弹性力学-岩石力学删减版 2汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学基本知识考试 一、

基本概念:

(1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理:

作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。

(3) 弹性力学的基本假定:

连续性、完全弹性、均匀性、各向同性和小变形。 圣维南原理;(提边界条件)

如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。

(4) 轴对称;

在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 二、

平衡微分方程:

(1) 平面问题的平衡微分方程;

00yx

x x xy y

y f x y

f x y

τστσ∂∂++=∂∂∂∂++=∂∂(记)

1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。

2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。

x y xy u

x v y v u x y

εεγ∂=

∂∂=∂∂∂=+

∂∂(记)

1、几何方程反映了位移和应变之间的关系。

2、当位移完全确定时,应变也确定;反之,当应变完全确定时,位移并不能确定。(刚体位移) 三、

物理方程;

(1) 平面应力的物理方程;

()()()1

1

21x x y y y x xy xy

E E

E

εσμσεσμσμγτ=

-=-+=(记)

(2) 平面应变的物理方程;

()

22111121x x

y y y

x xy xy

E E E

μμ

εσσμμμεσσμμγτ⎛⎫-=- ⎪-⎝⎭⎛⎫-=- ⎪-⎝⎭

+=

四、

边界条件;

(1) 几何边界条件;

平面问题:()()

()()

s s u u s v v v == 在u s 上;

(2) 应力边界条件;

平面问题:

()()x

yx x

s

xy

y y

s

l m f l m f σ

ττ

σ+=+=(记)

(3) 接触条件;

光滑接触:()()n n

σσ'= n 为接触面的法线方向 非光滑接触:()()

()()

n n n n u u σσ'='= n 为接触面的法线方向

1.弹性力学,也称弹性理论,是固体力学学科的一个分支。

3基本任务:研究由于受外力、边界约束或温度改变等原因,在弹性体内部所产生的应力、形变和位移及其分布情况等。.

6弹性力学研究问题,在弹性体内严格考虑静力学、几何学和物理学 三方面条件,在边界

上考虑边界条件,求解微分方程得出较精确的解答;.

7.弹性力学中的基本假定:连续性、完全弹性、均匀性、各向同性、小变形假定。 8.几何方程反映的是形变分量与位移分量之间的关系。 9.物理方程反映的是应力分量与形变分量之间的关系。

10.平衡微分方程反映的是应力分量与体力分量之间的关系。

11当物体的位移分量完全确定时,形变分量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。

12.边界条件表示在边界上位移与约束、或应力与面力之间的关系式。它可以分为位移边界条件、应力边界条件和混合边界条件。

13.圣维南原理主要内容:如果把物体表面一小部分边界上作用的外力力系,变换为分布不同但静力等效的力系(主失量相同,对同一点的主矩也相同),那么只在作用边界近处的应力有显著的改变,而在距离外力作用点较远处,其影响可以忽略不计。 15.求解平面问题的两种基本方法:位移法、应力法。

17.逆解法步骤:(1)先假设一满足相容方程(2-25)的应力函数 (2)由式(2-24),根据应力函数求得应力分量

(3)在确定的坐标系下,考察具有确定的几何尺寸和形状的弹性体,根据主

要边界上的面力边界条件(2-15)或次要边界上的积分边界条件, 分析这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决什么样的问题。(或者根据已知面力确定应力函数或应力分量表达式中的待定系数

18.半逆解法步骤:(1)对于给定的弹性力学问题,根据弹性体的几何形状、受力特征和变形

的特点或已知的一些简单结论,如材料力学得到的初等结论,假设部分或全部应力分量的函数形式

(2)按式(2-24),由应力推出应力函数f 的一般形式(含待定函数项); (3)将应力函数f 代入相容方程进行校核,进而求得应力函数f 的具体表达形式;

(4)将应力函数f 代入式(2-24),由应力函数求得应力分量

(5)根据边界条件确定未知函数中的待定系数;考察应力分量是否满足全部应力边界条件。如果都能满足,则所得出的解就是正确解,否则要重新假设应力分量,重复上述过程并进行求解。.

5.平面问题的应力边界条件为

1、弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。

A .相容方程

B .近似方法

C .边界条件

D .附加假定

2、根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。

A .几何上等效

B .静力上等效

C .平衡

D .任意 3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。

)()()()(s f m l s f m l y s y xy x s xy x =+=+σττσμμ

μμ-⇒

-⇒112

E E 填空

相关文档
最新文档