初中数学竞赛辅导讲义全

合集下载

九年级数学竞赛讲座(共10讲)

九年级数学竞赛讲座(共10讲)

目录第一讲分式方程(组)的解法第二讲无理方程的解法第三讲简易高次方程的解法第四讲有关方程组的问题第五讲函数的基本概念与性质第六讲二次函数第七讲函数的最大值与最小值第八讲根与系数的关系及应用第九讲判别式及其应用第十讲一元二次不等式的解法第一讲分式方程(组)的解法分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根.例1 解方程解令y=x2+2x-8,那么原方程为去分母得y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0,y2-4xy-45x2=0,(y+5x)(y-9x)=0,所以y=9x或y=-5x.由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1.经检验,它们都是原方程的根.例2 解方程y2-18y+72=0,所以y1=6或y2=12.x2-2x+6=0.此方程无实数根.x2-8x+12=0,所以x1=2或x2=6.经检验,x1=2,x2=6是原方程的实数根.例3 解方程分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为整理得去分母、整理得x+9=0,x=-9.经检验知,x=-9是原方程的根.例4 解方程分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为即所以((x+6)(x+7)=(x+2)(x+3).例5 解方程分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为整理得去分母得x2+9x-22=0,解得x1=2,x2=-11.经检验知,x1=2,x2=-11是原方程的根.例6 解方程次项与常数项符号相反,故可考虑用合比定理化简.原方程变形为所以x=0或2x2-3x-2=2x2+5x-3.例7 解方程分析与解形式与上例相似.本题中分子与分母只是一次项的符号相反,故可考虑用合分比定理化简.原方程变形为当x≠0时,解得x=±1.经检验,x=±1是原方程的根,且x=0也是原方程的根.说明使用合分比定理化简时,可能发生增根和失根的现象,需细致检验.例8 解方程解将原方程变形为例9 解关于x的方程将x1=a-2b或x2=b-2a代入分母b+x,得a-b或2(b-a),所以,当a≠b时,x1=a-2b及x2=b-2a都是原方程的根.当a=b时,原方程无解.例10 如果方程只有一个实数根,求a的值及对应的原方程的根.分析与解将原方程变形,转化为整式方程后得2x2-2x+(a+4)=0.①原方程只有一个实数根,因此,方程①的根的情况只能是:(1)方程①有两个相等的实数根,即△=4-4·2(a+4)=0.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为0或2.(i)当x=0时,代入①式得a+4=0,即a=-4.这时方程①的另一个根是x=1(因为2x2-2x=0,x(x-1)=0,x1=0或x2=1.而x1=0是增根).它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×4-2×2+(a+4)=0,即a=-8.这时方程①的另一个根是x=-1(因为2x2-2x-4=0.(x-2)(x+1)=0,所以x1=2(增根),x2=-1).它不使分母为零,确是原方程的唯一根.因此,若原分式方程只有一个实数根时,所求的a的值分别是练习一1.填空:(3)如果关于x的方程有增根x=1,则k=____.2.解方程3.解方程4.解方程5.解方程6.解方程7.m是什么数值时,方程有根?第二讲无理方程的解法未知数含在根号下的方程叫作无理方程(或根式方程),这是数学竞赛中经常出现的一些特殊形式的方程中的一种.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法、配方法、因式分解法、设辅助元素法、利用比例性质法等.本讲将通过例题来说明这些方法的运用.例1 解方程解移项得两边平方后整理得再两边平方后整理得x2+3x-28=0,所以x1=4,x2=-7.经检验知,x2=-7为增根,所以原方程的根为x=4.说明用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.例2 解方程方公式将方程的左端配方.将原方程变形为所以两边平方得3x2+x=9-6x+x2,两边平方得3x2+x=x2+6x+9,例3 解方程即所以移项得例4 解方程解三个未知量、一个方程,要有确定的解,则方程的结构必然是极其特殊的.将原方程变形为配方得利用非负数的性质得所以x=1,y=2,z=3.经检验,x=1,y=2,z=3是原方程的根.例5 解方程所以将①两边平方、并利用②得x2y2+2xy-8=0,(xy+4)(xy-2)=0.xy=2.③例6 解方程解观察到题中两个根号的平方差是13,即②÷①便得由①,③得例7 解方程分析与解注意到(2x2-1)-(x2-3x-2)=(2x2+2x+3)-(x2-x+2).设则u2-v2=w2-t2,①u+v=w+t.②因为u+v=w+t=0无解,所以①÷②得u-v=w-t.③②+③得u=w,即解得x=-2.经检验,x=-2是原方程的根.例8 解方程整理得y3-1=(1-y)2,即(y-1)(y2+2)=0.解得y=1,即x=-1.经检验知,x=-1是原方程的根.整理得y3-2y2+3y=0.解得y=0,从而x=-1.例9 解方程边的分式的分子与分母只有一些项的符号不同,则可用合分比定理化简方程.根据合分比定理得两边平方得再用合分比定理得化简得x2=4a2.解得x=±2a.经检验,x=±2a是原方程的根.练习二1.填空:2.解方程3.解方程4.解方程5.解方程6.解关于x的方程第三讲简易高次方程的解法在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答.例1 解方程x3-2x2-4x+8=0.解原方程可变形为x2(x-2)-4(x-2)=0,(x-2)(x2-4)=0,(x-2)2(x+2)=0.所以x1=x2=2,x3=-2.说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样=0可化为bkx3+bx2+dkx+d=0,即(kx+1)(bx2+d)=0.方程ax4+bx3+cx+d=0也可以用类似方法处理.例2 解方程(x-2)(x+1)(x+4)(x+7)=19.解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得(x2+5x-14)(x2+5x+4)=19.设(y-9)(y+9)=19,即y2-81=19.说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之.例3 解方程(6x+7)2(3x+4)(x+1)=6.解我们注意到2(3x+4)=6x+8=(6x+7)+1,6(x+1)=6x+6=(6x+7)-1,所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令y=6x+7,①由(6x+7)2(3x+4)(x+1)=6得(6x+7)2(6x+8)(6x+6)=6×12,即y2(y+1)(y-1)=72,y4-y2-72=0,(y2+8)(y2-9)=0.因为y2+8>0,所以只有y2-9=0,y=±3.代入①式,解得原方程的根为例4 解方程12x4-56x3+89x2-56x+12=0.解观察方程的系数,可以发现系数有以下特点:x4的系数与常数项相同,x3的系数与x的系数相同,像这样的方程我们称为倒数方程.由例5 解方程解方程的左边是平方和的形式,添项后可配成完全平方的形式.所以经检验,x1=-1,x2=2是原方程的根.例6 解方程(x+3)4+(x+1)4=82.分析与解由于左边括号内的两个二项式只相差一个常数,所以设于是原方程变为(y+1)4+(y-1)4=82,整理得y4+6y2-40=0.解这个方程,得y=±2,即x+2=±2.解得原方程的根为x1=0,x2=-4.说明本题通过换元,设y=x+2后,消去了未知数的奇次项,使方程变为易于求解的双二次方程.一般地,形如(x+a)4+(x+b)4=c例7 解方程x4-10x3-2(a-11)x2+2(5a+6)x+2a+a2=0,其中a是常数,且a≥-6.解这是关于x的四次方程,且系数中含有字母a,直接对x求解比较困难(当然想办法因式分解是可行的,但不易看出),我们把方程写成关于a的二次方程形式,即a2-2(x2-5x-1)a+(x4-10x3+22x2+12x)=0,△=4(x2-5x-1)2-4(x4-10x3+22x2+12x)=4(x2-2x+1).所以所以a=x2-4x-2或a=x2-6x.从而再解两个关于x的一元二次方程,得练习三1.填空:(1)方程(x+1)(x+2)(x+3)(x+4)=24的根为_______.(2)方程x3-3x+2=0的根为_____.(3)方程x4+2x3-18x2-10x+25=0的根为_______.(4)方程(x2+3x-4)2+(2x2-7x+6)2=(3x2-4x+2)2的根为______.2.解方程(4x+1)(3x+1)(2x+1)(x+1)=3x4.3.解方程x5+2x4-5x3+5x2-2x-1=0.4.解方程5.解方程(x+2)4+(x-4)4=272.6.解关于x的方程x3+(a-2)x2-(4a+1)x-a2+a+2=0.第四讲有关方程组的问题在教科书上,我们已经知道了二元一次方程组、三元一次方程组以及简单的二元二次方程组的解法.利用这些知识,可以研究一次函数的图像、二次函数的图像以及与此有关的问题.本讲再介绍一些解方程组的方法与技巧.1.二元二次方程组解二元二次方程组的基本途径是“消元”和“降次”.由一个二次和一个一次方程组成的二元二次方程组的一般解法是代入法,由两个二次方程组成的二次方程组在中学阶段只研究它的几种特殊解法.如果两个方程的二次项的对应系数成比例,可用加减消元法消去二次项.例1 解方程组解②×2-①×3得4x+9y-6=0.方程组中含有某一未知数的对应项的系数的比相等,可用加减消元法消去这个未知数.例2 解方程组解②×(-2)+①得3y2+3y-6=0,所以y1=1,y2=-2.解方程组与得原方程组的解方程组中至少有一个方程可以分解为一次方程的方程组,可用因式分解法解.例3 解方程组解由②得(2x+y)(x-2y)=0,所以2x+y=0或x-2y=0.因此,原方程组可化为两个方程组与解这两个方程组得原方程组的解为如果两个方程都没有一次项,可用加减消元法消去常数项,再用因式分解法求解.例4 解方程组解由①-②×2得x2-2xy-3y2=0,即(x+y)(x-3y)=0,所以x+y=0或x-3y=0.分别解下列两个方程组得原方程组的解为2.二元对称方程组方程中的未知数x,y互换后方程保持不变的二元方程叫作二元对称方程.例如x2-5xy+y2-3x-3y=7,等都是二元对称方程.由二元对称方程组成的方程组叫作二元对称方程组.例如等都是二元对称方程组.我们把叫作基本对称方程组.基本对称方程组通常用代入法或韦达定理求解.例5 解方程组解方程组中的x,y分别是新方程m2-5m+4=0的两个解.解关于m的一元二次方程得m1=1,m2=4,所以原方程组的解是这个方程组亦可用代入法求解(略).由于一般的二元对称式总可以用基本对称式x+y和xy表示,因此在解二元对称方程组时,一定可以用x+y和xy作为新的未知数,通过换元转化为基本对称方程组.例6 解方程组解原方程组可变形为①×2+②得令u=x+y,则即而方程组无实数解.综上所述,方程组的解为例7 解方程组分析本题是一个对称方程组的形式,观察知它可转化为基本对称方程组的形式.解由①得xy=16.④由②,④可得基本对称方程组于是可得方程组的解为例8 解方程组分析本题属于二元轮换对称方程组类型,通常可以把两个方程相减,因为这样总能得到一个方程x-y=0,从而使方程降次化简.解①-②,再因式分解得(x-y)(x+y-10)=0,所以x-y-0或x+x-10=0.解下列两个方程组得原方程组的四组解为例9 解方程组解法1用换元法.设4x+5=A,4y+5=B,则有即③-④并平方得整理得所以因此A-B=0或分别解下列两个方程组与经检验,A=B=9适合方程③,④,由此得原方程组的解是解法2①-②得即所以x-1与y-1同号或同为零.由方程①得所以x-1与y-1不能同正,也不能同负.从而x-1=0,y-1=0.由此解得经检验,x=1,y=1是方程组的解.练习四1.填空:(1)方程组的解有_____组.(2)若x,y是方程组(3)已知3a+b+2c=3,且a+3b+2c=1,则2a+c=_____.(4)已知实数x,y,z满足方程组则xyz=________.2.解方程组:3.设a,b,c,x,y,z都是实数.若4.已知一元二次方程a(x+1)(x+2)+b(x+2)(x+3)+c(x+3)(x+1)=0 有两根0,1,求a∶b∶c.5.(1)解方程组第五讲函数的基本概念与性质函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究.1.求函数值和函数表达式对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题.例1 已知f(x-1)=19x2+55x-44,求f(x).解法1令y=x-1,则x=y+1,代入原式有f(y)=19(y+1)2+55(y+1)-44=19y2+93y+30,所以f(x)=19x2+93x+30.解法2f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30.可.例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5).解由题设f(-x)=-ax5+bx3-x+5=-(ax5-bx3+x+5)+10=-f(x)+10,所以f(-5)=-f(5)+10=3.例4 函数f(x)的定义域是全体实数,并且对任意实数x,y,有f(x+y)=f(xy).若f(19)=99,求f(1999).解设f(0)=k,令y=0代入已知条件得f(x)=f(x+0)=f(x·0)=f(0)=k,即对任意实数x,恒有f(x)=k.所以f(x)=f(19)=99,所以f(1999)=99.2.建立函数关系式例5 直线l1过点A(0,2),B(2,0),直线l2:y=mx+b过点C(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S,求S关于m的函数解析式,并画出图像.解因为l2过点C(1,0),所以m+b=0,即b=-m.设l2与y轴交于点D,则点D的坐标为(0,-m),且0<-m≤2(这是因为点D在线段OA上,且不能与O点重合),即-2≤m<0.故S的函数解析式为例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边x,试写出梯形面积S关于x的函数关系式.解设矩形ABCD的长BC大于宽AB的2倍.由于周长为12,故长与宽满足4<BC<6,0<AB<2.由题意,有如下两种情形:CE1=x,BE1=BC-x,AB=CD=2(BC-x),所以(2AB+x)+AB=6,所以3.含绝对值的函数一次函数的图像是一条直线,含有绝对值符号的函数所对应的图像是由若干条线段和射线所组成的折线;二次函数的图像是抛物线,而y=|ax2+bx+c|的图像是将y=ax2+bx+c 在x轴下方的图像按x轴为对称轴翻到x轴的上方.对于一些其他的含绝对值符号的函数和方程的图像,需要按区间分段讨论.例7 作函数y=|3-x|+|x-1|的图像.解当x<1时,y=(3-x)+(1-x)=-2x+4;当1≤x<3时,y=(3-x)+(x-1)=2;当x≥3时,y=(x-3)+(x-1)=2x-4.所以它的图像如图3-3所示.例8 作函数y=|x2-5x+6|的图像.解当x≤2或x≥3时,x2-5x+6≥0,于是y=x2-5x+6;当2<x<3时,x2-5x+6<0,于是y=-(x2-5x+6).所以于是,得图像如图3-4所示.例9 点(x,y)满足方程|x-1|+|y+2|=2,求它的图像所围成区域的面积.解当x≥1,y≥-2时,x-1+y+2=2,即y=-x+1.当x≥1,x<-2时,x-1-(y+2)=2,即y=x-5.当x<1,y≥-2时,-x+1+y+2=2,即y=x-1.当x<1,y<-2时,-x+1-(y+2)=2,即y=-x-3.于是,所得图像如图3-5所示.由此可知,|x-1|+|y+2|=2的图像是一个对角线长为4,边长为2例10m是什么实数时,方程x2-4|x|+5=m有四个互不相等的实数根?解法1将原方程变形为x2-4|x|+4=m-1.令y=x2-4|x|+4=m-1,则它的图像如图3-6,而y=m-1是一条与x轴平行的直线.原方程有四个互不相等的实根,即直线应与曲线有四个不同的交点.由图像可知,当0<m-1<4,即1<m<5时,直线与曲线有四个不同的交点,所以,当1<m<5时,方程x2-4|x|+5=m有四个互不相等的实数根.说明本题是一个方程问题,我们利用图形来研究,这是一种非常重要的思想方法——数形结合法.当然,本题不用图像也是可以解的,下面给出解法,请读者比较一下.解法2原方程变形为(|x|-2)2=m-1,练习五1.填空:(1)已知f(x-1)=19x2+55x-44,则f(x)=_______.(2)对所有实数x,f(x2+1)=x4+5x2+3,那么对所有实数x,f(x2-1)=_______.(3)设x与y2成反比例,y与z2成正比例.当x=24时,y=2;当y=18时,z=3,则z=1时,x=_______.(4)已知y=2x2+mx+5的值恒为正,且m为实数,则m的范围是_______.函数,且当x=2,x=3时,y的值都为19,则y的解析式为y=_______.(6)如果y+m与x+n成正比例,且当x=1时,y=2;当x=-1时,y=1,则y与x间的函数关系式是y=_______.2.在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=-x+6的图像上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.3.平面直角坐标上有点P(-1,-2)和点Q(4,2),取点R(1,m),试问当m为何值时,PR+RQ有最小值.试求k的取值范围.5.设y=|x+2|+|x-4|-|2x-6|,且2≤x≤8,试求y的最大值与最小值之和.6.作y=2|x-3|,y=x-a的图像,问a取什么值时,它们可以围出一个平面区域,并求其面积.7.m是什么实数时,方程|x2-4x+3|=m有三个互不相等的实数解.第六讲二次函数二次函数是一类十分重要的最基本的初等函数,也是初中数学的主要内容之一,它在中学数学中起着承上启下的作用,它与一元二次方程、一元二次不等式知识的综合运用,是初中代数的重点和难点之一.另外,二次函数在工程技术、商业、金融以及日常生活中都有着广泛的应用.通过对二次函数的学习,使我们能进一步理解函数思想和函数方法,提高分析问题、解决问题的能力.正确掌握二次函数的基本性质是学好二次函数的关键.1.二次函数的图像及其性质例1 (1)设抛物线y=2x2,把它向右平移p个单位,或向下移q个单位,都能使得抛物线与直线y=x-4恰好有一个交点,求p,q的值.(2)把抛物线y=2x2向左平移p个单位,向上平移q个单位,则得到的抛物线经过点(1,3)与(4,9),求p,q的值.(3)把抛物线y=ax2+bx+c向左平移三个单位,向下平移两个单位析式.解(1)抛物线y=2x2向右平移p个单位后,得到的抛物线为y=2(x-p)2.于是方程2(x-p)2=x-4有两个相同的根,即方程2x2-(4p+1)x+2p2+4=0的判别式△=(4p+1)2-4·2·(2p2+4)=0,抛物线y=2x2向下平移q个单位,得到抛物线y=2x2-q.于是方程2x2-q=x-4有两个相同的根,即△=1-4·2(4-q)=0,(2)把y=2x2向左平移p个单位,向上平移q个单位,得到的抛物线为y=2(x+p)2+q.于是,由题设得解得p=-2,q=1,即抛物线向右平移了两个单位,向上平移了一个单位.解得h=3,k=2.原二次函数为说明将抛物线y=ax2+bx+c向右平移p个单位,得到的抛物线是y=a(x-p)2+b(x-p)+c;向左平移p个单位,得到的抛物线是y=a(x+p)2+b(x+p)+c;向上平移q个单位,得到y=ax2+bx +c+q;向下平移q个单位,得到y=ax2+bx+c-q.例2 已知抛物线y=ax2+bx+c的一段图像如图3-7所示.(1)确定a,b,c的符号;(2)求a+b+c的取值范围.解(1)由于抛物线开口向上,所以a>0.又抛物线经过点(0,-1),合a>0便知b<0.所以a>0,b<0,c<0.(2)记f(x)=ax2+bx+c.由图像及(1)知所以a+b+c=a+(a-1)-1=2(a-1),-2<a+b+c<0.例3 已知抛物线y=ax2-(a+c)x+c(其中a≠c)不经过第二象限.(1)判断这条抛物线的顶点A(x0,y0)所在的象限,并说明理由;(2)若经过这条抛物线顶点A(x0,y0)的直线y=-x+k与抛物线的另一解(1)因为若a>0,则抛物线开口向上,于是抛物线一定经过第二象限,所以当抛物线y=ax2-(a+c)x+c的图像不经过第二象限时,必有a<0.又当x=0时,y=c,即抛物线与y轴的交点为(0,c).因为抛物线不经过第二象限,所以c≤0.于是所以顶点A(x0,y0)在第一象限.B在直线y=-x+k上,所以0=-1+k,所以k=1.又由于直线y=-x+1经过-2x2+2x.2.求二次函数的解析式求二次函数y=ax2+bx+c(a≠0)的解析式,需要三个独立的条件确定三个系数a,b,c.一般地有如下几种情况:(1)已知抛物线经过三点,此时可把三点坐标代入解析式,得到关于a,b,c的三元一次方程组,解方程组可得系数a,b,c.或者已知抛物线经过两点,这时把两点坐标代入解析式,得两个方程,再利用其他条件可确定a,b,c.或者已知抛物线经过某一点,这时把这点坐标代入解析式,再结合其他条件确定a,b,c.(2)已知抛物线的顶点坐标为(h,k),这时抛物线可设为y=a(x-h)2+k,再结合其他条件求出a.(3)已知抛物线与x轴相交于两点(x1,0),(x2,0),此时的抛物线可设为y=a(x-x1)(x-x2),再结合其他条件求出a.例4 设二次函数f(x)=ax2+bx+c满足条件:f(0)=2,f(1)=-1,解由f(0)=2,f(1)=-1,得即c=2,b=-(a+3).因此所求的二次函数是y=ax2-(a+3)x+2.由于二次函数的图像在x轴上所截得的线段长,就是方程ax2-(a+3)x+2=0两根差的绝对值,而这二次方程的两根为于是因此所求的二次函数表达式为例5 设二次函数f(x)=ax2+bx+c,当x=3时取得最大值10,并且它的图像在x轴上截得的线段长为4,求a,b,c的值.分析当x=3时,取得最大值10的二次函数可写成f(x)=a(x-3)2+10,且a<0.解因为抛物线的对称轴是x=3,又因为图像在x轴上截得的线段长是4,所以由对称性,图像与x轴交点的横坐标分别是1,5.因此,二次函数又可写成f(x)=a(x-1)(x-5)的形式,从而a(x-3)2+10=a(x-1)(x-5),所以例6 如图3-8,已知二次函数y=ax2+bx+c(a>0,b<0)的图像与x轴、y轴都只有一个公共点,分别为点A,B,且AB=2,b+2ac=0.(1)求二次函数的解析式;(2)若一次函数y=x+k的图像过点A,并和二次函数的图像相交于另一点C,求△ABC的面积.解(1)因二次函数的图像与x轴只有一个公共点,故b2-4ac=0,而b+2ac=0,所以b2+2b=0,b=-2(因为b<0).点B的坐标为(0,c),AB=2,由勾股定理得所以1+a2c2=4a2.因为ac=1,所以4a2=2,练习六1.填空:(1)将抛物线y=2(x-1)2+2向右平移一个单位,再向上平移三个单位,得到的图像的解析式为______.(2)已知y=x2+px+q的图像与x轴只有一个公共点(-1,0),则(p,q)=____.(3)已知二次函数y=a(x-h)2+k的图像经过原点,最小值为-8,且形(4)二次函数y=ax2+bx+c的图像过点A(-1,0),B(-3,2),且它与x轴的两个交点间的距离为4,则它的解析式为________.(5)已知二次函数y=x2-4x+m+8的图像与一次函数y=kx+1的图像相交于点(3,4),则m=___,k=_____.(6)关于自变量x的二次函数y=-x2+(2m+2)x-(m2+4m-3)中,m是不小于零的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边,则这个二次函数的解析式为____.2.设抛物线y=x2+2ax+b与x轴有两个不同交点.(1)把它沿y轴平移,使所得到的抛物线在x轴上截得的线段的长度是原来的2倍,求所得到的抛物线;(2)通过(1)中所得曲线与x轴的两个交点,及原来的抛物线的顶点,作一条新的抛物线,求它的解析式.3.已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点为C.(2)若△ABC是等腰直角三角形,求b2-4ac的值;(3)若b2-4ac=12,试判断△ABC的形状.4.有两个关于x的二次函数C1:y=ax2+4x+3a和C2:y=x2+2(b+2)x+b2+3b.当把C1沿x轴向左平移一个单位后,所得抛物线的顶点恰与C2的顶点关于x轴对称,求a,b.5.已知二次函数y=x2-2bx+b2+c的图像与直线y=1-x只有一个公共点,并且顶点在二次函数y=ax2(a≠0)的图像上,求a的取值范围第七讲函数的最大值与最小值我们常常遇到求最大值和最小值的问题,在许多情况下可以归结为求函数的最大值与最小值.这类问题涉及的知识面广,综合性强,解法灵活,因而对于培养学生的数学能力具有重要作用.本讲从四个方面来讨论如何求解函数的最大值与最小值问题.1.一次函数的最大值与最小值一次函数y=kx+b在其定义域(全体实数)内是没有最大值和最小值的,但是,如果对自变量x 的取值范围有所限制时,一次函数就可能有最大值和最小值了.例1 设a是大于零的常数,且a≠1,求y的最大值与最小值.大值a.例2 已知x,y,z是非负实数,且满足条件x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.分析题设条件给出两个方程,三个未知数x,y,z,当然,x,y,z的具体数值是不能求出的.但是,我们固定其中一个,不妨固定x,那么y,z都可以用x来表示,于是u便是x的函数了.解从已知条件可解得y=40-2x,z=x-10.所以u=5x+4y+2z=5x+4(40-2x)+2(x-10)=-x+140.又y,z均为非负实数,所以解得10≤x≤20.由于函数u=-x+140是随着x的增加而减小的,所以当x=10时,u有最大值130;当x=20时,u有最小值120.2.二次函数的最大值与最小值例3 已知x1,x2是方程x2-(k-2)x+(k2+3k+5)=0解由于二次方程有实根,所以△=[-(k-2)]2-4(k2+3k+5)≥0,3k2+16k+16≤0,例4 已知函数有最大值-3,求实数a的值.解因为的范围内分三种情况讨论.-a2+4a-1=-3例5 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图3-12),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解设矩形PNDM的边DN=x,NP=y,于是矩形PNDM的面积S=xy,2≤X≤4.易知CN=4-x,EM=4-y,且有二次函数S=f(x)的图像开口向下,对称轴为x=5,故当x≤5时,函数值是随x的增加而增加,所以,对满足2≤x≤4的S来说,当x=4时有最大值例6 设p>0,x=p时,二次函数f(x)有最大值5,二次函数g(x)的最小值为-2,且g(p)=25,f(x)+g(x)=x2+16x+13.求g(x)的解析式和p的值.解由题设知f(p)=5,g(p)=25,f(p)+g(p)=p2+16p+13,所以p2+16p+13=30,p=1(p=-17舍去).由于f(x)在x=1时有最大值5,故设f(x)=a(x-1)2+5,a<0,所以g(x)=x2+16x+13-f(x)=(1-a)x2+2(a+8)x+8-a.由于g(x)的最小值是-2,于是解得a=-2,从而g(x)=3x2+12x+10.3.分式函数的最大值与最小值法是去分母后,化为关于x的二次方程,然后用判别式△≥0,得出y的取值范围,进而定出y的最大值和最小值.解去分母、整理得(2y-1)x2+2(y+1)x+(y+3)=0.△≥0,即△=[2(y+1)]2-4(2y-1)(y+3)≥0,解得-4≤y≤1.时,取最小值-4,当x=-2时,y取最大值1.说明本题求最值的方法叫作判别法,这也是一种常用的方法.但在用判别法求最值时,应特别注意这个最值能否取到,即是否有与最值相应的x值.解将原函数去分母,并整理得yx2-ax+(y-b)=0.因x是实数,故△=(-a)2-4·y·(y-b)≥0,由题设知,y的最大值为4,最小值为-1,所以(y+1)(y-4)≤0,即y2-3y-4≤0.②由①,②得所以a=±4,b=3.4.其他函数的最大值与最小值处理一般函数的最大值与最小值,我们常常用不等式来估计上界或下界,进而构造例子来说明能取到这个上界或下界.解先估计y的下界.又当x=1时,y=1,所以,y的最小值为1.说明在求最小(大)值,估计了下(上)界后,一定要举例说明这个界是能取到的,才能说这就是最小(大)值,否则就不一定对了.例如,本题我们也可以这样估计:但无论x取什么值时,y取不到-3,即-3不能作为y的最小值.例10 设x,y是实数,求u=x2+xy+y2-x-2y的最小值.分析先将u看作是x的二次函数(把y看作常数),进行配方后,再把余下的关于y的代数式写成y的二次函数,再配方后,便可估计出下界来.又当x=0,y=1时,u=-1,所以,u的最小值为-1.例11 求函数的最大值,并求此时的x值,其中[a]表示不超过a的最大整数.练习七。

超级资源(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

超级资源(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式aacb b x 2422,1-±-=内涵丰富: 它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美.降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个.思路点拨: 从指数运算律、±1的特征人手,将问题转化为解方程.【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨: 求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=.【例3】 解关于x 的方程02)1(2=+--a ax x a .思路点拨: 因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】设方程04122=---x x ,求满足该方程的所有根之和.思路点拨: 通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值. 思路点拨: 运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值.注: 一元二次方程常见的变形形式有:(1)把方程02=++c bx ax (0≠a )直接作零值多项式代换;(2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次;(3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x .解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222x x x ==.走进追问求根公式学历训练1、已知a 、b 是实数,且0262=-++b a ,那么关于x 的方程1)2(22-=++a x b x a 的根为 .2、已知0232=--x x ,那么代数式11)1(23-+--x x x 的值是 .3、若142=++y xy x ,282=++x xy y ,则y x +的值为 .4、若两个方程02=++b ax x 和02=++a bx x 只有一个公共根,则( )A 、b a =B 、0=+b aC 、1=+b aD 、1-=+b a5、当分式4312++-x x 有意义时,x 的取值范围是( )A 、1-<xB 、4>xC 、41<<-xD 、1-≠x 且4≠x 6、方程011)1(=+-++x x x x 的实根的个数是( ) A 、0 B 、1 C 、2 D 、3 7、解下列关于x 的方程:(1)03)12()1(2=-+-+-m x m x m ; (2)012=--x x ; (3)x x x 26542-=-+.8、已知0222=--x x ,求代数式)1)(3()3)(3()1(2--+-++-x x x x x 的值.9、是否存在某个实数m ,使得方程022=++mx x 和022=++m x x 有且只有一个公共的实根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由. 注: 解公共根问题的基本策略是: 当方程的根有简单形式表示时,利用公共根相等求解,当方程的根不便于求出时,可设出公共根,设而不求,通过消去二次项寻找解题突破口.10、若0152=+-x x ,则1539222+++-x x x = .11、已知m 、n 是有理数,方程02=++n mx x 有一个根是25-,则n m +的值为 . 12、已知a 是方程020002=--x x 的一个正根. 则代数式a200012000120003+++的值为 .13、对于方程m x x =+-222,如果方程实根的个数恰为3个,则m 值等于( )A 、1B 、2C 、3D 、2.5 14、自然数n 满足16162472)22()22(2-+--=--n nn n n n ,这样的n 的个数是( )A 、2B 、1C 、3D 、4 15、已知a 、b 都是负实数,且0111=--+b a b a ,那么ab的值是( ) A 、215+ B 、251- C 、251+- D 、251-- 16、已知3819-=x ,求1582318262234+-++--x x x x x x 的值.17、已知m 、n 是一元二次方程0720012=++x x 的两个根,求)82002)(62000(22++++n m m m 的值.18、在一个面积为l 的正方形中构造一个如下的小正方形: 将正方形的各边n 等分,然后将每个顶点和它相对顶点最近的分点连结起来,如图所示,若小正方形面积为32811,求n 的值.19、已知方程0132=+-x x 的两根α、β也是方程024=+-q px x 的根,求p 、q 的值.20、如图,锐角△ABC 中,PQRS 是△ABC 的内接矩形,且S △ABC =n S 矩形PQRS ,其中n 为不小于3的自然数.求证: ABBS需为无理数.参考答案第二讲 判别式——二次方程根的检测器为了检查产品质量是否合格,工厂里通常使用各种检验仪器,为了辨别钞票的真伪,银行里常常使用验钞机,类似地,在解一元二次方程有关问题时,最好能知道根的特性: 如是否有实数根,有几个实数根,根的符号特点等. 我们形象地说,判别式是一元二次方程根的“检测器”,在以下方面有着广泛的应用:利用判别式,判定方程实根的个数、根的特性;运用判别式,建立等式、不等式,求方程中参数或参数的取值范围; 通过判别式,证明与方程相关的代数问题;借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题. 【例题求解】【例1】 已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根,那么k 的取值范围是 . (广西中考题)思路点拨: 利用判别式建立关于k 的不等式组,注意k 21-、1+k 的隐含制约. 注: 运用判别式解题,需要注意的是:(1)解含参数的二次方程,必须注意二次项系数不为0的隐含制约;(2)在解涉及多个二次方程的问题时,需在整体方法、降次消元等方法思想的引导下,综合运用方程、不等式的知识.【例2】 已知三个关于y 的方程: 02=+-a y y ,012)1(2=++-y y a 和012)2(2=-+-y y a ,若其中至少有两个方程有实根,则实数a 的取值范围是( ) (山东省竞赛题)A 、2≤aB 、41≤a 或21≤≤x C 、1≥a D 、141≤≤a 思路点拨: “至少有两个方程有实根”有多种情形,从分类讨论人手,解关于a 的不等式组,综合判断选择.【例3】 已知关于x 的方程02)2(2=++-k x k x ,(1)求证: 无论k 取任何实数值,方程总有实数根;(2)若等腰三角形△ABC 的一边长a =1,另两边长b 、c 恰好是这个方程的两个根,求△ABC 的周长. (湖北省荆门市中考题)思路点拨: 对于(1)只需证明△≥0;对于(2)由于未指明底与腰,须分c b =或b 、c 中有一个与c 相等两种情况讨论,运用判别式、根的定义求出b 、c 的值.注: (1)涉及等腰三角形的考题,需要分类求解,这是命题设计的一个热点,但不一定每个这类题均有多解,还须结合三角形三边关系定理予以取舍.(2)运用根的判别式讨论方程根的个数为人所熟悉,而组合多个判别式讨论方程多个根(三个以上)是近年中考,竞赛依托判别式的创新题型,解这类问题常用到换元、分类讨论等思想方法.【例4】 设方程42=+ax x ,只有3个不相等的实数根,求a 的值和相应的3个根. (重庆市竞赛题)思路点拨: 去掉绝对值符号,原方程可化为两个一元二次方程.原方程只有3个不相等的实数根,则其中一个判别式大于零,另一个判别式等于零.【例5】已知: 如图,矩形ABCD 中,AD =a ,DC =b ,在 AB 上找一点E ,使E 点与C 、D 的连线将此矩形分成的三个三角形相似,设AE =x ,问: 这样的点E 是否存在?若存在, 这样的点E 有几个?请说明理由. (云南省中考题)思路点拨: 要使Rt △ADE 、Rt △BEC 、Rt △ECD 彼此相似,点E 必须满足∠AED+∠BEC =90°,为此,可设在AE 上存在满足条件的点E 使得Rt △ADE ∽Rt △BEC ,建立一元二次方程的数学模型,通过判别式讨论点E 的存在与否及存在的个数.注: 有些与一元二次方程表面无关的问题,可通过构造方程为判别式的运用铺平道路,常见的构造方法有:(1)利用根的定义构造; (2)利用根与系数关系构造; (3)确定主元构造.判别式——二次方程根的检测器学力训练1、已知014=+++b a ,若方程02=++b ax kx 有两个相等的实数根,则k = .2、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 .(辽宁省中考题)3、已知关于x 方程0422=++-k x k x 有两个不相等的实数解,化简4422+-+--k k k = .4、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( ) A 、43<m B 、43≤m C 、43>m 且2≠m D 、43<m 且2±≠m (山西省中考题)5、已知一直角三角形的三边为a 、b 、c ,∠B =90°,那么关于x 的方程0)1(2)1(22=++--x b cx x a 的根的情况为( )A 、有两个相等的实数根B 、没有实数根C 、有两个不相等的实数根D 、无法确定 (河南省中考题)6、如果关于x 的方程0)1(2)2(2=+---m x m x m 只有一个实数根,那么方程0)4()2(2=-++-m x m mx 的根的情况是( )A 、没有实数根B 、有两个不相等的实数根C 、有两个相等的实数根D 、只有一个实数根 (2003年河南省中考题)7、在等腰三角形ABC 中,∠ A 、∠B 、∠C 的对边分别为a 、b 、c ,已知3=a ,b 和c 是 关于x 的方程02122=-++m mx x 的两个实数根,求△ABC 的周长. (济南市中考题)8、已知关于x 的方程063)2(22=-+-+m x m x(1)求证: 无论m 取什么实数,方程总有实数根;(2)如果方程的两实根分别为1x 、2x ,满足1x =32x ,求实数m 的值. (盐城市中考题)9、a 、b 为实数,关于x 的方程22=++b ax x 有三个不等的实数根.(1)求证: 0842=--b a ;(2)若该方程的三个不等实根,恰为一个三角形三内角的度数,求证该三角形必有一个内角是60°; (3)若该方程的三个不等实根恰为一直角三角形的三条边,求a 和b 的值. (江苏省苏州市中考题)10、关于的两个方程03242=+++m mx x ,0)12(22=+++m x m x 中至少有一个方程有实根,则m 的取值范围是 . (2002年四川省竞赛题)11、当a = ,b = 时,方程0)2443()1(2222=++++++b ab a x a x 有实数根. (全国初中数学联赛试题)12、若方程a x x =-52有且只有相异二实根,则a 的取值范围是 .13、如果关于x 的方程05)2(22=+++-m x m mx 没有实数根,那么关于x 的方程0)2(2)5(2=++--m x m x m 的实根的个数( ) A 、2 B 、1 C 、0 D 、不能确定14、已知一元二次方程02=++c bx x ,且b 、c 可在1、2、3、4、5中取值,则在这些方程中有实数根的方程共有( ) A 、12个 B 、10个 C 、7个 D 、5个 (河南省中考题)15、已知△ABC 的三边长为a 、b 、c ,且满足方程0)(22222=+---b x b a c ax ,则方程根的情况是( ) A 、有两相等实根 B 、有两相异实根 C 、无实根 D 、不能确定 (河北省竞赛题) 16、若a 、b 、c 、d>0,证明: 在方程02212=+++cd x b a x ①;02212=+++ad x c b x ②;02212=+++ab x d c x ③;02212=+++bc x a d x ④中,至少有两个方程有两个不相等的实数根. (湖北省黄冈市竞赛题)17、已知三个实数a 、b 、c 满足0=++c b a ,abc =1,求证: a 、b 、c 中至少有一个大于23.18、关于x 的方程01)1(2=+--x k kx 有有理根,求整数是的值. (山东省竞赛题)19、考虑方程b a x x =+-22)10(①(1)若a =24,求一个实数b ,使得恰有3个不同的实数x 满足①式.(2)若a ≥25,是否存在实数b ,使得恰有3个不同的实数x 满足①式?说明你的结论. (国家理科实验班招生试题)20、如图,已知边长为a 的正方形ABCD 内接于边长为b 的正方形EFGH ,试求ab的取值范围.参考答案第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法. 【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 . 思路点拨: 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么baa b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨: 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.注: 应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程: 04)2(22=---m x m x(1)求证: 无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x .思路点拨: 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.思路点拨: 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注: 应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性. 【例5】 已知: 四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根.(1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨: 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注: 在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.充满活力的韦达定理学历训练1、(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 .(2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2、已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3、CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4、设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( ) A .1,-3 B .1,3 C .-1,-3 D .-1,35、在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( ) A .23 B .25C .5D .2 6、方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p的值是( )A .1B .-lC .21-D .217、若关于x 的一元二次方程的两个实数根满足关系式: )1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8、已知关于x 的方程01)32(22=++--k x k x . (1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足: 312=+x x ,求k 的值.9、已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10、已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11、△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12、两个质数a 、b 恰好是整系数方程的两个根,则baa b +的值是( )A .9413B .1949413 C .999413 D .97941313、设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14、如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43 C .143≤<m D .43≤m ≤115、如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16、设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值. (2)求22212111x mx x mx -+-的最大值.17、如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2: BC 2=2: 1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18、设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案第四讲 明快简捷—构造方程的妙用有些数学问题虽然表面与一元二次方程无关,但是如果我们能构造一元二次方程,那么就能运用一元二次方程丰富的知识与方法辅助解题,构造一元二次方程的常用方法是: 1.利用根的定义构造当已知等式具有相同的结构,就可把某两个变元看成是关于某个字母的一元二次方程的两根. 2.利用韦达定理逆定理构造若问题中有形如a y x =+,b xy =的关系式时,则x 、y 可看作方程02=+-b az z 的两实根. 3.确定主元构造对于含有多个变元的等式,可以将等式整理为关于某个字母的一元二次方程. 成功的构造是建立在敏锐的观察、恰当的变形、广泛的联想的基础之上的;成功的构造能收到明快简捷、出奇制胜的效果.注: 许多数学问题表面上看难以求解,但如果我们创造性地运用已知条件,以已知条件为素材,以所求结论为方向,有效地运用数学知识,构造出一种辅助问题及其数学形式,就能使问题在新的形式下获得简解,这就是解题中的“构造”策略,构造图形,构造方程、构造函数、构造反例是常用构造方法. 【例题求解】【例1】 已知x 、y 是正整数,并且23=++y x xy ,12022=+xy y x ,则=+22y x .思路点拨 xy y x y x 2)(222-+=+,变形题设条件,可视y x +、xy 为某个一元二次方程两根,这样问题可从整体上获得简解.【例2】 若1≠ab ,且有09200152=++a a 及05200192=++b b ,则ba的值是( ) A .59 B .95C .52001-D .92001-思路点拨 第二个方程可变形为09200152=++b b ,这样两个方程具有相同的结构,从利用定义构造方程入手.【例3】 已知实数a 、b 满足122=++b ab a ,且22b a ab t --=,求t 的取值范围.思路点拨 由两个等式可求出b a +、ab 的表达式,这样既可以从配方法入手,又能从构造方程的角度去探索,有较大的思维空间.【例4】 已知实数a 、b 、c 满足2=++c b a ,4=abc . (1)求a 、b 、c 中最大者的最小值; (2)求3=++c b a 的最小值.思路点拨 不妨设a ≥b ,a ≥c ,由条件得a c b -=+2,abc 4=.构造以b 、c 为实根的一元二次方程,通过△≥0探求a 的取值范围,并以此为基础去解(2).注: 构造一元二次方程,在问题有解的前提下,运用判别式△≥0,建立含参数的不等式, 缩小范围逼近求解,在求字母的取值范围,求最值等方面有广泛的应用.【例5】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数. (2003年全国初中数学联赛试题)思路点拨 设前后两个二位数分别为x ,y ,则有y x y x +=+100)(2,将此方程整理成关于x (或y )的一元二次方程,在方程有解的前提下,运用判别式确定y (或x )的取值范围.学历训练1.若方程01)32(22=+--x m x m 的两个实数根的倒数和是s ,则s 的取值范围是 .2.如图,在Rt △ABC 中,斜边AB =5,CD ⊥AB ,已知BC 、AC 是一元二次方程0)1(4)12(2=-+--m x m x 的两个根,则m 的值是 .3.已知a 、b 满足0122=--a a ,0122=--b b ,则abb a += . 4.已知012=-+αα,012=-+ββ,,则βααβ++的值为( )A .2B .-2C .-1D . 05.已知梯形ABCD 的对角线AC 与BD 相交于点O ,若S △AOB =4,S △COD =9,则四边形ABCD 的面积S 的最小值为( )A .21B . 25C .26D . 366.如图,菱形A6CD 的边长是5,两条对角线交于O 点,且AO 、BO 的长分别是关于x 的方程的根,则m 的值为( )A .一3B .5C .5或一3 n 一5或37.已知0522=--p p ,01252=-+q q ,其中p 、q 为实数,求221q p +的值.8.已知x 和y 是正整数,并且满足条件71=++y x xy ,88022=+xy y x ,求22y x +的值.9.已知05232=--m m ,03252=-+n n ,其中m 、n 为实数,则nm 1-= .10.如果a 、b 、c 为互不相等的实数,且满足关系式14162222++=+a a c b 与542--=a a bc ,那么a 的取值范围是 .11.已知017101422522==--++y x xy y x ,则x = ,y = .;12.如图,在Rt △ABC 中,∠ACB =90°,AC =b ,AB =c ,若D 、E 分别是AB 和AB 延长线上的两点,BD=BC ,CE ⊥CD ,则以AD 和AE 的长为根的一元二次方程是 .13.已知a 、b 、c 均为实数,且0=++c b a ,2=abc ,求c b a ++的最小值.14.设实数a 、b 、c 满足⎪⎩⎪⎨⎧=+-++=+--066078222a bc c b a bc a ,求a 的取值范围. 15.如图,梯形ABCD 中,AD ∥BC ,AD =AB ,813=∆ABCABCD S S 梯形,梯形的高AE=235,且401311=+BC AD . (1)求∠B 的度数;(2)设点M 为梯形对角线AC 上一点,DM 的延长线与BC 相交于点F ,当323125=∆ADM S ,求作以CF 、DF 的长为根的一元二次方程.16.如图,已知△ABC 和平行于BC 的直线DE ,且△BDE 的面积等于定值2k ,那么当2k 与△BDE 之间满足什么关系时,存在直线DE ,有几条?参考答案第五讲一元二次方程的整数整数解在数学课外活动中,在各类数学竞赛中,一元二次方程的整数解问题一直是个热点,它将古老的整数理论与传统的一元二次方程知识相结合,涉及面广,解法灵活,综合性强,备受关注,解含参数的一元二次方程的整数解问题的基本策略有:从求根入手,求出根的有理表达式,利用整除求解;从判别式手,运用判别式求出参数或解的取值范围,或引入参数(设△=2k ),通过穷举,逼近求解; 从韦达定理入手,从根与系数的关系式中消去参数,得到关于两根的不定方程,借助因数分解、因式分解求解;从变更主元入人,当方程中参数次数较低时,可考虑以参数为主元求解.注: 一元二次方程的整数根问题,既涉及方程的解法、判别式、韦达定理等与方程相关的知识,又与整除、奇数、偶数、质数、合数等整数知识密切相关. 【例题求解】【例1】若关于x 的方程054)15117()9)(6(2=+----x k x k k 的解都是整数,则符合条件的整数是的值有 个.思路点拨 用因式分解法可得到根的简单表达式,因方程的类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定是的值才能全面而准确.注: 系数含参数的方程问题,在没有指明是二次方程时,要注意有可能是一次方程,根据问题的题设条件,看是否要分类讨论.【例2】 已知a 、b 为质数且是方程0132=+-c x x 的根,那么baa b +的值是( ) A .22127 B .22125 C .22123 D .22121思路点拨 由韦达定理a 、b 的关系式,结合整数性质求出a 、b 、c 的值.【例3】 试确定一切有理数r ,使得关于x 的方程01)2(2=-+++r x r rx 有根且只有整数根.思路点拨 由于方程的类型未确定,所以应分类讨论.当0≠r 时,由根与系数关系得到关于r 的两个等式,消去r ,利用因式(数)分解先求出方程两整数根. 【例4】当m 为整数时,关于x 的方程01)12()12(2=++--x m x m 是否有有理根?如果有,求出m 的值;如果没有,请说明理由.思路点拨 整系数方程有有理根的条件是为完全平方数.设△=22224)12(544)12(4)12(n m m m m m =+-=+-=--+(n 为整数)解不定方程,讨论m 的存在性.注: 一元二次方程02=++c bx ax (a ≠0)而言,方程的根为整数必为有理数,而△=ac b 42-为完全平方数是方程的根为有理数的充要条件.【例5】 若关于x 的方程0)13()3(22=-+--a x a ax 至少有一个整数根,求非负整数a 的值. 思路点拨 因根的表示式复杂,从韦达定理得出的a 的两个关系式中消去a 也较困难,又因a 的次数低于x 的次数,故可将原方程变形为关于a 的一次方程.学历训练1.已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数a 有 .2.已知方程019992=+-m x x 有两个质数解,则m = .3.给出四个命题: ①整系数方程02=++c bx ax (a ≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程02=++c bx ax (a ≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程02=++c bx ax (a ≠0)的根只能是无理数;④若a 、b 、c 均为奇数,则方程02=++c bx ax 没有有理数根,其中真命题是 .4.已知关于x 的一元二次方程0)12(22=+-+a x a x (a 为整数)的两个实数根是1x 、2x ,则21x x -= . 5.设rn 为整数,且4<m<40,方程08144)32(222=+-+--m m x m x 有两个整数根,求m 的值及方程的根.(山西省竞赛题)6.已知方程015132)83(222=+-+--a a x a a ax (a ≠0)至少有一个整数根,求a 的值.7.求使关于x 的方程01)1(2=-+++k x k kx 的根都是整数的k 值.8.当n 为正整数时,关于x 的方程0763*******=-+-+-n n x nx x 的两根均为质数,试解此方程.9.设关于x 的二次方程4)462()86(2222=+--++-k x k k x k k 的两根都是整数,试求满足条件的所有实数k 的值.10.试求所有这样的正整数a ,使得方程0)3(4)12(22=-+-+a x a ax 至少有一个整数解.11.已知p 为质数,使二次方程015222=--+-p p px x 的两根都是整数,求出p 的所有可能值.12.已知方程02=++c bx x 及02=++b cx x 分别各有两个整数根1x 、2x 及1x '、2x ',且1x 2x >0,1x '2x ' >0. (1)求证: 1x <0,2x <0,1x '<0,2x '< 0; (2)求证: 11+≤≤-b c b ;(3)求b 、c 所有可能的值.13.如果直角三角形的两条直角边都是整数,且是方程0122=+--m x mx 的根(m 为整数),这样的直角三角形是否存在?若存在,求出满足条件的所有三角形的三边长;若不存在,请说明理由.参考答案第六讲 转化—可化为一元二次方程的方程数学(家)特有的思维方式是什么?若从量的方面考虑,通常运用符号进行形式化抽象,在一个概念和公理体系内实施推理计算,若从“转化”这个侧面又该如何回答?匈牙利女数学家路莎·彼得在《无穷的玩艺》一书中写道: “作为数学家的思维来说是很典型的,他们往往不对问题进行正面攻击,而是不断地将它变形,直至把它转化为已经能够解决的问题.”转化与化归是解分式方程和高次方程(次数高于二次的整式方程)的基本思想.解分式方程,通过去分母和换元;解高次方程,利用因式分解和换元,转化为一元二次方程或一元一次方程去求解.【例题求解】【例1】 若0515285222=-+-+-x x x x ,则1522--x x 的值为 .思路点拨 视x x 522-为整体,令y x x =-522,用换元法求出y 即可.【例2】 若方程x x p -=-2有两个不相等的实数根,则实数p 的取值范围是( )A .1->pB .0≤pC .01≤<-pD .01<≤-p思路点拨 通过平方有理化,将无理方程根的个数讨论转化为一元二次方程实根个数的讨论,但需注意注02≥-=-x x p 的隐含制约.注: 转化与化归是一种重要的数学思想,在数学学习与解数学题中,我们常常用到下列不同途径的转化: 实际问题转化大为数学问题,数与形的转化,常量与变量的转化,一般与特殊的转化等.解下列方程:(1)121193482232222=+-++-++x x x x x x xx ;。

初二数学竞赛辅导资料(共12讲)

初二数学竞赛辅导资料(共12讲)

初二数学竞赛辅导资料(共12讲)目录本内容适合八年级学生竞赛拔高使用重点落实在奥赛方面的基础知识和基本技能培训和提高本内容难度适中讲练结合由浅入深讲解与练习同步重在提高学生的数学分析能力与解题能力另外在本次培训中内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容其中《因式分解》为初二下册内容但是考虑到它的重要性和工具性将在本次培训进行具体解读注有标注的为选做内容本次培训具体计划如下以供参考第一讲实数一第二讲实数二第三讲平面直角坐标系函数第四讲一次函数一第五讲一次函数二第六讲全等三角形第七讲直角三角形与勾股定理第八讲株洲市初二数学竞赛模拟卷未装订在内另发第九讲竞赛中整数性质的运用第十讲不定方程与应用第十一讲因式分解的方法第十二讲因式分解的应用第十三讲考试未装订在内另发第十四讲试卷讲评第1讲实数一知识梳理一非负数正数和零统称为非负数1几种常见的非负数1实数的绝对值是非负数即a≥0在数轴上表示实数a的点到原点的距离叫做实数a的绝对值用a来表示设a为实数则绝对值的性质①绝对值最小的实数是0②若a与b互为相反数则a=ba=ba=b③对任意实数a则a≥a a≥-a④a·b=ab b≠0⑤a-b≤a±b≤a+b2实数的偶次幂是非负数如果a为任意实数则≥0n为自然数当n=1≥03算术平方根是非负数即≥0其中a≥0算术平方根的性质 a≥0 =2非负数的性质1有限个非负数的和积商除数不为零是非负数2若干个非负数的和等于零则每个加数都为零3若非负数不大于零则此非负数必为零3对于形如的式子被开方数必须为非负数4推广到的化简5利用配方法来解题开平方或开立方时将被开方数配成完全平方式或完全立方例题精讲◆专题一利用非负数的性质解题例1已知实数xyz满足求x+y+z的平方根巩固1已知则的值为______________2若的值拓展设abc是实数若求abc的值◆专题二对于的应用例2已知xy是实数且例3已知适合关系式求的值巩固1已知b=且的算术平方根是的立方根是试求的平方根和立方根2已知则拓展在实数范围内设=求的个位数字◆专题三的化简及应用常用方法利用配方法将被开方数配成完全平方式或者立方式例4化简例5若实数x满足方程那么巩固1若且则2已知实数a满足a+=03设1求y的最小值2求使6<y<7的x的取值范围拓展若求的值课后练习1如果a 0 那么2已知和是数的平方根则求的值3设abc是△ABC的三边的长则=4已知xy是实数且则=5若0 a 1 且则为6代数式的最小值是7已知实数满足=则=8已知△ABC的三边长为和满足求的取值范围9已知求的值10实数满足求的值第2讲实数二知识梳理一实数的性质1设x为有理数y为无理数则x+yx-y都为无理数当x≠0时xy都是无理数当x=0xy 就是有理数了2若xy都是有理数是无理数则要使=0x=y=03xymn都是有理数都是无理数则要使成立须使x=ym=n常用方法直接法利用数轴比较平方法同次根式下比较被开方数法作差法作商法三证明一个数是有理数的方法证明这个数是一个有限小数或无限循环小数或可表示成几个有理数的和差积商的形式例题精讲◆例1比较下列两数的大小1 2 34 5 6巩固设◆例2若的小数部分为的小数部分为则的值为巩固1已知为的整数部分是9的平方根且求的值2设的整数部分为小数部分为试求的值拓展已知的整数部分为m小数部分为n的整数部分为a小数部分为b试计算的值◆例3已知是有理数且求的值巩固1已知ab是有理数且求ab的值2已知是有理数并且满足求的值◆例4设试用的代数式表示巩固已知试用的代数式表示◆例5求证是有理数◆例6a与b是两个不相等的有理数试判断实数是有理数还是无理数并说明理由拓展证明是无理数◆例5若ab满足的取值范围巩固已知求x和y的取值范围课后练习1比较大小2设ab是正有理数且满足求ab的值3设的整数部分为小数部分为试求的值4已知与的小数部分分别是ab求ab-3a+4b+8的值5已知ab为有理数xy分别表示的整数部分和小数部分且求a+b的值6证明是无理数第3讲平面直角坐标系函数知识梳理1平面直角坐标系是在数轴的基础上为了实际问题的需要而建立起来的是学习函数的基础数形结合是本节最显著的特点2坐标平面内任意一点P都有唯一的一对有序实数xy和它对应反过来对于任何一对有序实数xy在平面内都有唯一的点P和它对应与点P相对应的有序实数对xy叫做点P的坐标3平面直角坐标系内的点的特征1若点Pxy在第一象限内2若点Pxy在第二象限内3若点Pxy在第三象限内 4若点Pxy在第四象限内5若点Pxy在x轴上 6若点Pxy在y轴上4对称点的坐标特征1点Pxy关于x轴对称或成轴反射的点的坐标为Px-y2点Pxy关于y轴对称或成轴反射的点的坐标为P-xy3点Pxy关于原点对称的点的坐标为P-x-y5函数的有关定义1函数的定义在一个变化过程中如果有两个变量x与y并且对于每一个x确定的值y都有唯一确定的值与其对应则x是自变量y是的函数2函数关系式用来表示函数关系的等式叫函数关系式也称函数解析式6函数自变量的取值范围自变量的取值范围必须使含自变量的代数式都有意义所以1使分母不为零2开平方时被开方数为非负数3为整式时其自变量的范围是全体实数另外当函数关系表示实际问题时自变量的取值必须使实际问题有意义例题精讲◆例1若点M1+a2b-1在第二象限则点N a-11-2b 在第象限巩固1点Q3-a5-a在第二象限则=2若点P2a+43-a关于y的对称点在第三象限求a的取值范围为◆例2方程组的解在平面直角坐标系中对应的点在第一象限内求m的取值范围巩固已知点Mab在第四象限且ab是二元一次方程组的解求点M关于坐标原点的对称点的坐标◆例3在直角坐标系中已知A11在轴上确定点P使△AOP为等腰三角形则符合条件的点P共有个A1 B2 C3 D4拓展在平面直角坐标系中有一个正方形ABCD它的4个顶点为A100B 010C -100D 0-10 则该正方形内及边界上共有_______个整点即横纵坐标都是整数的点◆例4求下列函数中自变量的取值范围◆例5如图在靠墙墙长为18m的地方围建一个矩形的养鸡场另三边用竹篱笆围成如果竹篱笆总长为35m求鸡场的一边长y m与另一边长x m的函数关系式并求自变量的取值范围巩固1求下列函数中自变量的取值范围①②③2周长为10cm的等腰三角形腰长y cm 与底边长x cm 之间的函数关系式是______________自变量x的取值范围为_________________.拓展若函数y=的自变量x的取值范围为一切实数求c的取值范围◆例6已知函数的图像如图所示求点AB的坐标巩固若点P在函数的图象上那么点P应在平面直角坐标系中的A.第一象限 B.第二象限 C.第三象限 D.第四象限升又知单开进水管20分钟可把空水池注满若同时打开进出水管20分钟可把满水池的水放完现已知水池内有水升先打开进水管分钟再打开出水管两管同时开放直至把水池中的水放完则能确定反映这一过程中水池的水量升随时间分钟变化的函数图象是巩固如图小亮在操场上玩一段时间内沿的路径匀速散步能近似刻画小亮到出发点的距离与时间之间关系的函数图象是课后练习1汽车由北京驶往相距120千米的天津它的平均速度是30千米时•则汽车距天津的路程S千米与行驶时间t时的函数关系及自变量的取值范围是 • AS=120-30t0≤t≤4 BS=30t0≤t≤4CS=120-30tt 0 DS=30tt=42图1是韩老师早晨出门散步时离家的距离与时间之间的函数图象.若用黑点表示韩老师家的位置则韩老师散步行走的路线可能是3函数自变量的取值范围为___________________4如图水以恒速即单位时间内注入水的体积相同注入下图的四种底面积相同的容器中下面那种方案能准确体现各容器所对应的水高度和时间的函数关系图象A.1~甲2~乙3~丁4~丙 B.1~乙2~甲3~丁4~丙C.1~乙2~甲3~丙4~丁 D.1~丁2~甲3~乙4~丙5平面直角坐标系内点An1-n一定不在A第一象限 B第二象限 C第三象限 D第四象限6若P a+b-5 与Q 13a-b 关于原点对称则a+b a-b 的值为6已知点P3p-153-p在第三象限如果其坐标为整数点求点M的坐标第4讲一次函数一姓名知识梳理一一次函数和正比例函数的概念若两个变量xy间的关系式可以表示成y=kx+bkb为常数k≠0的形式则称y是x的一次函数x为自变量特别地当b=0时称y是x的正比例函数二一次函数的图象由于一次函数y=kx+bkb为常数k≠0的图象是一条直线所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线因此在今后作一次函数图象时只要描出适合关系式的两点再连成直线即可一般选取两个特殊点直线与y轴的交点0b直线与x轴的交点-0但也不必一定选取这两个特殊点画正比例函数y=kx的图象时只要描出点001k即可三一次函数y=kx+bkb为常数k≠0的性质1k的正负决定直线的倾斜方向①k>0时y的值随x值的增大而增大②k<O时y的值随x值的增大而减小.2k大小决定直线的倾斜程度即k越大直线与x轴相交的锐角度数越大直线陡k越小直线与x轴相交的锐角度数越小直线缓3b的正负决定直线与y轴交点的位置①当b>0时直线与y轴交于正半轴上②当b<0时直线与y轴交于负半轴上③当b=0时直线经过原点是正比例函数.4由于kb的符号不同直线所经过的象限也不同①如图11-181所示当k>0b>0时直线经过第一二三象限直线不经过第四象限②如图11-182所示当k>0b>O时直线经过第一三四象限直线不经过第二象限③如图11-183所示当k<Ob>0时直线经过第一二四象限直线不经过第三象限④如图11-184所示当k<Ob<O时直线经过第二三四象限直线不经过第一象限.5由于k决定直线与x轴相交的锐角的大小k相同说明这两个锐角的大小相等且它们是同位角因此它们是平行的.另外从平移的角度也可以分析例如直线y =x+1可以看作是正比例函数y=x向上平移一个单位得到的.四正比例函数y=kxk≠0的性质1正比例函数y=kx的图象必经过原点2当k>0时图象经过第一三象限y随x的增大而增大3当k<0时图象经过第二四象限y随x的增大而减小.五用函数的观点看方程与不等式1方程2x+20=0与函数y=2x+20观察思考二者之间有什么联系从数上看方程2x+20=0的解是函数y=2x+20的值为0时对应自变量的值从形上看函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解关系由于任何一元一次方程都可转化为kx+b=0kb为常数k≠0的形式.所以解一元一次方程可以转化为当一次函数值为0时求相应的自变量的值从图象上看这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.2解关于xy的方程组从数的角度看•相当于考虑当自变量为何值时两个函数的值相等以及这个函数值是多少从形的角度看相当于确定两条直线y=kx+b与y=mx+n的交点坐标两条直线的交点坐标•就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解3解一元一次不等式可以看作是当一次函数值大于或小于0时求自变量相应的取值范围.解关于x的不等式kx+b mx+n可以转化为当自变量x取何值时直线y=k-mx+b-n上的点在x轴的上方或2求当x 取何值时直线y=kx+b上的点在直线y=mx+n上相应的点的上方.不等号为时是同样的道理例题精讲◆例1已知一次函数则这样的一次函数的图象必经过第象限巩固1一次函数的图象如图则下面结论正确的是A BC D2若直线经过点Am-1B1m其中则这条直线不经过第象限拓展已知≠并且那么一定经过A第一二象限 B第二三象限 C第三四象限 D第一四象限◆例2若直线y=kx+6与两坐标轴所围成的三角形面积是24求常数k的值是多少巩固过点P3作直线使它与两坐标轴围成的三角形面积为5这样的直线可以作几条拓展设直线是正整数与两坐标轴所围成的图形的面积为则◆例3如图所示直线y=x+2与x轴交于点A直线y=-2x+6与x轴交于点B且两条直线的交点为P试求出△PAB的面积巩固1如图在直角坐标系中长方形OABC的顶点B的坐标为 156 直线恰好将长方形OABC分成面积相等的两部分那么2如图所示已知直线y=x+3的图象与x轴y轴交于AB两点直线l经过原点与线段AB交于点C把△AOB的面积分为21的两部分求直线l的解析式.拓展若直线和直线k是正整数及x轴围成的三角形面积为则值为___________◆例4一次函数与一次函数在同一平面直角坐标系中的图象如图所示则下列结论①k1>0b<0②k2>0③关于x的不等式的解集是④关于xy的二元一次方程组的解为其中正确的结论有____________巩固1已知关于x的不等式kx-2 0k≠0的解集是x -3则直线y=-kx+2与x 轴的交点是_______.2如右图直线与直线在同一平面直角坐标系中的图象如图所示则关于的不等式的解集为◆例5一个一次函数的图像与直线平行与轴轴的交点分别为AB并且过点-1-25则线段AB上包括端点AB横坐标纵坐标都是整数的点有几个巩固如图一次函数的图象经过点和则的值为◆例6如图直线的解析式为且与轴交于点D直线经过点AB直线交于点C1求直线的解析式2求△ADC的面积3在直线上存在异于点C的另一点P使得△ADP与△ADC的面积相等请直接写出点P的坐标课后练习1点A为直线上的一点点A到两坐标轴的距离相等则点A的坐标为________ 2直线经过一二四象限那么直线经过象限3一次函数是常数的图象如图所示则不等式的解集是A.B.C.D.4如图一直线L经过不同三点AabB ba C那么直线L经过A.第二四象限 B.第一三象限 C.第二三四象限 D.第一三四象限5设直线为自然数与两坐标轴围成的三角形面积为=1232000 则1+2+3++2000的值为A B C D6如图直线与轴轴分别交于AB两点以线段AB为直角边在第一象限内作等腰直角△ABC∠BAC=90°如果在第二象限内有一点P且△ABP的面积与△ABC的面积相等求a的值第5讲一次函数二知识梳理一次函数的应用就是从给定的材料中抽象出函数关系构建一次函数模型再利用一次函数的性质求出问题的解例题精讲◆例1我市一种商品的需求量y1万件供应量y2万件与价格x元/件分别近似满足下列函数关系式y1=x+60y2=2x36需求量为时即停止供应当y1 = y2 1求该商品的稳定价格与稳定需求量2价格在什么范围该商品的需求量低于供应量3当需求量高于供应量时政府常通过对供应方提供价格补贴来提高供货价格以提高供应量现若要使稳定需求量增加4万件政府应对每件商品提供多少元补贴才能使供应量等于需求量巩固图11-30表示甲乙两名选手在一次自行车越野赛中路程y千米随时间x分变化的图象全程根据图象回答下列问题.1当比赛开始多少分时两人第一次相遇2这次比赛全程是多少千米3当比赛开始多少分时两人第二次相遇◆例2在购买某场足球赛门票时设购买门票数为张总费用为元.现有两种购买方案方案一若单位赞助广告费10000元则该单位所购门票的价格为每张60元总费用=广告赞助费+门票费方案二购买门票方式如图所示.解答下列问题1方案一中与的函数关系式为方案二中当时与的函数关系式为当时与的函数关系式为2如果购买本场足球赛超过100张你将选择哪一种方案使总费用最省请说明理由3甲乙两单位分别采用方案一方案二购买本场足球赛门票共700张花去总费用计58000元求甲乙两单位各购买门票多少张.元一月用水超过10吨的用户10吨水仍按每吨元收费超过10吨的部分按每吨元收费设一户居民月用水吨应收水费元与之间的函数关系如图13所示1求的值某户居民上月用水8吨应收水费多少元2求的值并写出当时与之间的函数关系式3已知居民甲上月比居民乙多用水4吨两家共收水费46元求他们上月分别用水多少吨◆例3抗震救灾中某县粮食局为了保证库存粮食的安全决定将甲乙两个仓库的粮食全部转移到具有较强抗震功能的AB两仓库已知甲库有粮食100吨乙库有粮食80吨而A库的容量为70吨B库的容量为110吨从甲乙两库到AB两库的路程和运费如下表表中元吨·千米表示每吨粮食运送1千米所需人民币1若甲库运往A库粮食吨请写出将粮食运往AB两库的总运费元与吨的函数关系式2当甲乙两库各运往AB两库多少吨粮食时总运费最省最省的总运费是多少巩固我市某乡两村盛产柑桔村有柑桔200吨村有柑桔300吨.现将这些柑桔运到两个冷藏仓库已知仓库可储存240吨仓库可储存260吨从村运往两处的费用分别为每吨20元和25元从村运往两处的费用分别为每吨15元和18元.设从村运往仓库的柑桔重量为吨两村运往两仓库的柑桔运输费用分别为元和元.1请填写下表并求出与之间的函数关系式总计吨200吨300吨总计240吨260吨500吨2试讨论两村中哪个村的运费较少3考虑到村的经济承受能力村的柑桔运费不得超过4830元.在这种情况下请问怎样调运才能使两村运费之和最小求出这个最小值.◆例4我国铁路第六次大提速在甲乙两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示OA是第一列动车组列车离开甲城的路程s 单位在km 与运行时间t 单位h 的函数图象BC 是一列从乙城开往甲城的普通快车距甲城的路程s 单位km 与运行时间t 单位h 的函数图象.请根据图中信息解答下列问题1点B的横坐标05的意义是普通快车发车时间比第一列动车组列车发车时间_________h点B的纵坐标300的意义是_______________________ 2请你在原图中直接画出第二列动车组列车离开甲城的路程s与时间t的函数图象3若普通快车的速度为100 kmh①求BC的解析式并写出自变量t的取值范围②求第二列动车组列车出发后多长时间与普通列车相遇③直接写出这列普通列车在行驶途中与迎面而来的相邻两列动车组列车相遇的间隔时间.巩固某物流公司的快递车和货车每天往返于AB两地快递车比货车多往返一趟图中表示快递车距离A地的路程y 单位千米与所用时间x 单位时的函数图象.已知货车比快递车早1小时出发到达B地后用2小时装卸货物然后按原路原速返回结果比快递车最后一次返回A地晚1小时.1请在图中画出货车距离A地的路程y 千米与所用时间x 时的函数图象2求两车在途中相遇的次数直接写出答案3求两车最后一次相遇时距离A地的路程和货车从A地出发了几小时课后练习1某车站客流量大旅客往往需长时间排队等候购票.经调查统计发现每天开始售票时约有300名旅客排队等候购票同时有新的旅客不断进入售票厅排队等候购票新增购票人数人与售票时间分的函数关系如图所示每个售票窗口票数人与售票时间分的函数关系如图所示.某天售票厅排队等候购票的人数人与售票时间分的函数关系如图所示已知售票的前分钟开放了两个售票窗口.1求的值2求售票到第60分钟时售票厅排队等候购票的旅客人数3该车站在学习实践科学发展观的活动中本着以人为本方便旅客的宗旨决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票以便后来到站的旅客能随到随购请你帮助计算至少需同时开放几个售票窗口2如图工地上有AB两个土墩洼地E和河滨F两个土墩的土方数分别是781方1584方洼地E填上1025方河滨F可填上1390方要求挖掉两个土墩把这些土先填平洼地E余下的图填入河滨F填入F实际只有1340方如何安排运土方案才能使劳力最省提示把土方米作为运土花费劳力的单位第6讲全等三角形知识梳理1全等三角形全等三角形能够完全重合的两个三角形2全等三角形的判定方法有SASASAAASSSSHL3 全等三角形的性质1全等三角形的对应角相等对应线段边高中线角平分线相等2全等三角形的周长面积相等4全等三角形常见辅助线的作法有以下几种遇到等腰三角形可作底边上的高利用三线合一的性质解题思维模式是全等变换中的对折.遇到三角形的中线倍长中线使延长线段与原中线长相等构造全等三角形利用的思维模式是全等变换中的旋转.遇到角平分线可以自角平分线上的某一点向角的两边作垂线利用的思维模式是三角形全等变换中的对折所考知识点常常是角平分线的性质定理或逆定理.过图形上某一点作特定的平分线构造全等三角形利用的思维模式是全等变换中的平移或翻转折叠截长法与补短法具体做法是在某条线段上截取一条线段与特定线段相等或是将某条线段延长是之与特定线段相等再利用三角形全等的有关性质加以说明.这种作法适合于证明线段的和差倍分等类的题目.特殊方法在求有关三角形的定值一类的问题时常把某点到原三角形各顶点的线段连接起来利用三角形面积的知识解答.例题精讲◆例1已知如图△ABC中AB=5AC=3则中线AD的取值范围是_________巩固如图所示已知在△ABC中AD是BC边上的中线E是AD上一点且BE=AC 延长BE交AC于F求证 AF=EF◆例2已知等腰直角三角形ABC中AC=BCBD平分∠ABC求证AB=BC+CD巩固1已知△ABC中AD平分∠BACAB>AC求证AB-AC=BD-DC2如图所示已知四边形ABCD中AB=AD∠BAD=60°∠BCD=120°求证 BC+DC=AC◆例3如图已知在△ABC中∠B=60°△ABC的角平分线ADCE相交于点O求证OE=OD◆例4如图在△ABC中∠BAC的平分线与BC的垂直平分线PQ的垂直平分线PQ相交于点P过点P分别作PN⊥AB于NPM ⊥AC于点M求证BN=CM◆例5AD为△ABC的角平分线直线MN⊥AD于AE为MN上一点△ABC周长记为△EBC周长记为求证>拓展正方形ABCD中E为BC上的一点F为CD上的一点BE+DF=EF求∠EAF 的度数课后练习1如图∠BAC=60°∠C=40°AP平分∠BAC交BC于PBQ平分∠ABC交AC于Q求证AB+BP=BQ+AQ2如图△ABC中EF分别在ABAC上DE⊥DFD是中点试比较BE+CF与EF的大小3如图△ABC中AD平分∠BACDG⊥BC且平分BCDE⊥AB于EDF⊥AC于F1说明BE=CF的理由2如果AB=AC=求AEBE的长第7讲直角三角形与勾股定理知识梳理一直角三角形的判定1有两个角互余的三角形是直角三角形2勾股定理逆定理二直角三角形的性质1直角三角形两锐角互余.2直角三角形中30°所对的直角边等于斜边的一半.。

初中数学竞赛讲义(1)

初中数学竞赛讲义(1)

初中数学竞赛讲义
1、证明:对于任意自然数k,存在无穷多个不含数码0的自然数t(十进制计数法),使得t与kt数码和相同。

2、设n是一个正整数,且d是十进制中的一个一位数,若
=0.d25d25d25…,求n
3、两位数
能整除十位数字为零的三位数。

求。

4、设n=99…9(100个9),则n3 的10进制表示中含有的数字9的个数为多少
5、求
…,1234567892的和的个位数的数字
6、求数1,2,3…,10n -2,10n -1的所有数码之和
7、求最小的自然数,当它的最后一个数码排列到第一位时,它的值增加到原来的五倍
8、已知a是一个1988位的自然数且可被9整除,a的各位数字相加和为b,b的各位数字相加和为c,c的各位数字相加和为d,求d
9、求适合等式
中的数码x,y,z
10、设x=0.1234567…999中的数字依次写下整数1到999而得到的,那么小数点右边第1983位数字是什么
11、设x与y是两个有两位数码的自然数,且x<y,乘积xy是一个有四位数码的自然数.首位数是2,如果把这个首位数2去掉,剩下的数正好是x+y,例如x=30,y=70.除此之外还有一组数具有如上性质,试求出这两个数
12、试求满足下列条件的六位整数
,。

这里a,b,c,d,e,f表示不同的数码,且a,e≠0
13、求满足
=(a+b+c)3的所有三位数。

14、已知某三位整数是5的倍数,其各位数字之和是20,个位数字与百位数字的和是3的倍数,求此整数。

15、求使nn有k个数字,kk有n个数字的所有自然数n,k
16、证明:如果n是正奇数,那么数22n(22n+1-1)在十进制中的最后两位数是28。

初二数学竞赛辅导资料(共12讲)讲义

初二数学竞赛辅导资料(共12讲)讲义

目录本内容适合八年级学生竞赛拔高使用。

重点落实在奥赛方面的基础知识和基本技能培训和提高。

本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。

另外,在本次培训中,内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容。

其中《因式分解》为初二下册内容,但是考虑到它的重要性和工具性,将在本次培训进行具体解读。

注:有(*)标注的为选做内容。

本次培训具体计划如下,以供参考:第一讲实数(一)第二讲实数(二)第三讲平面直角坐标系、函数第四讲一次函数(一)第五讲一次函数(二)第六讲全等三角形第七讲直角三角形与勾股定理第八讲株洲市初二数学竞赛模拟卷(未装订在内,另发)第九讲竞赛中整数性质的运用第十讲不定方程与应用第十一讲因式分解的方法第十二讲因式分解的应用第十三讲考试(未装订在内,另发)第十四讲试卷讲评第1讲 实数(一)【知识梳理】一、非负数:正数和零统称为非负数 1、几种常见的非负数(1)实数的绝对值是非负数,即|a |≥0在数轴上,表示实数a 的点到原点的距离叫做实数a 的绝对值,用|a |来表示设a 为实数,则⎪⎩⎪⎨⎧<-=>=0)0(0)0(||a a a a a a绝对值的性质:①绝对值最小的实数是0②若a 与b 互为相反数,则|a |=|b |;若|a |=|b |,则a =±b ③对任意实数a ,则|a |≥a , |a |≥-a ④|a ·b |=|a |·|b |,||||||b a b a =(b ≠0) ⑤||a |-|b ||≤|a ±b |≤|a |+|b |(2)实数的偶次幂是非负数如果a 为任意实数,则n a 2≥0(n 为自然数),当n =1时,2a ≥0(3)算术平方根是非负数,即a ≥0,其中a ≥0.算术平方根的性质:()a a =2(a ≥0)||2a a ==⎪⎩⎪⎨⎧<-=>0)0(0)0(a a a a a2、非负数的性质(1)有限个非负数的和、积、商(除数不为零)是非负数 (2)若干个非负数的和等于零,则每个加数都为零 (3)若非负数不大于零,则此非负数必为零 3的式子,被开方数必须为非负数; 4a =5、利用配方法来解题:开平方或开立方时,将被开方数配成完全平方式或完全立方。

初一数学竞赛辅导讲义

初一数学竞赛辅导讲义

初一数学竞赛辅导讲义一次方程(组)与二元一次不定方程本讲就解一次方程(组)与二元一次不定方程的基本方法和技巧作些简单介绍。

一、一次方程(组)解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,两边同除以未知数的系数。

任何一个一元一次方程最终都可以化为ax b =的形式。

解方程的根据是方程的同解原理。

如果两个方程的解相同,那么这两个方程叫同解方程。

1. 方程两边都加上(减去)同一个数(或同一个整式),所得的方程与原方程是同解方程。

2. 方程两边都乘以(除以)同一个不等于0的数,所得的方程与原方程是同解方程。

例1.解下列个方程(1)()()()()11323327322337x x x x ---=---(2)()14335190.50.125x x x +++=+ (3)3421424904532x ⎧⎫⎡⎤⎛⎫--+-=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭例2.是否存在这样的a 值,使当1b =时,关于x 的方程()()322387a x b x x -+-=-有无数多个解?例3.关于x 的方程1x ax =+同时有一个正数解和一个负数解,求a 的值。

例4.关于x 、y 的两个方程组2227ax by x y -=⎧⎨-=⎩和359311ax by x y -=⎧⎨-=⎩具有相同的解,求a 、b 的值。

例5.已知()()()()()()22219992000200101999200020012000x y y z x z x y y z z x -+---=⎧⎪⎨-+-+-=⎪⎩求z y -的值。

二、二元一次不定方程如果一个方程(组)中,未知数的个数多于方程的个数,则把这种方程(组)叫做不定方程(组)。

例如,二元一次方程3215x y +=是不定方程;三元一次方程组11426x y z x y z ++=⎧⎨+-=⎩是不定方程。

不定方程(组)的解是不确定的。

一般不定方程总有无数穷多个(组)解,但若加上整数(或正整数)解的限制,则不定方程(组)的解三种都有可能:有无穷组解,或有限组解,或无解。

数学七年级竞赛入门辅导讲义_共十讲_很实用 2

数学七年级竞赛入门辅导讲义_共十讲_很实用 2

第一讲 数的整除一、内容提要:如果整数A 除以整数B (B ≠0)所得的商A /B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.一些数的整除特征 除 数能被整除的数的特征 2或5末位数能被2或5整除 4或25末两位数能被4或25整除 8或125末三位数能被8或125整除 3或9各位上的数字和被3或9整除(如771,54324) 11 奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等)7,11,13 从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减,其差能被7或11或13整除.(如1001,22743,17567,21281等)能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)二、例题例1 已知两个三位数328和92x 的和仍是三位数75y 且能被9整除.求x ,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y =6.∵328+92x =567,∴x =3.1234能被12整除,求x.例2 己知五位数x解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,8.当末两位4x能被4整除时,x=0,4,8.∴x=8.例3 求能被11整除且各位字都不相同的最小五位数.解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.三、练习1分解质因数:(写成质因数为底的幂的連乘积)①593②1859③1287④3276⑤10101⑥10296.987能被3整除,那么a=_______________.2若四位数ax能被11整除,那么x=__________.3若五位数123435m能被25整除.4当m=_________时,59610能被7整除.5当n=__________时,n6能被11整除的最小五位数是________,最大五位数是_________.7能被4整除的最大四位数是_____,能被8整除的最小四位数是______.88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________.9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个.10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么?1234能被15整除,试求A的值.11己知五位数A12求能被9整除且各位数字都不相同的最小五位数.第二讲倍数约数一、内容提要1.两个整数A和B(B≠0),如果B能整除A(记作B/A),那么A叫做B 的倍数,B叫做A的约数.例如3/15,15是3的倍数,3是15的约数.2.因为0除以非0的任何数都得0,所以0被非0整数整除.0是任何非0整数的倍数,非0整数都是0的约数.如0是7的倍数,7是0的约数.3.整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,…….4.整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A.例如6的约数是±1,±2,±3,±6.5.通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数.6.公约数只有1的两个正整数叫做互质数(例如15与28互质).7.在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2则23-2能被3整除.二、例题例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:2,22,23,24,3,32,33,34,2×3,22×3,22×32.解:列表如下:正整数正约数个数计正整数正约数个数计正整数正约数个数计2 1,2 2 31,3 2 2×3 1,2,3,6422 1,2,4 3 32 1,3,32 3 22×3 1,2,3,4,6,12623 1,2,4,84 331,3,32,334 22×321,2,3,4,6,9,12,18,36924 1,2,4,8,165 341,3,32,33,345其规律是:设A=a m b n(a,b是质数,m,n是正整数) 那么合数A的正约数的个是(m+1)(n+1)例如:求360的正约数的个数.解:分解质因数:360=23×32×5,360的正约数的个数是(3+1)×(2+1)×(1+1)=24(个).例2用分解质因数的方法求24,90最大公约数和最小公倍数解:∵24=23×3,90=2×32×5∴最大公约数是2×3,记作(24,90)=6.最小公倍数是23×32×5=360,记作[24,90]=360.例3己知32,44除以正整数N有相同的余数2,求N.解:∵32-2,44-2都能被N整除,∴N是30,42的公约数.∵(30,42)=6,而6的正约数有1,2,3,6.经检验1和2不合题意,∴N=6,3.例4一个数被10余9,被9除余8,被8除余7,求适合条件的最小正整数分析:依题意如果所求的数加上1,则能同时被10,9,8整除,所以所求的数是10,9,8的最小公倍数减去1.解:∵[10,9,8]=360,∴所以所求的数是359.三、练习1.12的正约数有_________,16的所有约数是_________________2.分解质因数300=_________,300的正约数的个数是_________3.用分解质因数的方法求20和250的最大公约数与最小公倍数.4.一个三位数能被7,9,11整除,这个三位数是_________5.能同时被3,5,11整除的最小四位数是_______最大三位数是________ 6.己知14和23各除以正整数A有相同的余数2,则A=________7.写出能被2整除,且有约数5,又是3的倍数的所有两位数.答____8.一个长方形的房间长1.35丈,宽1.05丈要用同一规格的正方形瓷砖铺满,问正方形最大边长可以是几寸?若用整数寸作国边长,有哪几种规格的正方形瓷砖适合?9.一条长阶梯,如果每步跨2阶,那么最后剩1阶,如果每步跨3阶,那么最后剩2阶,如果每步跨4阶,那么最后剩3阶,如果每步跨5阶,那么最后剩4阶,如果每步跨6阶,那么最后剩5阶,只有每步跨7阶,才能正好走完不剩一阶,这阶梯最少有几阶?第三讲 质数 合数一、内容提要1.正整数的一种分类:1⎧⎪⎨⎪⎩质数合数质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数).合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数.2. 根椐质数定义可知① 质数只有1和本身两个正约数,② 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2,如果两个质数的积是偶数那么其中也必有一个是2,3.任何合数都可以分解为几个质数的积.能写成几个质数的积的正整数就是合数.二、例题例1 两个质数的和等于奇数a (a ≥5).求这两个数.解:∵两个质数的和等于奇数, ∴必有一个是2,所求的两个质数是2和a -2.例2 己知两个整数的积等于质数m , 求这两个数.解:∵质数m 只含两个正约数1和m ,又∵(-1)(-m )=m ,∴所求的两个整数是1和m 或者-1和-m .例3 己知三个质数a ,b ,c 它们的积等于30,求适合条件的a ,b ,c 的值.解:分解质因数:30=2×3×5.适合条件的值共有: ⎪⎩⎪⎨⎧===532c b a ⎪⎩⎪⎨⎧===352c b a ⎪⎩⎪⎨⎧===523c b a ⎪⎩⎪⎨⎧===253c b a ⎪⎩⎪⎨⎧===325c b a ⎪⎩⎪⎨⎧===235c b a .应注意上述六组值的书写排列顺序,本题如果改为4个质数a ,b ,c ,d 它们的积等于210,即abcd =2×3×5×7那么适合条件的a ,b ,c ,d 值共有24组,试把它写出来.例4 试写出4个連续正整数,使它们个个都是合数.解:(本题答案不是唯一的)设N 是不大于5的所有质数的积,即N =2×3×5那么N +2,N +3,N +4,N +5就是适合条件的四个合数即32,33,34,35就是所求的一组数.本题可推广到n 个.令N 等于不大于n +1的所有质数的积,那么N +2,N +3,N +4,……N +(n +1)就是所求的合数.三、练习1.小于100的质数共 个,它们是 .2.己知质数P 与奇数Q 的和是11,则P = ,Q = .3.己知两个素数的差是41,那么它们分别是 .4.如果两个自然数的积等于19,那么这两个数是 .如果两个整数的积等于73,那么它们是 .如果两个质数的积等于15,则它们是 .5.两个质数x 和y ,己知xy=91,那么x = ,y = ,或x = ,y= .6. 三个质数a ,b ,c 它们的积等于1990.那么 _______________a b c =⎧⎪=⎨⎪=⎩7.能整除311+513的最小质数是 .8.己知两个质数A 和B 适合等式A +B =99,AB =M .求M 及B A +AB 的值. 9.试写出6个連续正整数,使它们个个都是合数.10.具备什么条件的最简正分数可化为有限小数?11.求适合下列三个条件的最小整数:① 大于1 ②没有小于10的质因数 ③不是质数.12.某质数加上6或减去6都仍是质数,且这三个质数均在30到50之间,那么这个质数是 .13.一个质数加上10或减去14都仍是质数,这个质数是 .第四讲零的特性一、内容提要(一)、零既不是正数也不是负数,是介于正数和负数之间的唯一中性数.零是自然数,是整数,是偶数.1.零是表示具有相反意义的量的基准数.例如:海拔0米的地方表示它与基准的海平面一样高收支平衡可记作结存0元.2.零是判定正、负数的界限.若a>0则a是正数,反过来也成立,若a是正数,则a>0记作a>0 ⇔a是正数读作a>0等价于a是正数b<0 ⇔b是负数c≥0 ⇔c是非负数(即c不是负数,而是正数或0)d≤0 ⇔d是非正数(即d不是正数,而是负数或0)e≠0 ⇔e不是0(即e不是0,而是负数或正数)3.在一切非负数中有一个最小值是0.例如绝对值、平方数都是非负数,它们的最小值都是0.记作:|a|≥0,当a=0时,|a|的值最小,是0,a2≥0,a2有最小值0(当a=0时).4.在一切非正数中有一个最大值是0.例如-|x|≤0,当x=0时,-| x |值最大,是0,(∵x≠0时都是负数),-(x-2)2≤0,当x=2时,-(x-2)2的值最大,是0.(二)、零具有独特的运算性质1.乘方:零的正整数次幂都是零.2.除法:零除以任何不等于零的数都得零;零不能作除数.从而推出,0没有倒数,分数的分母不能是0.3.乘法:零乘以任何数都得零.即a×0=0,反过来如果ab=0,那么a、b中至少有一个是0.要使等式xy=0成立,必须且只需x=0或y=0.4.加法:互为相反数的两个数相加得零.反过来也成立.即a、b互为相反数⇔a+b=0。

初中数学竞赛辅导全完整版.doc

初中数学竞赛辅导全完整版.doc

第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。

2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。

(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。

问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:①(x+1)=0, ②x2=9, ③|x|=9,④|x|=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。

4. k 取什么整数值时,下列等式中的x 是整数?① x =k4②x =16-k ③x =k k 32+ ④x =123+-k k5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数?6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数?7. 己知方程221463+=+-a x 的根是正数,那么a 、b 应满足什么关系?8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数?9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。

初中数学竞赛辅导讲义全

初中数学竞赛辅导讲义全

初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。

2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。

3、 分式运算:实质就是分式的通分与约分。

[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。

解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。

解:13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223=21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。

初二竞赛班数学辅导讲义

初二竞赛班数学辅导讲义

初二竞赛班讲义一次函数与反比例函数一、直角坐标系与点的坐标1.有公共原点,并且互相垂直的两条数轴构成直角坐标系.如图:x 轴也叫横轴,y 轴也叫纵轴.2.如图,P 点垂直对着x 轴上的数a 叫做P 点的横坐标,P 点垂直对着y 轴上的数b 叫做P 点的纵坐标,P 点的坐标记为:(a,b).注意:横坐标必须写在前面.3.x 轴上的点,_____坐标都是0;y 轴上的点,_____坐标都是0.练习11.如图,A 、B 、C 、D 四点的坐标分别是________、_________、________、_______; A 点在笫____象限,B 点在笫____象限;A 点和_____点关于原点对称.2.在图中描出下列各点:E(3,2)、F(3,-2)、G(-3,-2)、H(-3,2)、M(2,0)、N(0,-3);E 点和H 点关于____轴对称.3.已知点P(a,b).①若a>0且b<0,则点P 在笫____象限;②若a<0且b>0,则点P 在第_____象限.③若a=0,则点P 在_____轴上.二、函数1.例子:汽车每小时行驶60千米,那么路程s(千米)与时间t(小时)的关系为s=60t,s 随着t 的变化而变化,我们把t 叫做自变量,s 叫做t 的函数.自变量t 的取值范围是________.2.已知ΔABC 的两边为4cm 和5cm,那么它的周长y(cm)与笫三边x(cm)之间的函数关系式y=______________,自变量x 的取值范围是____<x<____.3.甲、乙两地的路程是100千米,汽车以每小时50千米的速度从甲地开往乙地,设x 小时后余下的路程为y 千米,则y 与x 之间的函数关系式为y=____________,x 的取值范围是-________.4.下列函数:y=-3x+2,y=226x -,自变量x 的取值范围分别是:_____________、___________、________________、____________________.三、一次函数的图象和性质1.y=kx+b(k 和b 是常数,且k ≠0)这样的函数叫做一次函数.当b=0时,y=kx 又叫做正比例函数.例1 已知y 是x 的一次函数,并且x=2时,y=1;x=-1,时y=5,求这个一次函数的解析式.练习2 1.当m=____时,函数y=3x+m-2是正比例函数.2.当m=______时,函数y=(m+1)x 丨m 丨+7是一次函数.3.已知y+2与x-1成正比例,且x=2时y=-5,求x=5时y的值.例2用描点法画一次函数y=x+2和y=-3x的图象.性质1 一次函数y=kx+b的图象是经过点(0,b)的一条_____线.正比例函数y=kx的图象是经过_____点的一条直线.练习3 在右图中,用两点法(描两个点)画一次函数y=-2x+3和y=-2x-2的图象.性质2 在一次函数y=kx+b中:①当k>0时,y随x的增大而______.(直线从左向右______).②当k<0时,y随x的增大而_______.(直线从左向右_________).的练习31.函数y=-3x+6的图象是经过点A(0,____)和B(_____,0)的一条直线,y随x的增大而________.2.已知函数y=(a-3)x+7的值随x的增大而增大,则a的取值范围是_________.3.已知直线y=kx+14经过点p(5,4),则k的值为______,y随x的增大而________.[提示:点在函数图象上点的坐标满足函数解析式]4.若直线y=kx+b经过一、三、四象限,则k_____0,b_____.[提示:当b>0时,直线与y轴的交点在原点上方;当b<0时,直线与y轴的交点在原点下方] 例3 如图,直线y=x+2与x轴交于C点,与直线y=2x相交于A点,求ΔAOC的面积例4在直角坐标系中,A、B两点的坐标分别是(-2,1)和(1,5),点P在x轴上,且点P到A、B两点的距离之和最小,求点P的坐标.练习4 1.求直线y=2x+6与两坐标轴围成的三角形的面积.2.已知两点A(1,2)、B(-1,4).问直线AB是否经过点C(3,-1)?为什么?3.求直线y=3x+5与y=2x的交点坐标,并求这个交点到原点的距离.4.甲、乙两地相距24千米,若每小时走4千米.①求剩余路程y(千米)与行走时间x(小时)之间的函数关系式.②求自变量x的取值范围.③画出函数的图象.四、定义 函数y = k x(常数k ≠____)叫做反比例函数.(即 y = kx -1 是反比例函数) 例5 已知122)2(-++=m m x m m y ,当m 为何值时:(1)y 是x 的正比例函数? (2)y 是x 的反比例函数?例6 已知y=y 1-y 2,y 1与x 成反比例,y 2与(x-2)成正比例,并且当x=1时,y=4;当x=-1时,y=4. 求x=2时y 的值.练习51.已知y=(n-1)x m是反比例函数,则n ≠______,且m=______;2.已知y 与x 成反比例,并且x=4时,y=3,则y 与x 之间的函数关系式为___________.3.已知反比例函数y=k x的图象经过点(-2,3),则k=______. 4.若函数y=6x的图象经过点P(a,b),则ab=___. 5.已知反比例函数y=k x的图象经过点(-2,6)和(4,m),则k=______,m=______. 6.若y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,并且当x=1时,y=4;当x=2时,y=5.求x=4时y 的值.7.先填写下表,再用描点法画函数y=(x ≠0)的图象.五、性质: 反比例函数y=k x的图象叫做双曲线. ①当k>0时,双曲线在一、三象限内,从左向右下降,y 随x 的增大而______.(如图1)(注意:x>0时,图象在y 轴右侧的笫一象限内; x<0时,图象在___________笫______象限内) ②当k<0时,双曲线在二、四象限内,从左向右_____, y 随x 的增大而______.(如图2) 例7 己知关于x 的方程x 2-4x+2t=0有两个实数根两个根的倒数之和为s.求s 与t 之间的函数关系式及t 的取值范围.例8 已知反比例函数y=m x与一次函数y=kx+b 的图象的一个交点为A(-2,-1),并且在x=3时,这两个函数的值相等,求这两个函数的解析式.例9.如图,点A 是双曲线y=12x上任意一点,延长AO 交双曲线另一支于B,求Rt ΔACB 的面积.例10. A 市有化肥200吨,B 市有化肥300吨.现要把化肥运往C 、D 两农村.已知从A 市运往C 、D 两地的运费分别为20元/吨与25元/吨,从B市运往C、D两地的运费分别为15元/吨和23元/吨.现已知C地需要220吨,D 地需要280吨.设总的运费为y(元),从A市运往C地x(吨).(1)求y与x的函数关系式,并求自变量x的取值范围. (2)怎样调运,总运费最少?练习61.当x>0时,函数y=-6x的图象在笫_____象限,y随x的增大而______.2.若反比例函数y=3mx-中,y随x的增大而减小,则m的取值范围是_________,它的图象在笫_________象限.4.如果反比例函数y=mx2m+3m-6的图象在二、四象限内,那么m的值为_____.5.若反比例函数y=1bx+的图象在一、三象限内,则b的取值范围是_________.6.如图,点A是双曲线y=12x上任意一点,AB⊥x轴于B,则RtΔABO的面积为________.7.若点P(y1,y2)在双曲线y=kx上,且y1和y2是方程y2-4y-2=0的两点,则k=____.8.若点A(-2,y1)、B(-1,y2)在反比例函数y=3x的图象上,则y1与y2的大小关系是______.9.如图,RtΔAOB的顶点A是直线y=x+m与双曲线y=mx在笫一象限的交点,且SΔAOB=3.(1)求m的值.(2)求ΔACB的面积.10.某厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件.已知生产一件A种产品,需用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克,乙种原料10千克,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你给设计出来.(2)设生产A、B两种产品获总利润为y(元),其中生产A种产品x件,求y与x之间的函数关系式,并利用函数的性质说明:(1)中哪种生产方案获总利润最大?最大利润是多少元?。

初二数学竞赛讲义一

初二数学竞赛讲义一

初二数学竞赛讲义一初二数学竞赛讲义一分式1. 分式有意义的应用例1. 若ab a b +--=10,试判断1111a b -+,是否有意义。

2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。

例2. 解方程:11765556222-++=-+-+x x x x x x3. 在代数求值中的应用例3已知a a 269-+与||b -1互为相反数,求代数式()42222222222a b a b ab a b a ab b a b abb a -++-÷+-++的值。

4 在数学、物理、化学等学科的学习中,都会遇到有关公式的推导,公式的变形等问题。

而公式的变形实质上就是解含有字母系数的方程。

例4. 已知x y y =+-2332,试用含x 的代数式表示y ,并证明()()323213x y --=。

5、中考原题: 例5.已知M x y xy y x yx y x y 222222-=--+-+,则M =__________。

例6.已知x x 2320--=,那么代数式()x x x --+-11132的值是_________。

5、题型展示:例7. 当x 取何值时,式子||x x x -++2322有意义?当x 取什么数时,该式子值为零?例8. 求x m n x mn x m n x mn x m x n 222222---+--⋅--()()的值,其中x m n ===-2312。

例9.32148521761543103--+--=--+--x x x x x x x x例10.已知51=+x x , 求1539222++--x x x 的值。

【实战模拟】1. 当x 取何值时,分式2111x x+-有意义?4. 解方程:x x x x x x xx ++-++=++-++214365876.已知43602700x y z x y z xyz --=+-=≠,,,求x y zx y z +--+2的值。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

初中七年级培优竞赛辅导讲义全册(207页)

初中七年级培优竞赛辅导讲义全册(207页)

初中七年级培优竞赛辅导讲义目录(共207页,按住ctrl键点击目录直接跳转到对应章节)第01讲与有理数有关的概念第02讲有理数的加减法第03讲有理数的乘除、乘方第04讲整式第05讲整式的加减第06讲一元一次方程概念和等式性质第07讲一元一次方程解法第08讲实际问题与一元一次方程第09讲多姿多彩的图形第10讲直线、射线、线段第11讲角第12讲与相交有关概念及平行线的判定第13讲平行线的性质及其应用第14讲平面直角坐标系(一)第15讲平面直角坐标系(二)第16讲认识三角形第17讲认识多边形第18讲二元一次方程组及其解法第19讲实际问题与二元一次方程组第20讲三元一次方程组和一元一次不等式组第21讲一元一次不等式(组)的应用第22讲一元一次不等式(组)与方程(组)的结合第23讲数据的收集与整理第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克 【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A . -5吨 B . +5吨 C . -3吨 D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C . -5 D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b< b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为( ) A . 4个 B . 3个 C . 2个 D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( ) A . -4 B . -1 C . 0 D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m ∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A . 156B . 172C . 190D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( ) A . 0和6 B . 0和-6 C . 3和-3 D . 0和3 06.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是 |x+1|,如果|AB|=2,那么x= 1或3;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是 7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( ) A . -1 B . 1 C . 2m -3 D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A . 30 B . 0 C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp|3mnp|= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算1111 12233420082009 ++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n=-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111 (1)()()()2233420082009 -+-+-++-=1111111 12233420082009 -+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+…+99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111 248163264128256+++++++=__________.【例4】如果a<0,b>0,a+b<0,那么下列关系中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a 【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811 =4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|- x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于()A.14B.14-C.12D.12-02.自然数a、b、c、d满足21a+21b+21c+21d=1,则31a+41b+51c+61d等于()A.18B.316C.732D.1564534333231303.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c大小关系是( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .4 06.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号 D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数 B.0 C.负数 D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy 的值; ⑵求32008x y 的值.【解法指导】na 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=- ⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=- ⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ A .31003 B .31004 C .1334 D .11000 02.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.若|ab|=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a ,则a 的取值范围( )A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( )A .0B .1C .2D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较xy -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A.1 B.3 C.7 D.503.已知23450ab c d e<,下列判断正确的是()A.abcde<0 B.ab2cd4e<0 C.ab2cde<0 D.abcd4e<004.若有理数x、y使得,,,xx y x y xyy+-这四个数中的三个数相等,则|y|-|x|的值是()A.12-B.0 C.12 D.3205.若A=248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A-1996的末位数字是()A.0 B.1 C.7 D.906.如果20012002()1,()1a b a b+=--=,则20032003a b+的值是()A.2 B.1 C.0 D.-107.已知5544332222,33,55,66a b c d====,则a、b、c、d大小关系是()A.a>b>c>d B.a>b>d>c C.b>a>c>d D.a>d>b>c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n 的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】 n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴ (2)02.指出下列多项式的二次项、二次项系数和常数项⑴ (2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b 的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z =5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当 x =4时,y=1,2,z=2,1.当 x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式 B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A. B. C. D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()。

全国通用初中数学竞赛培优辅导讲义1-10)讲

全国通用初中数学竞赛培优辅导讲义1-10)讲
合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
2.根椐质数定义可知
1)质数只有1和本身两个正约数,
2)质数中只有一个偶数2
如果两个质数的和或差是奇数那么其中必有一个是2,
如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积。
能写成几个质数的积的正整数就是合数。
8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________
9.从1到100这100个自然数中,能同时被2和3整除的共_____个,
解:五位数字都不相同的最小五位数是10234,
但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行
调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
练习
1.分解质因数:(写成质因数为底的幂的連乘积)
①593②1859③1287④3276⑤10101⑥10296
那么N+2,N+3,N+4,N+5就是适合条件的四个合数. 即32,33,34,35就是所求的一组数。
本题可推广到n个。
令N等于不大于n+1的所有质数的积,那么N+2,N+3,N+4,……N+(n+1)就是所求的合数。
练习3
1.小于100的质数共___个,它们是__________________________________
三在近似数中,当0作为有效数字时,它表示不同的精确度。
例如 近似数1.6米与1.60米不同,前者表示精确到0.1米(即1分米),误差不超过5厘米;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业资料初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。

2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。

3、 分式运算:实质就是分式的通分与约分。

[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。

解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。

解:专业资料13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223专业资料 =21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用专业资料同一字母的解析式表示,从而给解题带来方便。

3、整体代换及倒数法是分式的的求值中常用的方法, 应熟练掌握。

[巩固练习]1、若分式1222-+m m 的值是正整数, 则整数m= 。

2、若1432a a a a ++ = 2431a a a a ++ = 3421a a a a ++ = 4321a a a a ++ =k 则k= 。

3、已知a 2-3b 2 = 2ab .(a >0,b >0),则b a ba -+2 = .专业资料4、已知a 、b 、c 是有理数,且b a ab +=31,c b bc + = 41,a c ca += 51,则cabc ab abc ++= 。

5、若x1 - y 1 = 2006,则y xy x y xy x 260192-+++-= 。

6、实数a 、b 满足ab=1,设A = a +11 +b +11 ,B=a +1a + b+1b +1,则A 、B 的关系 为 。

7、当a、b、c为何值时,多项式b ax x x x =++-23433能被除数232+-x x 整除? 8、计算 20072007200720072007752115++ = 。

9、已知)3)(23(322-+--+x x x x x = 1A -X + 2B -X + 3C -X , 求A 、B 、C 的值。

专业资料10、若对于±3以外的一切实数X ,等式3+x m - 3-x n = 982-x x 均成立,则mn = 11、已知b a =c b = a c ,则cb ac b a +--+ = 。

第二讲 分式方程及应用[知识点击]1、 解分式方程的基本思路是去分母化分式方程为整式方程;2、 解分式的方程的常用方法有:换元法、整体法、通分法等;3、 分式方程广泛应用于生活实际中,要注意未知数的值既要是原方程的根,又要与实际意义相符。

专业资料[例题选讲]例1. 解方程组⎪⎪⎩⎪⎪⎨⎧=---+=-++661091852x y y x y x y x 分析:令y x +1 =m, y x -1 =n ,则⎩⎨⎧=+=+661091852n m n m 可得:⎪⎩⎪⎨⎧==566n m 易求:⎪⎪⎩⎪⎪⎨⎧-==3121y x 例2. 解方程730468157264-----=-----x x x x x x x x 解:原方程可化为61711121---=---x x x x专业资料 两边分别通分:)6)(7(1)1)(2(1---=---x x x x ,易求:x = 4 例3. 当m为何值时,关于x 的方程21122---+=--x x x x x x m 的解为正数? 解:解方程可得:x=21m -,需⎪⎩⎪⎨⎧≠-≠〉210x x x 可得m<1 且m ≠-3。

例4. 设库池中有待处理的污水a 吨,从城区流入库池的污水按每小时b 吨的固定流量增加,若同时开动2台机组需30小时处理完污水,同时启动4台机组需10小时处理完污水,若要求在5小时将污水处理完毕,那么至少要同时开动多少台机组? 解:设1台机组每小时处理污水y 吨,要在5小时处理完污水, 至少同时开动x 台机组,则:专业资料 ⎪⎩⎪⎨⎧≤+⨯=+⨯=+xy b a y b a y b a 551041030230 可得 ⎩⎨⎧==y b y a 30 X ≥ 755=+y b a 例5. 求证对任意自然数n ,有222131211n ++++ <2 证明:当n=1时,1<2显然成立。

当n>1时,n(n-1)<n2 所以21n< n n n n 111)1(1--=- 故:222131211n ++++ <)111()3121()211(1n n --++-+-+ n12-<2专业资料 [点评归纳]1、 当某个代数式在一个问题中多次反复出现时,我们可以把这个代数式当作一个整体去替换,使问题简化;2、 假分式构成的分式方程一般先分离整数, 然后等式两边分别通分可解。

3、 解分式方程要注意验根,在求分式方程中待定字母的值时往入容易忽略这一点。

[巩固练习]1、某同学用一架不等臂天平称药品, 第一次将左盘放入50g 砝码,右盘放药品使天平平衡,第二次将右盘放入50g 砝码,左盘放药品使天平平衡,则两次称得药品总质量( )A 、等于100gB 、大于100gC 、小于100gD 、都有可能2、用大小两部抽水机给麦田浇水,先用两部抽水机一起抽水2小时, 再用小抽水机单独抽水1小时即可浇完, 已知单独用小抽水机所用时间是大抽水机单独抽水所需时间的211倍,求两部抽水机单独浇完这块麦田各需多少小时?专业资料3、解方程13307223+++++x x x x x = 20724536112223+++++x x x x x 4、解方程52)10)(9(1)32(1)2)(1(1101=+++++++++++x x x x x x x )( 5、某工厂将总价2000元的甲种原料与总价4800元的乙种原料混合后,其平均价格比原甲种原煤料每斤少3元,比原乙种原料每斤多1元,问混合后的单价。

6、自然数m 、n 是两个不同质数,且m+n+mn 的最小值为P ,则222pn m += 7、已知m x x x f ++=2372)(有因式32+x ,则m= 8、求112++=x x y 的最大值。

专业资料第三讲 一元二次方程的解法[知识点击]1、 一元二次方程的常规解法有:直接开平方、配方法、因式分解及求根公式法。

2、 对于复杂的一元二次方程往往要借助换元法、和差构造法等。

3、 含有字母系数的一元二次方程一般要分类型讨论。

4、 设而不研究一元二次方程公共解的基本方法。

[例题选讲]例1. 解方程161311112222=+++++++x x x x x x 解:令y x x x =+++1122,则y y 1+ =1613,解得321=y ,232=y专业资料 即321122=+++x x x 或231122=+++x x x ,解得2153,,1321±-==x x 例2. 解方程8532++x x - 1532++x x =1 解:∵(8532++x x + 1532++x x )(8532++x x -1532++x x )=7∴ 8532++x x + 1532++x x =7① 又8532++x x -1532++x x =1②①+②:8532++x x =4易知:X 2=1 X 2= 38 例3:已知m 是方程X 2-2007X+1=0的一个不为O 的根专业资料求 m2 -2006m+120072+m 的值 解:∵m为方程的非零根,∴m2 -2007m+1=0可得m2 =2007m-1,m+m1=2007,m2+1=2007m 原式=2007m-1-2006m+m 20072007=m+m1-1=2007-1=2006 例4、设a、b为实数,那么a 2+ab+b 2-a- 2b 的最小值为多少?解:原式:=a 2+(b-1)a+(b 2-2b ) =(a+21-b )2 +43(b-1)2-1 当a=o b=1时,最小值为-1例5:解方程m2(x 2-x+1)-m(x 2-1)=(m2-1)x专业资料解:原方程整理为:m(m-1)x2-(2m2-1)x+m(m+1)=0[mx-(m + 1)[(m-1)x-m]=0mx=m+1 或(m-1)x=m1) 当m≠0,m≠1时,x1=m m 1+,x2=1-m m 2) m=0,x= 03) m=1时x=2 例6:方程(2007x)2 -2006×2008X-1=0的较大根为m,方程2006x 2-2007X+1=0的较小根为n,求n-m的值解:方程①可化为(20072X+1)(X-1)=0 X=-220071 X 2=1 ∵ X 2>X 1 ∴m=1 方程②可化为(2006X-1`)(X-1)=0专业资料X 1 =-20061 X 2=1 ∵X 1 <X 2∴n=20061 n - m =20061-1=-20062005 [点评归纳]1、 有的方程某部分重复出现,或经过变形后产生重复出现的式子,可通过换元使方程简化而便于求解。

相关文档
最新文档