次,顶点A所经过的路径是以右下角的顶点为圆心,这个顶点到A 的距离为半径的圆周长的,每转4次又回到开始位置,即可得出答案.【解答】解:旋转1次,A旋转到左上角,A经过的路径为:2π•4×=2π,旋转2次,A旋转到右上角,A经过的路径为:2π+2π•5×=π,旋转3次,A旋转到右下角,A经过的路径为:π+2π•3×=6π,旋转4次,A旋转到左下角,A经过的路径为:6π+2π•0×=6π,即旋转4次,A又回到左下角,故每旋转4次,A经过的路径为6π,而2021=4×505+1,∴连续旋转2021次后,顶点A在整个旋转过程中所经过的路程之和是6π×505+2π=3032π,故答案为:3032π.14.如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y 轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F 点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF沿EF对折后,C点恰好落在OB上的点D处,则k的值为.【分析】证明Rt△MED∽Rt△BDF,则==,而EM:DB=ED:DF=4:3,求出DB,在Rt△DBF中,利用勾股定理即可求解.【解答】解:如图,过点E作EM⊥x轴于点M,∵将△CEF沿EF对折后,C点恰好落在OB上的D点处,∴∠EDF=∠C=90°,EC=ED,CF=DF,∴∠MDE+∠FDB=90°,而EM⊥OB,∴∠MDE+∠MED=90°,∴∠MED=∠FDB,∴Rt△MED∽Rt△BDF;又∵EC=AC﹣AE=4﹣,CF=BC﹣BF=3﹣,∴ED=4﹣,DF=3﹣,∴==;∵EM:DB=ED:DF=4:3,而EM=3,∴DB=,在Rt△DBF中,DF2=DB2+BF2,即(3﹣)2=()2+()2,解得k=,故答案为.15.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为4或2.【分析】如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H,证明四边形DGBT是平行四边形,求出DH,TH即可解决问题.【解答】解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG∥BT,∵AD=DB,AE=EC,∴DE∥BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH===,∴=,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.当点F在ED的延长线上时,同法可得DT=BG=3﹣1=2.故答案为4或2.三、解答题:(本大题共7小题,其中第16题5分,第17题6分,第18题8分,第19题8分,第20题8分,第21题10分,第22题10分,共55分)16.(5分)计算:|1﹣|﹣()﹣1+(2020﹣π)0﹣2cos45°.【分析】直接利用绝对值的性质以及负整数指数幂的性质、零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=﹣1﹣3+1﹣2×=﹣1﹣3+1﹣=﹣3.17.(6分)先化简,再求值:÷(2+),其中a=2.【分析】先将分式进行化简,然后代入值即可求解.【解答】解:原式=÷=÷=•=,当a=2时,原式==1.18.(8分)深圳某中学为了解九年级学生的体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了50名学生.(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学九年级共有700名学生,请你估计该中学九年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【分析】(1)根据A等级的人数和所占的百分比即可求出抽样调查的总人数;(2)用总数减去A、B、D中的人数,即可求出C等级的人数,画出条形图即可;(3)用九年级共有的学生数乘以D等级所占的比例,即可得出答案;(4)画树状图,再由概率公式求解即可.【解答】解:(1)10÷20%=50(名),即本次抽样调查共抽取了50名学生,故答案为:50;(2)测试结果为C等级的学生数为:50﹣10﹣20﹣4=16(名),故答案为:16,补全条形图如下:(3)700×=56(名),即估计该中学九年级学生中体能测试结果为D等级的学生有56名;(4)画树状图如图:共有12个等可能的结果,所抽取的两人恰好都是男生的结果有2个,∴抽取的两人恰好都是男生的概率==.19.(8分)如图,⊙O是△ABC的外接圆,弦AE交BC于点D,且.(1)求证:AB=AC;(2)连接BO并延长交AC于点F,若AF=4,CF=5,求⊙O的半径.【分析】(1)连接BE,证明△ABD∽△AEB,进而可得结论;(2)连接OC,连接AO并延长交BC于点H,证明△AFB∽△OF A.进而可求⊙O的半径.【解答】(1)证明:如图,连接BE,∵,∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABD=∠AEB,又∠C=∠AEB,∴∠ABD=∠C,∴AB=AC.(2)如图,连接OC,连接AO并延长交BC于点H,∵AF=4,CF=5,∴AB=AC=AF+CF=4+5=9.∵AB=AC,OB=OC,∴A、O在BC的垂直平分线上,∴AH⊥BC.又AB=AC,∴AH平分∠BAC,∴∠BAH=∠CAH.∵OA=OB,∴∠BAH=∠ABF.∴∠CAH=∠ABF.∵∠AFB=∠OF A,∴△AFB∽△OF A.∴,即.∴.∴.∴.20.(8分)在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式y=﹣10x+500;每天所得销售利润w(元)与销售单价x(元)之间的函数关系式w=﹣10x2+700x﹣10000.(2)若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)若每天销售量不少于100袋,且每袋口罩的销售利润至少为17元,则销售单价定位多少元时,此时利润最大,最大利润是多少?【分析】(1)根据“某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋”,即可得出y关于x的函数关系式,然后再根据题意得到销售利润w(元)与销售单价x(元)之间的函数关系式;(2)代入w=2000求出x的值,由此即可得出结论;(3)利用配方法将w关于x的函数关系式变形为w=﹣10(x﹣35)2+2250,根据二次函数的性质即可解决最值问题.【解答】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500;则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000,故答案为:y=﹣10x+500;w=﹣10x2+700x﹣10000;(2)∵w=2000,∴﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,答:销售单价应定为30元或40元,小明每天获得该类型口罩的销售利润2000元;(3)根据题意得,,∴x的取值范围为:37≤x≤40,∵函数w=﹣10(x﹣35)2+2250,对称轴为x=35,∴当x=37时,w最大值=2210.答:销售单价定位37元时,此时利润最大,最大利润是2210元.21.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)求点F到直线CA的距离;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)并求出该图形的面积;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.【分析】(1)如图,过点F作FH⊥AC于H.解直角三角形求出FH即可解决问题.(2)①根据要求作出图形即可,根据S阴=S扇形ACF﹣S△AE′C+S△EFC﹣S扇形ECE′,计算即可.②如图2中,过点E作EH⊥CF于H,设OE=OB=x.利用勾股定理构建方程,求解即可.【解答】解:(1)如图,过点F作FH⊥AC于H.在Rt△FCH中,∠FHC=90°,CF=CA=2BC=2,∴FH=CF=1.(2)①旋转运动所形成的平面图形,如图所示,S阴=S扇形ACF﹣S△AE′C+S△EFC﹣S扇形ECE′=﹣=;②如图2中,过点E作EH⊥CF于H,设OE=OB=x.∵EF=BC=2,∠CEF=90°,∠ECF=30°,∴CF=2EF=2,∠F=60°,∴FH=EF•cos60°=,EH=EF•sin60°=,∵∠B=90°,OB=x,BC=1,∴OC=,∵EH2=OH2+OE2,∴()2+(﹣)2=x2,解得x2=,∴OC==,∴OF=CF﹣OC=2﹣=.22.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;(3)在(2)的条件下,点F的坐标为(0,),点M在抛物线上,点N在直线BC上.当以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.【分析】(1)把点A(﹣1,0),C(0,3)代入抛物线的解析式中,列方程组解出即可;(2)如图1,作辅助线,构建相似三角形,证明△DCH∽△CBO,则,设点D 的横坐标为t,则,列关于t的方程解出可得结论;(3)利用待定系数法求直线BC的解析式为:y=﹣x+3,设N(m,﹣m+3),当以D,F,M,N为顶点的四边形是平行四边形时,存在两种情况:如图2和图3,分别画图,根据平移的性质可表示M的坐标,代入抛物线的解析式列方程可解答.【解答】解:(1)∵抛物线经过点A(﹣1,0),C(0,3),∴,解得:,∴抛物线的解析式为:;(2)如图1,过点C作CE∥x轴交抛物线于点E,则∠ECB=∠ABC,过点D作DH⊥CE于点H,则∠DHC=90°,∵∠DCB=∠DCH+∠ECB=2∠ABC,∴∠DCH=∠ABC,∵∠DHC=∠COB=90°,∴△DCH∽△CBO,∴,设点D的横坐标为t,则,∵C(0,3),∴,∵点B是与x轴的交点,∴,解得x1=4,x2=﹣1,∴B的坐标为(4,0),∴OB=4,∴,解得t1=0(舍去),t2=2,∴点D的纵坐标为:,则点D坐标为;(3)设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+3,设N(m,﹣m+3),分两种情况:①如图2﹣1和图2﹣2,以DF为边,DN为对角线,N在x轴的上方时,四边形DFNM 是平行四边形,∵D(2,),F(0,),∴M(m+2,﹣m+4),代入抛物线的解析式得:﹣=﹣m+4,解得:m=,∴N(,3﹣)或(﹣,3+);②如图3﹣1和3﹣2,以DF为边,DM为对角线,四边形DFMN是平行四边形,同理得:M(m﹣2,﹣m+2),代入抛物线的解析式得:﹣=﹣m+2,解得:m=4,∴N(4+,﹣)或(4﹣,);综上,点N的坐标分别为:(,3﹣)或(﹣,3+)或(4+,﹣)或(4﹣,).。

2021年安徽省中考数学一模试卷(附答案详解)

2021年安徽省中考数学一模试卷(附答案详解)

2021年安徽省中考数学一模试卷1.下列四个数中,最小的是()A. −2B. 0C. |−1|D. −(−2)2.下列各式运算结果为a5的是()A. (a2)3B. a2+a3C. a2⋅a3D. a10÷a23.下列几何体的主视图是中心对称图形的是()A. B. C. D.4.据统计,2020年我国国内生产总值(GDP)突破百万亿元大关,达到101.6万亿元,比上年增长2.3%.是全球唯一实现经济正增长的主要经济体.其中数据101.6万亿用科学记数法表示正确的是()A. 1.016×108B. 1.016×1010C. 1.016×1014D. 1.016×10155.一组数据:4,5,6,6,7,8,下列对这组数据分析错误的是()A. 这组数据的众数是6B. 这组数据的中位数是6C. 这组数据的平均数是6D. 这组数据的方差是106.不等式2(2−x)>x−2的解集在数轴上表示正确的是()A. B.C. D.7.一次函数y=ax+b的图象经过点(1,1),则关于x的方程x2+bx−a=0根的情况为()A. 没有实数根B. 有两个相等实数根C. 有两个不相等实数根D. 有两个实数根8.如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC的中点,过点E作EF⊥BD于F,EG⊥AC于G,则四边形EFOG的面积为()SA. 14SB. 18SC. 112SD. 1169.如图,△ABC的顶点均在正方形网格的格点上,则∠BAC的正弦值为()A. √23B. √1010C. √105D. √5510.如图,半圆O的直径AB长为4,C是弧AB的中点,连接CO、CA、CB,点P从A出发沿A→O→C运动至C停止,过点P作PE⊥AC于E,PF⊥BC于F.设点P运动的路程为x,则四边形CEPF的面积y随x变化的函数图象大致为()A. B.C. D.11.若分式22x−1的值等于2,则x=______ .12.分解因式:ab2−4ab+4a=______.13.如图,在平面直角坐标系中,函数y=12x(x>0)与y=x−1的图象交于点P(a,b),则代数式1a −1b的值为______ .14.如图,Rt△ABC(BC<AC)中,∠ABC=60°,BC=2,CD为斜边AB的中线,点E为边BC上一动点,将线段BE绕E 点顺时针旋转得到FE,使F点正好落在边AC上,旋转角为α(90°<α<180°),以F为顶点作∠EFG=∠ABC,FG 与线段AB、CD分别交于G、H,连接HE.(1)当α=120°时,此时FH=______ .(2)设△FHE周长为l,则l的范围为:______ .)−1+√18−6sin45°.15.计算:(1216.如图,在平面直角坐标系中,△ABC的顶点B的坐标为(1,2).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(2)将△A1B1C1绕A1逆时针旋转90度得到△A1B2C2,画出△A1B2C2.17.为加强美育教育,学校计划开设书法特色课程,需购买钢笔、毛笔共100支,据调查,某商城每支钢笔的价格为20元,每支毛笔的价格为30元,经双方议价,按9折销售,学校共付款2430元,求购买钢笔、毛笔各多少支?18.观察下列一组等式:第1个等式:01×(1−12)=1−11;第2个等式,34×(1−13)=1−12;第3个等式:89×(1−14)=1−13;第4个等式:1516×(1−15)=1−14;…根据以上规律,解决下列问题:(1)写出第5个等式;(2)写出你猜想的第n个等式(用含n的式子表示),并证明你的结论.19.如图,已知两栋楼的水平距离为20m,某同学在1号楼的A处观察2号楼楼底D的俯角为45°,他向上爬楼30m到达B处,观察到2号楼楼顶C的俯角为38°,求2号楼的高度CD.(参考数据:sin38°≈0.6,cos38°=0.8,tan38°≈0.8)20.如图,△ABC中,∠ACB<2∠B,CO平分∠ACB交AB于O点,以OA为半径的⊙O与AC相切于点A,D为AC上一点且∠ODA=∠B.(1)求证:BC所在直线与⊙O相切;(2)若CD=1,AD=2,求⊙O的半径.21.在学校“喜迎中国共产党建党100周年,红歇唱响校园”主题活动中,校广播站循环播放了4首红歌:A:《风雨百年》B:《党旗飘飘》C:《前行的路》D:《新征程》.为了解学生最喜爱哪首歌,随机抽取部分学生进行调查,绘制了如下不完整的统计图,请结合图中信息回符答下列问题:(1)本次抽样调查的学生有______ 人;(2)图中:a=______ ,b=______ ,并把条形统计图补充完整;(3)某同学最喜欢歌曲《新征程》,若音乐老师准备在四首歌中任选2首进行教唱,利用列表法或画树状图法,求能选中他喜欢的歌曲的概率.22.为了推进乡村振兴战略,解决茶农卖茶难问题,某地政府在新茶上市30天内,帮助茶农集中销售.设第x天(x为整数)的售价为y(元/斤),日销售额为w(元).据销售记录知:①第1天销量为42斤,以后每天比前一天涨2斤;②前10天的价格一直为500元/斤,后20天价格每天比前一天跌10元,(1)当11≤x≤30时,写出y与x的关系式;(2)当x为何值时日销售额w最大,最大为多少?(3)若要保证第11天到第22天的日销售额w随x增大而增大,则价格需要在当天的售价基础上上涨m元/斤,则整数m的最小值为______ .(直接写出结果)23.如图1,点E是正方形ABCD的边CD上一点,将△BCE沿BE翻折得到△BFE,延长EF与边AD交于G点,连接BG.(1)证明:△ABG≌△FBG;(2)如图2,过点F作直线FN⊥AB于N,直线FN与CD、BG分别交于点M、H,①NH=HF=FM,AB=3,求BN⋅ME的值;②若HF=NH+FM,求BN的值.BC答案和解析1.【答案】A【解析】解:|−1|=1,−(−2)=2,∵−2<0<1<2,∴四个数中最小的数是−2,故选:A.先根据绝对值、相反数的意义计算出各个选项的结果,然后按照有理数大小比较方法即可确定答案.本题考查了有理数的大小比较,主要是相反数、绝对值等知识点.比较大小规律是:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.【答案】C【解析】解:A、原式=a6,不合题意;B、原式不能合并,不合题意;C、原式=a5,符合题意;D、原式=a8,不合题意,故选:C.原式各项计算得到结果,即可作出判断.此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【答案】D【解析】解:圆锥的主视图是等腰三角形,而等腰三角形不是中心对称图形,因此选项A不符合题意;三棱锥的主视图是中间有条虚线的等腰三角形,而等腰三角形不是中心对称图形,因此选项B不符合题意;圆台的主视图为等腰梯形,而等腰梯形不是中心对称图形,因此选项C不符合题意;长方体的主视图是长方形,长方形是中心对称图形,因此选项D符合题意;故选:D.根据各个几何体的主视图,结合中心对称图形进行判断即可.本题考查简单几何体的三视图,中心对称图形,掌握各种几何体的三视图的形状,理解中心对称图形的意义是正确判断的前提.4.【答案】C【解析】解:101.6万亿=101600000000000=1.016×1014.故选:C.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.【答案】D【解析】解:这组数据中数据6出现次数最多,所以众数为6,故A选项正确,不符合题意;这组数据的中位数为6+62=6,故B选项正确,不符合题意;这组数据的平均数为4+5+6+6+7+86=6,故C选项正确,不符合题意;这组数据的方差为16×[(4−6)2+(5−6)2+2×(6−6)2+(7−6)2+(8−6)2]=53,故D选项错误,符合题意;故选:D.分别根据众数、中位数、平均数及方差的定义逐一求解即可得出答案.本题主要考查众数、中位数、平均数及方差,解题的关键是掌握众数、中位数、平均数及方差的定义.6.【答案】A【解析】解:去括号,得:4−2x>x−2,移项,得:−2x−x>−2−4,合并,得:−3x>−6,系数化为1,得:x<2,故选:A.根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.【答案】D【解析】解:∵一次函数y=ax+b的图象经过点(1,1),∴a+b=1,∴a=1−b,∵x2+bx−a=0,∴△=b2−4×1×(−a)=b2+4a=b2+4(1−b)=(b−2)2≥0,∴方程x2+bx−a=0有两个实数根,故选:D.根据一次函数y=ax+b的图象经过点(1,1),可以得到a和b的关系,然后根据根的判别式可以得到方程x2+bx−a=0根的情况.本题考查根的判别式、一次函数图象上点的坐标特征,解答本题的关键是明确题意,会用根的判别式判断根的情况.8.【答案】B【解析】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,S=12AC×BD,∵EF⊥BD于F,EG⊥AC于G,∴四边形EFOG是矩形,EF//OC,EG//OB,∵点E是线段BC的中点,∴EF、EG都是△OBC的中位线,∴EF=12OC=14AC,EG=12OB=14BD,∴矩形EFOG的面积=EF×EG=14AC×14BD=18S;故选:B.由菱形的性质得出OA=OC,OB=OD,AC⊥BD,S=12AC×BD,证出四边形EFOG是矩形,EF//OC,EG//OB,得出EF、EG都是△OBC的中位线,则EF=12OC=14AC,EG=12OB=14BD,由矩形面积即可得出答案.本题考查了菱形的性质、矩形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.9.【答案】B【解析】解:过点B作BD⊥AC于点D,如图.根据图可知:AC=3√2,AB=BC=√5.∴D是AC的中点.∴AD=12AC=3√22.∴BD=√AB2−AD2=√22.∴sin∠BAC=DBAB =√1010.故选:B.过点B作BD⊥AC于点D,利用勾股定理求出各边即可求解.本题考查利用勾股定理应用,等腰三角形性质,求三角函数关键在于构建的直角三角形,利用边的比例即可求解.属于拔高题.10.【答案】A【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=BC=2√2,∴AB=4,∠A=45°,∵CD⊥AB于点D,∴AD=BD=2,∵PE⊥AC,PF⊥BC,∴四边形CEPF是矩形,∴CE=PF,PE=CF,∵点P运动的路程为x,∴当点P从点A出发,沿A→D路径运动时,即0<x<2时,AP=x,则AE=PE=x⋅sin45°=√22x,∴CE=AC−AE=2√2−√22x,∵四边形CEPF的面积为y,∴y=PE⋅CE=√22x(2√2−√22x)=−12x2+2x=−12(x−4)2,∴当0<x<2时,抛物线开口向下;当点P沿D→C路径运动时,即2≤x<4时,∵CD是∠ACB的平分线,∴PE=PF,∴四边形CEPF是正方形,∵AD=2,PD=x−2,∴CP=4−x,∴y=12(x−4)2=12(4−x)2,∴当2≤x<4时,抛物线开口向上,综上所述:能反映y与x之间函数关系的图象是:A.故选:A.根据Rt△ABC中,∠ACB=90°,AC=BC=2√2,可得AB=4,根据CD⊥AB于点D.可得AD=BD=2,CD平分角ACB,点P从点A出发,沿A→D→C的路径运动,运动到点C停止,分两种情况讨论:根据PE⊥AC,PF⊥BC,可得四边形CEPF是矩形和正方形,设点P运动的路程为x,四边形CEPF的面积为y,进而可得能反映y与x之间函数关系式,从而可以得函数的图象.本题考查了动点问题的函数图象,解决本题的关键是掌握二次函数的性质.11.【答案】1【解析】解:根据题意得:22x−1=2,去分母得:4x−2=2,解得:x=1,检验:把x=1代入得:2x−1=2−1=1≠0,∴分式方程的解为x=1.故答案为:1.根据题意列出方程,求出方程的解即可.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.12.【答案】a(b−2)2【解析】解:ab2−4ab+4a=a(b2−4b+4)=a(b−2)2.故答案为:a(b−2)2.先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2−2ab+b2= (a−b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.【答案】−2【解析】解:函数y=12x(x>0)与y=x−1的图象交于点P(a,b),∴2ab=1,b=a−1,∴ab=12,b−a=−1,∴1a −1b=b−aab=−112=−2.故答案为−2.由题意得,函数y=12x (x>0)与y=x−1的图象交于点P(a,b),则ab=12,b−a=−1,进而求解.本题考查反比例函数、一次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题的关键.14.【答案】2332+√32≤l<3+√3【解析】解:(1)当α=120°时,∠FEC=180°−120°=60°,∴EC=EF⋅cos60°=12EF=12BE,∴BE+12BE=2,∴BE=EF=43,∵∠ACB=90°,AD=DB,∴CD=DB=AD,∴∠DCB=∠B=60°,∵∠EFG=∠B,∴∠EFH=∠ECH=60°,∴E,C,F,H四点共圆,∴∠EHF+∠ECF=180°,∴∠EHF=90°,∴FH=EF⋅cos60°=23,故答案为:23.(2)在Rt△EHF中,∵∠EHF=90°,∠EFH=60°,∴△EFH的周长l=EF+12EF+√32EF=(32+√32)EF=(32+√32)BE,∵1≤BE<2,∴32+√32≤l<3+√3,故答案为:32+√32≤l<3+√3.(1)求出EF的长,证明∠EHF=90°,可得结论.(2)证明△EFH的周长l=EF+12EF+√32EF=(32+√32)EF=(32+√32)BE,求出BE的取值范围,可得结论.本题考查作图−旋转变换,解直角三角形,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】解:原式=2+3√2−6×√22=2+3√2−3√2=2.【解析】直接利用负整数指数幂的性质、特殊角的三角函数值、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.【答案】解:(1)如图,△A1B1C1为所作;点B1的坐标为(1,−2);(2)如图,△A1B2C2为所作.【解析】(1)利用关于x 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出B 1、C 1的对应点B 2、C 2即可.本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.17.【答案】解:设购买钢笔x 支,毛笔y 支,依题意得:{x +y =10020×0.9x +30×0.9y =2430, 解得:{x =30y =70. 答:购买钢笔30支,毛笔70支.【解析】设购买钢笔x 支,毛笔y 支,根据学校花费2430元购买钢笔、毛笔共100支,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.【答案】解:(1)根据已知等式可知:第5个等式:2425×(1−16)=1−15;(2)根据已知等式可知:第n 个等式:n 2−1n 2×(1−1n+1)=1−1n ; 证明:左边=(n+1)(n−1)n 2×n n+1=1−1n =右边,所以等式成立.【解析】(1)根据已知等式可得第5个等式;(2)根据已知等式可得第n个等式,进而可以进行证明.本题考查了规律型:数字的变化类,有理数的混合运算,解决本题的关键是根据数字的变化寻找规律.19.【答案】解:如图,过点C作CE⊥AB于点E,得矩形ODCE,∴OC=CE,OE=CD,根据题意可知:∠OAD=45°,AB=30m,∴OA=OD=20m,∴OB=OA+AB=50m,∴BE=OB−OE=50−CD,∵OD=CE=20m,在Rt△CBE中,∠BCE=38°,∴BE=CE⋅tan38°,∴50−CD≈20×0.8,解得CD=34(m),答:2号楼的高度CD为34m.【解析】过点C作CE⊥AB于点E,得矩形ODCE,根据锐角三角函数即可求出CD的长.本题考查了解直角三角形的应用−仰角俯角问题,考查的知识面比较多,利用仰角、俯角构造直角三角形是解决本题的关键.20.【答案】(1)证明:过O作OE⊥BC于E,如图所示:∵⊙O与AC相切于点A,∴OA⊥AC,∵CO平分∠ACB,OE⊥BC,∴OE=OA,∴BC所在直线与⊙O相切;(2)解:∵CD=1,AD=2,∴AC=CD+AD=3,∵AC、BC是⊙O的切线,∴EC=AC=3,在△OEB和△OAD中,{∠OEB=∠OAD=90°∠B=∠ODAOE=OA,∴△OEB≌△OAD(AAS),∴EB=AD=2,OB=OD,∴BC=EC+EB=5,∴AB=√BC2−AC2=√52−32=4,设OA=x,则OD=OB=4−x,在Rt△AOD中,由勾股定理得:x2+22=(4−x)2,解得:x=32,即⊙O的半径为32.【解析】(1)过O作OE⊥BC于E,先由切线的性质得OA⊥AC,再由角平分线的性质得OE=OA,即可得出结论;(2)由切线长定理得EC=AC=3,再证△OEB≌△OAD(AAS),得EB=AD=2,OB= OD,则BC=EC+EB=5,AB=4,设OA=x,则OD=OB=4−x,然后在Rt△AOD 中,由勾股定理得出方程,解方程即可.本题考查了切线的判定与性质、角平分线的性质、全等三角形的判定与性质以及勾股定理等知识;熟练掌握切线的判定与性质和全等三角形的判定与性质是解题的关键.21.【答案】60 30 20【解析】解:(1)6÷10%=60(人),故答案为:60;(2)∵a%=18÷60×100%=30%,∴a=30,∵D的人数为60×40%=24(人),∴C的人数为60−18−6−24=12(人),∴b%=12÷60×100%=20%,∴b=20,故答案为:30,20;(3)画树状图如图:共有12个等可能的结果,某同学最喜欢歌曲《新征程》,能选中他喜欢的歌曲的结果有6个,∴某同学最喜欢歌曲《新征程》,能选中他喜欢的歌曲的概率为612=12.(1)由B组所占的百分比及B组有6人即可求得总人数;(2)由(1)的结果即可解决问题;(3)先根据题意画出树状图,再利用概率公式求解即可求得答案.本题考查了列表法与树状图法求概率,正确画出树状图是解题的关键;用到的知识点为:概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图.22.【答案】30【解析】解:(1)由题意得;y=500−10(x−10)=−10x+600(11≤x≤30);(2)由题意得,销售量为42+2(x−1)=2x+40,当1≤x≤10时,则w=500(2x+40)=1000x+20000,当x=10时,w取最大值为1000×10+20000=30000,当10<x≤30时,则w=y(2x+40)=(−10x+600)(2x+40)=−20(x−20)2+16==32000,∵−10<0,∴当x=20时,w取最大值为32000,综上:当x=20时,w取最大值为32000,答:当x为第20天时日销售额w最大,最大为32000元;(3)依题意,w=(y+m)⋅(2x+40)=(−10x+600+m)(2x+40)=−20x2+2(m+ 400)x+40(m+600),∵第11天到第22天的日销售额w随x增大而增大,≥21.5,得m≥30,∴对称轴x=2(m+400)−2×(−20)故m的最小值为30.(1)根据前10天的价格一直为500元/斤,后20天价格每天比前一天跌10元,可求出当11≤x≤30时,y与x的关系;(2)根据日销售额=售价×日销售量,分类讨论在x的取值范围内w的最大值即可得到结论;(3)w=(y+m)⋅(2x+40)=(−10x+600+m)(2x+40)=−20x2+2(m+400)x+≥21.5,即可求解.40(m+600),利用对称轴x=2(m+400)−2×(−20)此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.最后要注意判断所求的解是否符合题意,舍去不合题意的解.23.【答案】(1)证明:∵△BCE沿BE翻折得到△BFE,∴△BCE≌△BFE,又∵四边形ABCD是正方形,∴∠BCE=∠BFE=90°,BC=AB,∠A=90°,∴BC=BF,∠BFG=∠BFE=90°,∴AB=BF,在Rt△ABG和Rt△FBG中,{AB=BFBG=BG,∴Rt△ABG≌Rt△FBG(HL);(2)解:①∵FN⊥AB,∴NM//BC,NM=BC,∵AB=3,NH=HF=FM,∴NH=HF=FM=1,∴NF=2,BF=BC=3,∴BN=√BF2−NF2=√5,在Rt△FME中,EF2=MF2+EM2,∵EF =EC ,EC +EM =CM =BN =√5, ∴EF 2=1+(√5−EF)2,解得:EF =3√5=3√55, ∴EM =√5−3√55=2√55, ∴BN ⋅ME =√5×2√55=2;②过点H 作HK ⊥BF 于点K ,∴∠HKF =90°,∵FN ⊥AB ,∴∠BNF =90°,∴∠HKF =∠BNF ,又∵∠HFK =∠NFB ,∴△HKF∽△NFB ,∴HKBN =HFBF =FKNF ,∵HF =NH +FM ,∴HF =12NM =12BF =12BC , ∴HK BN =HF BF=FK NF =12, ∴HK =12BN ,∵△ABG≌△FBG ,∴∠NBH =∠KBH ,又∵∠HNB =∠HKB =90°,BH =BH , ∴△NBH≌△KBH(AAS),∴NB =BK ,NH =HK ,∴FK =BF −BK =BC −BN ,NF =NH +HF =HK +HF =12BN +12BC , ∵FK NF =12,∴BC−BN 12BN+12BC =12,∴BNBC =35.【解析】(1)由翻折的性质可得△BCE≌△BFE,根据正方形的性质以及全等三角形的性质得AB=BF,由HL即可求证;(2)①由FN⊥AB可得NM//BC,NM=BC,可得NH=HF=FM=1,根据勾股定理可得出BN,EF的值,求出EM,即可求解;②过点H作HK⊥BF于点K,证明△HKF∽△NFB,可得出HKBN =HFBF=FKNF=12,再证出△NBH≌△KBH(AAS),可得NB=BK,NH=HK,从而得出FK=BC−BN,NF=1 2BN+12BC,由FKNF=12即可得出BNBC=35.本题是四边形综合题,考查了正方形的性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,熟练掌握正方形的性质以及相似三角形的判定和性质是本题的关键.第21页,共21页。

河北省保定市竞秀区2021年中考数学一模试试题(含答案与解析)

河北省保定市竞秀区2021年中考数学一模试试题(含答案与解析)
A.3B.2C.1D.0
8.嘉淇用一些完全相同的△ABC纸片拼接图案,已知用六个△ABC纸片按照如图1所示的方法拼接,可得外轮廓是正六边形图案,若用n个△ABC纸片按如图2所示的方法拼接,那么可以得到外轮廓的图案是( )
A.正七边形B.正八边形C.正九边形D.正十边形
9.下面是某同学“化简 ” 过程,共四步.
A.+B.﹣C.×D.÷
2.如图,在一张透明 纸上画一条直线 ,在 外任取一点Q并折出过点Q且与 垂直的直线.这样的直线能折出( )
A. 0条B. 1条C. 2条D. 3条
3.华为 手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).
19.如图,扇形AOB中,半径OA在直线l上,∠AOB=120°,OA=1,矩形EFGH的边EF也在l上,且EH=2,OE= 将扇形AOB在直线l上向右滚动.
(1)滚动一周时得到扇形A′O′B′,这时OO′=______.
(2)当扇形与矩形EFGH有公共点时停止滚动,设公共点为D,则DE=_______.
(2)如果学生一进学校就开始测量体温,测温点有2个,每个测温点每分钟检测20人,学生按要求排队测温.求第多少分钟时排队等待检测体温的人数最多?
(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设1个人工体温检测点,已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).
6.如图,正方形OEFG和正方形ABCD是位似图形,且点F与点C是一对对应点,点F的坐标是(1,1),点C的坐标是(4,2),则它们的位似中心的坐标是()
A.(0,0)B.(-1,0)C.(-2,0)D.(-3,0)

(安徽卷)2021年中考数学第一次模拟考试(含答案)

(安徽卷)2021年中考数学第一次模拟考试(含答案)
(1)将 绕坐标原点 旋转 ,画出旋转后的 ,并写出点 的对应点 的坐标;
(2)将 绕坐标原点 逆时针旋转 ,直接写出点 的对应点Q的坐标;
(3)请直接写出:以 、 、 为顶点的平行四边形的第四个顶点 的坐标.
18.(本题8分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡AF上的D处测得大树顶端B的仰角是30°,在地面上A处测得大树顶端B的仰角是45°.若坡角∠FAE=30°,AD=6m,求大树的高度.(结果保留整数,参考数据: ≈1.73)
∴不等式x⊕4>0可化为:2x+3×4﹥0,
解得:x﹥﹣6,
∴不等式x⊕4>0的解集为:x﹥﹣6,
故答案为:x﹥﹣6.
12.【答案】
【解析】如图,连接AC、CF,
∵正方形ABCD和正方形CEFG中,BC=1,CE=3,
∴AC= ,CF=3 ,
∠ACD=∠GCF=45°,
∴∠ACF=90°,
由勾股定理得,AF=
②当CD=CE时,△CDE是等腰三角形.
此时CD、CE是⊙O的切线,连接OC交DE于F.
∵CD=CE,OD=OE,
∴OC垂直平分线段DE,
∴DF=EF= ,
∴ .
③当EC=ED时,△ECD是等腰三角形.
作EH⊥CD于H,交⊙O于E′,作OF⊥EE′.
在Rt△EFO中, ,
∴ ,
∴ ,

综上所述,DE的长为4或 或 或 .
12.(本题5分)如图,正方形 和正方形 中,点 在 上, , , 是 的中点,那么 的长是________________.
13.(本题5分)某服装商预测一种应季衬衫能畅销市场,就用4000元购进一批衬衫,面市后果然供不应求,该服装商又用9000元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了5元.则该服装商第一批进货的单价是_____元.

2021年湖南省长沙市中考数学模拟试卷(一)(含解析)

2021年湖南省长沙市中考数学模拟试卷(一)(含解析)

2021年湖南省长沙市中考数学模拟试卷(一)一、选择题(共12小题).1.计算的结果等于()A.±2B.2C.﹣2D.42.在平面直角坐标系中,点(4,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是()A.B.(a﹣b)2=a2﹣b2C.3m•m=6m D.(﹣n3)2=n64.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城5.疫情期间,口罩的原材料提价,因而厂家决定对口罩进行提价,现有三种方案:(1)第一次提价5%,第二次提价10%;(2)第一次提价10%,第二次提价5%;(3)第一、二次提价均为7.5%,三种方案哪种提价最多,下列说法正确的是()A.方案(1)B.方案(2)C.方案(3)D.三种方案相同6.下列尺规作图,能确定AD是△ABC的中线的是()A.B.C.D.7.下列说法正确的是()A.为了解湖南省中学生的心理健康情况,宜采用普查的方式B.商场抽奖促销,中一等奖的概率是1%,则做100次这样的游戏一定会中一等奖C.一组数据1,3,3,3,4,8的中位数和众数都是3D.若甲、乙两个射击选手的平均成绩相同,且s甲2=0.01,s乙2=0.1,则应该选乙参赛8.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.69.如图,已知AB是⊙O的切线,切点为A,OA=3,,则扇形OAC的面积为()A.B.3πC.πD.10.如图,一块等腰直角三角形板如图摆放,点E,G分别在AB,CD上,且AB∥CD,如果∠AEF=25°,那么∠CGF的大小为()A.25°B.65°C.30°D.45°11.《九章算术》中有一问题,“今有善行者一百步,不善行者六十步.今不善行者先行一百步,善行者追之.问:几何步几之?”其意思是:有一个善于走路的人和一个不善于走路的人.善于走路的人走100的同时,不善于走路的人只能走60步.现在不善于走路的人先走100步,善于走路的人追他,需要走多少步才能追上他?根据题意,可以求得答案为()A.250步B.200步C.160步D.320步12.如图,已知△ABC的三个顶点A(a,0)、B(b,0)、C(0,2a)(b>a>0),作△ABC关于直线AC的对称图形△AB′C,若点B′恰好落在y轴上,则的值为()A.B.C.D.二、填空题(共4个小题,每小题3分,共12分)13.分解因式:3ab2﹣3a=.14.某地区中考,将学生的初二的生物中考卷面成绩(满分100分)乘40%,加上初三的物理、化学卷面成绩(满分200分)乘80%作为该生的最后理科综合最终成绩.某学生生物成绩为90分,若该生理科综合最终成绩想不低于160分,则该生物理、化学卷面成绩至少是分.15.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.16.如图,已知△ABC是等边三角形,点D,E,F分别是AB,AC,BC边上的点,∠EDF =120°,设.(1)若n=1,则=;(2)若,则n=.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分。

2021年中考一模考试《数学卷》附答案解析

2021年中考一模考试《数学卷》附答案解析

中考全真模拟测试数学试卷一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( ) A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y =kx -k ,y 随x 的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A . 415B. 13C. 25D. 35 11. 如图,1l ∥2l ∥3l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知32AB BC ,则DE DF 的值为( )A. 32B. 23C. 25D. 3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD 最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.14. 函数y=12 -x的自变量x的取值范围是_____.15. 化简221(1)11x x-÷+-的结果是.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为.17. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.三、计算题:19. 解方程组:3(1)4(4)05(1)3(5)x yy x---=⎧⎨-=+⎩20. 解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为()A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组210 23 23xx x+>⎧⎪-+⎨≥⎪⎩.【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323xx x+>⎧⎪⎨-+≥⎪⎩①②由①得:x>﹣0.5,由②得:x≤0,则不等式组的解集是﹣0.5<x≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=BC=3 在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3 过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222325CG CD DG=-=-=∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x 的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。

北京市2021年中考数学一模试卷含答案解析

北京市2021年中考数学一模试卷含答案解析

中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是()A.B.C.D.2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是()A.B.C.D.3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.54.(2分)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.127.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2021年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是()A.①③B.②③C.②④D.③④二、填空题(本题共16分,每小题2分)9.(2分)若二次根式有意义,则x的取值范围是.10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).11.(2分)计算:=.12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是毫米.13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是.14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=.15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD 的过程:.16.(2分)下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON.求作:射线OP,使它平分∠MON.作法:如图2,(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(2)连结AB;(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;(4)作射线OP.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是.三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.18.(5分)解不等式组,并写出它的所有整数解.19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连结OA,点P是函数y=上一点,且满足OP=OA,直接写出点P 的坐标(点A除外).22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91897786713197937291 81928585958888904491乙84936669768777828588 90886788919668975988整理、描述数据:按如下数据段整理、描述这两组数据分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙分析数据:两组数据的平均数、中位数、众数、方差如下表:统计量学校平均数中位数众数方差甲81.858891268.43乙81.9586m115.25经统计,表格中m的值是.得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为.b可以推断出学校学生的数学水平较高,理由为.(至少从两个不同的角度说明推断的合理性)24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cosB=,求DE的长.25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B 出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x 秒,B、P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6经测量m的值是(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.(1)求b的值;(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.①当x2﹣x1=3时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE 平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误.故选:B.2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是()A.B.C.D.【解答】解:A、正确.∠AOB=40°;B、错误.点O,边OA的位置错误;C、错误.缺少字母A;D、错误.点O的位置错误;故选:A.3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【解答】解:∵如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,∴线段AB的中点为原点,即A、B对应的数分别为﹣2、2,则点C表示的数可能是3,故选:C.4.(2分)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥【解答】解:两个三角形和三个矩形可围成一个三棱柱.故选:A.5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.【解答】解:∵各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,∴2022用算筹可表示为故选:C.6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.12【解答】解:由题意,得外角+相邻的内角=180°且外角=相邻的内角,∴外角=90°,360÷90=4,正多边形是正方形,故选:B.7.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟【解答】解:由图象可得,赛跑中,兔子共休息了50﹣10=40分钟,故选项A错误,乌龟在这次比赛中的平均速度是500÷50=10米/分钟,故选项B错误,乌龟比兔子先到达60﹣50=10分钟,故选项C错误,乌龟追上兔子用了20分钟,故选项D正确,故选:D.8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2021年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是()A.①③B.②③C.②④D.③④【解答】解:①10岁之前,同龄的女生的平均身高与男生的平均身高基本相同,故该说法错误;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生,故该说法正确;③7~15岁期间,男生的平均身高不一定高于女生的平均身高,如11岁的男生的平均身高低于女生的平均身高,故该说法错误;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大,故该说法正确.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)若二次根式有意义,则x的取值范围是x≥2.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为0.88(结果精确到0.01).【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.88.故答案为:0.88.11.(2分)计算:=2m+3n.【解答】解:=2m+3n.故答案为:2m+3n12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是毫米.【解答】解:∵DE∥AB∴△CDE∽△CAB∴CD:CA=DE:AB∴20:60=DE:10∴DE=毫米∴小管口径DE的长是毫米.故答案为:13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是8.【解答】解:原式=2a2+a﹣(a2﹣4)=2a2+a﹣a2+4=a2+a+4,当a2+a=4时,原式=4+4=8,故答案为:8.14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=2.【解答】解:连接OC,如图,∵弦CD⊥AB,∴CE=DE=CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.故答案为2.15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD 的过程:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD..【解答】解:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD,故答案为:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD.16.(2分)下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON.求作:射线OP,使它平分∠MON.作法:如图2,(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(2)连结AB;(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;(4)作射线OP.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是等腰三角形三线合一.【解答】解:利用作图可得到OA=OB,PA=PB,利用等腰三角形的性质可判定OP平分∠AOB.故答案为:等腰三角形的三线合一.三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.【解答】解:原式=3﹣1+﹣1﹣2×=1.18.(5分)解不等式组,并写出它的所有整数解.【解答】解:,解不等式①,得x≤2,解不等式②,得x>﹣1,∴原不等式组的解集为﹣1<x≤2,∴适合原不等式组的整数解为0,1,2.19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.【解答】证明:∵AB=AC,∴∠B=∠C.∵EF垂直平分CD,∴ED=EC.∴∠EDC=∠C.∴∠EDC=∠B.∴DE∥AB.20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.【解答】解:(1)∵关于x的一元二次方程有两个不相等的实数根,∴△>0,即22﹣4(k﹣1)>0,∴k<2;(2)∵k为正整数,∴k=1,此时方程为x2+2x=0,解得x1=0,x2=﹣2.21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连结OA,点P是函数y=上一点,且满足OP=OA,直接写出点P 的坐标(点A除外).【解答】解:(1)∵直线y=x+1经过点A(1,a),∴a=1+1=2,∴A(1,2).∵函数y=的图象经过点A(1,2),∴k=1×2=2;(2)设点P的坐标为(x,),∵OP=OA,∴x2+()2=12+22,化简整理,得x4﹣5x2+4=0,解得x1=1,x2=﹣1,x3=2,x4=﹣2,经检验,x1=1,x2=﹣1,x3=2,x4=﹣2都是原方程的根,∵点P与点A不重合,∴点P的坐标为(﹣1,﹣2),(2,1),(﹣2,﹣1).22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.【解答】(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AFB=∠CBF.∴∠ABF=∠AFB.∴AB=AF.∵AE⊥BF,∴∠BAO=∠FAE∵∠FAE=∠BEO∴∠BAO=∠BEO.∴AB=BE.∴AF=BE.∴四边形ABEF是平行四边形.∴□ABEF是菱形.(2)解:∵AD=BC,AF=BE,∴DF=CE.∵AF=2DF∴BE=2CE.∵AB=BE=4,∴CE=2.过点A作AG⊥BC于点G.∵∠ABC=60°,AB=BE,∴△ABE是等边三角形.∴BG=GE=2.∴AF=CG=4.∴四边形AGCF是平行四边形.∴□AGCF是矩形.∴AG=CF.在△ABG中,∠ABC=60°,AB=4,∴AG=.∴CF=.23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91897786713197937291 81928585958888904491乙84936669768777828588 90886788919668975988整理、描述数据:按如下数据段整理、描述这两组数据分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙0014285分析数据:两组数据的平均数、中位数、众数、方差如下表:统计量学校平均数中位数众数方差甲81.858891268.43乙81.9586m115.25经统计,表格中m的值是88.得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为300.b可以推断出甲学校学生的数学水平较高,理由为两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.(至少从两个不同的角度说明推断的合理性)【解答】解:整理、描述数据:分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙0014285故答案为:0,0,1,4,2,8,5;分析数据:经统计,乙校的数据中88出现的次数最多,故表格中m的值是88.故答案为:88;得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为400×=300(人).故答案为:300;b (答案不唯一)可以推断出甲学校学生的数学水平较高,理由为两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.故答案为:甲,两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cosB=,求DE的长.【解答】(1)证明:∵AC是⊙O的切线,∴∠BAC=90°.∵点E是BC边的中点,∴AE=EC.∴∠C=∠EAC,∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C.(2)连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB=6,,∴BD=.在Rt△ABC中,AB=6,,∴BC=10.∵点E是BC边的中点,∴BE=5.∴.25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B 出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6经测量m的值是 3.0(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.【解答】解:(1)经测量,当t=6时,BP=3.0.(当t=6时,CP=6﹣BC=3,∴BC=CP.∵∠C=60°,∴当t=6时,△BCP为等边三角形.)故答案为:3.0.(2)描点、连线,画出图象,如图1所示.(3)在曲线部分的最低点时,BP⊥AC,如图2所示.26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.(1)求b的值;(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.①当x2﹣x1=3时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2,∴﹣=2,即﹣=2∴b=2.(2)①∴抛物线的表达式为y=﹣x2+4x﹣3.∵A(x1,y),B(x2,y),∴直线AB平行x轴.∵x2﹣x1=3,∴AB=3.∵对称轴为x=2,∴A(,m).∴当时,m=﹣()2+4×﹣3=﹣.②当y=m=﹣4时,0≤x≤5时,﹣4≤y≤1;当y=m=﹣2时,0≤x≤5时,﹣2≤y≤4;∴m的取值范围为﹣4≤m≤﹣2.27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE 平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.【解答】解:(1)补全图如图1;(2)①延长AE,交BC于点H.∵AB=AC,AE平分∠BAC,∴AH⊥BC,BH=HC.∵CD⊥BC于,∴EH∥CD.∴BE=DE;②延长FE,交AB于点M.∵AB=AC,∴∠ABC=∠ACB.∵EF∥BC,∴∠AMF=∠AFM.∴AM=AF.∴ME=EF.∵∠MBE=∠FED,在△BEM和△DEF中,,∴△BEM≌△DEF.∴∠ABE=∠FDE.∴DF∥AB;(3).证明:∵DF∥AB,∴∠EDF=∠ABD,∵EF∥BC,∴∠DEF=∠DBC,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,∴∠EDF=∠DEF,∴DF=EF,∵tan=,∴.28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为60°;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【解答】解:(1)∵点A(2,0),B(0,2),∴OA=2,OB=2,在Rt△AOB中,由勾股定理得:AB==4,∴∠ABO=30°,∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°,∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°,故答案为:60°;(2)如图2,∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E.∴D(4,5)或(﹣2,5).∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴P'D=3﹣2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴BD=3﹣2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或﹣5≤m≤﹣1.精品Word 可修改欢迎下载。

2021年中考一模考试《数学卷》含答案解析

2021年中考一模考试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。

2021年天津市中考数学模拟试题(一)(解析版)-备战2021年中考数学全真模拟卷(地区专用)

2021年天津市中考数学模拟试题(一)(解析版)-备战2021年中考数学全真模拟卷(地区专用)

2021年天津市中考数学模拟试题(一)一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列结论正确的是()A.若a<0,b>0,则a•b>0B.若a>0,b<0,则a•b<0C.若a<0,b<0,则a•b<0D.若a=0,b≠0,则a•b无法确定符号【答案】B【解析】A、若a<0,b>0,则a•b<0,故此选项错误;B、若a>0,b<0,则a•b<0,故此选项正确;C、若a<0,b<0,则a•b>0,故此选项错误;D、若a=0,b≠0,则a•b=0,故此选项错误.故选:B.2.(3分)cos30°的值是()A.1B.C.D.【答案】B【解析】cos30°=.故选:B.3.(3分)下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【解析】数字2034000科学记数法可表示为2.034×106.故选:A.4.(3分)古人使用下面的几何图形研究勾股定理,是轴对称图形的是()A.B.C.D.【答案】C【解析】由图形的组成可得:C图形是轴对称图形.故选:C.5.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【解析】解法一:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.解法二:第一个几何体的三视图如图所示第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选:D.6.(3分)估计的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间【答案】A【解析】∵49<63<64,∵7<<8,故选:A.7.(3分)化简+的结果是()A.a+b B.a﹣b C.D.【答案】B【解析】原式====a﹣b.故选:B.8.(3分)如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中B点坐标是(8,2),D点坐标是(0,2),点A在x轴上,则菱形ABCD的周长是()A.2B.8C.8D.12【答案】C【解析】连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∵AB=BC=CD=AD,AC∵BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∵OD=2,BD=8,∵AE=OD=2,DE=4,∵AD==2,∵菱形的周长=4AD=8;故选:C.9.(3分)方程组的解为,则被遮盖的前后两个数分别为()A.1、2B.1、5C.5、1D.2、4【答案】C【解析】将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∵被遮盖的前后两个数分别为:5,1故选:C.10.(3分)已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=的图象上,那么y1,y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2【答案】A【解析】把点(﹣2,y1),(﹣1,y2),(1,y3)分别代入y=得y1=﹣=3,y2=﹣=6,y3=﹣=﹣6,所以y3<y1<y2.故选:A.11.(3分)如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则∵APH的周长为()A.15B.18C.20D.24【答案】C【解析】设HD=x,由已知HC=x+8∵P是CH的中点∵HP=有图形可知,∵HP A中,边HP和边AP边上高相等∵由面积法HP=AP∵AP=4+∵DP=HP﹣HD=4﹣∵Rt∵APD中AP2=DP2+AD2∵(4+)2=(4﹣)2+62解得x=∵HP=4+=∵Rt∵ADH中,HA=∵∵APH的周长为=20故选:C.12.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=,且经过点(2,0),下列说法:∵abc>0;∵b2﹣4ac>0;∵x=﹣1是关于x的方程ax2+bx+c=0的一个根;∵a+b=0.其中正确的个数为()A.1B.2C.3D.4【答案】C【解析】∵∵二次函数的图象开口向下,∵a<0,∵二次函数的图象交y轴的正半轴于一点,∵对称轴是直线x=,∵﹣=,∵b=﹣a>0,∵abc<0.故∵错误;∵∵抛物线与x轴有两个交点,∵b2﹣4ac>0,故∵正确;∵∵对称轴为直线x=,且经过点(2,0),∵抛物线与x轴的另一个交点为(1,0),∵x=﹣1是关于x的方程ax2+bx+c=0的一个,故∵正确;∵∵由∵中知b=﹣a,∵a+b=0,故∵正确;综上所述,正确的结论是∵∵∵共3个.二.填空题(共6小题,满分18分,每小题3分)13.(3分)﹣b•b3=________.【答案】﹣b4.【解析】﹣b•b3=﹣b1+3=﹣b4.14.(3分)计算(2﹣)2的结果等于________.【答案】22﹣4.【解析】原式=20﹣4+2=22﹣4.15.(3分)班级联欢会上举行抽奖活动,把写有每位同学名字的小纸条投入抽奖箱,其中男生23人,女生22人,老师闭上眼睛从摇匀的小纸条中随机抽出1张,恰好抽到女同学名字的概率为________.【答案】.【解析】老师闭上眼睛从摇匀的小纸条中随机抽出1张,恰好抽到女同学名字的概率为=,16.(3分)如图,在平面直角坐标系中,点A(12,0),点B(0,4),点P是直线y=﹣x﹣1上一点,且∵ABP=45°,则点P的坐标为________.【答案】(5,﹣6).【解析】如图所示,将线段AB绕点B顺时针旋转90°得到线段BC,则点C的坐标为(﹣4,﹣8),由于旋转可知,∵ABC为等腰直角三角形,令线段AC和线段BP交于点M,则M为线段AC的中点,所以点M的坐标为(4,﹣4),又B为(0,4),设直线BP为y=kx+b,将点B和点M代入可得,解得k=﹣2,b=4,可得直线BP为y=﹣2x+4,由于点P为直线BP和直线y=﹣x﹣1的交点,则由解得,所以点P的坐标为(5,﹣6),17.(3分)如图,正方形ABCD的边长是9,点E是AB边上的一个动点,点F是CD边上一点,CF=4,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点A′,D′处,当点D′落在直线BC上时,线段AE的长为________.【答案】2或8.【解析】分两种情况:∵当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∵DE=D′E,∵正方形ABCD的边长是9,∵AB=BC=CD=AD=9,∵CF=4,∵DF=D′F=CD﹣CF=9﹣4=5,∵CD′==3,∵BD'=BC﹣CD'=6,设AE=x,则BE=9﹣x,在Rt∵AED和Rt∵BED'中,由勾股定理得:DE2=AD2+AE2=92+x2,D'E2=BE2+BD'2=(9﹣x)2+62,∵92+x2=(9﹣x)2+62,解得:x=2,即AE=2;∵当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∵DE=D′E,∵正方形ABCD的边长是9,∵AB=BC=CD=AD=9,∵CF=4,∵DF=D′F=CD﹣CF=9﹣4=5,CD′==3,∵BD'=BC+CD'=12,设AE=x,则BE=9﹣x,在Rt∵AED和Rt∵BED'中,由勾股定理得:DE2=AD2+AE2=92+x2,D'E2=BE2+BD'2=(9﹣x)2+122,∵92+x2=(9﹣x)2+122,解得:x=8,即AE=8;综上所述,线段AE的长为2或8;18.(3分)如图,在每个小正方形的边长为1的网格中,∵ABC的顶点A,C均落在格点上,点B在网格线上,且AB=.(∵)线段AC的长等于________.(∵)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明)________.【答案】(∵)(∵)取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.【解析】(∵)线段AC的长等于=;(∵)如图,∵点A,C是2×3网格的格点,∵取2×3网格的格点M,N,M′,N′,连接MN,M′N′,即将AC平移至MN和M′N′,′∵MN∵AC∵M′N′,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.∵BC是直径,∵∵BDC=90°,∵MN∵AC∵M′N,∵BD∵MN,BD∵M′N′,∵BD=B′D,∵点B、点B′关于AC对称,∵BP=B′P,∵BP+PQ=B′P+PQ=B′Q最短.三.解答题(共7小题,满分66分)19.(8分)解不等式组,并把它们的解在数轴上表示出来.【答案】见解析【解析】∵解不等式∵得:x≥﹣2,解不等式∵得:x<2,∵原不等式组的解集为:﹣2≤x<2,在数轴上表示为:.20.(8分)“学而时习之,不亦乐乎!”,古人把经常复习当作是一种乐趣,能达到这种境界是非常不容易的.复习可以让遗忘的知识得到补拾,零散的知识变得系统,薄弱的知识有所强化,掌握的知识更加巩固,生疏的技能得到训练.为了了解初一学生每周的复习情况,教务处对初一(1)班学生一周复习的时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,一周复习2小时的女生人数占全班人数的16%,一周复习4小时的男女生人数相等.根据调查结果,制作了两幅不完整的统计图(表):初一(1)班女生的复习时间数据(单位:小时)如下:0.9,1.3,1.7,1.8,1.9,2.2,2.2,2.2,2.3,2.4,3.2,3.2,3.2,3.3,3.8,3.9,3.9,4.1,4.2,4.3.女生一周复习时间频数分布表分组(四舍五入后)频数(学生人数)1小时22小时a3小时44小时b(1)四舍五入前,女生一周复习时间的众数为________小时,中位数为________小时;(2)统计图表中a=________,c=________,________初一(1)班男生人数为________人,根据扇形统计图估算初一(1)班男生一周的平均复习时间为________小时;(3)为了激励学生养成良好的复习习惯,教务处决定对一周复习时间四舍五入后达到3小时及以上的全年级学生进行表扬,每人奖励1个笔记本,初一年级共有1000名学生,请问教务处应该准备大约多少个笔记本?【答案】见解析【解析】(1)2.2与3.2出现的次数都是3次,都是出现次数最多的数;=2.8.故答案为:2.2、3.2,2.8(2)初一(1)班一周复习2小时的女生人数共8人,即a=8;因为一周复习2小时的女生人数占全班人数的16%,所以该班人数为:8÷16%=50(人)因为该班有女生20人,所以有男生50﹣20=30(人).一周复习4小时的女生有:b=20﹣2﹣8﹣4=6(人)因为该班一周复习4小时的男女生人数相等.所以一周复习4小时的男生占男生人数的百分比为:=20%,即d=20,所以c=100﹣10﹣50﹣20=20.所以男生一周的平均复习时间为:2×50%+1×10%+4×20%+3×20%=2.5(小时)故答案为:8,20,2.5(3)初一(1)班复习时间在三小时及以上的人数有:4+6+6+30×20%=22(人)占该班人数的=44%,教务处该准备笔记本:1000×44%=440(个)答:教务处应该准备大约440个笔记本21.(10分)如图,P A、PB是∵O的切线,A、B为切点,∵P=44°.(∵)如图∵,若点C为优弧AB上一点,求∵ACB的度数;(∵)如图∵,在(∵)的条件下,若点D为劣弧AC上一点,求∵P AD+∵C的度数.【答案】见解析【解析】(∵)∵P A、PB是∵O的切线,∵∵OAP=90°,∵OBP=90°,∵∵AOB=360°﹣∵OAP﹣∵OBP﹣∵P=360°﹣90°﹣90°﹣44°=136°,∵∵ACB=AOB=68°;(∵)连接AB,∵P A、PB是∵O的切线,∵P A=PB,∵∵P=44°,∵∵P AB=∵PBA=(180°﹣44°)=68°,∵∵DAB+∵C=180°,∵∵P AD+∵C=∵P AB+∵DAB+∵C=180°+68°=248°.22.(10分)某数学课题研究小组要测量兰山顶部信号塔的高度,甲同学站在距离山脚20m的A处测得山顶的仰角为30°,测得塔顶D的仰角为60°,求塔高CD为多少?(取1.7,结果精确到0.1m)【答案】见解析【解析】在Rt∵ABC中,tan∵CAB=,∵BC=AB•tan∵CAB=20×=(m),在Rt∵DAB中,tan∵DAB=,∵DB=AB tan∵DAB=20×=20(m),∵CD=DB﹣BC=20﹣=≈22.7(m)答:塔高CD约为22.7m.23.(10分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(∵)根据题意,填写下表:0.5 1.82时间x(h)与A地的距离甲与A地的距离(km)51820乙与A地的距离(km)01220(∵)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;(∵)设甲,乙两人之间的距离为y,当y=12时,求x的值.【答案】见解析【解析】(∵)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发.当时间x=1.8 时,甲离开A的距离是10×1.8=18(km)当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时)此时乙行驶的时间是2﹣1.5=0.5(时),所以乙离开A的距离是40×0.5=20(km)故填写下表:y1=10x(0≤x≤1.5),(∵)根据题意,得当0≤x≤1.5时,由10x=12,得x=1.2当1.5<x≤2时,由﹣30x+60=12,得x=1.6因此,当y=12时,x的值是1.2或1.624.(10分)如图1所示,边长为4的正方形ABCD与边长为a(1<a<4)的正方形CFEG的顶点C重合,点E在对角线AC上.【问题发现】如图1所示,AE与BF的数量关系为________;【类比探究】如图2所示,将正方形CFEG绕点C旋转,旋转角为α(0<α<30°),请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;【拓展延伸】若点F为BC的中点,且在正方形CFEG的旋转过程中,有点A、F、G在一条直线上,直接写出此时线段AG的长度为________.【答案】见解析【解析】【问题发现】解:AE=BF,理由如下:∵四边形ABCD和四边形CFEG是正方形,∵∵B=∵CFE=90°,∵FCE=∵BCA=45°,CE=CF,CE∵GF,∵AB∵EF,∵==,∵AE=BF;故答案为:AE=BF;【类比探究】解:上述结论还成立,理由如下:连接CE,如图2所示:∵∵FCE=∵BCA=45°,∵∵BCF=∵ACE=45°﹣∵ACF,在Rt∵CEG和Rt∵CBA中,CE=CF,CA=CB,∵==,∵∵ACE∵∵BCF,∵==,∵AE=BF;【拓展延伸】解:分两种情况:∵如图3所示:连接CE交GF于H,∵四边形ABCD和四边形CFEG是正方形,∵AB=BC=4,AC=AB=4,GF=CE=CF,HF=HE=HC,∵点F为BC的中点,∵CF=BC=2,GF=CE=2,GH=HF=HE=HC=,∵AH===,∵AG=AH+HG=+;∵如图4所示:连接CE交GF于H,同∵得:GH=HF=HE=HC=,∵AH===,∵AG=AH﹣HG=﹣;故答案为:+或﹣.25.(10分)如图∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∵PBC=∵DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】见解析【解析】如图:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.∵解得∵抛物线的解析式为y=﹣x2+2x+3.(2)存在.理由如下:y=﹣x2+2x+3=﹣(x﹣1)2+4.∵点D(2,m)在第一象限的抛物线上,∵m=3,∵D(2,3),∵C(0,3)∵OC=OB,∵∵OBC=∵OCB=45°.连接CD,∵CD∵x轴,∵∵DCB=∵OBC=45°,∵∵DCB=∵OCB,在y轴上取点G,使CG=CD=2,再延长BG交抛物线于点P,在∵DCB和∵GCB中,CB=CB,∵DCB=∵OCB,CG=CD,∵∵DCB∵∵GCB(SAS)∵∵DBC=∵GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(3,0)代入,得k=﹣,b=1,∵BP解析式为y BP=﹣x+1.y BP=﹣x+1,y=﹣x2+2x+3当y=y BP时,﹣x+1=﹣x2+2x+3,解得x1=﹣,x2=3(舍去),∵y=,∵P(﹣,).(3)M1(﹣2,﹣5),M2(4,﹣5),M3(2,3).设点N(1,n),当BC、MN为平行四边形对角线时,由BC、MN互相平分,M(2,3﹣n),代入y=﹣x2+2x+3,3﹣n=﹣4+4+3,解得n=0,∵M(2,3);当BM、NC为平行四边形对角线时,由BM、NC互相平分,M(﹣2,3+n),代入y=﹣x2+2x+3,3+n=﹣4﹣4+3,解得n=﹣8,∵M(﹣2,﹣5);当MC、BN为平行四边形对角线时,由MC、BN互相平分,M(4,n﹣3),代入y=﹣x2+2x+3,n﹣3=﹣16+8+3,解得n=﹣2,∵M(4,﹣5).综上所述,点M的坐标为:M1(﹣2,﹣5),M2(4,﹣5),M3(2,3).。

2021年中考数学模拟试题含答案(精选5套解析版)(1)(1)

2021年中考数学模拟试题含答案(精选5套解析版)(1)(1)

中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( ) A. 5个 B. 4个 C. 3个 D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .(第9题图)(第11题图) (第12题图)(第7题图)15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3; (2)化简:(1 -n m n+)÷22nm m -. 20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下: (1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方(第17题图)(第18题图) (第21题图)(第23题图)(第24题图)°案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案D ACBCBDABCAC题号 1 2 3 4 5 6 7 8 9 10 答案 BD AA BC BB B D题号 11121314 1516答案360°-m ²3()()x y x y +-3509 132A .B . ﹣3C .﹣D . 3考点: 相反数.分析: 根据只有符号不同的两个数互为相反数解答. 解答: 解:﹣3相反数是3.故选D .点评: 本题主要考查了互为相反数的定义,熟记定义是解题的关键. A .B . (m 2)3=m 5C . a 2•a 3=a 5D . (x+y )2=x 2+y 2 考点: 完全平方公式;算术平方根;同底数幂的乘法;幂的乘方与积的乘方. 专题: 计算题.分析: A 、利用平方根定义化简得到结果,即可做出判断;B 、利用幂的乘方运算法则计算得到结果,即可做出判断;C 、利用同底数幂的乘法法则计算得到结果,即可做出判断;D 、利用完全平方公式展开得到结果,即可做出判断.解答: 解:A 、=3,本选项错误;B 、(m 2)3=m 6,本选项错误;C 、a 2•a 3=a 5,本选项正确;D 、(x+y )2=x 2+y 2+2xy ,本选项错误, 故选C点评: 此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式及法则是解本题的关键.A . 矩形B . 菱形C . 正五边形D . 正八边形 考点: 中心对称图形.捐款 人数 0~20元 21~40元 41~60元 61~80元 6 81元以上 4(第26题图)分析:根据中心对称图形的概念和各图形的特点即可解答.解答:解:只有正五边形是奇数边形,绕中心旋转180度后所得的图形与原图形不会重合.故选C.点评:本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,正奇边形一定不是中心对称图形.A.6B.7C.8D.10考点:多边形内角与外角.分析:根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.解答:解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故选C.点评:本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键.A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定甲D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件考点:概率公式;全面调查与抽样调查;标准差;随机事件;可能性的大小.专题:压轴题.分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.解答:解:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.点评:用到的知识点为:破坏性较强的调查应采用抽样调查的方式;随机事件可能发生,也可能不发生;标准差越小,数据越稳定;一定不会发生的事件是不可能事件.A.﹣1 B.0C.1D.2考点:反比例函数的性质.专题:压轴题.分析:对于函数来说,当k<0时,每一条曲线上,y随x的增大而增大;当k>0时,每一条曲线上,y随x的增大而减小.解答:解:反比例函数的图象上的每一条曲线上,y随x的增大而增大,所以1﹣k<0,解得k>1.故选D.点评:本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运用.易错易混点:学生对解析式中k的意义不理解,直接认为k<0,错选A.A.10πB.15πC.20πD.30π考点: 圆锥的计算;由三视图判断几何体. 分析: 根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.解答: 解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选B .点评: 本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.A .B .C .D .考点:反比例函数综合题.专题:压轴题;探究型. 分析:首先设出点A 和点B 的坐标分别为:(x 1,)、(x 2,﹣),设线段OA 所在的直线的解析式为:y=k 1x ,线段OB 所在的直线的解析式为:y=k 2x ,然后根据OA ⊥OB ,得到k 1k 2=•(﹣)=﹣1,然后利用正切的定义进行化简求值即可.解答:解:设点A 的坐标为(x 1,),点B 的坐标为(x 2,﹣),设线段OA 所在的直线的解析式为:y=k 1x ,线段OB 所在的直线的解析式为:y=k 2x , 则k 1=,k 2=﹣,∵OA ⊥OB , ∴k 1k 2=•(﹣)=﹣1整理得:(x 1x 2)2=16,∴tanB=======.故选B .点评: 本题考查的是反比例函数综合题,解题的关键是设出A 、B 两点的坐标,然后利用互相垂直的两条直线的比例系数互为负倒数求解.考点: 科学记数法—表示较小的数.分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.考点:函数自变量的取值范围;二次根式有意义的条件.专题:计算题.分析:根据二次根式的意义,有x﹣1≥0,解不等式即可.解答:解:根据二次根式的意义,有x﹣1≥0,解可x≥1,故自变量x的取值范围是x≥1.点评:本题考查了二次根式的意义,只需保证被开方数大于等于0即可.考点:提公因式法与公式法的综合运用.分析:先提取公因式m,再对余下的多项式利用完全平方公式继续分解.解答:解:m3﹣4m2+4m=m(m2﹣4m+4)=m(m﹣2)2.故答案为:m(m﹣2)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.考点:圆与圆的位置关系.分析:两圆相交,圆心距是7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一圆的半径的取值范围,继而求得答案.解答:解:∵⊙O1与⊙O2相交,圆心距是7,又∵7﹣2=5,7+2=9,∴半径m的取值范围为:5<m<9.故答案为:5<m<9.点评:此题考查了圆与圆的位置关系.解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.考点:一次函数图象上点的坐标特征.分析:先把点(a,b)代入一次函数y=2x﹣3求出2a﹣b的值,再代入代数式进行计算即可.解答:解:∵点(a,b)在一次函数y=2x﹣3上,∴b=2a﹣3,即2a﹣b=3,∴原式=﹣3(2a﹣b)+1=(﹣3)×3+1=﹣8.故答案为:﹣8.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.考点:解分式方程.专题:计算题.分析:本题考查解分式方程的能力,观察可得方程最简公分母为x(x﹣3),去分母,转化为整式方程求解.结果要检验.解答:解:方程两边同乘x(x﹣3),得2x=3(x﹣3),解得x=9.经检验x=9是原方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.考点:圆周角定理;垂径定理.分析:由⊙O的直径CD⊥EF,由垂径定理可得=,又由∠OEG=30°,∠EOG的度数,又由圆周角定理,即可求得答案.解答:解:∵⊙O的直径CD⊥EF,∴=,∵∠OEG=30°,∴∠EOG=90°﹣∠OEG=60°,∴∠DCF=∠EOG=30°.故答案为:30°.点评:此题考查了圆周角定理与垂径定理.此题难度不大,注意掌握数形结合思想的应用.考点:二次函数与不等式(组).分析:根据图象可以直接回答,使得y1≥y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围.解答:解:根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.点评:本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.考点:翻折变换(折叠问题).分析:设正方形ABCD的边长为x,根据翻折变换的知识可知BE=EG=2,DF=GF=3,则EC=x﹣2,FC=x﹣3,在Rt△EFC中,根据勾股定理列出式子即可求得边长x的长度.解答:解:设正方形ABCD的边长为x,根据折叠的性质可知:BE=EG=2,DF=GF=3,则EC=x﹣2,FC=x﹣3,在Rt△EFC中,EC2+FC2=EF2,即(x﹣2)2+(x﹣3)2=(2+3)2,解得:x1=6,x2=﹣1(舍去),故正方形纸片ABCD的边长为6.故答案为:6.点评:本题考查了翻折变换的知识,解答本题的关键是熟练掌握翻折变换的性质:翻折前后对应边相等,另外要求同学们熟练掌握勾股定理的应用.考点:剪纸问题;一元二次方程的应用;正方形的性质.专题:几何图形问题;压轴题.分析:根据题中信息可得图2、图3面积相等;图2可分割为一个正方形和四个小三角形;设原八角形边长为a,则图2正方形边长为2a+a、面积为(2a+a)2,四个小三角形面积和为2a2,解得a=1.AB就知道等于多少了.解答:解:设原八角形边长为a,则图2正方形边长为2a+a、面积为(2a+a)2,四个小三角形面积和为2a2,列式得(2a+a)2+2a2=8+4,解得a=1,则AB=1+.点评:解此题的关键是抓住图3中的AB在图2中是哪两条线段组成的,再列出方程求出即可.考点:分式的混合运算;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=+×+5﹣1,再进行二次根式的乘法运算,然后进行有理数的加减运算;(2)先把括号内通分和把除法化为乘法,然后把分子分解后约分即可.解答:(1)解:原式=+×+5﹣1=++5﹣1=6;(2)原式=•=x.点评:本题考查了分式的混合运算:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:求出每个不等式的解集,找出不等式组的解集即可.解答:解:∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2,在数轴上表示不等式组的解集为.点评:本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.考点:折线统计图;条形统计图;算术平均数;中位数.分析:(1)从(1)可看出3℃的有3天.(2)中位数是数据从小到大排列在中间位置的数.(3)求加权平均数数,8天的温度和÷8就为所求.解答:解:(1)如图所示.(2)∵这8天的气温从高到低排列为:4,3,3,3,2,2,1,1∴中位数应该是第4个数和第5个数的平均数:(2+3)÷2=2.5.(3)(1×2+2×2+3×3+4×1)÷8=2.375℃.8天气温的平均数是2.375.点评:本题考查了折线统计图,条形统计图的特点,以及中位数的概念和加权平均数的知识点.考点:列表法与树状图法;等腰三角形的判定;平行四边形的判定.分析:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,即可得出答案;(2)利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率.解答:解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P==.故答案为:(1),(2).点评:此题主要考查了利用树状图求概率,根据已知正确列举出所有结果,进而得出概率是解题关键.考点:解直角三角形.分析:过点B作BM⊥FD于点M,解直角三角形求出BC,在△BMC值解直角三角形求出CM,BM,推出BM=DM,即可求出答案.解答:解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC tan60°=10,∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=BC•sin30°=10×=5,CM=BC•cos30°=10×=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.点评:本题考查了解直角三角形的应用,关键是能通过解直角三角形求出线段CM、MD的长.考点:反比例函数综合题.专题:综合题.分析:(1)设E(x1,),F(x2,),x1>0,x2>0,根据三角形的面积公式得到S1=S2=k,利用S1+S2=2即可求出k;(2)设,,利用S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF=﹣+5,根据二次函数的最值问题即可得到当k=4时,四边形OAEF的面积有最大值,S四边形OAEF=5,此时AE=2.解答:解:(1)∵点E、F在函数y=(x>0)的图象上,∴设E(x1,),F(x2,),x1>0,x2>0,∴S1=,S2=,∵S1+S2=2,∴=2,∴k=2;(2)∵四边形OABC为矩形,OA=2,OC=4,设,,∴BE=4﹣,BF=2﹣,∴S△BEF=﹣k+4,∵S△OCF=,S矩形OABC=2×4=8,∴S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF=+4,=﹣+5,∴当k=4时,S四边形OAEF=5,∴AE=2.当点E运动到AB的中点时,四边形OAEF的面积最大,最大值是5.点评:本题考查了反比例函数k的几何含义和点在双曲线上,点的横纵坐标满足反比例的解析式.也考查了二次的顶点式及其最值问题.考点:切线的性质;垂径定理;解直角三角形.专题:计算题.分析:(1)过O作OH垂直于AC,利用垂径定理得到H为AC中点,求出AH的长为4,根据同弧所对的圆周角相等得到tanA=tan∠BDC,求出OH的长,利用勾股定理即可求出圆的半径OA的长;(2)由AB垂直于CD得到E为CD的中点,得到EC=ED,在直角三角形AEC中,由AC 的长以及tanA的值求出CE与AE的长,由FB为圆的切线得到AB垂直于BF,得到CE与FB平行,由平行得比例列出关系式求出AF的长,根据AF﹣AC即可求出CF的长.解答:解:(1)作OH⊥AC于H,则AH=AC=4,在Rt△AOH中,AH=4,tanA=tan∠BDC=,∴OH=3,∴半径OA==5;(2)∵AB⊥CD,∴E为CD的中点,即CE=DE,在Rt△AEC中,AC=8,tanA=,设CE=3k,则AE=4k,根据勾股定理得:AC2=CE2+AE2,即9k2+16k2=64,解得:k=,则CE=DE=,AE=,∵BF为圆O的切线,∴FB⊥AB,又∵AE⊥CD,∴CE∥FB,∴=,即=,解得:AF=,则CF=AF﹣AC=.点评:此题考查了切线的性质,垂径定理,锐角三角函数定义,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.考点:一次函数的应用.分析:(1)设客车的速度为a km/h,则货车的速度为km/h,根据题意列出有关v的一元一次方程解得即可;(2)根据货车两小时到达C站,可以设x小时到达C站,列出关系式即可;(3)两函数的图象相交,说明两辆车相遇,即客车追上了货车.解答:解:(1)设客车的速度为a km/h,则货车的速度为km/h,由题意列方程得:9a+×2=630,解之,a=60,∴=45,答:客车的速度为60 km/h,货车的速度为45km/h(2)方法一:由(1)可知P(14,540),∵D (2,0),∴y2=45x﹣90;方法二:由(1)知,货车的速度为45km/h,两小时后货车的行驶时间为(x﹣2),∴y2=45(x﹣2)=45x﹣90,(3)方法一:∵F(9,0)M(0,540),∴y1=﹣60x+540,由,解之,∴E (6,180)点E的实际意义:行驶6小时时,两车相遇,此时距离C站180km;方法二:点E表示两车离C站路程相同,结合题意,两车相遇,可列方程:45x+60x=630,x=6,∴540﹣60x=180,∴E (6,180),点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.考点:相似形综合题.分析:(1)首先利用勾股定理求得AB=10,然后表示出AP,利用平行四边形对角线互相平分表示出线段AE即可;(2)利用矩形的性质得到△APQ∽△ABC,利用相似三角形对应边的比相等列出比例式即可求得t值;(3)利用菱形的性质得到.解答:解:(1)∵Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.∴由勾股定理得:AB=10cm,∵点P由B出发沿BA方向向点A匀速运动,速度均为2cm/s,∴BP=2tcm,∴AP=AB﹣BP=10﹣2t,∵四边形AQPD为平行四边形,∴AE==5﹣t;(2)当▱AQPD是矩形时,PQ⊥AC,∴PQ∥BC,∴△APQ∽△ABC∴即解之t=∴当t=时,▱AQPD是矩形;(3)当▱AQPD是菱形时,DQ⊥AP,则COS∠BAC==即解之t=∴当t=时,□AQPD是菱形.点评:本题考查了相似形的综合知识,正确的利用平行四边形、矩形、菱形的性质得到正方形是解决本题的关键.考点:二次函数综合题.专题:代数几何综合题;压轴题;动点型.分析:(1)由直线与x轴,y轴分别交于B,C两点,分别令x=0和y=0求出B与C的坐标,又抛物线经过B,C两点,把求出的B与C的坐标代入到二次函数的表达式里得到关于b,c的方程,联立解出b和c即可求出二次函数的解析式.又因A点是二次函数与x轴的另一交点令y=0即可求出点A的坐标.(2)连接OM,PM与⊙O′相切作为题中的已知条件来做.由直径所对的圆周角为直角可得∠OMC=90°从而得∠OMB=90°.又因为O′O是⊙O′的半径,O′O⊥OP得到OP为⊙O′的切线,然后根据从圆外一点引圆的两条切线,切线长相等可得OP=PM,根据等边对等角得∠POM=∠PMO,然后根据等角的余角相等可得∠PMB=∠OBM,再根据等角对等边得PM=PB,然后等量代换即可求出OP的长,加上OA的长即为点P运动过的路程AP,最后根据时间等于路程除以速度即可求出时间t的值.(3)①由路程等于速度乘以时间可知点P走过的路程AP=3t,则BP=15﹣3t,点Q走过的路程为BQ=3t,然后过点Q作QD⊥OB于点D,证△BQD∽△BCO,由相似得比列即可表示出QD的长,然后根据三角形的面积公式即可得到S关于t的二次函数关系式,然后利用t=﹣时对应的S的值即可求出此时的最大值.②要使△NCQ为直角三角形,必须满足三角形中有一个直角,由BA=BC可知∠BCA=∠BAC,所以角NCQ不可能为直角,所以分两种情况来讨论:第一种,当角NQC为直角时,利用两组对应角的相等可证△NCQ∽△CAO,由相似得比例即可求出t的值;第二种当∠QNC=90°时,也是证三角形的相似,由相似得比例求出t的值.解答:解:(1)在y=﹣x+9中,令x=0,得y=9;令y=0,得x=12.∴C(0,9),B(12,0).又抛物线经过B,C两点,∴,解得∴y=﹣x2+x+9.于是令y=0,得﹣x2+x+9=0,解得x1=﹣3,x2=12.∴A(﹣3,0).(2)当t=3秒时,PM与⊙O′相切.连接OM.∵OC是⊙O′的直径,∴∠OMC=90°.∴∠OMB=90°.∵O′O是⊙O′的半径,O′O⊥OP,∴OP是⊙O′的切线.而PM是⊙O′的切线,∴PM=PO.∴∠POM=∠PMO.又∵∠POM+∠OBM=90°,∠PMO+∠PMB=90°,∴∠PMB=∠OBM.∴PM=PB.∴PO=PB=OB=6.∴PA=OA+PO=3+6=9.此时t=3(秒).∴当t=3秒,PM与⊙O′相切.(3)①过点Q作QD⊥OB于点D.∵OC⊥OB,∴QD∥OC.∴△BQD∽△BCO.∴=.又∵OC=9,BQ=3t,BC=15,∴=,解得QD=t.∴S△BPQ=BP•QD=.即S=.S=.故当时,S最大,最大值为.②存在△NCQ为直角三角形的情形.∵BC=BA=15,∴∠BCA=∠BAC,即∠NCM=∠CAO.∴△NCQ欲为直角三角形,∠NCQ≠90°,只存在∠NQC=90°和∠QNC=90°两种情况.当∠NQC=90°时,∠NQC=∠COA=90°,∠NCQ=∠CAO,∴△NCQ∽△CAO.∴=.∴=,解得t=.当∠QNC=90°时,∠QNC=∠COA=90°,∠QCN=∠CAO,∴△QCN∽△CAO.∴=.∴=,解得.综上,存在△NCQ为直角三角形的情形,t的值为和.点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法,以及圆的切线的有关性质.在求有关动点问题时要注意分析题意分情况讨论结果.A.点P B.点Q C.点M D.点N考点:数轴;相反数.分析:根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.解答:解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.点评:本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.A.40°B.50°C.60°D. 70°考点:平行线的性质.分析:由AB∥CD,∠B=20°,根据两直线平行,内错角相等,即可求得∠C的度数,又由三角形外角的性质,即可求得∠BOD的度数.解答:解:∵AB∥CD,∠B=20°,∴∠C=∠B=20°,∵∠D=40°,∴∠BOD=∠C+∠D=60°.故选C.点评:此题考查了平行线的性质、三角形外角的性质.此题难度不大,解题的关键是注意掌握两直线平行,内错角相等定理的应用.A.x<1 B.x>﹣4 C.﹣4<x<1 D. x>1考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到不等式组的解集.解答:解:,由①得﹣x>﹣1,即x<1;由②得x>﹣4;由以上可得﹣4<x<1.故选C.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).A.王老师去时所用的时间少于回家的时间B.王老师在公园锻炼了40分钟C.王老师去时走上坡路,回家时走下坡路。

【中考冲刺】2021年陕西省西安市中考数学模拟试卷(附答案) (1)

【中考冲刺】2021年陕西省西安市中考数学模拟试卷(附答案) (1)
(1)直接写出甲扔对垃圾的概率;
(2)请用列表法或画树状图的方法,求出甲、乙两人同时扔对垃圾的概率.
23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O的切线.
(1)求证:∠BAC=2∠CDE;
(2)若CE=4,cos∠ABC= ,求⊙O的半径.
24.如图,抛物线 与x轴交于点 ,点 ,与y轴交于点C,且过点 .点P、Q是抛物线 上的动点.
【详解】
解:过点E作EN⊥BC于点N,过点F作FH⊥AB于点H,如图:
在Rt△ABC中,∠BAC=90°,AC=9,AB=12,
由勾股定理得:BC= ,
∵BE平分∠ABC,EN⊥BC,EA⊥AB,
∴EA=EN,
在Rt△ABE和Rt△NBE中,

∴Rt△ABE≌Rt△NBE(HL),
∴NB=AB=12,
【详解】
解:因为一次函数y=2x+m和y=﹣x+2图象相交,
所以 ,
解得 ,
因为交点位于第一象限,
所以2﹣m>0,且4+m>0,
解得m<2且m>﹣4,
所以﹣4<m<2.
所以m的值可能是﹣2 .
故选:C.
【点睛】
本题考查了解不等式及两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.
∴EO=FO,
∵BO=DO,
∴四边形BEDF是平行四边形,
∵EF⊥BD,
∴平行四边形BEDF是菱形,
∴BE=DE,
∵AB=5,AD=12,∠A=90°,
∴BD=13,

2021年重庆市九龙坡区育才中学中考数学模拟试卷(含解析)

2021年重庆市九龙坡区育才中学中考数学模拟试卷(含解析)

2021年重庆市九龙坡区育才中学中考数学模拟试卷(一)一、选择题(共12小题).1.下列实数﹣2、3、0、﹣中,最小的数是()A.﹣2B.3C.0D.﹣2.2022年冬奥会将在北京举行,以下历届冬奥会会徽是轴对称图形的是()A.B.C.D.3.下列说法正确的是()A.方差越大,数据波动越小B.两直线平行,同旁内角相等C.长为3cm,3cm,5cm的三条线段可以构成一个三角形D.学校在初三3100名同学中随机抽取300名同学进行体考成绩调查,300名同学为样本4.下列整数中,与(3﹣)÷的值最接近的是()A.3B.4C.5D.65.如图,用尺规作图作∠BAC的平分线AD,第一步是以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;第二步是分别以E,F为圆心,以大于EF长为半径画弧,两圆弧交于D点,连接AD,AD即为所求作,请说明△AFD≌△AED的依据是()A.SSS B.SAS C.ASA D.AAS6.如图,AB与⊙O相切于点B,连接AO并延长交⊙O于点C,连接BC.若∠C=34°,则∠A的度数是()A.17°B.22°C.34°D.56°7.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,S=4,则△ABC的面积为()A.2B.8C.12D.168.某商店搞促销活动,同时购买一个篮球和一个足球可以打八折,需花费1280元.已知篮球标价比足球标价的3倍多15元,若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为()A.B.C.D.9.我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C 处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30米处的D点.再测得顶点A的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB 的高度为()(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.60B.70C.80D.9010.若整数a使得关于x的分式方程+=2的解为非负数,且一次函数y=﹣(a+3)x+a+2的图象经过一、二、四象限,则所有符合条件的a的和为()A.﹣3B.2C.1D.411.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D在边OC上,且BD =OC,以BD为边向下作矩形BDEF,使得点E在边OA上,反比例函数y=(k≠0)的图象经过边EF与AB的交点G.若DE=3,AG=2.25,则k的值为()A.10.8B.9.6C.3.2D.312.如图,Rt△ABC中,∠ACB=90°,AB=2AC,AC=,点E是AB上的点,将△BCE 沿CE翻折,得到△B'CE,过点A作AF∥BC交∠ABC的平分线于点F,连接B'F,则B'F长度的最小值为()A.+B.﹣C.+D.﹣二.填空题(共6小题).13.“五一”期间全国共接待国内游客115000000人次,请把数115000000用科学记数法表示为.14.计算:﹣(3.14﹣π)0+()﹣1=.15.从﹣1,1,2这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),则点M在直线l:y=﹣x上的概率为.16.如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A,C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为cm2(结果保留π)17.“康河泛舟,问道剑桥”,甲乙两人相约泛舟康河,路线均为从A到B再返回A,且AB全长2千米,甲出发2分钟后,乙以另一速度出发,结果同时到达目的B地,甲到达目的地拍照5分钟便原速返回A地;乙到达B地后休息了2分钟,然后立即提速为原速的倍返回A地.甲乙之间的距离s(单位:米)与甲的行驶时间t(单位:分钟)之间的函数关系如图所示,则当乙回到A地时,甲距离A地米.18.某运输公司有核定载重量之比为4:5:6的甲、乙、丙三种货车,该运输公司接到为武汉运输抗疫的医药物资任务,迅速按照各车型核定载重量将抗疫物资运往武汉,承担本次运输的三种货车数量相同.当这批物资送达武汉后,发现还需要一部分医药物资才能满足需要,于是该运输公司又安排部分甲、乙、丙三种货车进行第二次运输,其中乙型车第二次运送的物资量是还需要运送物资总量的,丙型车两次运送的物资总量是两次运往武汉物资总量的,甲型车两次运输的物资总量与乙型车两次运输的物资总量之比为3:2,则甲型车第一次与第二次运输的物资量之比是.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上. 19.计算:(1)(x+2y)2﹣x(x+4y);(2)(+x﹣2)÷.20.如图,在平行四边形ABCD中,AC是对角线,且AB=AC,CF是∠ACB的角平分线交AB于点F,在AD上取一点E,使AB=AE,连接BE交CF于点P.(1)求证:BP=CP;(2)若BC=4,∠ABC=45°,求平行四边形ABCD的面积.21.5月5日18时,我国载人空间站研制的长征五号B运载火箭在海南文昌首飞成功,正式拉开我国载人航天工程“第三步”任务的序幕.为了解我校初三学生对我国航天事业的关注程度,随机抽取了男、女学生若干名(抽取的男女生人数相同)进行问卷测试,问卷共30道选择题(每题1分,满分30分),现将得分情况统计,并绘制了如下不完整的统计图:(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人.男生C组得分情况分别为:22,23,24,22,23,24,25,22,24,25,23,22,25,22;男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20a22女202320(1)随机抽取的男生人数为人,表格中a的值为,补全条形统计图;(2)如果初三年级男生、女生各1500人,那么此次参加问卷测试成绩处于C组的人数有多少人?(3)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可).22.如果一个正整数的各位数字都相同,我们称这样的数为“同花数”,比如:3,22,666,8888,…对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“异花数”.将一个“异花数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为F(n).如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132.这三个新三位数的和F(n)=213+321+132=666,是一个“同花数”.(1)计算:F(432),F(716),并判断它们是否为“同花数”;(2)若“异花数”n=100+10p+q(中p、q都是正整数,1≤p≤9,1≤q≤9),且F(n)为最大的三位“同花数”,求n的值.23.在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象.小明根据学到的函数知识探究函数y1=|ax+4|﹣b的图象与性质并利用图象解决问题.小明列出了如表y1与x的几组对应的值:x…﹣5﹣4﹣3﹣2﹣10123…y1…31﹣1﹣3﹣11357…(1)根据表格,直接写出a=,b=;(2)在平面直角坐标系中,画出该函数图象,并根据函数图象,写出该函数的一条性质;(3)当函数y1的图象与直线y2=mx﹣1有两个交点时,直接写出m的取值范围.24.某环保公司研发了甲、乙两种智能设备,可将垃圾处理变为新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且两种智能设备的单价和为140万元.(1)求甲、乙两种智能设备单价;(2)垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知每吨燃料棒的成本为100元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?25.如图,抛物线y=x2+bx+c交x轴于A、B两点(点A在点B的左侧),交y轴于点C (0,5),连接BC,其中OC=5OA.(1)求抛物线的解析式;(2)如图1,将直线BC沿y轴向上平移6个单位长度后与抛物线交于D、E两点,交y 轴于点G,若点P是抛物线上位于直线BC下方(不与A、B重合)的一个动点,过点P 作PM∥y轴交DE于点M,交BC于点H,过点M作MN⊥BC于点M,求PM+NH的最大值及此时点P的坐标;(3)如图2,当点P满足(2)问条件时,将△CBP绕点C逆时针旋转α(0°<α<90°)得到△CB'P',此时点B′恰好落到直线ED上,已知点F是抛物线上的动点,在直线ED上是否存在一点Q,使得以点C、B′、F、Q为顶点的四边形为平行四边形?若存在,直接写出点Q的坐标,若不存在,请说明理由.26.在△ABC中,∠BAC=90°,点E为AC上一点,AB=AE,AG⊥BE,交BE于点H,交BC于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH=2,BC=,求CE的长;(2)如图2,若AB=BM,连接MH,∠HMG=∠MAH,求证:AM=2HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点N,连接AN、MN、EN,请直接写出∠AMH、∠NAE、∠MNE之间的角度关系.参考答案一、选择题(共12小题).1.下列实数﹣2、3、0、﹣中,最小的数是()A.﹣2B.3C.0D.﹣解:∵|﹣|=,|﹣2|=2,又∵<2,∴﹣>﹣2,故在实数﹣2、3、0、﹣中,最小的数是:﹣2.故选:A.2.2022年冬奥会将在北京举行,以下历届冬奥会会徽是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.3.下列说法正确的是()A.方差越大,数据波动越小B.两直线平行,同旁内角相等C.长为3cm,3cm,5cm的三条线段可以构成一个三角形D.学校在初三3100名同学中随机抽取300名同学进行体考成绩调查,300名同学为样解:A.方差越小,数据波动越小,此选项说法错误;B.两直线平行,同旁内角互补,此选项错误;C.长为3cm,3cm,5cm的三条线段可以构成一个三角形,此选项说法正确;D.学校在初三3100名同学中随机抽取300名同学进行体考成绩调查,300名同学的体考成绩为样本,此说法错误;故选:C.4.下列整数中,与(3﹣)÷的值最接近的是()A.3B.4C.5D.6解:(3﹣)÷==6﹣;∵2.22<5<2.32,∴,∴,与(3﹣)÷的值最接近的是4.故选:B.5.如图,用尺规作图作∠BAC的平分线AD,第一步是以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;第二步是分别以E,F为圆心,以大于EF长为半径画弧,两圆弧交于D点,连接AD,AD即为所求作,请说明△AFD≌△AED的依据是()A.SSS B.SAS C.ASA D.AAS解:由作法得AE=AF,DF=DE,而AD为公共边,所以根据“SSS”可判断△AFD≌△AED.故选:A.6.如图,AB与⊙O相切于点B,连接AO并延长交⊙O于点C,连接BC.若∠C=34°,则∠A的度数是()A.17°B.22°C.34°D.56°解:如图,连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵OB=OC,∴∠OBC=∠C=34°,∴∠AOB=∠OBC+∠C=68°,∴∠A=180°﹣∠ABO﹣∠AOB=180°﹣90°﹣68°=22°,故选:B.7.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,S=4,则△ABC的面积为()A.2B.8C.12D.16解:∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,∴A1C1∥AC,∴△OA1C1∽△OAC,∴==,∴△ABC的面积=4×△A1B1C1的面积=16,故选:D.8.某商店搞促销活动,同时购买一个篮球和一个足球可以打八折,需花费1280元.已知篮球标价比足球标价的3倍多15元,若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为()A.B.C.D.解:若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为:.故选:B.9.我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C 处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30米处的D点.再测得顶点A的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB 的高度为()(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.60B.70C.80D.90解:作AH⊥ED交ED的延长线于H,设DE=x米,∵CD的坡度:i=1:2,∴CE=2x米,由勾股定理得,DE2+CE2=CD2,即x2+(2x)2=(30)2,则DE=30米,CE=60米,设AB=y米,则HE=y米,∴DH=y﹣30,∵∠ACB=45°,∴BC=AB=y,∴AH=BE=y+60,在Rt△AHD中,tan∠DAH=,则≈0.4,解得,y=90,∴高楼AB的高度为90米,故选:D.10.若整数a使得关于x的分式方程+=2的解为非负数,且一次函数y=﹣(a+3)x+a+2的图象经过一、二、四象限,则所有符合条件的a的和为()A.﹣3B.2C.1D.4解:+=2,方程两边乘以x﹣2得:x﹣a﹣1=2x﹣4,解得:x=3﹣a,∵关于x的分式方程+=2的解为非负数,∴3﹣a≥0,解得:a≤3,∵一次函数y=﹣(a+3)x+a+2的图象经过一、二、四象限,∴﹣(a+3)<0且a+2>0,∴﹣2<a≤3,∵分式方程的分母x﹣2≠0,∴x=3﹣a≠2,即a≠1,∵a为整数,∴a为﹣1,0,2,3,和为﹣1+0+2+3=4,故选:D.11.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D在边OC上,且BD =OC,以BD为边向下作矩形BDEF,使得点E在边OA上,反比例函数y=(k≠0)的图象经过边EF与AB的交点G.若DE=3,AG=2.25,则k的值为()A.10.8B.9.6C.3.2D.3解:如图,连接DF,BE,∵四边形OABC是矩形,四边形BDEF是矩形,∴OC=AB,BE=DF,∠BAO=∠BDE=∠DEF=90°,∵BD=OC,∴BD=AB,在Rt△BDE和Rt△BAE中,,∴Rt△BDE≌Rt△BAE(HL),∴AE=DE=3,∴EG===3.75,∵∠DEO+∠AEG=90°,∠EDO+∠DEO=90°,∴∠AEG=∠EDO,又∵∠EOD=∠EAG=90°,∴△DEO∽△EGA,∴,∴,∴OE=1.8,∴OA=3+1.8=4.8,∴点G(4.8,2.25),∵反比例函数y=(k≠0)的图象经过点G,∴k=4.8×2.25=10.8,故选:A.12.如图,Rt△ABC中,∠ACB=90°,AB=2AC,AC=,点E是AB上的点,将△BCE 沿CE翻折,得到△B'CE,过点A作AF∥BC交∠ABC的平分线于点F,连接B'F,则B'F长度的最小值为()A.+B.﹣C.+D.﹣解:∵AB=2AC,AC=,∴AB=2,在Rt△ACB中,BC=,而△BCE沿CE翻折得△B'CE,∵AF∥BC,∴∠BCA=∠CAF=90°,∠CBF=∠BFA,∵∠CBF=∠FBA,∴∠FBA=∠BFA,∴AF=AB=2,在Rt△ACF中,CF=,在△B'CF中,B'F>CF﹣B'C,∴B'F最小值为,故选:B.二.填空题:(本大题6个小题,每小题4分,共24分)13.“五一”期间全国共接待国内游客115000000人次,请把数115000000用科学记数法表示为 1.15×108.解:把数115000000用科学记数法表示为1.15×108.故答案为:1.15×108.14.计算:﹣(3.14﹣π)0+()﹣1=4.解:原式=3﹣1+2=4.故答案为:4.15.从﹣1,1,2这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),则点M在直线l:y=﹣x上的概率为.解:根据题意画图如下:得到点M的坐标分别是(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1),共有6个等可能的结果,点M在直线l:y=﹣x上的结果有2个,∴点M在直线l:y=﹣x上的概率为=,故答案为:.16.如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A,C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为24﹣πcm2(结果保留π)解:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC==10cm,△ABC的面积是:AB•BC=×8×6=24cm2.∴S阴影部分=×6×8﹣cm2故阴影部分的面积是:24﹣πcm2.故答案是:24﹣πcm217.“康河泛舟,问道剑桥”,甲乙两人相约泛舟康河,路线均为从A到B再返回A,且AB全长2千米,甲出发2分钟后,乙以另一速度出发,结果同时到达目的B地,甲到达目的地拍照5分钟便原速返回A地;乙到达B地后休息了2分钟,然后立即提速为原速的倍返回A地.甲乙之间的距离s(单位:米)与甲的行驶时间t(单位:分钟)之间的函数关系如图所示,则当乙回到A地时,甲距离A地1400米.解:根据题意得:甲的速度为:2000÷10=200(米/分),乙原来的速度为:2000÷(10﹣2)=250(米/分),乙返回的速度为:(米/分),乙返回的时间为:2000÷=6(分钟),当乙回到A地时,甲距离A地:2000﹣200×(6+2﹣5)=1400(米).故答案为:1400.18.某运输公司有核定载重量之比为4:5:6的甲、乙、丙三种货车,该运输公司接到为武汉运输抗疫的医药物资任务,迅速按照各车型核定载重量将抗疫物资运往武汉,承担本次运输的三种货车数量相同.当这批物资送达武汉后,发现还需要一部分医药物资才能满足需要,于是该运输公司又安排部分甲、乙、丙三种货车进行第二次运输,其中乙型车第二次运送的物资量是还需要运送物资总量的,丙型车两次运送的物资总量是两次运往武汉物资总量的,甲型车两次运输的物资总量与乙型车两次运输的物资总量之比为3:2,则甲型车第一次与第二次运输的物资量之比是2:3.解:设第一次甲种货车运输的总重量为4x,乙种货车运输的总重量为5x,丙种货车运输的总重量为6x,第二次三种货车运输的总重量为y,根据题意得,第二次乙种货车运输的总重量为y,第二次甲种货车运输的总重量为(5x+y)﹣4x=y+x,第二次丙种货车运输的总重量为(15x+y)﹣6x=y﹣x,于是有:y+y+x+y﹣x=y,∴y=x,∴甲型车第一次与第二次运输的物资量之比:4x:(y+x)=2:3.故答案为:2:3.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上. 19.计算:(1)(x+2y)2﹣x(x+4y);(2)(+x﹣2)÷.解:(1)(x+2y)2﹣x(x+4y)=x2+4y2+4xy﹣x2﹣4xy=4y2;(2)(+x﹣2)÷=•=•=x﹣2.20.如图,在平行四边形ABCD中,AC是对角线,且AB=AC,CF是∠ACB的角平分线交AB于点F,在AD上取一点E,使AB=AE,连接BE交CF于点P.(1)求证:BP=CP;(2)若BC=4,∠ABC=45°,求平行四边形ABCD的面积.解:(1)设AP与BC交于H,∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.21.5月5日18时,我国载人空间站研制的长征五号B运载火箭在海南文昌首飞成功,正式拉开我国载人航天工程“第三步”任务的序幕.为了解我校初三学生对我国航天事业的关注程度,随机抽取了男、女学生若干名(抽取的男女生人数相同)进行问卷测试,问卷共30道选择题(每题1分,满分30分),现将得分情况统计,并绘制了如下不完整的统计图:(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人.男生C组得分情况分别为:22,23,24,22,23,24,25,22,24,25,23,22,25,22;男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20a22女202320(1)随机抽取的男生人数为50人,表格中a的值为25,补全条形统计图;(2)如果初三年级男生、女生各1500人,那么此次参加问卷测试成绩处于C组的人数有多少人?(3)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可).解:(1)由题意可得,随机抽取的男生人有:14÷28%=50(人),男生得分处于C组的成绩按照从小到大排列为:22,22,22,22,22,23,23,23,24,24,24,25,25,25,故表格中a的值为25,故答案为:50,25,女生C组学生有:50﹣2﹣13﹣20=15(人),补全的条形统计图如右图所示;(2)1500×+1500×=420+450=870(人),即此次参加问卷测试成绩处于C组的有870人;(3)成绩更好的是男生,理由:男生成绩的中位数比女生成绩好,故成绩更好的是男生.22.如果一个正整数的各位数字都相同,我们称这样的数为“同花数”,比如:3,22,666,8888,…对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“异花数”.将一个“异花数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为F(n).如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132.这三个新三位数的和F(n)=213+321+132=666,是一个“同花数”.(1)计算:F(432),F(716),并判断它们是否为“同花数”;(2)若“异花数”n=100+10p+q(中p、q都是正整数,1≤p≤9,1≤q≤9),且F(n)为最大的三位“同花数”,求n的值.解:(1)∵F(432)=342+234+423=999,∴F(432)是同花数;∵F(716)=167+716+671=1554,∴F(716)不是同花数;(2)∵异花数”n=100+10p+q,∴n=100×1+10p+q,又∵1≤p≤9,1≤q≤9(p,q为正整数),F(n)为最大的三位“同花数”,∴F(n)=999且1+p+q=9,∴p、q取值如下:或或或,由上可知符合条件三位“异花数”n为162或153或135或126.23.在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象.小明根据学到的函数知识探究函数y1=|ax+4|﹣b的图象与性质并利用图象解决问题.小明列出了如表y1与x的几组对应的值:x…﹣5﹣4﹣3﹣2﹣10123…y1…31﹣1﹣3﹣11357…(1)根据表格,直接写出a=2,b=3;(2)在平面直角坐标系中,画出该函数图象,并根据函数图象,写出该函数的一条性质性质不唯一,比如y1最小值为﹣3,x≥﹣2时y1随x的增大而增大等;(3)当函数y1的图象与直线y2=mx﹣1有两个交点时,直接写出m的取值范围.解:(1)将(0,1)代入y1=|ax+4|﹣b得1=|4|﹣b,解得b=3,∴y1=|ax+4|﹣3,将(﹣1,﹣1)代入y1=|ax+4|﹣3得﹣1=|﹣a+4|﹣3,解得a=2或a=6,将(1,3)代入y1=|ax+4|﹣3得3=|a+4|﹣3,解得a=2或a=﹣10,∴a=2,故答案为:a=2,b=3;(2)图象如答图1,性质不唯一,比如y1最小值为﹣3,x≥﹣2时y1随x的增大而增大等;(3)如答图2,直线y2=mx﹣1过点A(0,﹣1),函数y1=|ax+4|﹣b的图象最低点B (﹣2,﹣3),当直线y2=mx﹣1过点A(0,﹣1)和B(﹣2,﹣3)时,函数y1的图象与直线y2=mx ﹣1只有一个交点,由﹣3=﹣2m﹣1解得:m=1,当直线直线y2=mx﹣1与直线y=﹣2x﹣7平行时,函数y1的图象与直线y2=mx﹣1又只有一个交点,此时m=﹣2,根据图象可知﹣2<m<1时,函数y1的图象与直线y2=mx﹣1有两个交点,故答案为:﹣2<m<1.24.某环保公司研发了甲、乙两种智能设备,可将垃圾处理变为新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且两种智能设备的单价和为140万元.(1)求甲、乙两种智能设备单价;(2)垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知每吨燃料棒的成本为100元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?解:(1)设甲智能设备单价x万元,则乙单价为(14﹣x)万元,由题意得:=,解得:x=60,经检验x=60是方程的解,∴x=60,140﹣x=80,答:甲设备60万元/台,乙设备80万元/台;(2)设每吨燃料棒在200元基础上降价y元,由题意得:(200﹣y﹣100)(350+5y)=36080,解得:y1=12,y2=18,∵x≤200×8%,即x≤16,∴x=12,200﹣x=188,答:每吨燃料棒售价应为188元.25.如图,抛物线y=x2+bx+c交x轴于A、B两点(点A在点B的左侧),交y轴于点C (0,5),连接BC,其中OC=5OA.(1)求抛物线的解析式;(2)如图1,将直线BC沿y轴向上平移6个单位长度后与抛物线交于D、E两点,交y 轴于点G,若点P是抛物线上位于直线BC下方(不与A、B重合)的一个动点,过点P 作PM∥y轴交DE于点M,交BC于点H,过点M作MN⊥BC于点M,求PM+NH的最大值及此时点P的坐标;(3)如图2,当点P满足(2)问条件时,将△CBP绕点C逆时针旋转α(0°<α<90°)得到△CB'P',此时点B′恰好落到直线ED上,已知点F是抛物线上的动点,在直线ED 上是否存在一点Q,使得以点C、B′、F、Q为顶点的四边形为平行四边形?若存在,直接写出点Q的坐标,若不存在,请说明理由.解:(1)∵点C(0,5),OC=5OA,∴A(1,0),将A(1,0),C(0,5)代入y=x2+bx+c得:,解得:,∴抛物线的解析式是y=x2﹣6x+5;(2)由x2﹣6x+5=0得x1=1,x2=5,∴B(5,0),设BC解析式为y=kx+b,将B(5,0)、C(0,5)代入得:,解得,∴BC解析式为y=﹣x+5,将直线BC沿y轴向上平移6个单位长度后与抛物线交于D、E两点,∴DE解析式为y=﹣x+11,∵过点P作PM∥y轴交DE于点M,交BC于点H,∴MH=6,∵B(5,0)、C(0,5),∴OB=OC,∠OCB=45°,∵PM∥y轴,∴∠NHM=45°,∵MN⊥BC,∴△MNH是等腰直角三角形,∴NH=MH•cos45°=MH=3,PM+NH取最大值即是PM取最大值,设P(m,m2﹣6m+5),则M(﹣m+11),∴PM=(﹣m+11)﹣(m2﹣6m+5)=﹣m2+5m+6,当m==时,PM最大为:﹣()2+5×+6=,此时P(,﹣),∴PM+NH最大值为+3,P(,﹣);(3)∵将△CBP绕点C逆时针旋转α(0°<α<90°)得到△CB'P',此时点B′恰好落到直线ED上,∴CB=CB′,而B(5,0)、C(0,5),设B′(a,﹣a+11),则(5﹣0)2+(0﹣5)2=(a﹣0)2+(﹣a+11﹣5)2,解得a=7或a=﹣1(此时旋转角大于90°舍去),∴B′(7,4),点F是抛物线上的动点,Q在直线ED上,设F(b,b2﹣6b+5),Q(c,﹣c+11),以点C、B′、F、Q为顶点的四边形为平行四边形,分三种情况:①CB′、FQ为对角线,CB′中点为(,),FQ中点为(,),CB′中点与FQ中点重合,∴,解得(此时F与C重合舍去)或,∴Q(2,9),②CF、B′Q为对角线,同理可得,解得或,∴Q(,)或(,),③CQ、BF为对角线,则,解得:(此时F与C重合舍去)或,∴Q(12,﹣1),总上所述,以点C、B′、F、Q为顶点的四边形为平行四边形,Q(2,9)或(,)或(,)或(12,﹣1).26.在△ABC中,∠BAC=90°,点E为AC上一点,AB=AE,AG⊥BE,交BE于点H,交BC于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH=2,BC=,求CE的长;(2)如图2,若AB=BM,连接MH,∠HMG=∠MAH,求证:AM=2HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点N,连接AN、MN、EN,请直接写出∠AMH、∠NAE、∠MNE之间的角度关系.解:(1)∵∠BAC=90°,AB=AE,∴△BAE为等腰直角三角形,∵AG⊥BE,∴AH是△BAE的中线,∴BE=2AH=4,∵∠BEA=45°,∴∠BEC=135°,在△BCE中,过点C作CD⊥BE交BE的延长线于点D,如图1,∵∠DEC=45°,∴△DEC是等腰直角三角形,设ED=x,则DC=x,CE=x,在Rt△BCD中,BC2=BD2+DC2,即,∴x1=1或x2=﹣5(舍去),∴CE=;(2)如图2,过H作HD⊥HM交AM于点D,连接BD,∵AB=AE,∠BAC=90°,∴△ABE是等腰直角三角形,∵AG⊥BE,∴△ABH为等腰直角三角形,∴BH=AH,∠BAN=45°,∠BHA=90°,∵AB=BM,∴∠BAM=∠BMA,∵∠HMG=∠MAH,∴∠BAM﹣∠MAH=∠BMA﹣∠HMG,即∠BAH=∠AMH=45°,∵HD⊥HM,∴△DHM为等腰直角三角形,∴DH=HM,∠DHM=90°,∵∠BHD=∠BHA+∠AHD,∠AHM=∠DHM+∠AHD,∴∠BHD=∠AHM,在△BHD与△AHM中,,∴△BHD≌△AHM(SAS),∴∠DBH=∠MAH,BD=AM,∴∠BHA=∠BDA=90°,∵BA=BM,∴D是AM的中点,∴AM=2DM=2HM,即AM=2HM;(3)∵H是BE的中点,M是BC的中点,∴MH是△BCE的中位线,∴MH∥CE,∴∠AMH=∠MAC,∵∠BAC=90°,∴AM=BM,∴∠MAB=∠ABM,∵点B与点N关于线段AM对称,∴∠ABM=∠ANM,AB=AN,∴AE=AN,∴∠AEN=∠ANE,在△AEN中,∠NAE+2∠ANE=180°①,∵∠ANE=∠ANM+∠MNE,∠ABM=∠ANM=∠MAB=90°﹣∠MAC,∴∠ANE=90°﹣∠MAC+∠MNE,∴∠ANE=90°﹣∠AMH+∠MNE②,将②代入①,得:∠NAE+2×(90°﹣∠AMH+∠MNE)=180°,∴∠NAE+180°﹣2∠AMH+2∠MNE=180°,∴∠NAE+2∠MNE=2∠AMH.。

(安徽卷)2021年中考数学第一次模拟考试(参考答案)

(安徽卷)2021年中考数学第一次模拟考试(参考答案)

2021年中考数学第一次模拟考试【安徽卷】数学·参考答案1 2 3 4 5 6 7 8 9 10 ACCACBCBBD11.x ﹥﹣6 12.5 13.40 14.4或,153,1535+- 15.【解析】原式=1114(2)232-++-+⨯= 16.【解析】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n 个图案中有5n+n-(n-1)=5n+1根; (3)令n=25,得出51126n +=,故第25个图案中有126根小棒;(4)令512032n +=,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成. 17.【解析】(1)旋转后的A B C '''∆图形如图所示,点A 的对应点Q 的坐标为:()2,3-; (2)如图点A 的对应点A ''的坐标()3,2--;(3)如图以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标为:()7,3-或()5,3--或()3,318.【解析】延长BD 交AE 于点G ,作DH ⊥AE 于H ,设BC =x m ,由题意得,∠DGA =∠DAG =30°, ∴DG =AD =6,∴DH =3,GH =2233DG DH -=, ∴GA =63,在Rt △BGC 中,tan ∠BGC =BCGC, ∴CG =3tan BCx BGC=∠,在Rt △BAC 中,∠BAC =45°, ∴AC =BC =x ,由题意得,3x ﹣x =63,解得,x =6331-≈14, 答:大树的高度约为14m .19.【解析】(1)证明:连接OA , ∵∠B=60°,∴∠AOC=2∠B=120°, 又∵OA=OC ,∴∠OAC=∠OCA=30°, 又∵AP=AC , ∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°, ∴OA ⊥PA ,∴PA是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=23,∴BE=12BC=3,CE=3,∵AB=4+3,∴AE=AB﹣BE=4,∴在Rt△ACE中,AC=22AE CE=5,∴AP=AC=5.∴在Rt△PAO中,OA=53,∴⊙O的半径为533.20.【解析】(1)100%﹣20%﹣10%﹣30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50﹣15﹣5﹣10=20(人).如图所示:(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.21.【解析】(1)由题意得:()()110001000115%1850150y x x =+⨯--=+,()21000110%900y x x =⨯-=;(2)若收费相同,则12y y =,即:850150900x x +=, 解得:3x =,若是到甲商场购买更优惠,则12y y <,即:850150900x x +<, 解得:3x >,若是到甲乙商场购买更优惠,则12y y >,即:850150900x x +>, 解得:3x <,答:当3x =时,两商场收费相同,当3x >时,到甲商场购买更优惠,当3x <时,到乙商场购买更优惠; (3)依题意,有:1520(10)5200w m m m =+-=-+, 由于甲商场库存只有4台,所以:04m <≤, ∵50-<,∴w 随着m 的增大而减小,∴当m 取最大值4时,w 取到最小值,为180元.22.【解析】(1)先补充证明角平分线的性质定理:如图,△ABC 中,AD 是角平分线,则:BD DC =ABAC. 理由:过C 作CE ∥DA ,交BA 的延长线于E ,∵CE ∥DA ,∴∠1=∠E ,∠2=∠3,∠1=∠2, ∴∠E =∠3,∴AE=AC,∵BDDC=BAAE,∴BDDC=ABAC.如图1中,延长CO交AB于E,∵OA平分∠EAC,∴AEAC=OEOC,∴AEEO=ACOC=53,设AE=5k,OE=3k,∵OB平分∠ABC,∴OC平分∠ACB,∵∠ACB=2∠ABC,∴∠BCE=12∠ACB=∠EBC,∴EB=EC=3k+3,∵∠ACE=∠ABC,∠CAE=∠BAC,∴△ACE∽△ABC,∴ACAB=AEAC,∴5533k k=55k,解得k=58或﹣1(舍弃),∴AB=8k+3=8.故答案为:8.(2)如图2中,过点O作EF⊥OA交AB于E,交AC于F,作CG∥EF交AB于G,连接OG.∵AO平分∠AEF,∴∠OAE=∠OAF,∵AO=AO,∠AOE=∠AOF=90°,∴△AOE≌△AOF(ASA),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°=∠FOC+∠FCO,∵∠OBC+∠FCO=60°,∴∠FOC=∠OBC,∵EF∥CG,∴∠AGC=∠AEF=60°,∠ACG=∠AFE=60°,∴∠AGC=∠ACG,∴AG=AC,∵∠GAO=∠CAO,AO=AO,∴△AGO≌△ACO(SAS),∴OG=OC,∴∠OGC=∠OCG,∵∠FOC=∠OCG,∴∠OBC=∠OGC,∴O,G,B,C四点共圆,∴∠ABO=∠OCG,∴∠ABO=∠OBC,∴OB平分ABC.(3)如图3中,以BC为边向上作等边△BCH,连接OH,作HM⊥BC于M.∵△OBD,△BCH都是等边三角形,∴∠HBC=∠OBD=60°,BH=BC,BO=BD,∴∠HBO=∠CBD,∴△HBO≌△CBD(SAS),∴OH=CD,由(2)可知∠BOC=120°,∴当点O落在HM上时,OH的值最小,此时OH=HM﹣OM=3﹣3,∴CD的最小值为3﹣3.故答案为:3﹣3.23.【解析】(1)∵四边形ABCD是正方形,∴∠BCF=∠DCE=90°∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵AC是边长为4的正方形的对角线,∴∠CAD=45°,2,∵2,∴AC=CE,∴∠CAE=∠BEA,∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠BEA , ∴∠CAE=∠DAE=12∠CAD=22.5°, ∵∠EAF=45°,∴∠CAF=∠EAF ﹣∠CAE=22.5°=∠CAE , 在△ACF 和△ACE 中,ACF ACE AC ACCAF CAE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ACF ≌△ACE , ∴b=CF=CE=42,(2)∵AC 是正方形ABCD 的对角线, ∴∠BCD=90°,∠ACB=45°, ∴∠ACF=180°, ∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF )﹣∠EAF=180°﹣90°﹣45°=45°, ∴∠CAF=∠AEC , ∵∠ACF=∠ACE=135°, ∴△ACF ∽△ECA , ∴AC CFEC AC=, ∴EC×CF=AC 2=2AB 2=32 ∴ab=32, ∵a=4, ∴b=8; (3)ab=32, 理由:(2)已证.。

2021年吉林省长春市中考数学一模试卷(含答案解析)

2021年吉林省长春市中考数学一模试卷(含答案解析)

2021年吉林省长春市中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.一个数的相反数是8,那么这个数是()A. 8B. −8C. −(−8)D. |−8|2.已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A. 5B. 6C. 5或6D. 5或6或73.如图是一个由多个相同小正方体堆积而成的几何体的从上面看到的形状图,图中所示的数字为该位置小正方体的个数,则这个几何体从左面看到的形状图是()A. B. C. D.4.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A. 14B. 13C. 12D. 235.如图,某数学活动小组在吉林广播电视塔周边做数学测算活动、在C处测得最高点A的仰角为α,在D处测得最高点A的仰角为β,点C,B,D在同一条水平直线上,且吉林广播电视塔的高度AB为ℎ(m),则CD之间的距离为()A. ℎ⋅(tanα+tanβ)mB. ℎtanα+tanβmC. ℎtanα⋅tanβm D. ℎ⋅(tanα+tanβ)tanα⋅tanβm6.下列命题中,正确的是()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同圆或等圆中,同弧所对的圆周角相等.A. ①②③B. ③④⑤C. ①②⑤D. ②④⑤7.已知等腰三角形的一边长为3,另一边长为6,则这个等腰三角形的周长为()A. 12B. 12或15C. 15D. 98.已知点P(−2,3)是反比例函数y=k图象上的一点,则下列各点中,也在该函数图象上的是()xA. (2,−3)B. (3,2)C. (−2,−3)D. (2,3)二、填空题(本大题共6小题,共18.0分)9.因式分解:2x−4=______.10.已知关于x的不等式组{2x+3>03x−a≤0有且只有四个整数解,则a的取值范围为______11.如图,AD//BC,∠B=30°,DB平分∠ADE,则∠ADE的度数为______.12.农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是.13.已知如图:△ABC中,∠C=90°,BC=AC,以AC为直径的圆交AB于D,若AD=8cm,则阴影部分的面积为______.14.一个大正方形中有2个小正方形,若它们的面积分别为S1,S2,则S1______ S2(填“=”或“>”或“<“).三、解答题(本大题共10小题,共78.0分)15.(1)计算:−14−|1−0.5|÷3×[2−(−3)2](2)化简:(3x2−xy−2y2)−2[x2+(xy−2y)2]16.(9分)如图是从一副扑克牌中取出的两组牌,一组牌分别是黑桃1、2、3、4,另一组牌方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,(1)摸出的两张牌的牌面数字之和等于5的概率是多少?(2)摸出的牌面数字和大于4的概率是多少?17. 某校组织七年级学生从学校出发,到距学校9km的教育基地开展社会实践活动,一部分学生骑自行车先出发,半小时后,其他学生乘公共汽车出发,结果两批学生同时到达目的地.已知公共汽车的行驶速度是自行车骑行速度的3倍,求自行车的骑行速度和公共汽车的行驶速度分别是多少?18. 如图①,Rt△ABC中,∠C=90°,D是AB的中点,过点D作DE⊥AC于点E;过点B作BF⊥ED,交ED的延长线于点F.(1)求证:△DFB≌△DEA;(2)某数学兴趣小组解答(1)后发现,在图中只需将△AED剪下来拼到△BFD处,就可得到一个与△ABC等面积的矩形EFBC继续讨论后又发现,任意三角形也可以剪拼成一个等面积的矩形,请你在图②中画出一种剪拼示意图,并简要说明作法(不需要证明)19. 某小学开展寒假争星活动,学生可以从“自理星”、“读书星”、“健康星”、“孝敬星”等中选一个项目参加争星竞选,根据该校一年级某班学生的“争星”报名情况,绘制成了如下两幅不完整的统计图,请根据图中信息回答下列问题:(1)参加调查的学生共有______人;(2)将条形统计图补充完整;(3)请计算扇形统计图中“读书星”对应的扇形圆心角度数;(4)根据调查结果,试估计该小学全校3600名学生中争当“健康星”的学生人数.20. 如图,四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD.(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.21. 甲、乙分别骑自行车和摩托车从长沙出发前往30km外的湘潭,途中乙因修车耽误些时间,然后继续赶路.如图,线段OA和折线OBCD分别反映了两人所行路程y(km)和时间x(min)的函数关系.(1)甲骑自行车的速度是______ km/min;(2)两人第二次相遇时,离长沙______ km;(3)求线段CD所在直线的函数的解析式.22. 如图1,在平面直角坐标系中,O是坐标原点,ABCD的顶点A的坐标为(−2,0),点D的坐标为(0,),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.(1)求∠DCB的度数;(2)当点F的坐标为(−4,0)时,求点G的坐标;(3)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF′,记直线EF′与射线DC的交点为H.①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;②若△EHG的面积为,请直接写出点F的坐标.23. 在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.x+4的对称轴是直线x=3,且与x轴交于A、B两点(点B在点24. 如图,已知抛物线y=ax2+32A的右侧),与y轴交于点C.(1)求抛物线的解析式;(2)以BC为边作正方形CBDE,求对角线BE所在直线的解析式;(3)点P是抛物线上一点,若∠APB=45°,求出点P的坐标.【答案与解析】1.答案:B解析:解:−8的相反数是8,故选:B.根据相反数定义:只有符号不同的两个数叫做互为相反数可得答案.此题主要考查了相反数,关键是掌握相反数定义.2.答案:C解析:解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:A解析:解:观察图形可知,这个几何体从左面看到的形状图是.故选:A.由俯视图易得此组合几何体有3层,三列,3行.找从左面看所得到的图形,应看俯视图有几行,每行上的小正方体最多有几个.本题考查了由三视图判断几何体,三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:解:画树状图得:由树形图可知:一共有16种等可能的结果,其中使ac≤4的有8种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为12,故选:C.首先画出树状图即可求得所有等可能的结果与使ac≤4的情况,然后利用概率公式求解即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5.答案:D解析:解:在直角△ABC中,BC=ABtanα=ℎtanα,在直角△ABC中,BD=ABtanβ=ℎtanβ,则CD=BD+BC=ℎtanα+ℎtanβ=ℎ⋅(tanα+tanβ)tanα⋅tanβm即CD之间的距离为ℎ⋅(tanα+tanβ)tanα⋅tanβm,故选:D.通过解直角△ABC和直角△ABC分别求得BC、BD的长度,根据CD=BD+BC即可求得CD的长度.本题考查了解直角三角形的应用−仰角俯角问题.解题的关键是学会利用参数,构建方程解决问题,属于中考常考题型.6.答案:B解析:试题分析:根据圆周角定理及确定圆的条件对各个命题进行分析,从而得到答案.①、圆周角的特征:一是顶点在圆上,二是两边都和圆相交,故错误;②、必须是同弧或等弧所对的圆周角和圆心角,故错误;③、圆周角定理,故正确;④、符合确定圆的条件,故正确;⑤、符合圆周角定理,故正确;所以正确的是③④⑤.故选B.7.答案:C解析:解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6∴不能构成三角形,故舍去.∴这个等腰三角形的周长为15.故选:C.因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.答案:A解析:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.图象过点(−2,3)求出k的值,再根据k=xy的特点进行解答即可.先根据反比例函数y=kx解:∵反比例函数y=k图象过点(−2,3),x∴3=k,即k=−6,−2A、∵2×(−3)=−6,∴此点在反比例函数的图象上,故本选项正确.B、∵3×2=6≠−6,∴此点不在反比例函数的图象上,故本选项错误;C、∵−2×(−3)=6≠−6,∴此点不在反比例函数的图象上,故本选项错误;D、∵2×3=6≠−6,∴此点不在反比例函数的图象上,故本选项错误;故选:A.9.答案:2(x−2)解析:解:2x−4=2(x−2).故答案为:2(x−2).提取公因式2即可.本题考查了因式分解.解题的关键是掌握用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 10.答案:6≤a <9解析:解:解不等式组{2x +3>03x −a ≤0得:−1.5<x ≤a 3, ∵关于x 的不等式组{2x +3>03x −a ≤0有且只有四个整数解, ∴2≤a3<3,解得:6≤a <9,故答案为:6≤a <9.先求出不等式组的解集,根据已知得出不等式组2≤a 3<3,求出解集即可.本题考查了解一元一次不等式组和一元一次不等式组的整数解,能得出关于a 的不等式组是解此题的关键. 11.答案:60°解析:解:∵AD//BC ,∴∠ADB =∠DBC ,∵DB 平分∠ADE ,∴∠ADB =∠ADE ,∵∠B =30°,∴∠ADB =∠BDE =30°,则∠ADE 的度数为:60°.故答案为:60°.直接利用平行线的性质以及角平分线的性质得出∠ADB =∠BDE ,进而得出答案.此题主要考查了平行线的性质,正确得出∠ADB 的度数是解题关键.12.答案:64πm 2解析:由图可知,需要的塑料膜的面积应该是以大棚长为长,以半圆形截面的弧长为宽的矩形的面积,半圆形截面弧长为:2π,进而得出塑料膜的面积.13.答案:32cm 2解析:解:连接CD ,∵△ABC 中,∠C =90°,BC =AC ,∴∠DAC=45°,∵以AC为直径的圆交AB于点D,∴∠ADC=90°,∴CD⊥AB,∴CD=AD=BD,∵AD=8cm,∴图中阴影部分的面积为:S△BDC=12BD⋅CD=12×8×8=32(cm2).故答案为:32cm2.连接CD,构建直径所对的圆周角,利用等腰直角三角形的性质得出图中阴影部分的面积为△BCD的面积,即可得出答案.此题主要考查了等腰直角三角形的性质以及圆周角定理的推论等知识,连接CD是解决问题的关键.14.答案:>解析:解:如图,设大正方形的边长为x,根据等腰直角三角形的性质知,AC=√2BC,BC=CE=√2CD,∴AC=2CD,CD=x3,∴S2的边长为√23x,S2的面积为29x2,S1的边长为x2,S1的面积为14x2,∴S1>S2.故答案为:>.设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.本题考查了正方形的性质和等腰直角三角形的性质,熟练掌握正方形的性质是解题的关键.15.答案:解:(1)原式=−1−|1−0.5|÷3×(2−9)=−1−12÷3×(−7)=−1−12×13×(−7)=−1+7 6=16;(2)原式=3x2−xy−2y2−2(x2+x2y2−4xy2+4y2)=3x2−xy−2y2−2x2−2x2y2+8xy2−8y2=x2−xy−10y2−2x2y2+8xy2.解析:(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用整式的混合运算法则化简进而得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.16.答案:(1);(2).解析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:(1)可以用下表列举所有可能得到的牌面数字之和:由上表可知,共有16种情况,每种情况发生的可能性相同,而两张牌的牌面数字之和等于5的情况共出现4次,因此牌面数字之和等于5的概率为:(2).17.答案:解:设自行车的速度为xkm/ℎ,则公共汽车的速度为3xkm/ℎ,根据题意得:9x −93x=12,解得:x=12,经检验,x=12是原分式方程的解,∴3x=36.答:自行车的速度是12km/ℎ,公共汽车的速度是36km/ℎ.解析:设自行车的速度为xkm/ℎ,则公共汽车的速度为3xkm/ℎ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用半小时,即可得出关于x的分式方程,解之经检验即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.答案:(1)证明:∵DE⊥AC,BF⊥ED,D是AB的中点,∴∠AED=∠BFD=90°,AD=BD,∵∠ADE=∠BDF,∴△DFB≌△DEA(AAS);(2)如图②,分别过AC、BC的中点M、N作AB的垂线,垂足分别为O、P,再过点C作AB的平行线,与OM、PN的延长线交于点E、F,则△AMO≌△CME,△BNP≌△CNF,∴△ABC的面积与矩形OPFE的面积相等.解析:(1)利用全等三角形的判定AAS即可证明△DFB≌△DEA;(2)分别过AC、BC的中点M、N作AB的垂线,垂足分别为O、P,再过点C作AB的平行线,与OM、PN的延长线交于点E、F,则△ABC的面积与矩形OPFE的面积相等.本题考查了全等三角形的判定与性质及剪拼作图,解题关键是灵活运用全等三角形的判定与性质.19.答案:(1)50;(2)“自理星”的人数为50×30%=15人,补全图形如下:=72°;(3)扇形统计图中“读书星”对应的扇形圆心角度数为360°×1050(4)3600×12=864,50答:该小学全校3600名学生中争当“健康星”的学生人数为864人.解析:解:(1)参加调查的学生共有8÷16%=50人,故答案为:50;(2)见答案;(3)见答案;(4)见答案.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.答案:(1)解:如图,△A′BD为所求;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C,∵△ABD沿对角线BD翻折180°得到△A′BD,∴BA=BA′,∴BA′=CD,在△BA′E和△DCE中{∠BEA′=∠DEC ∠A′=∠C BA′=DC,∴△BA′E≌△DCE .解析:(1)分别以B 、D 为圆心,BA 和DA 为半径画弧交于点A′,则△A′BD 满足条件;(2)先根据平行四边形的性质得到AB =CD ,∠A =∠C ,则利用折叠性质得到BA =BA′,所以BA′=CD ,然后根据“AAS ”可证明△BA′E≌△DCE .本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质和全等三角形的判定. 21.答案:14 20解析:解:(1)由图可得,甲骑自行车的速度是:30÷120=14千米/分钟,故答案为:14;(2)两人第二次相遇时距离长沙:14×80=20千米,故答案为:20;(3)设线段CD 的表达式为y =kx +b(k ≠0),∵线段CD 经过点C(50,10)和(80,20),∴{50k +b =1080k +b =20, 解得,{k =13b =−203, ∴y =13x −203,当y =30时,x =110,∴线段CD 所在直线的函数的解析式为y =13x −203(50≤x ≤110).(1)根据函数图象中的数据可以求得甲骑自行车的速度;(2)根据(1)中的答案和函数图象中的数据可以求得两人第二次相遇时距离长沙的距离;(3)根据(2)中的答案和一次函数的性质可以求得线段CD 所在直线的函数的解析式.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.答案:解:(1)在Rt△AOD中,∵tan∠DAO==,∴∠DAB=60°.∵四边形ABCD是平行四边形,∴DCB=∠DAB=60°.(2)∵四边形ABCD是平行四边形,∴CD//AB,∴∠DGE=∠AFE.又∵∠DEG=∠AEF,DE=AE,∴△DEG≌AEF,∴DG=AF.∵AF=OF−OA=4−2=2,∴点G的坐标为(2,).(3)①∵CD//AB.∴∠DGE=∠OFF.∵△OEF经轴对称变换后得到△OEF′,∴∠OFE=∠OF′E,∴∠DGE=∠OF′E.在Rt△AOD中,∵E是AD的中点,∴OE=AD=AE.又∵∠EAO=60°.∴∠EOA=60°,∠AEO=60°.又∵∠EOF′=∠EOA=60°,∴∠EOF′=∠OEA,∴AD//OF′,∴∠OF′E=∠DEH,∴∠DEH=∠DGE.又∵∠HDE=∠EDG.∴△DHE∽△DEG.②点F的坐标是F1(−+1,0),F2(−−5,0).对于此小题,我们提供如下详细解答,对学生无此要求.过点E作EM⊥直线CD于点M,∵CD//AB,∴∠EDM=∠DAB=60°,∴EM=DE·sin60°=2×=.∵S△EGH=·GH·ME=·CH·=3,∴GH=6.∵△DHE∽△DEG,∴即DE2=DG·DH.当点H在点G的右侧时,设DG=x,DH=x+6,∴4=x(x+6),解得:x 1=−3+,x 2=−3−(舍).∵△DEG≌△AEF,∴AF=DG=−3+.∵OF=AO+AF=−3++2=−1,∴点F的坐标为(−+1,0).当点H在点G的左侧时,设DG=x,DH=x−6,∴4=x(x−6),解得:x 1=3+,x 2=3−(舍).∵△DEG≌△AEF.∴AF=DG=3+.∵OF=AO+AF=3++2=+5,∴点F的坐标为(−−5,0).综上可知,点F的坐标有两个,分别是F1(−+1,0),F 2(−−5,0).解析:略23.答案:解:(1)如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵AE=DE,∴△AEB≌△DEC(SAS),∴EB=EC,∵∠BEC=90°,∴∠EBC=45°.(2)①结论:四边形BMEN的面积不变.理由:由(1)可知:∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△MEB≌△NEC(ASA),∴S△MEB=S△ENC,∴S四边形EMBN =S△EBC=12×4×2=4.②如图当E,B,O共线时,OB的值最小,作GH⊥OE于H.∵OF=OG,∠FEG=90°,∴OE=OF=OG=4,∵∠F=30°,∴∠EGF=60°,∴△EOG是等边三角形,∵GH⊥OE,∴GH=2√3,OH=EH=2,∵BE=2√2,∴OB=4−2√2,∴BH=2−(4−2√2)=2√2−2,∴tan∠EBG=HGBH =√32√2−2=√6+√3.解析:本题属于四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,等边三角形的判定和性质,锐角三角函数等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.(1)证明△AEB≌△DEC(SAS),可得EB=EC,根据等腰直角三角形的性质即可解决问题.(2)①四边形BMEN的面积不变.证明△MEB≌△NEC(ASA),推出S△MEB=S△ENC,可得S四边形EMBN= S△EBC.②如图当E,B,O共线时,OB的值最小,作GH⊥OE于H,想办法求出BH,GH即可解决问题.24.答案:解:(1)∵抛物线的对称轴是直线x=3∴−322a=3,解得:a=−14∴抛物线的解析式为y=−14x2+32x+4(2)当y=−14x2+32x+4=0时,解得:x1=−2,x2=8∴A(−2,0),B(8,0)∴AB=10,OB=8当x =0时,y =−14x 2+32x +4=4∴C(0,4),OC =4①如图1,若点E 在第一象限,过点E 作EF ⊥y 轴于点F∴∠CFE =∠BOC =90°∵四边形CBDE 是正方形∴∠BCE =90°,BC =CE∴∠BCO +∠OBC =∠BCO +∠FCE =90°∴∠OBC =∠FCE在△FCE 与△OBC 中{∠CFE =∠BOC ∠FCE =∠OBC CE =BC∴△FCE≌△OBC(AAS)∴FC =OB =8,EF =OC =4∴OF =OC +FC =12∴E(4,12)设直线BE 解析式为:y =kx +b∴{8k +b =04k +b =12 解得:{k =−3b =24∴直线BE 解析式为y =−3x +24②如图2,若点E 在第三象限,过点E 作EF ⊥y 轴于点F同理可证:△FCE≌△OBC(AAS)∴FC =OB =8,EF =OC =4∴OF =FC −OC =8−4=4∴E(−4,−4)设直线BE 解析式为:y =k′x +b′∴{8k′+b′=0−4k′+b′=−4 解得:{k′=13b′=−83∴直线BE 解析式为y =13x −83综上所述,直线BE 解析式为y =−3x +24 或y =13x −83(3)以AB为斜边作等腰Rt△AGB,则AG=BG,∠AGB=90°以点G为圆心、AG长为半径画圆,则点P在优弧AB上时总有∠APB=45°.如图3,若点G在第一象限,⊙G与抛物线交点只有A、B,即没有满足条件的点P使∠APB=45°如图4,若点G在第四象限,过点G作GM⊥x轴于点M∴AM=BM=GM=12AB=5,∴G(3,−5)设P(p,−14p2+32p+4)∵PG=AG=√22AB=5√2∴PG2=50可得方程:(p−3)2+(−14p2+32p+4+5)2=50解得:p1=−4,p2=10,p3=−2(即点A,舍去),p4=8(即点B,舍去)∴−14p2+32p+4=−6∴点P坐标为(−4,−6)或(10,−6)解析:(1)利用对称轴公式列式即求出a的值,进而得抛物线解析式.(2)由于边DE所在位置不同,故需对点E所在位置分类讨论.过点E作y轴垂线,根据∠BCE=90°构造三垂直全等模型,即求得点E坐标,进而求直线BE解析式.(3)由点P运动过程中∠APB=45°联想到圆周上的圆周角,只要构造出∠APB为圆周角,其所对圆心角等于90°即可.故以AB为斜边作等腰直角三角形ABG.若G在第一象限,则圆与抛物线无除A、B 外的交点,故点G需在第四象限.求出点G坐标,设P坐标,以PG的长等于半径5√2为等量关系列方程,即求得p的值进而得点P坐标.本题考查了二次函数的图象与性质,正方形的性质,全等三角形的判定和性质,求一次函数解析式,圆周角定理,两点间距离公式.解题关键是:第(2)题由正方形构造全等;第(3)题由P为动点而∠APB 为定值联想到圆周角定理.。

2021年湖北省武汉市中考数学逼真模拟试卷(一)(含解析)

2021年湖北省武汉市中考数学逼真模拟试卷(一)(含解析)

2021年湖北省武汉市中考数学逼真模拟试卷(一)一、选择题(共10小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.20212.若有意义,则x的取值范围是()A.x>﹣1B.x≥0C.x≥﹣1D.任意实数3.下列成语所描述的事件是随机事件的是()A.旭日东升B.不期而遇C.海枯石烂D.水中捞月4.以下微信表情中,不是轴对称图形的有()个.A.1B.2C.3D.45.下列图形都是由大小相同的正方体搭成的,其三视图都相同的是()A.B.C.D.6.如图,点P从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,选项图是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的关系图象是()A.B.C.D.7.将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为c,则使关于x的一元二次方程ax2﹣6x+c =0有实数解的概率为()A.B.C.D.8.平面直角坐标系中,矩形OABC如图放置,y=(k>0,x>0)的图象与矩形的边AB、BC分别交于E、F两点,下列命题:①若E、F重合,则S矩形OABC=k;②若E、F不重合,则线段EF与矩形对角线AC平行;③若E为AB的中点,则S矩形OABC=2k,其中真命题的个数是()A.0B.1C.2D.39.如图,AB是⊙O的直径,AB=a,点P在半径OA上,AP=b,过P作PC⊥AB交⊙O 于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,则弧AC与弧BD的弧长之和为()A.B.C.D.10.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23、33和43分别可以“分裂”成2个、3个和4个连续奇数的和,即23=3+5,33=7+9+11,43=13+15+17+19,…若1003也按照此规律来进行“分裂”,则1003“分裂”出的奇数中,最小的奇数是()A.9999B.9910C.9901D.9801二、填空题(本大题共6个小题,每小题3分,共18分)11.化简:=.12.疫情期间小隆和爸爸、妈妈、爷爷、奶奶测量体温(单位:℃),结果分别为36.2、37.1、36.5、37.1、36.6,其中中位数是.13.﹣=.14.如图,矩形ABCD中,点E在边AB上.将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=10,BF=6,则tan∠ADE=.15.抛物线y=ax2+bx+c与直线y=mx+n交于点A(﹣2,5)、B(3,)两点,则关于x的一元二次方程a(x+1)2+c﹣n=(m﹣b)(x+1)的两根之和是.16.如图,BE是△ABC的角平分线,F是AB上一点,∠ACF=∠EBC,BE、CF相交于点G.若sin∠AEB=,BG=4,EG=5,则S△ABE=.三、解答题(共8题,共72分)17.计算:(﹣3a3)2﹣2a2•a4.18.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.19.轻松阿普九年级共有900名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童老师随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成统计表和扇形图.学生读书数量统计表阅读量/本学生人数1272a3b49(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,线段OA的端点在格点上,且OA=1.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)作△OAB,使线段OB=2,线段AB=.(2)C为线段OB的中点,画△OCD∽△AOB.(3)选择适当的格点E,作∠BAE=45°.21.如图,在△ABC中,AB=AC,∠BAC=90°,点D在以AB为直径的⊙O上,且CD =CA.(1)求证:CD是⊙O切线.(2)求tan∠AEC的值.22.某商店销售一种商品,小明经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)607080周销售量y(件)1008060周销售利润w(元)200024002400注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式.(不要求写出自变量的取值范围)②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过70元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1600元,求m的值.23.如图1,在Rt△ABC中,∠BAC=90°,AD为BC边上的高,点E在线段AB上,连接CE交AD于F点.(1)若CE平分∠ACB.①求证:AE=AF.②如图2,过E作EG⊥EC交BC于G,cos∠ACE=,求的值.(2)如图3,AB=mAC,AE=nBE,过E作EG⊥EC交BC于G.当EF=EG时,直接写出m、n满足的数量关系为.24.如图,抛物线y=ax2+bx+c经过▱ADBC的顶点A(0,3)、B(3,0)、D(2,3)抛物线与x轴的另一交点为E,经过点E的直线l将▱ADBC分割成面积相等的两部分,与抛物线交于另一点F,点P在直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式.(2)当t为何值时,△PFE的面积最大?并求出△PFE的面积最大值.(3)点Q为直线AB下方抛物线上一动点,是否存在点Q使△QAB为直角三角形?若存在,求出Q点的横坐标;若不存在,请说明理由.参考答案一、选择题(共10小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.2021解:﹣2021的相反数是:2021.故选:D.2.若有意义,则x的取值范围是()A.x>﹣1B.x≥0C.x≥﹣1D.任意实数解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.3.下列成语所描述的事件是随机事件的是()A.旭日东升B.不期而遇C.海枯石烂D.水中捞月解:A、旭日东升,是必然事件;B、不期而遇,是随机事件;C、海枯石烂,是不可能事件;D、水中捞月,是不可能事件;故选:B.4.以下微信表情中,不是轴对称图形的有()个.A.1B.2C.3D.4解:第1个图形不是轴对称图形,故本选项符合题意;第2个图形不是轴对称图形,故本选项符合题意;第3图形不是轴对称图形,故本选项符合题意;第4个图形是轴对称图形,故本选项不合题意.故选:C.5.下列图形都是由大小相同的正方体搭成的,其三视图都相同的是()A.B.C.D.解:A.主视图是3个正方形,左视图是两个正方形,俯视图是5个正方形,故本选项不合题意;B.主视图是2个正方形,左视图是3个正方形,俯视图是4个正方形,故本选项不合题意;C.三视图都相同,都是有两列,从左到右正方形的个数分别为:1、2;符合题意;D.俯视图有两列,从左到右正方形的个数分别为:2、1;左视图有两列,从左到右正方形的个数分别为:1、2,故本选项不合题意.故选:C.6.如图,点P从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,选项图是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的关系图象是()A.B.C.D.解:如图,当点P在AD边上运动时,△PBC的面积保持不变,当点P在BD边上运动时,过点P作PE⊥BC于点E,所以S△PBC=•PE因为BC的长不变,PE的长随着时间x增大而减小,所以y的值随x的增大而减小.所以符合条件的图象为A.故选:A.7.将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为c,则使关于x的一元二次方程ax2﹣6x+c =0有实数解的概率为()A.B.C.D.解:列表得:∴一共有36种情况,∵b=﹣6,当b2﹣4ac≥0时,有实根,即36﹣4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况,∴方程有实数根的概率=,故选:D.8.平面直角坐标系中,矩形OABC如图放置,y=(k>0,x>0)的图象与矩形的边AB、BC分别交于E、F两点,下列命题:①若E、F重合,则S矩形OABC=k;②若E、F不重合,则线段EF与矩形对角线AC平行;③若E为AB的中点,则S矩形OABC=2k,其中真命题的个数是()A.0B.1C.2D.3解:设B(a,b),①若E、F重合,则y=(k>0,x>0)的图象过点B,根据反比例函数的比例系数的几何意义知,S矩形OABC=k,故①是真命题;②若E、F不重合,∵B(a,b),∴E(,b),F(a,),∴BE=a﹣,BF=b﹣,AB=a,BC=b,∴,∵∠B=∠B,∴△BEF∽△BAC,∴∠BFE=∠BCA,∴EF∥AC,故②是真命题;③若E为AB的中点,则E(a,b),∴,∴ab=2k,∴S矩形OABC=AB•BC=ab=2k,故③是真命题.故选:D.9.如图,AB是⊙O的直径,AB=a,点P在半径OA上,AP=b,过P作PC⊥AB交⊙O 于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,则弧AC与弧BD的弧长之和为()A.B.C.D.解:连接OC、OD,如图,∵CP⊥OA,DQ⊥OB,∴∠OPC=∠OQD=90°,在Rt△OPC和Rt△DQO中,∴Rt△OPC≌Rt△DQO(HL),∴∠POC=∠ODQ,而∠ODQ+∠DOQ=90°,∴∠POC+∠DOQ=90°,∴弧AC与弧BD的弧长之和==aπ.故选:B.10.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23、33和43分别可以“分裂”成2个、3个和4个连续奇数的和,即23=3+5,33=7+9+11,43=13+15+17+19,…若1003也按照此规律来进行“分裂”,则1003“分裂”出的奇数中,最小的奇数是()A.9999B.9910C.9901D.9801解:23=3+5;33=7+9+11;43=13+15+17+19;∵3=2×1+1,7=3×2+1,13=4×3+1,∴m3“分裂”出的奇数中最小的奇数是m(m﹣1)+1,∴1003“分裂”出的奇数中最小的奇数是100×99+1=9901,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.化简:=.解:==2.12.疫情期间小隆和爸爸、妈妈、爷爷、奶奶测量体温(单位:℃),结果分别为36.2、37.1、36.5、37.1、36.6,其中中位数是36.6.解:将数据重新排列为36.2、36.5、36.6、37.1、37.1,所以这组数据的中位数为36.6,故答案为:36.6.13.﹣=﹣.解:原式=﹣==﹣=﹣.故答案为:﹣.14.如图,矩形ABCD中,点E在边AB上.将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=10,BF=6,则tan∠ADE=.解:∵四边形ABCD是矩形,∴∠B=∠C=∠A=90°,AB=CD,AD=BC,∴∠FDC+∠DFC=90°,由折叠的性质得:∠DFE=∠A=90°,FE=AE=10,FD=AD,∴∠BFE+∠DFC=90°,∴∠FDC=∠BFE,在Rt△BEF中,∵FE=AE=10,BF=6,∴BE===8,∴CD=AB=AE+BE=10+8=18,∵tan∠FDC==∠BFE===,∴CF=CD=×18=24,∴AD=BC=BF+CF=6+24=30,∴tan∠ADE===;故答案为:.15.抛物线y=ax2+bx+c与直线y=mx+n交于点A(﹣2,5)、B(3,)两点,则关于x的一元二次方程a(x+1)2+c﹣n=(m﹣b)(x+1)的两根之和是﹣1.解:∵抛物线y=ax2+bx+c与直线y=mx+n交于点A(﹣2,5)、B(3,)两点,∴方程ax2+bx+c=mx+n的两个根为x1=﹣2,x2=3,∵a(x+1)2+c﹣n=(m﹣b)(x+1)可变形为a(x+1)2+b(x+1)+c=m(x+1)+n,∴x+1=﹣2或x+1=3,解得,x3=﹣3,x4=2,∴方程a(x+1)2+c﹣n=(m﹣b)(x+1)的两根之和是﹣3+2=﹣1,故答案为:﹣1.16.如图,BE是△ABC的角平分线,F是AB上一点,∠ACF=∠EBC,BE、CF相交于点G.若sin∠AEB=,BG=4,EG=5,则S△ABE=.解:如图,过点B作BT⊥AC于T,连接EF.∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠ECG=∠ABE,∴∠ECG=∠CBE,∵∠CEG=∠CEB,∴△ECG∽△EBC,∴==,∴EC2=EG•EB=5×(5+4)=45,∵EC>0,∴EC=3,在Rt△BET中,∵sin∠AEB==,BE=9,∴BT=,∴ET===,∴CT=ET+CE=,∴BC===6,∴CG==10,∵∠ECG=∠FBG,∴E,F,B,C四点共圆,∴∠EFG=∠CBG,∵∠FGE=∠BGC,∴△EGF∽△CGB,∴=,∴=,∴EF=3,∵∠AFE=∠ACB,∠EAF=∠BAC,∴△EAF∽△BAC,∴===,设AE=x,则AB=2x,∵∠FBG=∠ECG,∠BGF=∠CGE,∴△BGF∽△CGE,∴=,∴=,∴BF=,∵AE•AC=AF•AB,∴x(x+3)=(2x﹣)•2x,解得x=,∴AE=ET=,∴点A与点T重合,∴AB=2AE=,∴S△ABE=×AB×AE=××=.故答案为.三、解答题(共8题,共72分)17.计算:(﹣3a3)2﹣2a2•a4.解:原式=9a6﹣2a6=7a6.18.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=FC,∴BE+EF=FC+EF,即BF=EC,在△ABF和△DCE中,∵,∴△ABF≌△DCE(SAS),∴∠A=∠D.19.轻松阿普九年级共有900名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童老师随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成统计表和扇形图.学生读书数量统计表阅读量/本学生人数1272a3b49(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?解:(1)由题意可得:m=27÷30%=90,b=90×40%=36,a=90﹣27﹣36﹣9=18,即m的值是90,a的值是18,b的值是36;(2)根据题意得:900×=2070(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是2070本.20.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,线段OA的端点在格点上,且OA=1.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)作△OAB,使线段OB=2,线段AB=.(2)C为线段OB的中点,画△OCD∽△AOB.(3)选择适当的格点E,作∠BAE=45°.解:(1)如图所示,△OAB即为所求;(2)如图所示,△OCD∽△AOB;(3)如图所示,∠BAE=45°.21.如图,在△ABC中,AB=AC,∠BAC=90°,点D在以AB为直径的⊙O上,且CD =CA.(1)求证:CD是⊙O切线.(2)求tan∠AEC的值.【解答】(1)证明:连接OC,OD,∵OA=OD,AC=CD,OC=OC,∴△AOC≌△DOC(SSS),∴∠CDO=∠CAB=90°,∵OD为⊙O的半径,∴CD是⊙O切线;(2)解:过B作BH⊥AB交AD的延长线于H,∴∠BAC=∠ABH=90°,∵CD=AD,OD=OA,∴OC⊥AD于T,∴∠OTA=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,在△ACO和△BAH中,∴△ACO≌△BAH(ASA),∴BH=AO,设OA=OB=r,则AC=AB=2r,BH=r,在Rt△OAC中,OC===r,在Rt△ABC中,BC===2r,∵∠BAC+∠ABH=180°,∴BH∥AC,∴△BEH∽△CEA,∴,∴CE=BC=r,∴cos∠1==,∴CT=,在Rt△CET中,ET==r,∴tan∠AEC===3.22.某商店销售一种商品,小明经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)607080周销售量y(件)1008060周销售利润w(元)200024002400注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式.(不要求写出自变量的取值范围)②该商品进价是40元/件;当售价是75元/件时,周销售利润最大,最大利润是2450元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过70元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1600元,求m的值.解:(1)①设y关于x的函数解析式为y=kx+b,将(60,100),(70,80)分别代入得:,解得:.∴y关于x的函数解析式为y=﹣2x+220.②该商品进价是60﹣2000÷100=40(元/件);由题意得:w=y(x﹣40)=(﹣2x+220)(x﹣40)=﹣2x2+300x﹣8800=﹣2(x﹣75)2+2450,∵二次项系数﹣2<0,抛物线开口向下,∴当售价是75元/件时,周销售利润最大,最大利润是2450元.故答案为:40,75,2450.(2)由题意得:w=(﹣2x+220)(x﹣40﹣m)=﹣2x2+(300+2m)x﹣8800﹣220m,∵二次项系数﹣2<0,抛物线开口向下,对称轴为:x=﹣=75+,又∵x≤70,∴当x<75+时,w随x的增大而增大,∴当x=70时,w有最大值:(﹣2×70+220)(70﹣40﹣m)=1600解得:m=10.∴周销售最大利润是1600元时,m的值为10.23.如图1,在Rt△ABC中,∠BAC=90°,AD为BC边上的高,点E在线段AB上,连接CE交AD于F点.(1)若CE平分∠ACB.①求证:AE=AF.②如图2,过E作EG⊥EC交BC于G,cos∠ACE=,求的值.(2)如图3,AB=mAC,AE=nBE,过E作EG⊥EC交BC于G.当EF=EG时,直接写出m、n满足的数量关系为mn=1.【解答】(1)①证明:如图1中,∴AD⊥BC,∴∠ADC=90°,∵∠BAC=90°,∴∠B+∠ACD=90°,∠CAD+∠ACD=90°,∴∠B=∠CAD,∵CE平分∠ACB,∴∠ACE=∠BCE,∵∠AEC=∠B+∠BCE,∠AFE=∠CAD+∠ACE,∴∠AEF=∠AFE,∴AE=AF.②解:如图2中,作AH⊥EF于H.∵AE=AF,AH⊥EF,∴EH=FH,∵∠EAH+∠CAH=90°,∠CAH+∠ACH=90°,∴∠EAH=∠ACH,∴cos∠EAH=cos∠ACH==,设AH=4k,AE=5k,则EH=FH=3k,∵cos∠ACH==,AH=4k,∴CH=k,∴EC=EH+CH=3k+k=k,∵cos∠ECG=cos∠ACE==,∴CG=k,∴EG===k,∴==.(2)解:如图2中,作EM⊥BC于M,EN⊥AD于N.∵AD⊥BC,EM⊥BC,EN⊥AD,∴∠EMD=∠END=∠MDN=90°,∴∠EMN=90°,∵EG⊥EC,∴∠GEF=∠MEN=90°,∴∠GEM=∠FEN,∵EG=EF,∴△EMG≌△ENF(AAS),∴EM=EN,∵====n,∴可以假设BD=k,则AD=nk,∵∠ADB=∠ADC=90°,∠B=∠CAD,∴△ADB∽△CDA,∴==m∴=m∴mn=1.故答案为:mn=1.24.如图,抛物线y=ax2+bx+c经过▱ADBC的顶点A(0,3)、B(3,0)、D(2,3)抛物线与x轴的另一交点为E,经过点E的直线l将▱ADBC分割成面积相等的两部分,与抛物线交于另一点F,点P在直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式.(2)当t为何值时,△PFE的面积最大?并求出△PFE的面积最大值.(3)点Q为直线AB下方抛物线上一动点,是否存在点Q使△QAB为直角三角形?若存在,求出Q点的横坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+c经过▱ADBC的顶点A(0,3)、B(3,0)、D(2,3),∴,∴,∴抛物线的解析式为y=﹣x2+2x+3;(2)如图1,由(1)知,抛物线的解析式为y=﹣x2+2x+3①,令y=0,则﹣x2+2x+3=0,解得x=﹣1或x=3,∴E(﹣1,0),设▱ADBC的对角线AB,CD的交点为O',∴点O'是AB的中点分割成面积相等的两部分,∴直线l过点O',∴直线l的解析式为y=x+②,联立①②解得,或,∴F(,),过点P作PH∥y轴交直线l于H,设P(t,﹣t2+2t+3)(0<t<),则H(t,t+),∴PH=﹣t2+2t+3﹣t﹣=﹣t2+t+=﹣(t﹣)2+,∴S△PEF=PH(x F﹣x E)=[﹣(t﹣)2+]×(+1)=﹣(t﹣)2+,∴当t=时,△PEF的面积最大,最大值为;(3)如图2,①当∠ABQ=90°时,过点B作直线KS⊥x轴,过点A作AK⊥BS于K,过点Q作QS ⊥BS于S,∴∠S=∠K=90°,∴∠SQB+∠SBQ=90°,∴∠SBQ+∠ABK=90°,∴∠BQS=∠ABK,∴△BSQ∽△AKB,∴,设Q(m,﹣m2+2m+3),∵A(0,3),B(3,0),∴AK=3,BK=3,QS=3﹣m,BS=m2﹣2m﹣3,∴,∴m=3(点B的横坐标)或m=﹣2,∴点Q的横坐标为﹣2;②当∠AQ'B=90°时,过点Q'作直线Q'N⊥x轴于N,过点A作AM⊥Q'N于M,同①的方法得,△AMQ'∽△Q'NB,∴,设Q'(n,﹣n2+2n+3)(n<0),则AM=﹣n,MQ'=3﹣(﹣n2+2n+3)=n2﹣2n,Q'N=﹣n2+2n+3,BN=3﹣n,∴,∴n=或n=(舍去),即点Q的横坐标为或﹣2.。

2021年河北省石家庄中考数学模拟试卷(一)(4月份)解析版

2021年河北省石家庄中考数学模拟试卷(一)(4月份)解析版

2021年河北省石家庄市中考数学模拟试卷(一)(4月份)一、选择题(有16个小题,共42分,1-10小题各3分,11-16小题各2分)1.的值是()A.B.C.D.22.如图,从点C观测建筑物BD的仰角是()A.∠ADC B.∠DAB C.∠DCA D.∠DCE3.语句“x的与x的差不超过3”可以表示为()A.B.C.D.4.下列计算结果等于a3的是()A.a6÷a2B.a4﹣a C.a2+a D.a2⋅a5.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2B.∠2=∠3C.∠1=∠5D.∠3+∠4=180°6.2020年五一期间,某消费平台推出“购物满200元可参与抽奖”的活动,中一等奖的概率为,用科学记数法表示为()A.2×10﹣4B.5×10﹣5C.5×10﹣6D.2×10﹣57.如图,是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8.平行四边形ABCD的对角线AC和BD交于点O,添加一个条件不能使平行四边形ABCD 变为矩形的是()A.OD=OC B.∠DAB=90°C.∠ODA=∠OAD D.AC⊥BD9.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠CBD=α,∠AOD=β,则()A.3α+β=180°B.2α+β=90°C.2α+β=180°D.2α﹣β=90°10.在对一组样本数据进行分析时,小华列出了方差的计算公式:s2=,由公式提供的信息,则下列说法错误的是()A.样本的容量是4B.样本的中位数是3C.样本的众数是3D.样本的平均数是3.511.如图,若x=,则表示的值的点落在()A.段①B.段②C.段③D.段④12.已知:△ABC.求作:一点O,使点O到△ABC三个顶点的距离相等.小明的作法是:(1)作∠ABC的平分线BF;(2)作边BC的垂直平分线GH;(3)直线GH与射线BF交于O.点O即为所求的点(作图痕迹如图1).小丽的作法是:(1)作∠ABC的平分线BF;(2)作∠ACB的平分线CM;(3)射线CM与射线BF交于点O.点O即为所求的点(作图痕迹如图2).对于两人的作法,下列说法正确的是()A.小明对,小丽不对B.小丽对,小明不对C.两人都对D.两人都不对13.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中与△ABC成轴对称的格点三角形可以画出()A.1个B.2个C.3个D.3个以上14.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7,则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根15.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,下列结论:①∠BAE=30°;②△ABE∽△AEF;③CF=CD;④S△ABE =4S△ECF.正确结论的个数为()A.1个B.2个C.3个D.4个16.如图,已知正六边形ABCDEF的边长为1,分别以其对角线AD、CE为边作正方形,则两个阴影部分的面积差a﹣b的值为()A.0B.2C.1D.二、填空题(本大题有3个小题,共10分,17~18小题各3分,19题每空2分.)17.计算﹣的结果为.18.如图,反比例函数y1=和正比例函数y2=k2x的图象交于A(﹣2,﹣3),B(2,3)两点.若>k2x,则x的取值范围是.19.如图,将水平放置的三角板ABC绕直角顶点A逆时针旋转,得到△AB'C',连接并延长BB'、C'C相交于点P,其中∠ABC=30°,BC=4.(1)若记B'C'中点为点D,连接PD,则PD=;(2)若记点P到直线AC'的距离为d,则d的最大值为.三、解答题(本大题有7个小题,共68分;解答应写出文字说明、证明过程或演算步骤)20.如图,在一条数轴上,点O为原点,点A、B、C表示的数分别是m+1,2﹣m,9﹣4m.(1)求AC的长;(用含m的代数式表示)(2)若AB=5,求BC的长.21.如图,从左向右依次摆放序号分别为1,2,3,…,n的小桶,其中任意相邻的四个小桶所放置的小球数之和相等.(1)求x+y的值.(2)若n=30,则这些小桶内所放置的小球数之和是多少?(3)用含k(k为正整数)的代数式表示装有“3个球”的小桶序号.22.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有名学生,“优秀”所占圆心角的度数为.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.23.已知,如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)当AC=2时,求BF的长;(3)若∠A=α,∠ACD=25°,且△CDE的外心在该三角形的外部,请直接写出α的取值范围.24.如图,A、B两个长方体水箱放置在同一水平桌面上,开始时水箱A中没有水,水箱B 电盛满水,现以6dm3/min的流量从水箱B中抽水注入水箱A中,直至水箱A注满水为止.设注水t(min),水箱A的水位高度为y A(dm),水箱B中的水位高度为y B(dm)根据图中数据解答下列问题(抽水水管的体积忽略不计)(1)水箱A的容积为;(2)分别写出y A、y B与t之间的函数表达式;(3)当水箱A与水箱B中的水的体积相等时,求出此时两水箱中水位的高度差.25.如图①,在矩形ABCD中,AB=4,BC=10,点P、Q分别是AB、BC的中点,点E 是折线段PA﹣AD上一点.(1)点C到直线EQ距离的最大值是.(2)如图②,以EQ为直径,在EQ的右侧作半圆O.①当半圆O经过点D时,求半圆O被边BC所在直线截得的弧长;(注:tan39°=,sin53°=)②当半圆O与边AD相切时,设切点为M,求tan∠OAM的值;(3)沿EQ所在直线折叠矩形,已知点B的对应点为B',若点B'恰好落在矩形的边AD上,直接写出AE的长.26.已知:如图,点O(0,0),A(﹣4,﹣1),线段AB与x轴平行,且AB=2,抛物线l:y=kx2﹣2kx﹣3k(k≠0)(1)当k=1时,求该抛物线与x轴的交点坐标;(2)当0≤x≤3时,求y的最大值(用含k的代数式表示);(3)当抛物线l经过点C(0,3)时,l的解析式为,顶点坐标为,点B(填“是”或“否”)在l上;若线段AB以每秒2个单位长的速度向下平移,设平移的时间为t(秒)①若l与线段AB总有公共点,求t的取值范围:②若1同时以每秒3个单位长的速度向下平移,l在y轴及其右侧的图象与直线AB总有两个公共点,直接写出t的取值范围.参考答案与试题解析一、选择题(共16个小题,共42分)1.的值是()A.B.C.D.2解:的值是2.故选:B.2.如图,从点C观测建筑物BD的仰角是()A.∠ADC B.∠DAB C.∠DCA D.∠DCE 解:从点C观测建筑物BD的仰角是∠DCE,故选:D.3.语句“x的与x的差不超过3”可以表示为()A.B.C.D.解:“x的与x的差不超过3”,用不等式表示为x﹣x≤3.故选:B.4.下列计算结果等于a3的是()A.a6÷a2B.a4﹣a C.a2+a D.a2⋅a 解:A、a6÷a2=a4,故A不符合题意;B、不是同底数幂的乘法,故B不符合题意;C、不是同底数幂的乘法,故C不符合题意;D、a2•a=a3,故D符合题意;故选:D.5.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2B.∠2=∠3C.∠1=∠5D.∠3+∠4=180°解:A、∵∠1=∠2,∴a∥b,不符合题意;B、∵∠2=∠3,∴a∥b,不符合题意;C、∵∠1与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠1=∠5,不能得到a∥b,∴符合题意;D、∵∠3+∠4=180°,∴a∥b,不符合题意;故选:C.6.2020年五一期间,某消费平台推出“购物满200元可参与抽奖”的活动,中一等奖的概率为,用科学记数法表示为()A.2×10﹣4B.5×10﹣5C.5×10﹣6D.2×10﹣5解:用科学记数法表示5×10﹣6,故选:C.7.如图,是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;主视图发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;左视图没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;俯视图发生改变.故选:D.8.平行四边形ABCD的对角线AC和BD交于点O,添加一个条件不能使平行四边形ABCD 变为矩形的是()A.OD=OC B.∠DAB=90°C.∠ODA=∠OAD D.AC⊥BD解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,A、OD=OC时,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、四边形ABCD是平行四边形,∠DAB=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵∠ODA=∠OAD,∴OA=OD,∴AC=BD,∴平行四边形ABCD是矩形,故选项C不符合题意;D、四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选项D符合题意;故选:D.9.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠CBD=α,∠AOD=β,则()A.3α+β=180°B.2α+β=90°C.2α+β=180°D.2α﹣β=90°解:∵OA⊥BC,∴∠AOC=90°,∵∠COD=2∠DBC=2α,∵∠AOD+∠COD=90°,∴β+2α=90°,故选:B.10.在对一组样本数据进行分析时,小华列出了方差的计算公式:s2=,由公式提供的信息,则下列说法错误的是()A.样本的容量是4B.样本的中位数是3C.样本的众数是3D.样本的平均数是3.5解:由题意知,这组数据为2、3、3、4,所以这组数据的样本容量为4,中位数为=3,众数为3,平均数为=3,故选:D.11.如图,若x=,则表示的值的点落在()A.段①B.段②C.段③D.段④解:原式=•=x﹣1,当x=时,原式=﹣1≈1.23,故选:C.12.已知:△ABC.求作:一点O,使点O到△ABC三个顶点的距离相等.小明的作法是:(1)作∠ABC的平分线BF;(2)作边BC的垂直平分线GH;(3)直线GH与射线BF交于O.点O即为所求的点(作图痕迹如图1).小丽的作法是:(1)作∠ABC的平分线BF;(2)作∠ACB的平分线CM;(3)射线CM与射线BF 交于点O.点O即为所求的点(作图痕迹如图2).对于两人的作法,下列说法正确的是()A.小明对,小丽不对B.小丽对,小明不对C.两人都对D.两人都不对【分析】因为点O到△ABC三个顶点的距离相等,所以点O是三边的垂直平分线的交点,由此即可判断.解:∵点O到△ABC三个顶点的距离相等,∴点O是三边的垂直平分线的交点,∴两人的作法都是错误的,故选:D.13.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中与△ABC成轴对称的格点三角形可以画出()A.1个B.2个C.3个D.3个以上【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.解:如图,最多能画出6个格点三角形与△ABC成轴对称.故选:D.14.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7,则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】根据新定义运算法则以及即可求出答案.解:由题意可知:1☆x=x2﹣x﹣1=0,∴△=1﹣4×1×(﹣1)=5>0,∴有两个不相等的实数根故选:A.15.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,下列结论:①∠BAE=30°;②△ABE∽△AEF;③CF=CD;④S△ABE =4S△ECF.正确结论的个数为()A.1个B.2个C.3个D.4个【分析】首先根据正方形的性质与同角的余角相等证得:△BAE∽△CEF,则可证得④正确,①③错误,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,即可求得答案.解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴=,∵BE=CE=BC,∴=()2=4,∴S△ABE =4S△ECF,故④正确;∴CF=EC=CD,故③错误;∴tan∠BAE==,∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=2a,EF=a,AF=5a,∴==,==,∴=,∴△ABE∽△AEF,故②正确.∴②与④正确.∴正确结论的个数有2个.故选:B.16.如图,已知正六边形ABCDEF的边长为1,分别以其对角线AD、CE为边作正方形,则两个阴影部分的面积差a﹣b的值为()A.0B.2C.1D.【分析】求出两个正方形的面积,可得结论.解:∵正六边形ABCDEF的边长为1,∴AD=2,EC=,∴AD为边的正方形的面积为4,EC为边的正方形的面积为3,∴两个阴影部分的面积差a﹣b=4﹣3=1,故选:C.二、填空题(本大题有3个小题,共10分,17~18小题各3分,19题每空2分.)17.计算﹣的结果为.【分析】首先化简二次根式,进而合并求出答案.解:﹣=2﹣=.故答案为:.18.如图,反比例函数y1=和正比例函数y2=k2x的图象交于A(﹣2,﹣3),B(2,3)两点.若>k2x,则x的取值范围是0<x<2或x<﹣2.【分析】根据两函数的交点A、B的横坐标和图象得出答案即可.解:∵反比例函数y1=和正比例函数y2=k2x的图象交于A(﹣2,﹣3),B(2,3)两点.通过观察图象,当>k2x时x的取值范围是0<x<2或x<﹣2,故答案为0<x<2或x<﹣2.19.如图,将水平放置的三角板ABC绕直角顶点A逆时针旋转,得到△AB'C',连接并延长BB'、C'C相交于点P,其中∠ABC=30°,BC=4.(1)若记B'C'中点为点D,连接PD,则PD=2;(2)若记点P到直线AC'的距离为d,则d的最大值为2+.【分析】(1)由旋转的性质得出AC=AC,AB'=AB,∠C'AC=∠B'AB,由等腰三角形的性质得出∠ACC'=∠AC'C,∠ABB'=∠AB'B,得出∠ACC'=∠AC'C=∠ABB'=∠AB'B,由三角形内角和定理和四边形内角和定理得出∠BPC'=90°,由直角三角形的性质即可得出PD=BC'=2;(2)连接AD,作DE⊥AC'于E,证明△ADC'是等边三角形,得出AC'=AD=2,由等边三角形的性质得出AE=AC'=1,DE=AE=,当P、D、E三点共线时,点P到直线AC'的距离d最大=PD+DE=2+.解:(1)由旋转的性质得:AC=AC,AB'=AB,∠C'AC=∠B'AB,∴∠ACC'=∠AC'C,∠ABB'=∠AB'B,∴∠ACC'=∠AC'C=∠ABB'=∠AB'B,∵∠B'AB+∠ABB'+∠AB'B=180°,∠B'AB+∠BAC+∠ABB'+∠AC'C+∠BPC'=360°,∴∠BPC'=90°,∵D为B'C'中点,∴PD=BC'=2;故答案为:2;(2)连接AD,作DE⊥AC'于E,如图所示:∵AB'C'=∠ABC=30°,∴∠AC'B=60°,∵点D为B'C'中点,∴AD=BC'=DC',∴△ADC'是等边三角形,∴AC'=AD=2,∵DE⊥AC',∴AE=AC'=1,DE=AE=,当P、D、E三点共线时,点P到直线AC'的距离d最大=PD+DE=2+;故答案为:2+.三、解答题(本大题有7个小题,共68分;解答应写出文字说明、证明过程或演算步骤)20.如图,在一条数轴上,点O为原点,点A、B、C表示的数分别是m+1,2﹣m,9﹣4m.(1)求AC的长;(用含m的代数式表示)(2)若AB=5,求BC的长.【分析】(1)由两点间的距离公式解答:(2)根据已知条件求得m的值;代入求值.解:(1)根据题意知:AC=(m+1)﹣(9﹣4m)=5m﹣8;(2)根据题意知:AB=2m﹣1,2m﹣1=5,解得m=3.所以BC=3m﹣7=3×3﹣7=2,即BC=2.21.如图,从左向右依次摆放序号分别为1,2,3,…,n的小桶,其中任意相邻的四个小桶所放置的小球数之和相等.(1)求x+y的值.(2)若n=30,则这些小桶内所放置的小球数之和是多少?(3)用含k(k为正整数)的代数式表示装有“3个球”的小桶序号.【分析】(1)根据任意相邻的四个小桶所放置的小球数之和相等列方程为:5+2+3+4=3+4+x+y,即可得到结论;(2)根据每4个数为一组,从第五个开始循环,当n=30时,为7组余2桶,由此计算这些小桶内所放置的小球数之和;(3)先找出装有“3个球”的小桶序号,再找其中的规律,然后,依据规律表示装有“3个球”的小桶序号.解:(1)∵任意相邻的四个小桶所放置的小球数之和相等,∴5+2+3+4=3+4+x+y,∴x+y=7;(2)∵5+2+3+4=14,每4个数一组和为14,当n=30时,30÷4=7…2,∴当n=30时,这些小桶内所放置的小球数之和是14×7+5+2=105;(3)由图可知:装有“3个球”的小桶序号分别是:3,7,11,…,∴装有“3个球”的小桶序号n=4k﹣1(k为正整数).22.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有500名学生,“优秀”所占圆心角的度数为108°.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.【分析】(1)由“良好”的人数和其所占的百分比即可求出总人数;由360°乘以“优秀”所占的比例即可得出“优秀”所占圆心角的度数;(2)求出“一般”的人数,补全条形统计图即可;(3)由15000乘以“不合格”所占的比例即可;(4)画树状图得出所有等可能的情况数,找出必有甲同学参加的情况数,即可求出所求的概率.解:(1)该校八年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为360°×=108°;故答案为:500,108°;(2)“一般”的人数为500﹣150﹣200﹣50=100(名),补全条形统计图如图1(3)15000×=1500(名),即估计该市大约有1500名学生在这次答题中成绩不合格;(4)画树状图为:共有12种等可能的结果数,其中必有甲同学参加的结果数为6种,∴必有甲同学参加的概率为=.23.已知,如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)当AC=2时,求BF的长;(3)若∠A=α,∠ACD=25°,且△CDE的外心在该三角形的外部,请直接写出α的取值范围.【分析】(1)由平行线的性质,结合条件可证明△ADC≌△BCE,可证明CD=CE;(2)由(1)中的全等可得∠CDE=∠CED,∠ACD=∠BEC,可证明∠BFE=∠BEF,可证明△BEF为等腰三角形;(3)由外心的位置可知△CDE是钝角三角形,可得0°<∠CDE<45°,再利用三角形的内角和可得α的范围.【解答】(1)证明:∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中,,∴△ADC≌△BCE(SAS),∴CD=CE;(2)解:由(1)可知CD=CE,∴∠CDE=∠CED,由(1)可知△ADC≌△BCE,∴∠ACD=∠BEC,∴∠CDE+∠ACD=∠CED+∠BEC,即∠BFE=∠BED,∴BE=BF,即.(3)∵△CDE的外心在该三角形的外部,∴△CDE是钝角三角形,∵∠CDE=∠CED,∴0°<∠CDE<45°,∵AD∥BE,∴∠ADE=∠BED,即∠ADE=∠AFD,∴∠ADE=(180°﹣α)=90°﹣,∵△ADC内角和是180°,∴α+∠ADC+∠CDE+25°=180°,即∠CDE=65°﹣,∴0°<65°﹣<45°,解得:40°<α<130°.24.如图,A、B两个长方体水箱放置在同一水平桌面上,开始时水箱A中没有水,水箱B 电盛满水,现以6dm3/min的流量从水箱B中抽水注入水箱A中,直至水箱A注满水为止.设注水t(min),水箱A的水位高度为y A(dm),水箱B中的水位高度为y B(dm)根据图中数据解答下列问题(抽水水管的体积忽略不计)(1)水箱A的容积为36dm2;(2)分别写出y A、y B与t之间的函数表达式;(3)当水箱A与水箱B中的水的体积相等时,求出此时两水箱中水位的高度差.【分析】(1)根据长方体的体积公式计算即可.(2)根据“水箱A的水位高度=注入水的体积÷水箱A的底面积”得出y A与t之间的函数表达式;“水箱B中的水位高度=6﹣流出水的体积÷水箱B的底面积”得出y B与t之间的函数表达式;(3)当水箱A与水箱B中的水的体积相等时,即水箱B中的水还剩下一半,根据(2)的结论可以分别求出两水箱中水位的高度即可解答.解:(1)水箱A的容积为:3×2×6=36dm3.故答案为:36dm3.(2)根据题意得:(0≤t≤6);(0≤t≤6);(3)当水箱A与水箱B中的水的体积相等时,,即﹣0.6t+6=3,解得t=5;当t=5时,y A=t=5.∴y A﹣y B=5﹣3=2.答:当水箱A与水箱B中的水的体积相等时,两水箱中水位的高度差为2dm.25.如图①,在矩形ABCD中,AB=4,BC=10,点P、Q分别是AB、BC的中点,点E 是折线段PA﹣AD上一点.(1)点C到直线EQ距离的最大值是5.(2)如图②,以EQ为直径,在EQ的右侧作半圆O.①当半圆O经过点D时,求半圆O被边BC所在直线截得的弧长;(注:tan39°=,sin53°=)②当半圆O与边AD相切时,设切点为M,求tan∠OAM的值;(3)沿EQ所在直线折叠矩形,已知点B的对应点为B',若点B'恰好落在矩形的边AD 上,直接写出AE的长.【分析】(1)根据题意可知当CQ⊥EQ时,点C到直线EQ的距离最大,故可求解;(2)①根据题意作图,求出此时∠DQC,再得到圆心角∠QOC的度数,利用弧长公式即可求解;②根据题意分情况作图,利用矩形的性质、勾股定理解直角三角形的应用分别求解;(3)分当点E在AP上时和当点E在AD边上时,利用勾股定理和等腰三角形与矩形的性质可求解.解:(1)当CQ⊥EQ时,点C到直线EQ的距离最大,∵点P、Q分别是AB、BC的中点,∴此时点C到直线EQ距离为CQ=BC=5.故答案为:5.(2)①如图,当半圆O经过点D时,点E恰好再点D处,∵∠DCQ=90°,∴点C在半圆O上,连接OC,在Rt△DCQ中,DC=4,CQ=5,∴,,∴∠DQC=39°,∴∠QDC=180°﹣2×39°=102°,∴CD弧长=.②或,情况一:如图,当点E在线段PA上时,连接OM,延长MO交BC于点N,∵AD与半圆相切于点M,∴∠AMN=90°,∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∴四边形AMNB是矩形,∴MN∥AB,MN=AB=4,∵OE=OQ,∴,在Rt△NOQ中,设OQ=r,∵QO2=ON2+NQ2,∴,解得,∴,∵,∴,情况二:如图,当点E在边AD上时,点M与点E重合,∴∠AEO=90°,∴四边形AEQB是矩形,∴AE=BQ=5,,∴.(3)或3,情况一:如图当点E在AP上时,AB'=2,在Rt△AB'E中,(4﹣AE)2=22+AE2,解得.情况二:如图,当点E在AD边上时,连接BE、BB',可得BE=B'E,∠BEQ=∠B'EQ,∵AD∥BC,∴∠B'EQ=∠BQE,∴∠BEQ=∠BQE,∴BE=BQ=5,∵AB=4,∴AE=3.26.已知:如图,点O(0,0),A(﹣4,﹣1),线段AB与x轴平行,且AB=2,抛物线l:y=kx2﹣2kx﹣3k(k≠0)(1)当k=1时,求该抛物线与x轴的交点坐标;(2)当0≤x≤3时,求y的最大值(用含k的代数式表示);(3)当抛物线l经过点C(0,3)时,l的解析式为y=﹣x2+2x+3,顶点坐标为(1,4),点B否(填“是”或“否”)在l上;若线段AB以每秒2个单位长的速度向下平移,设平移的时间为t(秒)①若l与线段AB总有公共点,求t的取值范围:②若1同时以每秒3个单位长的速度向下平移,l在y轴及其右侧的图象与直线AB总有两个公共点,直接写出t的取值范围.解:(1)当k=1时,该抛物线解析式y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴该抛物线与x轴的交点坐标(﹣1,0),(3,0);(2)抛物线y=kx2﹣2kx﹣3k的对称轴直线x==1,∵k<0,∴x=1时,y有最大值,y=k﹣2k﹣3k=﹣4k;最大值(3)当抛物线经过点C(0,3)时,﹣3k=3,k=﹣1,∴抛物线的解析式为y=﹣x2+2x+3,顶点坐标(1,4),∵A(﹣4,﹣1),线段AB与x轴平行,且AB=2,∴B(﹣2,﹣1),将x=﹣2代入y=﹣x2+2x+3,y=﹣5≠﹣1,∴点B不在l上,故答案为y=﹣x2+2x+3,(1,4),否;①设平移后B(﹣2,﹣1﹣2t),A(﹣4,﹣1﹣2t),当抛物线经过点B时,有y=﹣(﹣2)2+2×(﹣2)+3=﹣5,当抛物线经过点A时,有y=﹣(﹣4)2+2×(﹣4)+3=﹣21,∵l与线段AB总有公共点,∴﹣21≤﹣1﹣2t≤﹣5,解得2≤t≤10;②平移过程中,设C(0,3﹣3t),则抛物线的顶点(1,4﹣3t),∵抛物线在y轴及其右侧的图象与直线AB总有两个公共点,,解得4≤t<5.。

2021年江苏省苏州市中考数学全真模拟试卷(一)(解析版)

2021年江苏省苏州市中考数学全真模拟试卷(一)(解析版)

2021年江苏省苏州市中考数学全真模拟试卷(一)一、选择题(共10小题).1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.平行四边形C.矩形D.等腰梯形2.下列计算正确的是()A.3a2﹣a2=3B.a2•a4=a8C.(a3)2=a6D.a6÷a2=a33.若a+b=3,a﹣b=7,则b2﹣a2的值为()A.﹣21B.21C.﹣10D.104.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A.1.64×10﹣5B.1.64×10﹣6C.16.4×10﹣7D.0.164×10﹣5 5.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切6.在某校“我的中国梦”演讲比赛中,有15名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的()A.众数B.方差C.平均数D.中位数7.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤38.如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE ⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A.π﹣1B.﹣1C.π﹣D.﹣9.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.10.如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,M为AB的中点.若∠CMD =120°,则CD长的最大值是()A.12B.4C.4D.14二、填空题(本大题共8小题,每小题3分共24分不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.函数y=中,自变量x的取值范围为.12.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示为元.13.已知点A(x1,y1)、B(x1﹣3,y2)在直线y=﹣2x+3上,则y1y2(用“>”、“<”或“=”填空)14.若关于x的二次方程x2+ax+a+3=0有两个相等的实数根,则实数a=.15.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为.16.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=.17.如图,将边长为6的正方形ABCD绕点C顺时针旋转30°得到正方形A′B′CD′,则点A的旋转路径长为.(结果保留π)18.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:x…﹣1013…y…﹣3131…现给出下列说法:①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=﹣2的正根在3与4之间.其中正确的说法为.(只需写出序号)三、解答题(本大题共10小题,共76分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(π﹣)0+()﹣2+﹣9tan30°.20.解不等式组,并将解集在数轴上表示出来.21.先化简,再求代数式的值:,其中.22.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:AB=CD.23.某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字母A,B,C,D表示)24.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB 的坡度i=1:,AB=8米,AE=10米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米)25.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.26.已知点O是四边形ABCD内一点,AB=BC,OD=OC,∠ABC=∠DOC=α.(1)如图1,α=60°,探究线段AD与OB的数量关系,并加以证明;(2)如图2,α=120°,探究线段AD与OB的数量关系,并说明理由;(3)结合上面的活动经验探究,请直接写出如图3中线段AD与OB的数量关系为(直接写出答案)27.如图,已知抛物线y =x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)28.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.平行四边形C.矩形D.等腰梯形【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.解:A、正三角形是轴对称图形,不是中心对称图形;B、平行四边形不是轴对称图形,是中心对称图形;C、矩形是轴对称图形,也是中心对称图形;D、等腰梯形是轴对称图形,不是中心对称图形.故选:C.2.下列计算正确的是()A.3a2﹣a2=3B.a2•a4=a8C.(a3)2=a6D.a6÷a2=a3【分析】根据合并同类项系数相加字母及指数不变;同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘;同底数幂的除法底数不变指数相减,可得答案.解:A、合并同类项系数相加字母及指数不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.3.若a+b=3,a﹣b=7,则b2﹣a2的值为()A.﹣21B.21C.﹣10D.10【分析】利用平方差公式分解因式,进而将已知代入求出即可.解:∵a+b=3,a﹣b=7,∴b2﹣a2=(b+a)(b﹣a)=﹣7×3=﹣21.故选:A.4.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A.1.64×10﹣5B.1.64×10﹣6C.16.4×10﹣7D.0.164×10﹣5【分析】根据科学记数法的要求,将一个数字写成a×10n的形式,其中1≤|a|<10,n 为整数.解:0.00000164=1.64×10﹣6,故选:B.5.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.6.在某校“我的中国梦”演讲比赛中,有15名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的()A.众数B.方差C.平均数D.中位数【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:由于总共有15个人,且他们的分数互不相同,第8的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.7.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤3【分析】根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.8.如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE ⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A.π﹣1B.﹣1C.π﹣D.﹣【分析】根据矩形的判定定理得到四边形CDOE是矩形,连接OC,根据全等三角形的性质得到OD=OE,得到矩形CDOE是正方形,根据扇形和正方形的面积公式即可得到结论.解:∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=∠AOB=90°,∴四边形CDOE是矩形,连接OC,∵点C是的中点,∴∠AOC=∠BOC,∵OC=OC,∴△COD≌△COE(AAS),∴OD=OE,∴矩形CDOE是正方形,∵OC=OA=,∴图中阴影部分的面积=﹣1×1=﹣1,故选:B.9.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cos A =,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x 的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cos A=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=xcm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.10.如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,M为AB的中点.若∠CMD =120°,则CD长的最大值是()A.12B.4C.4D.14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,连接CA'、MA'、MB'、A'B'、B'D,证明△A′MB′为等边三角形,即可解决问题.解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,连接CA'、MA'、MB'、A'B'、B'D,∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故选:D.二、填空题(本大题共8小题,每小题3分共24分不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.函数y=中,自变量x的取值范围为x<1.【分析】根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0;可得关系式1﹣x>0,解不等式即可.解:根据题意得:1﹣x>0,解可得x<1;故答案为x<1.12.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示为 6.8×108元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将680000000用科学记数法表示为6.8×108.故答案为:6.8×108.13.已知点A(x1,y1)、B(x1﹣3,y2)在直线y=﹣2x+3上,则y1<y2(用“>”、“<”或“=”填空)【分析】由k=﹣2<0根据一次函数的性质可得出该一次函数单调递减,再根据x1>x1﹣3,即可得出结论.解:∵直线y=﹣2x+3中k=﹣2<0,∴该一次函数y随x的增大而减小,∵x1>x1﹣3,∴y1<y2.故答案为:<.14.若关于x的二次方程x2+ax+a+3=0有两个相等的实数根,则实数a=﹣2或6.【分析】根据二次方程x2+ax+a+3=0有两个相等的实数根得到△=a2﹣4(a+3)=0,解一元二次方程求出a的值.解:∵关于x的二次方程x2+ax+a+3=0有两个相等的实数根,∴△=0,即a2﹣4(a+3)=0,∴a2﹣4a﹣12=0,∴a1=﹣2,a2=6,故答案为:﹣2或6.15.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为2.【分析】由AB∥x轴可知,A、B两点纵坐标相等,设A(,b),B(,b),则AB=﹣,▱ABCD的CD边上高为b,根据平行四边形的面积公式求解.解:∵点A在双曲线上,点B在双曲线上,且AB∥x轴,∴设A(,b),B(,b),则AB=﹣,S▱ABCD=(﹣)×b=5﹣3=2.故答案为:2.16.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=.【分析】作CD⊥x轴于D,CE⊥y轴于E,则BE=4﹣n,CE=3,CD=n,AD=7,根据平行线的性质得出∠ECA=∠CAO,根据题意得出∠BCE=∠CAO,通过解直角三角形得到tan∠CAO==tan∠BCE=,即可得到,解得即可.解:作CD⊥x轴于D,CE⊥y轴于E,∵点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,则E(0,n),D(3,0),∴BE=4﹣n,CE=3,CD=n,AD=7,∵CE∥OA,∴∠ECA=∠CAO,∵∠BCA=2∠CAO,∴∠BCE=∠CAO,在Rt△CAD中,tan∠CAO=,在Rt△CBE中,tan∠BCE=,∴=,即,解得n=,故答案为.17.如图,将边长为6的正方形ABCD绕点C顺时针旋转30°得到正方形A′B′CD′,则点A的旋转路径长为.(结果保留π)【分析】如图,作辅助线;首先求出AC的长度,然后运用弧长公式即可解决问题.解:如图,连接AC、A′C.∵四边形ABCD为边长为6的正方形,∴∠B=90°,AB=BC=6,由勾股定理得:AC=6,由题意得:∠ACA′=30°,∴点A的旋转路径长==,故答案为.18.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:x…﹣1013…y…﹣3131…现给出下列说法:①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=﹣2的正根在3与4之间.其中正确的说法为①③④.(只需写出序号)解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,所以①正确;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=,所以②错误;点(1,3)和点(2,3)为对称点,所以③正确;∵x=﹣1时,y=﹣3,∴x=4时,y=﹣3,∴二次函数y=ax2+bx+c的函数值为﹣2时,﹣1<x<0或3<x<4,即方程ax2+bx+c=﹣2的负根在﹣1与0之间,正根在3与4之间,所以④正确.故答案为①③④.三、解答题(本大题共10小题,共76分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(π﹣)0+()﹣2+﹣9tan30°.【分析】本题涉及零指数幂、负整数指数、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:原式=1+9+3﹣9×=1+9+3﹣3=10.20.解不等式组,并将解集在数轴上表示出来.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.解:,由①得:m≥1,由②得:m<2,不等式组的解集为:1≤m<2.在数轴上表示为:.21.先化简,再求代数式的值:,其中.解:原式====,当时,原式=.22.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:AB=CD.【解答】证明:∵DF∥BE,∴∠AFD=∠CEB,∴∠CDF=∠AEB,∵AF=CE,∴AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AB=CD.23.某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字母A,B,C,D表示)解:(1)本次随机调查的学生人数为30÷15%=200(人);(2)书画的人数为200×25%=50(人),戏曲的人数为200﹣(50+80+30)=40(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为1200×=240(人);(4)列表得:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,∴恰好抽到“器乐”和“戏曲”类的概率为=.24.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB 的坡度i=1:,AB=8米,AE=10米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米)解:(1)在Rt△ABH中,tan∠BAH ==,∴∠BAH=30°,∴BH =AB=4米;(2)过B作BG⊥DE于G,如图所示:由(1)得:BH=4米,AH=4米,∴BG=AH+AE=4+10(米),Rt△BGC中,∠CBG=45°,∴CG=BG=4+10(米).Rt△ADE中,∠DAE=60°,AE=10米,∴DE =AE=10米.∴CD=CG+GE﹣DE=4+10+4﹣10=14﹣6≈3.6(米).答:广告牌CD的高度约为3.6米.25.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、这两天以成本价促销,之后售价恢复到10元11日/kg.6月12补充进货200kg,成本价8.5元/kg.日800kg水果全部售完,一共获利1200元.6月30日解:(1)200×(10﹣8)=400(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B坐标为(a,400),根据题意得:(10﹣8)×[600﹣(a﹣200)]+(10﹣8.5)×200=1200,解这个方程,得a=350,∴点B坐标为(350,400),设线段BC所在直线对应的函数表达式为y=kx+b,则:,解得,∴线段BC 所在直线对应的函数表达式为.26.已知点O是四边形ABCD内一点,AB=BC,OD=OC,∠ABC=∠DOC=α.(1)如图1,α=60°,探究线段AD与OB的数量关系,并加以证明;(2)如图2,α=120°,探究线段AD与OB的数量关系,并说明理由;(3)结合上面的活动经验探究,请直接写出如图3中线段AD与OB 的数量关系为AD =2OB sin(直接写出答案)【分析】(1)如图1,连接AC,根据已知条件得到△ABC与△COD是等边三角形,求得∠ACD=∠BCO,推出△ACD≌△BCO,根据全等三角形的性质即可得到结论;(2)如图2,连接AC,过B作BF⊥AC于F,根据已知条件得到∠ACB=∠DCO=30°,推出△ACD∽△BCO,根据相似三角形的性质得到,由三角函数的定义得到=2sin60°=,于是得到结论;(3)如图3,连接AC,过B作BF⊥AC于F,根据已知条件得到∠ACB=∠DCO,推出△ACD∽△BCO,根据相似三角形的性质得到,由三角函数的定义得到结论.解:(1)AD=OB,如图1,连接AC,∵AB=BC,OD=OC,∠ABC=∠DOC=60°,∴△ABC与△COD是等边三角形,∴∠ACB=∠DCO=60°,∴∠ACD=∠BCO,在△ACD与△BCO中,,∴△ACD≌△BCO,∴AD=OB;(2)AD=OB;如图2,连接AC,∵AB=BC,OC=OD,∴,∵∠ABC=∠DOC,∴△ABC∽△DOC,∴,过B作BF⊥AC于F,∵AB=BC,OD=OC,∠ABC=∠DOC=120°,∴∠ACB=∠DCO=30°,∴∠ACD=∠BCO,∵,∴△ACD∽△BCO,∴,∵∠CFB=90°,∴=2sin60°=,∴AD=OB;(3)如图3,连接AC,过B作BF⊥AC于F,∵AB=BC,OD=OC,∠ABC=∠DOC=α,∴∠ACB=∠DCO=,∴∠ACD=∠BCO,∴△ACD∽△BCO,∴,∵∠CFB=90°,∴=2sin,∴AD=2sin OB.故答案为:AD=2OB sin.27.如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)解:(1)函数的表达式为:y=(x+1)(x﹣5)=(x2﹣4x﹣5)=x2﹣x﹣,点M坐标为(2,﹣3);(2)当x=8时,y=(x+1)(x﹣5)=9,即点C(8,9),S四边形AMBC=AB(y C﹣y M)=×6×(9+3)=36;(3)y=(x+1)(x﹣5)=(x2﹣4x﹣5)=(x﹣2)2﹣3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D与动点P之间距离PD==,令t=,则x2=3t,可得PD=,当t=﹣=﹣时,PD有最小值,∵t≥0,∴3﹣2m≤0,即m≥时,PD的最小值d=;当m<时,3﹣2m>0,t≥0,∴t2+(3﹣2m)t+m2≥0,故当PD最小时,t=0,即x=0,∴当点P与点O重合时,PD最小,即PD的最小值d=|m|∴d=.28.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.解:(1)由题意可得,OP=8﹣t,OQ=t,∴OP+OQ=8﹣t+t=8(cm).(2)当t=4时,线段OB的长度最大.如图,过点B作BD⊥OP,垂足为D,则BD∥OQ.∵OT平分∠MON,∴∠BOD=∠OBD=45°,∴BD=OD,OB=BD.设线段BD的长为x,则BD=OD=x,OB=BD=x,PD=8﹣t﹣x,∵BD∥OQ,∴,∴,∴x=.∴OB==﹣.∵二次项系数小于0.∴当t=4时,线段OB的长度最大,最大为2cm.(3)∵∠POQ=90°,∴PQ是圆的直径.∴∠PCQ=90°.∵∠PQC=∠POC=45°,∴△PCQ是等腰直角三角形.∴S△PCQ=PC•QC=PQ=PQ2.在Rt△POQ中,PQ2=OP2+OQ2=(8﹣t)2+t2.∴四边形OPCQ的面积S=S△POQ+S△PCQ=,=,=4t﹣+16﹣4t=16.∴四边形OPCQ的面积为16cm2.。

2021年四川省绵阳市梓潼县中考数学一诊试卷(附答案详解)

2021年四川省绵阳市梓潼县中考数学一诊试卷(附答案详解)

2021年四川省绵阳市梓潼县中考数学一诊试卷一、选择题(本大题共12小题,共36.0分) 1. 下列各数中,是无理数的一项是( )A. 0B. −1C. 0.101001D. √932. 据省统计局发布的数据显示,截止2018年底,我省合肥市常住人口已突破800万.数据800万用科学记数法表示为( )A. 8×106B. 80×104C. 0.8×107D. 8X1073. 如图是由八个相同小正方体组合而成的几何体,则其左视图是( )A.B.C.D.4. 如图,AB//CD ,∠C =80°,∠ACD =60°,则∠BAD的度数等于( )A. 60°B. 50°C. 45°D. 40°5. 请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为( ) A. {3y +5=x5y −1=xB. {3y −5=x 5y =x −1C. {13x +5=y5y =x −5D. {x −5=3yx =5(y −1)6.已知甲、乙、丙、丁四位射击运动员在一次比赛中的平均成绩是90环(总环为100环),而乙、丙、丁三位射击运动员的平均成绩是92环,则下列说法不正确的是()A. 甲的成绩为84环B. 四位射击运动员的成绩可能都不相同C. 四位射击运动员的成绩一定有中位数D. 甲的成绩比其他三位运动员的成绩都要差7.如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=8,MN=2,则AC的长为()A. 12B. 11C. 10D. 98.在数−1,1,2中任取两个数作为点的坐标,该点刚好在二次函数y=2x2图象上的概率是()A. 16B. 13C. 12D. 239.如图,矩形ABCD的顶点A和对称中心在反比例函数y=kx(k≠0,x>0),若矩形ABCD的面积为10,则k的值为()A. 10B. 4√3C. 3√2D. 510.已知y=√(x−4)2−x+5,当x分别取得1,2,3,…,2021时,所对应y值的总和是()A. 2033B. 2032C. 2031D. 203011.抛物线y=ax2+bx+c的对称轴是直线x=−1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a−2b+c>0;③8a+c>0;④c=3a−3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有()A. 5个B. 4个C. 3个D. 2个12.如图,点E、F是正方形ABCD的边BC上的两点(不与B、C两点重合),过点B作BG⊥AE于点G,连接FG、DF,若AB=2,则DF+GF的最小值为()A. √13−1B. √26+23C. 3D. 4二、填空题(本大题共6小题,共24.0分)a2−2ab+3b2=______.13.因式分解:1314.若点A(1+m,1−n)与点B(−3,2)关于y轴对称,则(m+n)2021的值是______.15.若一个多边形的内角和是其外角和的1.5倍,则这个多边形的边数是______ .16.若3a⋅3b=27,(3a)b=3,则a2+b2=______.17.新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD中,AB=10,BC=12,CD=5,tanB=3,那么边AD的长为______ .418.如图,在矩形ABCD中,AB=4√3,AD=4,点E为线段CD的中点,动点F从点C出发,沿C→B→A的方向在CB和BA上运动,将矩形沿EF折叠,点C的对应点为C′,当点C′恰好落在矩形的对角线上时(不与矩形顶点重合),点F运动的距离为______.三、解答题(本大题共7小题,共90.0分)19.(1)计算:(−2021)0+√8−4×(−12)2.(2)先化简,再求值:(2xx−2−xx+2)÷xx2−4,其中x=−1.20.如图,在四边形ABCD中,AD=BC,∠A=∠B,E为AB的中点,连结CE,DE.(1)求证:△ADE≌△BCE.(2)若∠A=70°,∠BCE=60°,求∠CDE的度数.21.某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球a乒乓球36排球b足球12请根据以上图表信息解答下列问题:(1)频数分布表中的a=______,b=______;(2)在扇形统计图中,“排球”所在的扇形的圆心角为______度;(3)全校有多少名学生选择参加乒乓球运动?的图象交于点A(n,2) 22.如图,正比例函数y=kx(k≠0)的图象与反比例函数y=−8x和点B.(1)n=______,k=______;(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.23.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=13①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.24.如图,直角坐标系中,抛物线y=a(x−4)2−16(a>0)交x轴于点E,F(E在Fx+b分别交x,y 的左边),交y轴于点C,对称轴MN交x轴于点H;直线y=13轴于点A,B.(1)写出该抛物线顶点D的坐标及点C的纵坐标(用含a的代数式表示).(2)若AF=AH=OH,求证:∠CEO=∠ABO.(3)当b>−4时,以AB为边作正方形,使正方形的另外两个顶点一个落在抛物线上,一个落在抛物线的对称轴上,求所有满足条件的a及相应b的值.(直接写出答案即可)25.已知四边形ABCD是菱形,AC、BD交于点E,点F在CB的延长线上,连结EF交AB于H,以EF为直径作⊙O,交直线AD于A、G两点,交BC于K点.(1)如图1,连结AF,求证:四边形AFBD是平行四边形;(2)如图2,当∠ABC=90°时,求tan∠EFC的值;(3)如图3,在(2)的条件下,连结OG,点P在弧FG上,过点P作PT//OF交OG于T,PR//OG交OF于R点,连结TR,若AG=2,在点P运动过程中,探究线段TR的长是否为定值,如果是,则求出这个定值;如果不是,请说明理由.答案和解析1.【答案】D3是无理数,【解析】解:√9故选:D.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】A【解析】解:数据800万用科学记数法表示为8×106.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:从左面可看到从左往右三列小正方形的个数为:2,3,1.故选:B.找到从左面看所得到的图形即可.本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.4.【答案】D【解析】解:∵AB//CD , ∴∠C +∠CAB =180°,∴∠CAB =180°−∠C =180°−80°=100°, ∴∠BAD =∠CAB −∠CAD =100°−60°=40°. 故选:D .根据平行线的性质得∠C +∠CAB =180°,则可计算出∠CAB =180°−∠C =100°,然后利用∠BAD =∠CAB −∠CAD 进行计算.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.【答案】D【解析】解:设诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为:{x −5=3yx =5(y −1). 故选:D .设诗句中谈到的鸦为x 只,树为y 棵,利用“三只栖一树,五只没去处,五只栖一树,闲了一棵树”分别得出方程:x −5=3y ,x =5(y −1)进而求出即可.此题主要考查了由实际问题抽象出二元一次方程组,据题意列出等量关系式是完成本题的关键.6.【答案】D【解析】解:由题意知,甲、乙、丙、丁四位射击运动员的总成绩=90×4=360环, 乙、丙、丁三位射击运动员的总成绩=92×3=276环, ∴甲射击运动员的成绩为84环. 故A 、B 、C 正确;由此不能判断甲的成绩比其他三位运动员的成绩都要差,D 不准确; 故选:D .解答本题的关键是利用公式x −=x 1+x 2+⋯+x nn求出甲运动员的成绩.本题考查了算术平均数的概念.解题时要熟记公式x −=x 1+x 2+⋯+x nn是解决本题的关键.7.【答案】A【解析】解:如图,延长BN交AC于D,在△ANB和△AND中,{∠NAB=∠NADAN=AN∠ANB=∠AND=90°,∴△ANB≌△AND(ASA),∴AD=AB=8,BN=ND,又∵M是△ABC的边BC的中点,∴MN是△BCD的中位线,∴DC=2MN=4,∴AC=AD+CD=8+4=12,故选:A.延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.本题考查的是三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.8.【答案】B【解析】解:画树状图如图:共有6个等可能的结果为(−1,1),(−1,2),(1,−1),(1,2),(2,−1),(2,1),该点刚好在二次函数y=2x2图象上的结果有2个,∴该点刚好在二次函数y=2x2图象上的概率为26=13,故选:B.画树状图,共有6个等可能的结果为(−1,1),(−1,2),(1,−1),(1,2),(2,−1),(2,1),该点刚好在二次函数y=2x2图象上的结果有2个,再由概率公式求解即可.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,考查了二次函数图象上点的坐标特征.9.【答案】D【解析】设A(m,km),∴AB=km,∵矩形的面积为10,∴BC=10km =10mk,∴矩形ABCD对称中心的坐标为:矩形对称中心的坐标为:(m+12×10mk,12×km),即(m+5mk,k2m)∵对称中心在y=kx的图象上,∴k2m =km+5mk,∴mk−5m=0,∴m(k−5)=0,∴m=0(不符合题意,舍去)或k=5,故选:D.设A点的坐标为(m,km )则根据矩形的性质得出矩形中心的坐标为:(m+12×10mk,12×km),即(m+5mk ,k2m),进而可得出BC的长度.然后将坐标代入函数解析式即可求出k的值.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.10.【答案】A【解析】解:∵y=√(x−4)2−x+5=|x−4|−x+5,∴当x<4时,y=4−x−x+5=9−2x,即当x=4时,y=5−4=1;当x≥4时,y=x−4−x+5=1,即当x分别取1,2,3,...,2021时,所对应的y的值的总和是,7+5+3+2018×1=2033,故选:A.根据二次根式的性质化简,即可得到y =|x −4|−x +5,再根据绝对值的性质化简,即可得到对应的y 的值的总和.本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决问题的关键.也考查了数字规律型问题.11.【答案】D【解析】解:∵抛物线对称轴x =−1,经过(1,0),∴−b 2a =−1,a +b +c =0,∴b =2a ,c =−3a ,∵a <0,∴b <0,c >0,∴ab >0且c >0,故①错误,∵抛物线对称轴x =−1,经过(1,0),∴(−2,0)和(0,0)关于对称轴对称,∴x =−2时,y >0,∴4a −2b +c >0,故②正确,∵抛物线与x 轴交于(−3,0),∴x =−4时,y <0,∴16a −4b +c <0,∵b =2a ,∴16a −8a +c <0,即8a +c <0,故③错误,∵c =−3a =3a −6a ,b =2a ,∴c =3a −3b ,故④正确,∵直线y =2x +2与抛物线y =ax 2+bx +c 两个交点的横坐标分别为x 1,x 2, ∴方程ax 2+(b −2)x +c −2=0的两个根分别为x 1,x 2,∴x 1+x 2=−b−2a ,x 1⋅x 2=c−2a , ∴x 1+x 2+x 1x 2=−b−2a +c−2a =−2a−2a +−3a−2a =−5,故⑤错误,故选:D . 根据二次函数的性质一一判断即可.所学知识解决问题,属于中考常考题型.12.【答案】A【解析】解:取AB 的中点O ,点O 、G 关于BC 的对称点分别为O′、G′,∵G 与G′关于BC 对称,∴FG =FG′,∴FG +DF =FG′+DF ,∴当G(也就是G′)固定时,取DG′与BC 的交点F ,此时能够使得FG +FD 最小,且此时FG +DF 的最小值是DG′,现在再移动点E(也就是移动G),∵BG ⊥AE ,∴∠AGB =90°,∴当点E 在BC 上运动时,点G 随着运动的轨迹是以O 为圆心,OA 为半径的90°的圆弧BT⏜,点G′随着运动的轨迹是以O′为圆心,O′B 为半径的90°的圆弧BT′⏜, ∴当取DO′与BT′⏜交点为G′时,能够使得DG′达到最小值, 且DG′的最小值=DO′−O′G′=√22+32−1=√13−1,即DF +GF 的最小值为√13−1.故选:A .先确定点F 的位置:取AB 的中点O ,点O 、G 关于BC 的对称点分别为O′、G′,当G(也就是G′)固定时,取DG′与BC 的交点作F 能够使得FG +FD 最小,再确定点E 的位置:E在BC 上运动时,点G 随着运动的轨迹是以O 为圆心,OA 为半径的90°的圆弧BT ⏜,点G′随着运动的轨迹是以O′为圆心,O′B 为半径的90°的圆弧BT′⏜,当取DO′与BT′⏜交点为G′时,能够使得DG′达到最小值,可得结论.本题考查了正方形的性质、等腰直角三角形的性质、轴对称性质及动点运动问题等知识,对于动点题型,要动手多画几个图形仔细观察判断点、线、角的关系,根据两点之间线段最短和三角形的三边关系综合解决问题.13.【答案】13(a −3b)2【解析】【分析】此题主要考查了提公因式与公式法的综合应用,正确应用公式是解题关键.直接提取公因式13,再利用公式法分解因式得出答案.【解答】解:13a2−2ab+3b2=13(a2−6ab+9b2)=13(a−3b)2.故答案为:13(a−3b)2.14.【答案】1【解析】解:∵点A(1+m,1−n)与点B(−3,2)关于y轴对称,∴1+m=3,1−n=2,解得:m=2,n=−1,所以m+n=2−1=1,所以(m+n)2021=12021=1.故答案为:1.根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n 的值,代入计算可得.本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.15.【答案】5【解析】解:设该多边形的边数为n,由题意可知:(n−2)⋅180°=1.5×360°解得:n=5故答案为:5.根据多边形的内角和与外角和即可求出答案.本题考查多边形的内角和与外角和,解题的关键是熟练运用多边形的性质,本题属于基础题型.16.【答案】7【解析】解:∵3a⋅3b=3a+b=27=33,∴a+b=3,∵(3a)b=3,∴ab=1,∴a2+b2=(a+b)2−2ab=32−2=7.故答案为:7.根据同底数幂的乘法法则得出a+b=3,根据积的乘方运算法则得出ab=1,再根据完全平方公式解答即可.本题主要考查了同底数幂的乘法、完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.17.【答案】9【解析】解:如图,过端午A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.在Rt△ABH中,tanB=AHBH =34,∴可以假设AH=3k,BH=4k,则AB=5k=10,∴k=2,∴AH=6,BH=8,∵BC=12,∴CH=BC−BH=12−8=4,∴AC=√AH2+CH2=√62+42=2√13,∵∠B+∠D=90°,∠D+∠ECD=90°,∴∠ECD=∠B,在Rt△CED中,tan∠ECD=34=DEEC,∵CD=5,∴DE=3,CE=4,∴AE=√AC2−CE2=√(2√13)2−42=6,∴AD=AE+DE=9.故答案为:9.如图,过端午A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.解直角三角形求出AE,DE即可解决问题本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.【答案】2或4+2√33【解析】解:分两种情况:①当点C′落在对角线BD上时,连接CC′,如图1所示:∵将矩形沿EF折叠,点C的对应点为点C′,且点C′恰好落在矩形的对角线上,∴CC′⊥EF,∵点E为线段CD的中点,∴CE=ED=EC′,∴∠CC′D=90°,即CC′⊥BD,∴EF//BD,∴点F是BC的中点,∵在矩形ABCD中,AD=4,∴BC=AD=4,∴CF=2,∴点F运动的距离为2;②当点C′落在对角线AC上时,作FH⊥CD于H,则CC′⊥EF,四边形CBFH为矩形,如图2所示:在矩形ABCD中,AB=4√3,AD=4,∠B=∠BCD=90°,AB//CD,∴BC=AD=4,tan∠BAC=BCAB =44√3=√33,∴∠BAC=30°,∴∠AFE=60°,∴∠FEH=60°,∵四边形CBFH为矩形,∴HF=BC=4,∴EH=HFtan60∘=√3=4√33,∵EC=12CD=2√3,∴BF=CH=CE−EH=2√3−4√33=2√33,∴点F运动的距离为4+2√33;综上所述:点F运动的距离为2或4+2√33;故答案为:2或4+2√33.分点C′落在对角线BD上和点C′落在对角线AC上两种情况分别进行讨论求解,即可得出点F运动的距离.本题考查了几何变换综合题,需要利用翻折变换的性质、矩形的性质、平行线的性质、三角函数的应用等知识;熟练掌握矩形的性质,熟记翻折变换的性质是解题的关键.19.【答案】解:(1)原式=1+2√2−4×14=1+2√2−1=2√2;(2)原式=(2xx−2−xx+2)⋅(x+2)(x−2)x=2xx−2⋅(x+2)(x−2)x−xx+2⋅(x+2)(x−2)x=2x+4−x+2=x+6,当x=−1时,原式=−1+6=5.【解析】(1)根据零指数幂、算术平方根的概念、有理数的乘方法则计算;(2)根据分式的混合运算法则把原式化简,把x的值代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则是解题的关键.20.【答案】(1)证明:∵E为AB的中点,∴AE=BE,∵在△ADE和△BCE中{AE=BE ∠A=∠B AD=BC∴△ADE≌△BCE(SAS);(2)解:∵△ADE≌△BCE,∴DE=CE,∠A=∠B=70°,∠ADE=∠BCE=60°,∴∠AED=∠BEC=50°,∠CED=180°−∠AED−∠BEC=80°,∴∠CDE=∠DCE=12(180°−80°)=50°.【解析】本题考查了全等三角形的性质和判定、等腰三角形的性质、三角形内角和等知识点,能证明两三角形全等是解此题的关键.(1)根据SAS推出△ADE≌△BCE即可;(2)根据△ADE≌△BCE得出DE=CE,∠A=∠B=70°,∠ADE=∠BCE=60°,进而求出∠AED=∠BEC=50°,再根据平角的定义得出∠CED,然后由三角形内角和即可求出答案.21.【答案】24 18 54【解析】解:(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120−30−24−36−12=18.故答案是:24,18;(2)“排球”所在的扇形的圆心角为360°×18120=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.本题考查读扇形统计图获取信息的能力,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.22.【答案】解:(1)把A(n,2)代入反比例函数y=−8x中,得n=−4,∴A(−4,2),把A(−4,2)代入正比例函数y=kx(k≠0)中,得k=−12,故答案为:−4;−12;(2)过A作AD⊥y轴于D,过B作BE⊥y轴于E,∵A(−4,2),∴根据双曲线与正比例函数图象的对称性得B(4,−2),设C(0,b),则CD=b−2,AD=4,BE=4,CE=b+2,∵∠ACO+∠OCB=90°,∠OCB+∠CBE=90°,∴∠ACO=∠CBE,∵∠ADC=∠CEB=90°,∴△ACD∽△CBE,∴CDBE =ADCE,即b−24=4b+2,解得,b=2√5,或b=−2√5(舍),∴C(0,2√5);(3)如图2,过A作AM⊥x轴于M,过B作BN⊥x轴于N,在x轴上原点的两旁取两点P1,P2,使得OP1=OP2=OA=OB,∴OP1=OP2=OA=√42+22=2√5,∴P1(−2√5,0),P2(2√5,0),∵OP1=OP2=OA=OB,∴四边形AP1BP2为矩形,∴AP1⊥P1B,AP2⊥BP2,∵点P(m,0)在x轴上,∠APB为锐角,∴P点必在P1的左边或P2的右边,∴m<−2√5或m>2√5.【解析】(1)把A点坐标代入反比例函数解析式求得n,再把求得的A点坐标代入正比例函数解析式求得k;(2)可设点C(0,b),只要求出b的值就行,求值一般的方法是相似和勾股定理,此题用相似,只需证明△ACD∽△CBE即可;(3)在x轴上找到点P1,P2,使AP1⊥P1B,AP2⊥BP2,则点P在P1的左边,在P2的右边就符合要求了.本题主要考查了反比例函数图象与性质,正比例函数的图象与性质,相似三角形的性质与判定,矩形的判定,待定系数法,第(2)小题关键是证明相似三角形,第(3)小题关键在于构造矩形.23.【答案】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB//CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=13,设⊙O的半径为r,在Rt△AOG中,tan∠GAO=OGOA =13,∴OG=13r,∴DG=r−13r=23r,在Rt△DGC中,tan∠DCG=DGCD =13,∴CD=3DG=2r,∴DC=AB,而DC//AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG=√12+32=√10,CD=6,DG=2,CG=√22+62=2√10,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴CDCA =DEDA,即63√10=DE3√2,∴DE=6√55.【解析】(1)先利用切线的性质得到OD⊥CD,再证明AB//CD,然后利用平行线的性质和圆周角定理得到结论;(2)①设⊙O的半径为r,利用正切的定义得到OG=13r,则DG=23r,则CD=3DG=2r,然后根据平行线的判定得到结论;②作直径DH,连接HE,如图,先计算出AG=√10,CG=2√10,再证明∴△CDE∽△CAD,然后利用相似比计算DE的长.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了平行四边形的判定与圆周角定理.24.【答案】解:(1)∵抛物线的解析式为y=a(x−4)2−16,∴抛物线的顶点D的坐标为(4,−16),当x=0时,y=16a−16,∴点C的纵坐标为16a−16.(2)∵D(4,−16),∴OH=4,∵AF=AH=OH,EH=HF,∴F(12,0),A(8,0),E(−4,0),将点F代入抛物线解析式得,∴0=a(12−4)2−16,a=14,将点A代入直线解析式得,1 3×8+b=0,b=−83,将a代入点C的纵坐标得,∴16a−16=−12,∴C(0,−12),OC=12,tan∠CEO=OCOE =124=3,tan∠OBA=OAOB=3,∴∠CEO=∠ABO.(3)①如图所示,∵y=1x+b,3当x=0时,y=b,∴B(0,b),过点E作EG垂直于NF,设对称轴与x轴的交点为M,BG与y轴的交点为点H,∵四边形EFAB为正方形,可知△EFG≌△ABO(AAS),△FMA≌△ABO(AAS),∴OB=AM=FG=−b,∵抛物线的对称轴为直线x=4,∴OA=FM=EG=4−b,∴A(4−b,0),E(b,4),将点A代入直线解析式得,(4−b)+b,0=13解得b=−2,∴E(−2,4),∴4=a(−2−4)2−16,.解得a=59②如图所示,△OBA≌△AFG(AAS),△OBA≌△BEQ(AAS),∴OB=EQ=AG=−b,∴OA=FG=BQ=4+b,∴A(4+b,0),E(−b,−4),将点A代入直线解析式得,(4+b)+b,0=13解得b=−1,∴E(1,−4),将点E(1,−4)代入抛物线解析式得,−4=a(1−4)2−16,解得a=4.3③如图所示,△ABO≌△AEG(AAS),△ABO≌△BHF(AAS),∴OB=BH=AG=4,∴b=4,∴OA=12,EG=12,∴E(−8,−12),代入抛物线解析式得,−12=a(−8−4)2−16,解得a=136.综上,a=59,b=−2或a=43,b=−1或a=136,b=4.【解析】(1)从抛物线的顶点式就可以知道抛物线的顶点坐标,点C的纵坐标令x=0即可.(2)求证两个角相等,可以证这两个角的三角函数相等.(3)分情况讨论,利用全等三角形找到线段之间的数量关系,表示点坐标,代入解析式即可求出a、b.此题考查了二次函数与几何图形相结合的问题,利用全等找到线段之间的数量关系为解题关键,最后一问分情况讨论容易漏解.25.【答案】解:(1)如图1,连接AF,∵EF是⊙O的直径,∴∠FAC=90°,即FA⊥AC,∵四边形ABCD是菱形,∴BD⊥AC,AD//BC、即AD//FB,∴FA//BD,∴四边形AFBD是平行四边形;(2)如图2,连接EK,∵∠ABC=90°,四边形ABCD是菱形,∴四边形ABCD是正方形,∵EF是⊙O的直径,∴FK⊥EK,设BK=EK=a,则BC=AD=FB=2a,则tan∠EFC=EKFK =a2a+a=13;(3)TR的长是定值,如图3,连接OP、FA,过点O作OM⊥GD,并延长MO交FC于点N,∵EF是⊙O的直径,∴FA⊥EA,又∵四边形ABCD是正方形,∴∠BAC=45°,∴∠GAF=45°,∴∠GOF=90°,∵PT//OF、PR//OG,∴四边形PROT是矩形,∴RT=OP=OG,∵OM⊥GD、GD//FC,∴MN⊥FC,∴tan∠EFC=tan∠GOM=1,3∵AG=2、OM⊥GD,∴GM=1,∴OM=3,由勾股定理可得GO=√GM2+OM2=√12+32=√10,∴RT=√10.【解析】(1)连接AF,由EF是⊙O的直径知FA⊥AC,由四边形ABCD是菱形知BD⊥AC、AD//FB,据此可得FA//BD,即可得证;(2)连接EK,先证四边形ABCD是正方形,由EF是⊙O的直径知FK⊥EK,设BK=EK= a,则BC=AD=FB=2a,根据tan∠EFC=EK可得答案;FK(3)连接OP、FA,过点O作OM⊥GD,并延长MO交FC于点N,先证四边形PROT是矩形得RT=OP=OG,由MN⊥FC知tan∠EFC=tan∠GOM=1,由AG=2、OM⊥GD3知GM=1、OM=3,由勾股定理可得GO=√GM2+OM2=√10,继而可得答案.本题主要考查圆的综合问题,解题的关键是掌握平行四边形与正方形的判定与性质、菱形的性质及圆周角定理、三角函数的应用等知识点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中毕业生学业(升学)模拟考试数学注意事项:1、答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置。

2、答题时,必须使用2B铅笔或0.5毫米黑色签字笔,将答案填涂或书写在答题卡规定的位置,字体工整、笔迹清楚。

3、所有题目必须在答题卡上作答,在试卷上答题无效。

4、本试卷满分150分,考试用时120分钟。

题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.已知|a|=2019,|b|=2020,则a⋅b的结果中,最大值与最小值的商等于()A. −2020B. 2019C. 1D. −12.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%,假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. b=(1+22.1%×2)aB. b=(1+22.1%)2aC. b=(1+22.1%)×2aD. b=22.1%×2a3.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)24.以下计算正确的是()A. (−2ab2)3=8a3b6B. 3ab+2b=5abC. (−x2)⋅(−2x)3=−8x5D. 2m(mn2−3m2)=2m2n2−6m35.下列四个算式: ①2a3−a3=1; ②(−xy2)⋅(−3x3y)=3x4y3; ③(x3)3⋅x=x10; ④2a2b3⋅2a2b3=4a2b3.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后点D做一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,以到点C的距离为半径作弧,交数轴于一点,则该点位置大致在数轴上()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间7.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是()A. 51B. 49C. 76D. 无法确定8.李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A. 5,4B. 3,5C. 4,4D. 4,59.不等式组{3x+7≥22x−9<1的非负整数解的个数是()A. 4B. 5C. 6D. 710.下列哪个选项中的不等式与不等式3x−8>x组成的不等式组的解集为4<x<5()A. x+5<0B. 2x>8C. −x−5>0D. 2x+3<1311.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2−12x+k=0的两个根,则k的值是()A. 27B. 36C. 27或36D. 1812. 如图,在矩形ABCD 中,AB =3,AD =4,以BC 为斜边在矩形的外部作直角三角形BEC ,点F 是CD 的中点,则EF 的最大值为( )A. √732B. 4C. 5D. 9213. 如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积V(mL)与气体对气缸壁产生的压强P(kPa)的关系可以用如图所示的反比例函数图象进行表示,下列说法错误的是( )A. 气压P 与体积V 表达式为P =kV ,k >0B. 当气压P =70时,体积V 的取值范围为70<V <80C. 当体积V 变为原来的23时,对应的气压P 变为原来的32 D. 当60≤V ≤100时,气压P 随着体积V 的增大而减小14. 如图,数轴上有A 、B 、C 三点,点A ,C 关于点B 对称,以原点O 为圆心作圆,若点A ,B ,C 分别在⊙O 外,⊙O 内,⊙O 上,则原点O 的位置应该在( )A. 点A 与点B 之间靠近A 点B. 点A 与点B 之间靠近B 点C. 点B 与点C 之间靠近B 点D. 点B 与点C 之间靠近C 点15. 往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm ,则水的最大深度为( )A. 8cmB. 10cmC. 16cmD. 20cm二、填空题(本大题共5小题,共25.0分)16.如果零上2℃记作+2℃,那么零下3℃记作______ .17.若x+y=3,xy=1,则x2+y2=.18.甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a−b=______.19.如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为______.20.如图,P为线段AB上一点,AD与BC交于点E,∠CPD=∠A=∠B,BC交PD于点F,AD交PC于点G,则图中相似三角形有________对.三、解答题(本大题共7小题,共80.0分)21.计算:−23−[(−3)2−22×14−8.5]÷(−12)222.已知1+2+3+⋯+n=n(n+1),这里n为任意正整数,请你利用恒等式(n+1)3=2n3+3n2+3n+1,推导出12+22+32+⋯+n2的计算公式.23.已知某酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十⋅一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.(1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元.求租住了三人间、双人间客房各多少间?(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式,并写出自变量的取值范围.(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.24.我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.(1)求A,B两种树苗每棵各多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?25.如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动,点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P,Q同时出发,用t(单位:秒)表示移动的时间(0≤t≤6),那么当t为何值时,△POQ 与△AOB相似?26.如图,AB为⊙O的直径,E为⊙O上一点,C为弧BE的中点,过点C作AE的垂线,交AE的延长线于点D.(1)求证:CD是⊙O的切线;(2)连接EC,若AB=10,AC=8,求△ACE的面积.27.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA=PD,∠APD=90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD=90°.求AB+CD的值.BC答案1.D2.B3.A4.D5.B6.B7.C8.A9.B10.D11.B12.D13.B14.C15.C16.−3℃17.718.1219.15°20.321.解:−23−[(−3)2−22×14−8.5]÷(−12)2=−8−[9−4×14−8.5]×4=−8−[9−1−8.5]×4=−8−(−0.5)×4=−8+2=−6.22.解:∵n3−(n−1)3=3n2−3n+1,∴当式中的n从1、2、3、依次取到n时,就可得下列n个等式:13−03=3−3+1,23−13=3×22−3×2+1,33−23=3×32−3×3+1,…,n3−(n−1)3=3n2−3n+1,将这n 个等式的左右两边分别相加得:n 3=3×(12+22+32+⋯+n 2)−3×(1+2+3+⋯+n)+n ,即12+22+32+42+⋯+n 2=n 3+3(1+2+3+⋯+n)−n3=16n(n +1)(2n +1).23.解:(1)设三人间有a 间,双人间有b 间,根据题意得:{100×3a +150×2b =63003a +2b =50,解得:{a =8b =13,答:租住了三人间8间,双人间13间;(2)根据题意得:y =100x +150(50−x)=−50x +7500(0≤x ≤50), (3)因为−50<0,所以y 随x 的增大而减小, 故当x 满足x3、50−x 2为整数,且x3最大时,即x =48时,住宿费用最低,此时y =−50×48+7500=5100<6300,答:一天6300元的住宿费不是最低;若48人入住三人间,则费用最低,为5100元. 所以住宿费用最低的设计方案为:48人住3人间,2人住2人间.24.解:(1)A 种树苗每棵100元,B 种树苗每棵50元.(2)设购进A 种树苗m 棵,则购进B 种树苗(100−m)棵, 根据题意,得{100m +50(100−m)≤7650,m ≥52.解得52≤m ≤53. ∴购买方案有两种:方案一:购进A 种树苗52棵,B 种树苗48棵; 方案二:购进A 种树苗53棵,B 种树苗47棵. (3)方案一的费用为52×30+48×20=2520(元), 方案二的费用为53×30+47×20=2530(元), 因为2520<2530,所以购进A 种树苗52棵,B 种树苗48棵所付工钱最少,最少工钱为2520元.25.解:(1)∵OB =6cm ,点P 从O 点开始沿OA 边向点A 以1cm/s 的速度移动,∴OQ =(6−t)cm ,∵点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动, ∴OP =t(cm),若△POQ∽△AOB时,OQOB =OPOA,即6−t6=2t12,整理得:12−2t=t,解得:t=4,则当t=4时,△POQ与△AOB相似;若△POQ∽△BOA时,OQOA =OPOB,即6−t12=t6,解得:t=2,则当t=2时,△POQ与△BOA相似,综上所述:当t=4s或2s时,△POQ与△AOB相似.26.(1)证明:连接OC,∵C为弧BE的中点,∴CE⏜=BC⏜,∴∠CAD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠CAD=∠ACO,∴AD//OC,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵AB=10,AC=8,∴BC=√AB2−AC2=√102−82=6,∵∠D=∠ACB=90°,∠DAC=∠CAB,∴△ACD∽△ABC,∴ADAC =ACAB=CDBC,11 ∴AD 8=810=CD 6, ∴AD =325,CD =245,∵CE⏜=BC ⏜, ∴CE =BC =6,∴DE =√CE 2−CD 2=185, ∴AE =AD −DE =145, ∴△ACE 的面积=12AE ⋅CD =12×145×245=16825.27.证明:(1)∵∠B =∠APD =90°,∴∠BAP +∠APB =90°,∠APB +∠DPC =90°, ∴∠BAP =∠DPC ,又PA =PD ,∠B =∠C =90°,∴△BAP≌△CPD(AAS),∴BP =CD ,AB =PC ,∴BC =BP +PC =AB +CD ;(2)如图2,过点A 作AE ⊥BC 于E ,过点D 作DF ⊥BC 于F ,由(1)可知,EF =AE +DF ,∵∠B =∠C =45°,AE ⊥BC ,DF ⊥BC ,∴∠B =∠BAE =45°,∠C =∠CDF =45°,∴BE =AE ,CF =DF ,AB =√2AE ,CD =√2DF , ∴BC =BE +EF +CF =2(AE +DF),∴AB+CDBC =√2(AE+DF)2(AE+DF)=√22.。

相关文档
最新文档