1-4解析几何吕林根第四版

合集下载

解析几何课件(吕林根许子道第四版)

解析几何课件(吕林根许子道第四版)

下一页
返回
定理1.4.2 如果向量e1, e2不共线,那么向量 r与
e1 , e2共面的充要条件是 r可以用向量 e1 , e2线性表示,
或者说向量 r可以分解成e1 , e2的线性组合,即
r xe1 ye2
(1.4-2)
并且系数x, y被e1 , e2 , r唯一确定. 这时e1 , e2叫做平面上向量的基底 . 定理1.4.3 如果向量e1 , e2 , e3不共面,那么空间
OC OA OB
下一页
返回
B
C
O
A
这种求两个向量和的方法叫做平行四边形法则
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
a

b

b

a.
(2)结合律:
a

b

c

(a

b)

c
a

(b

c).
(3)
a

(a)

0.
上一页 下一页
例2 证明四面体对边中点的连线交于一点,且
互相平分.
证 设四面体ABCD一组
D
对边AB,CD的中点E, F的连
线为EF ,它的中点为P1,其余
e3
两组对边中点分别为 P2 , P3 ,
下只需证P1 , P2 , P3三点重合
就可以了.取不共面的三向量 A
F
P1
e2
C
AB e1 , AC e2 , AD e3 ,
在不全为零的 n个数1 , 2 ,, n使得
1 a1 2 a2 n an=0,
(1.4 4)

解析几何课件(吕林根许子道第四版)(精)

解析几何课件(吕林根许子道第四版)(精)
上一页 下一页
返回
第一章 向量与坐标
§1.3 数乘向量
表示与非零向量 设ea a 同方向的单位向量,
按照向量与数的乘积的规定,
a | a | ea
a . ea |a |
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页下一页ຫໍສະໝຸດ §1.2 向量的加法定 义1.2.1 设 已 知 矢 量 a、 b ,以空间任意一点 O为 始 点 接连作矢量 OA a, AB b得 一 折 线 OAB, 从 折 线 的 端 点 O到 另 一 端 点 B的 矢 量 OB c , 叫 做 两 矢 量 a与b的 和 , 记 做 cab
(2)结合律: a b c (a b ) c a (b c ). (3) a ( a ) 0.
上一页
下一页
返回
第一章 向量与坐标
§1.2 向量的加法
有限个矢量 a1 , a2 ,an 相 加 可 由 矢 量 的 三 角 求 形和 法则推广
解析几何课件(第四版)
吕林根 许子道等编
解析几何的基本思想是用代数的方法来研究 几何,为将代数运算引导几何中,采用的最根本最 有效的做法----有系统的把空间的几何结构代数 化,数量化.
第一章 第二章 第三章 第四章 向量与坐标 轨迹与方程 平面与空间直线 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
下一页
返回
第一章 向量与坐标
§1.4向量的线性关系与向量的分解
定理1.4.2 如果向量 e1 , e 2 不共线,那么向量 r与 e1 , e2 共面的充要条件是 r可以用向量 e1 , e2线性表示, 或者说向量 r可以分解成 e1 , e2的线性组合,即 r x e1 y e2 并且系数 x , y被 e1 , e2 , r唯一确定 . 这时 e1 , e 2叫做平面上向量的基底 . 定理1.4.3 如果向量 e1 , e 2 , e 3 不共面,那么空间 任意向量 r可以由向量 e1 , e 2 , e 3线性表示,或说空间 ( ) 1.4-2

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根课后习题答案

第三章 平面与空间直线§ 平面的方程1.求下列各平面的坐标式参数方程和一般方程:1通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面2通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;3已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D ;求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面; 解: 1 }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x2由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为:一般方程为:0)5(2)1(7=+--y x ,即01727=--y x ; 3ⅰ设平面π通过直线AB,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为:一般方程为:0745910=-++z y x ;ⅱ设平面π'通过直线AB,且垂直于ABC ∆所在的平面∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯AC AB均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-,∴ 所求平面的参数式方程为:3.证明矢量},,{Z Y X v =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX .证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{AC A B --,从而v 平行于平面0=+++D Cz By Ax 的充要条件为:v ,}1,0,{},0,1,{ACA B --共面⇔ ⇔0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标.解: }5,2,3{z AB +-= 而AB 平行于0147=--+z y x 由题3知:0)5(427)3(=+-⨯+⨯-z 从而18=z .5. 求下列平面的一般方程.⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;⑶与平面0325=+-+z y x 垂直且分别通过三个坐标轴的三个平面; ⑷已知两点()()1,2,4,2,1,321--M -M ,求通过1M 且垂直于21,M M 的平面; ⑸原点O 在所求平面上的正射影为()6,9,2-P ;⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面.解:平行于x 轴的平面方程为001011112=--+-z y x .即01=-z .同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z . ⑵设该平面的截距式方程为132=+-+-c z y x ,把点()4,2,3-M 代入得1924-=c 故一般方程为02419812=+++z y x .⑶若所求平面经过x 轴,则()0,0,0为平面内一个点,{}2,1,5-和{}0,0,1为所求平面的方位矢量,∴点法式方程为001215000=----z y x ∴一般方程为02=+z y .同理经过y 轴,z 轴的平面的一般方程分别为05,052=-=+y x z x . ⑷{}2121.3,1,1M M --=M M →垂直于平面π,∴该平面的法向量{}3,1,1--=→n ,平面∂通过点()2,1,31-M , 因此平面π的点位式方程为()()()02313=--+--z y x . 化简得023=+--z y x . 5 {}.6,9,2-=→op∴ .116cos ,119cos ,112cos -===∂γβ 则该平面的法式方程为:.011116119112=--+z y x既 .0121692=--+z y x6平面0138=-+-z y x 的法向量为{}3,8,1-=→n ,{}1,6,121=M M ,点从()2,1,4写出平面的点位式方程为0161381214=----z y x ,则,261638-=-=A74282426,141131,21113-=++⨯-=====D C B ,则一般方程,0=+++D Cz By Ax 即:.037713=---z y x 6.将下列平面的一般方程化为法式方程; 解:.3-=D∴将已知的一般方程乘上.301=λ得法式方程.030330530230=-+-z y x()∴-=∴=.21.12λD 将已知的一般方程乘上.21-=λ得法式方程.0212121=-+-y x()∴-=∴=.1.2.3λD 将已知的一般方程乘上.1-=λ得法式方程.02=--x().91.0.4±=∴=λD 即91=λ或91-=λ将已知的一般方程乘上91=λ或.91-=λ得法式方程为0979494=+-z y x 或.0979494=-+-z y x 7.求自坐标原点自以下各平面所引垂线的长和指向平面的单位法矢量的方向余弦;解:().71.35.1=-=λD 化为法式方程为05767372=-++z y x 原点指向平面π的单位法矢量为,76,73,72⎭⎬⎫⎩⎨⎧=u 它的方向余弦为.76cos ,73cos ,72cos ===γβα原点o 到平面π的距离为.5=-=D P λ().31.21.2-==λD 化为法式方程为-07323231=--+-z y x 原点指向平面π的单位法矢量为,32,32,310⎭⎬⎫⎩⎨⎧--=n 它的方向余弦为122cos ,cos ,cos .333αβγ=-==-原点o到平面π的距离7.p D λ=-= 第20页8.已知三角形顶点()()()0,7,0,2,1,1,2,2,2.A B C --求平行于ABC 所在的平面且与她相距为2各单位的平面方程;解:设,.AB a AC b ==点()0,7,0.A -则{}{}2,6,1,2,9,2a b ==写出平面的点位式方程72610292x y z += 设一般方程0. 3.2,6,140.Ax By Cz D A B C D +++=∴====-< 则1. 2.7p D λλ==-=相距为2个单位;则当4p =时28.D =-当0p =时0.D =∴所求平面为326280.x y z -+-=和3260.x y z -+=9.求与原点距离为6个单位,且在三坐标轴,ox oy 与oz 上的截距之比为::1:3:2a b c =-的平面;解:设,3,2.0.a x b x c x abc =-==≠∴设平面的截距方程为 1.x y z a b c++= 即.bcx acy abz abc ++= 又原点到此平面的距离 6.d =6.=∴所求方程为7.32y zx -++= 10.平面1x y z a b c++=分别与三个坐标轴交于点,,.A B C 求ABC 的面积;解 (,0,0)A a , (0,,0)B b ,(0,0,)C c {},,0AB a b =-,{},0,AC a c =-.{},,AB AC bc ca ab ⨯=;2AB AC b ⨯=.∴S ABC11.设从坐标原点到平面的距离为;求证1.p p =∴= 从而有22221111.p a b c =++ § 平面与点的相关位置1.计算下列点和平面间的离差和距离: 1)3,4,2(-M , :π 0322=++-z y x ; 2)3,2,1(-M , :π 0435=++-z y x . 解: 将π的方程法式化,得:01323132=--+-z y x ,故离差为:311332431)2()32()(-=-⨯-⨯+-⨯-=M δ,M 到π的距离.31)(==M d δ2类似1,可求得0354353356355)(=-++-=M δ,M 到π的距离.0)(==M d δ2.求下列各点的坐标:1在y 轴上且到平面02222=--+z y 的距离等于4个单位的点; 2在z 轴上且到点)0,2,1(-M 与到平面09623=-+-z y x 距离相等的点; 3在x 轴上且到平面01151612=++-z y x 和0122=--+z y x 距离相等的点;解:1设要求的点为)0,,0(0y M 则由题意∴ 610=-y ⇒50-=y 或7.即所求的点为0,-5,0及0,7,0; 2设所求的点为),0,0(0z 则由题意知: 由此,20-=z 或-82/13; 故,要求的点为)2,0,0(-及)1382,0,0(-; 3设所求的点为)0,0,(0x ,由题意知: 由此解得:20=x 或11/43; 所求点即2,0,0及11/43,0,0;3.已知四面体的四个顶点为)4,1,1(),5,11,2(),3,5,3(),4,6,0(---C B A S ,计算从顶点S 向底面ABC 所引的高; 解:地面ABC 的方程为: 所以,高335426=+⨯--=h ;4.求中心在)2,5,3(-C 且与平面01132=+--z y x 相切的球面方程; 解:球面的半径为C 到平面π:01132=+--z y x 的距离,它为:142142814116532==+++⨯=R ,所以,要求的球面的方程为:56)2()5()3(222=++++-z y x .即:0184106222=-++-++z y x z y x .5.求通过x 轴其与点()5,4,13M 相距8个单位的平面方程;解:设通过x 轴的平面为0.By Cz +=它与点()5,4,13M 相距8个单位,从而228.481041050.B BC C =∴--=因此()()1235430.B C B C -+=从而得12350B C -=或430.B C +=于是有:35:12B C =或():3:4.B C =-∴所求平面为35120y z +=或340.y z -=6. 求与下列各对平面距离相等的点的轨迹. ⑴053407263=--=--+y x z y x 和; ⑵062901429=++-=-+-z y x z y x 和. 解: ⑴ ()0726371:1=--+z y x π 令()()53451726371--=--+y x z y x化简整理可得:0105113=+-z y x 与07010943=--+z y x . ⑵对应项系数相同,可求42614221'-=+-=+=D D D ,从而直接写出所求的方程:0429=-+-z y x .9 判别点M2 -1 1和N 1 2 -3在由下列相交平面所构成的同一个二面角内,还是在相邻二面角内,或是在对顶的二面角内 11:3230x y z π-+-=与2:240x y z π--+= 21:2510x y z -+-=与2:32610x y z π-+-= 解:1将M2 -1 1,N1 2 -3代入1π,得: 6123032630++-〉⎧⎨---〈⎩则M,N 在1π的异侧 再代入2π,得:221470143440+-+=〉⎧⎨-++=〉⎩∴MN 在2π的同侧 ∴MN 在相邻二面角内2将M2 -1 1N1 2 -3代入1π,得:4151902215180++-=〉⎧⎨---=-〈⎩则MN 在1π的异侧; 再代入2π,得:662113034181200++-=>⎧⎨---=-<⎩则MN 在2π的异侧∴ MN 在对顶的二面角内10 试求由平面1π:2230x y z -+-=与2π:32610x y z +--=所成的二面角的角平分方程,在此二面角内有点1, 2, -3解:设px y z 为二面角的角平分面上的点,点p 到12ππ的距离相等=5332190(1)234240(2)x y z x y z +--=⎧⎨---=⎩把点p 代入到12ππ上,10δ< 20δ> 在1上取点1850 0代入12ππ,''1200δδ>>; 在2上取点0 0 -6代入12ππ,""1200δδ<>∴2为所求,∴解平面的方程为:34240x y z ---=两平面的相关位置1.判别下列各对直线的相关位置: 10142=+-+z y x 与0324=--+z y x ; 20522=---z y x 与013=--+z y x ; 305426=--+z y x 与029639=--+z y x ;解:1 )1(:21:41)4(:2:1-=-, ∴ 1中的两平面平行不重合; 2 )1(:3:1)2(:)1(:2-≠--, ∴ 2中两平面相交; 3 )6(:3:9)4(:2:6-=-, ∴ 3中两平面平行不重合;2.分别在下列条件下确定n m l ,,的值:1使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面;2使0532=-++z my x 与0266=+--z y lx 表示二平行平面; 3使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面; 解:1欲使所给的二方程表示同一平面,则: 即:从而:97=l ,913=m ,937=n ; 2欲使所给的二方程表示二平行平面,则: 所以:4-=l ,3=m ;3欲使所给的二方程表示二垂直平面,则: 所以: 71-=l ;3.求下列两平行平面间的距离: 10218419=++-z y x ,0428419=++-z y x ; 207263=--+z y x ,014263=+-+z y x ; 解:1将所给的方程化为: 所以两平面间的距离为:2-1=1;2同1可求得两平行平面间的距离为1+2=3; 4.求下列各组平面所成的角: 1011=-+y x ,083=+x ;2012632=-+-z y x ,0722=-++z y x ; 解:1设1π:011=-+y x ,2π:083=+x∴ 4),(21πππ=∠或43π; 2设1π:012632=-+-z y x ,2π:0722=-++z y x218cos ),(121-=∠ππ或218cos ),(121--=∠πππ; 5. 求下列平面的方程:1 通过点()1,0,01M 和()0,0,32M 且与坐标面xOy 成060角的平面;2 过z 轴且与平面0752=--+z y x 成060角的平面. 解 ⑴ 设所求平面的方程为.113=++z b y x 又xoy 面的方程为z=0,所以21113110103160cos 222=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅+⋅=b b ο 解得203±=b ,∴所求平面的方程为12633=+±+z yx , 即03326=-+±z y x⑵设所求平面的方程为0=+By Ax ;则21514260cos 22=+++±+=B A BA ο 3,038322BA B AB A =∴=-+或B A 3-= ∴所求平面的方程为03=+y x 或03=-y x .§ 空间直线的方程1.求下列各直线的方程:1通过点)1,0,3(-A 和点)1,5,2(-B 的直线; 2通过点),,(0000z y x M 且平行于两相交平面i π:)2,1(=i 的直线;3通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线;4通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; 5通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线; 解:1由本节—6式,得所求的直线方程为: 即:01553-=-=+z y x ,亦即01113-=-=+z y x ; 2欲求直线的方向矢量为: 所以,直线方程为:221102211022110B A B A z z A C A C y y C B C B x x -=-=-; 3欲求的直线的方向矢量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为:132511--=+=-z y x ; 4欲求直线的方向矢量为:{}{}{}2,1,10,1,11,1,1---=-⨯-, 所以,直线方程为:22111+==-z y x ; 5欲求的直线的方向矢量为:{}5,3,6--, 所以直线方程为:553362-+=--=-z y x ; 2.求以下各点的坐标: 1在直线381821-=-=-z y x 上与原点相距25个单位的点; 2关于直线⎩⎨⎧=+-+=+--03220124z y x z y x 与点)1,0,2(-P 对称的点;解:1设所求的点为),,(z y x M ,则: 又222225=++z y x即:222225)38()8()21(=+++++t t t ,解得:4=t 或762-所以要求的点的坐标为:)7130,76,7117(),20,12,9(---; 2已知直线的方向矢量为:{}{}{}3,6,62,1,24,1,1-=-⨯--,或为{}1,2,2-, ∴过P 垂直与已知直线的平面为:0)1(2)2(2=++--z y x ,即0322=-+-z y x ,该平面与已知直线的交点为)3,1,1(,所以若令),,(z y x P '为P 的对称点,则:221x +=,201y +=,213z+-= ∴7,2,0===z y x ,即)7,2,0(P ';3.求下列各平面的方程: 1通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; 2通过直线115312-+=-+=-z y x 且与直线 平行的平面; 3通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面; 4通过直线⎩⎨⎧=-+-=+-+014209385z y x z y x 向三坐标面所引的三个射影平面;解:1因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于矢量{}3,1,2-,所以要求的平面方程为: 即015=-++z y x ;2已知直线的方向矢量为{}{}{}5,3,11,2,11,1,2-=-⨯-, ∴平面方程为:即015211=-++z y x3要求平面的法矢量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x ; 4由已知方程⎩⎨⎧=-+-=+-+014209385z y x z y x分别消去x ,y ,z 得到:0231136=+-z y ,079=+-z x ,06411=+-y x此即为三个射影平面的方程;4.化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦: 1⎩⎨⎧=---=+-+0323012z y x z y x 2⎩⎨⎧=+--=-+064206z y x z x3⎩⎨⎧==-+20x z y x解:1直线的方向数为:)5(:1:)3(1312:3221:2111--=------∴射影式方程为: ⎪⎩⎪⎨⎧-+-=--+--=59515253z y z x , 即⎪⎩⎪⎨⎧--=+=59515253z y z x ,标准方程为:z y x =-+=-51595352, 方向余弦为:35353553cos ±=±=α,35153551cos =-±=β,3555351cos ±=±=γ;2已知直线的方向数为:)4(:3:44201:2111:1410-=----,射影式方程为:⎪⎩⎪⎨⎧--+-=--+-=4184342444z y z x , 即⎪⎩⎪⎨⎧+-=+-=29436z y z x 标准方程为:z y x =--=--432916, 方向余弦为:4144411cos =-±=α,41344143cos =-±=β, 4144411cos ±=±=γ;3已知直线的方向数为:1:1:0)1(:)1(:00111:1011:0011=--=--, ∴射影式方程为: ⎩⎨⎧-==22z y x ,标准式方程为:z y x =+=-1202, 方向余弦为:0cos =α,21cos ±=β,21cos ±=γ;5. 一线与三坐标轴间的角分别为,,αβγ.证明222sin sin sin 2.αβγ++= 证 ∵222cos cos cos 1αβγ++=, ∴2221sin 1sin 1sin 1αβγ-+-+-=,即222sin sin sin 2.αβγ++=§ 直线与平面的相关位置1.判别下列直线与平面的相关位置:137423zy x =-+=--与3224=--z y x ; 2723z y x =-=与8723=+-z y x ; 3⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ; 4⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x ; 解:1 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-, 而017302)4(234≠=-⨯--⨯-⨯,, 所以,直线与平面平行; 2 0717)2(233≠⨯+-⨯-⨯ 所以,直线与平面相交,且因为772233=--=, ∴ 直线与平面垂直;3直线的方向矢量为:{}{}{}1,9,51,1,22,3,5=--⨯-,0179354=⨯+⨯-⨯,而点)0,5,2(--M 在直线上,又07)5(3)2(4=--⨯--⨯, 所以,直线在平面上; 4直线的方向矢量为{}9,2,1-,∴直线与平面相交;2.试验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角;解: 032111)1(2≠-=⨯-⨯+-⨯∴ 直线与平面相交;又直线的坐标式参数方程为: ⎪⎩⎪⎨⎧+=+=-=t z t y t x 211设交点处对应的参数为0t ,∴10-=t ,从而交点为1,0,-1;又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ, ∴ 6πθ=;3.确定m l ,的值,使: 1直线13241zy x =+=-与平面0153=+-+z y lx 平行; 2直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直;解:1欲使所给直线与平面平行,则须: 即1=l ;2欲使所给直线与平面垂直,则须: 所以:8,4-==m l ;4.决定直线⎩⎨⎧=++=++00222111z C y B x A z C y B x A 和平面0)()()(212121=+++++z C C y B B x A A 的相互位置;解:在直线上任取),,(1111z y x M ,有:这表明1M 在平面上,所以已给的直线处在已给的平面上;5.设直线与三坐标平面的交角分别为.,,υμλ证明.2cos cos cos 222=++υμλ 证明 设直线与X,Y,Z 轴的交角分别为.,,γβα而直线与yoz,zox,xoy 面的交角依次为.,,γμλ那么,υπγμπβλπα-=-=-=2,2,2.而.1cos cos cos 222=++γβα∴.12cos 2cos 2cos 222=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-υπμπλπ从而有.2cos cos cos 222=++υμλ 6.求下列球面的方程1与平面x+2y+3=0相切于点()3,1,1-M 且半径r=3的球面;2 与两平行平面6x-3y-2z-35=0和6x-3y-2z+63=0都相切且于其中之一相切于点()1,1,5--M 的球面.解: ⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+=+=t z t y t x 323321311为过切点M 且垂直与已知平面的直线,显见32,32,31是这条直线的方向余弦. 取3=t ,则得3,2==y x ; 取3-=t ,则得5,1,0-=-==z y x .故所求球面有两个:()()()9132222=++-+-z y x ,与()()951222=++++z y x . ⑵t z t y t x 21,31,65--=--=+=为过点M 且垂直于两平面的直线,将其代入第二个平面方程,得2-=t ,反代回参数方程,得3,5,7==-=z y x .设球之中心为C ,半径为r ,则()()()()49112115,1,2,12222=--+--++=-r C .故所求球面方程为()()()49121222=-+-++z y x .空间直线的相关位置1.直线方程⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的系数满足什么条件才能使:1直线与x 轴相交; 2直线与x 轴平行; 3直线与x 轴重合; 解:1所给直线与x 轴相交⇔ ∃ 0x 使0101=+D x A 且0202=+D x A⇔02211=D A D A 且 1A ,2A 不全为零;2 x 轴与平面01111=+++D z C y B x A 平行 又x 轴与平面02222=+++D z C y B x A 平行,所以 即021==A A ,但直线不与x 轴重合,∴ 21,D D 不全为零;3参照2有021==A A ,且021==D D ; 2.确定λ值使下列两直线相交: 1⎩⎨⎧=-++=-+-01540623z y x z y x λ与z 轴;2λ12111-=+=-z y x 与z y x ===+11; 解:1若所给直线相交,则有类似题1: 从而 5=λ;2若所给二直线相交,则 从而:45=λ;3.判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面;如果是异面直线,求出它们之间的距离;1⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;2131833-=--=-z y x 与462733-=+=-+z y x ; 3⎪⎩⎪⎨⎧--=+==212t z t y tx 与5217441-+=-=-z y x ; 解:1将所给的直线方程化为标准式,为:-2:3:4=2:-3:-4 ∴二直线平行;又点)0,43,23(与点7,2,0在二直线上,∴矢量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法矢量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x , 即 0919225=++-z y x ;2因为0270423113637833≠-=---++=∆,∴二直线是异面的;二直线的距离:{}{}30327031562704,2,31,1,34231133156222==++=-⨯----=d ;3因为0574121031=--=∆,但是:1:2:-1≠4:7:-5所以,两直线相交,二直线所决定的平面的法矢量为{}{}{}1,1,35,7,412,1--=-⨯-,∴平面的方程为:33++-z y x ;4.给定两异面直线:01123-==-z y x 与10211zy x =-=+,试求它们的公垂线方程;解:因为{}{}{}1,2,11,0,10,1,2--=⨯, ∴公垂线方程为:即⎩⎨⎧=--+=-+-022220852z y x z y x ,亦即⎩⎨⎧=--+=-+-010852z y x z y x ;5.求下列各对直线间的角 1 .61932256231+=-=-=+=-z y x z y x 与 2.02302640220243⎩⎨⎧=+-=--+⎩⎨⎧=-+=--z y z y x z y x z y x 与解 1 777236814436912546cos 222222212121212121±=++++++±=++++++±=z y x z y x z z y y x x θ ∴ .7772arccos 7772arccos -=πθ或(2) 直线43412630230264,11210:0220243+=+=⎩⎨⎧=+-=--+=⎩⎨⎧==-+=--z y x z y z y x zy x z y x z y x 的对称式方程为:的对称式方程为 ∴ .19598arccos 19598arccos-=πθ或 6. 设d 和d '分别是坐标原点到点(,,)M a b c 和(,,)M a b c ''''的距离,证明当aa bb cc dd ''''+++时,直线MM '通过原点.证 {},,OM a b c =,{},,OM a b c ''''=,OM OM aa bb cc ''''⋅=++,而当OM OM OM OM ''⋅=⋅,cos(,)OM OM dd ''=时,必有cos(,)1OM OM '=,∴//OM OM ',∴当aa bb cc dd ''''+++时, 直线MM '通过原点.7.求通过点()2,0,1-P 且与平面0123=-+-z y x 平行,又与直线12341zy x =--=-相交的直线方程.解 设过点()2,0,1-P 的所求直线为∵ 它与已知平面0123=-+-z y x 平行,所以有023=+-z y x 1 又∵ 直线与已知直线相交,那么必共面. ∴ 又有 即 7x+|8y-12z=02由1,2得 31:50:48713:71232:12821::-=----=Z Y X而 ()1:2:431:50:4-≠- ∴ 所求直线的方程为.3125041+==--z y x 8. 求通过点()1,0,4-P 且与两直线⎩⎨⎧=-+=--⎩⎨⎧=--=++4423,221z y x z y x z y x z y x 与都相交的直线方程.解 设所求直线的方向矢量为{}z y x v ,,=→, 则所求直线可写为.14Zz Y y X x +==- ∵ 直线1l 平行于矢量{}{}{}3,3,01,1,21,1,121-=--⨯=⨯→→n n ∴矢量{}3,3,0-=→v 为直线1l 的方向矢量. 由于02111≠-因此令y=o 解方程组得x=1,z=o∴ 点1,o,o 为直线1l 上的一点. ∴ 直线1l 的标准方程为62155+=-=-z y x . ∵ (){}.3,3,01.0,0,1,1121-=→v M l l l l 方向矢量为过点都相交且与∴ 有0330103,,11=--=⎪⎭⎫⎝⎛→→→ZYXv v p m即 X+3Y+3Z=0. 即 X-13Y-3Z=0. 得 X:Y:Z=30:6:-16 又∵ ,3:3:016:6:30-≠- 即 .1→→v v 不平行6:1:516:6:30≠-, 即 .2→→v v 不平行 ∴ 所求直线方程为: 9. 求与直线137182-=-=+z y x 平行且和下列两直线相交的直线. ⑴⎩⎨⎧+=-=⎩⎨⎧+=-=5342,3465y z x z x z x z ⑵⎪⎩⎪⎨⎧=-=+=⎪⎩⎪⎨⎧=+=-=t z t y t x t z t y t x 74105,5332 解 ⑴ 在两直线上分别取两点()(),4,3,0,39,0,921--M M 第一条直线的方向矢量为{}0,1,01→v , 第二条直线的方向矢量为{}6,2,32→v , 作两平面:即 ,03198;03038=---=+-z y x z x将其联立即为所求直线的方程⑵021532,017813253=++-=-+z y x z y x 即1017,0178145710=---=+-z y x z y x 即212联立: .017021532⎩⎨⎧=---=++-z y x z y x这就是所要求的直线方程. 10. .求过点()0,1,2P 且与直线垂直225235:-+==-z y x l 相交的直线方程. 解 设所求直线的方向矢量为{}Z Y X v ,,0=→则所求直线0l 可写为.012Zz Y y X x -=-=- ∴ 3X+2Y-2Z=0 1 即 50X-69Y+6Z=0 2 由1,2得 311:131:120::=Z Y X ∴所求直线0l 为:§ 空间直线与点的相关位置1.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 通过原点的条件是什么解:已知直线通过原点⇔ 故条件为021==D D ; 2.求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离;解:直线的标准方程为:所以,p 到直线的距离为:1534532025)2(1212392292421243222222===-++-+--+-=d ; § 平面束1.求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面:1通过原点; 2与y 轴平行; 3与平面0352=-+-z y x 垂直;解:1设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ, 故所求的平面方程为: 即:0539=++z y x ; 2同1中所设,可求出51=λ;故所求的平面方程为:0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x ;3如1所设,欲使所求平面与平面0352=-+-z y x 垂直,则须: 从而:3=λ,所以所求平面方程为:05147=++y x ;2.求平面束0)42()53(=+--+-+z y x y x λ,在y x ,两轴上截距相等的平面; 解:所给的方程截距式为: 据要求:λλλλ--=+-345145 ⇒ 1=λ; 所以,所求的平面为:01222=--+z y x ;3.求通过直线⎩⎨⎧=+-=++0405z x zy x 且与平面01284=+--z y x 成4π角的平面;解:设所求的平面为:0)4()5(=+-+++z x z y x λμ 则:22)8()4(1)()5()()8()()4(5)(222222=-+-+-+++-⨯-+-⨯++±λμμλμλμμλμ 从而 ,1:0:=λμ或3:4- 所以所求平面为:04=+-z x或012720=-++z y x ;4.求通过直线32201-=+=+zy x 且与点)2,1,4(p 的距离等于3的平面; 解:直线的一般方程为:设所求的平面的方程为0)223()1(=++++z y x μλ, 据要求,有:∴有λμμλμλ908125)13(92222++=+∴ 1:6:-=μλ或8:3即所求平面为:0)223()1(6=++++-z y x或 0)223(8)1(3=++++z y x即:04236=+--z y x 或01916243=+++z y x ;5. 求与平面0432=-+-z y x 平行且满足下列条件之一的平面. ⑴通过点()3,2,1-; ⑵y 轴上截距为3-; ⑶与原点距离为1.解: ⑴设所求的平面为032=-+-λz y x ,将点()3,2,1-的坐标代入方程得14=λ,则所求平面方程为01432=-+-z y x .⑵设所求的平面为λ=+-z y x 32.6,32,132=-=-=-=-=λλλλλ得令zyx.故所求平面为0632=-+-z y x .⑶设所求的平面为032=++-λz y x ,将其法化为()032141=++-±λz y x ,将原点的坐标代入得141±=λ,故所求平面为014132=±+-z y x .6.设一平面与平面x+3y+2z=0平行,且与三坐标平面围成的四面体体积为6,求这平面的方程;解 设所求平面方程为:x+3y+2z+0=λ 原点到该平面的距离为.14222λ=++=CB A D d∴ λλλ21,31,---分别叫做平面在三坐标轴上的截距. 四面体体积.31Sh V = ∴ )21)(31)((21316λλλ---=∴ .6±=λ∴ 这个平面的方程为0623=±++z y x8.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的系数满足什么条件才能使直线在坐标平面XOZ 内解 坐标平面XOZ 属于平面束化简为()()()()021212121=+++++++mD lD z mC lC y mB lB x mA lA 设平面XOZ 面.0,0,0≠≠=z x y有⎪⎩⎪⎨⎧=+=+=+000212121mD lD mC lC mA lA ∴.212121D D C C A A ==。

解析几何吕林根许子道第四版PPT课件

解析几何吕林根许子道第四版PPT课件

上一页 下一页
返回
定理1.4.6 两向量共线的充要条件 是它们线性相关 . 定理1.4.7 三个向量共面的充要条 件是它们线性相关 . 定理 1.4.8 空间任何四个向量总是 线性相关 .
上一页 下一页
第25页/共198页
返回
§1.5 标架与坐标
三个坐标轴的正方向 符合右手系.
z 竖轴
即以右手握住
定理 向量的加法满足下面的运算规律:
(1)交换律:
a
b
b
a.
(2)结合律:
a
b
c
(a
b)
c
a
(b
c ).
(3) a (a) 0.
上一页 下一页
第10页/共198页
返回
有限个矢量a1, a2 ,an相加可由矢量的三角形求和 法则推广
自 任 意 点O开 始 , 依 次 引OA1 a1 , A1 A2 a2 ,,
z 轴,当右手的四个 手指从正向 x轴以
2
角度转向正向 y 轴
时,大拇指的指向
就是 z 轴的正向.
定点 o •
y 纵轴
横轴 x 空间直角坐标系
下一页
第26页/共198页
返回
2、坐标面与卦限

yoz面

xoy面

x

z zox 面

o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
上一页 下一页
返回
第27页/共198页
线 的 充 要 条 件 是r可 以 用 矢 量e线 性 表 示 , 或 者 说r
是e的 线 性 组 合 , 即r=xe,
(1.4 1)
并且系数x被e, r唯一确定.

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

PA1 PO PA2 PO PAn PO 0






PA1 PA2 PAn n PO
§1.4 向量的线性关系与向量的分解
1.在平行四边形 ABCD 中, (1)设对角线 AZ a, BD b, 求 AB, BC , CD, DA. 解: AB
解?a?b?b?a?b?a?b?a?b?a?b?a?b?a?????????????????yxyyxxyyxxyxyx22?e?e?e?e?e?e?e?e?b?a?????????3132132142232?e?e?e?e?e?e?e?e?e?b?a???????????3213213213422232?e?e?e?e?e?e?e?e?e?b?a???????????321321321710322322323
OA OB + OC = OL + OM + ON .
7. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明 [证明] OA OL LA
OB OM MB OC ON NC OA OB OC OL OM ON ( LA MB NC )
1 1 1 1 b a , BC b a , CD b a , DA b a .设边 BC 和 CD 的 2 2 2 2






(2)中点 M 和 N,且 AM P, AN q 求 BC , CD 。 解: AC
1 1 q P , BC 2MC 2 q P P q 3P 2 2








《解析几何》(第四版)吕林根许子道编第一章向量与坐标小结

《解析几何》(第四版)吕林根许子道编第一章向量与坐标小结

一组数x, y,使 r xe1 ye2 .
3)若e1, e2 , e3不共面,则 r可表示为
r
xe1
ye2
ze3
(系数x,
y,
z被e1
,
e2
,
e3
,
r唯一确定
).
关于线性相关性的几个重要定理:
1) a1, a2,, an (n 2)线性相关 其中有一个矢量 是其余矢量的线性组合.
2)若一组矢量中的一部分 矢量线性相关 ,则这一
(a (ba)aa) (c0a()aaa0;);(b(c)a);
( )a a a
(a
b)
a
b
多边形法则
OA OA1 A1A2 An1An .
3、向量的分解与线性关系
关于矢量分解的几个重要结论:
1)若e 0,则r与e共线 存在唯一实
数x,使r=xe,
2)若e1, e2不共线,则 r与e1, e2共面 存在唯一
组矢3)量一线个性矢相量关a线. 性相关
a
0,
两a,个b共矢量 线线性存相 关在不 全两为矢零 量共的线数,, ,使 a b 0.
三个矢量线性相关 三矢量共面.
a,
b,
c共面
存在不全 为0的数,
,
,
使
a b c 0.
4) 空间中任意四个矢量总 是线性相关的.
即存在线性关系
a b c d 0.
4、向量在轴上的射影
点在轴上的射影 (点) 向量在轴上的射影 (数)
射影定理
Pr ju AB | AB | cos(AB,u);
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
Pr
ju a Pr

解析几何全册课件(吕林根版)

解析几何全册课件(吕林根版)
上一页
下一页
返回


除这些情况外,现分别按下面两种情况证明.
中有一个为零向量时,
显然成立,
1)
2)

平行.可以找到数
使得
这只需按

同向或相反,取


不平行.如图,
是以
向量为边的三角形,按相似比为
可得出相似

3)
由相似三角形对应边成比例的关系,可以得出


例1设AM是三角形ABC的中线,求证:
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
(2)结合律:
(3)
上一页
下一页
返回
O
A1
A2
A3
A4
An-1
An
这种求和的方法叫做多边形法则
上一页
下一页
返回
向量减法
上一页
下一页
返回
A
B
C
上一页
返回
例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.

方向角与方向余弦的坐标表示式
上一页
下一页
返回
非零向量 的方向角:
非零向量与三条坐标轴的正向的夹角称为方向角.
上一页
下一页
返回
由图分析可知
向量的方向余弦
方向余弦通常用来表示向量的方向.
上一页
下一页
返回
当 时,
向量方向余弦的坐标表示式
线为
的连
的中点
对边
一组
设四面体

e
e
e
AP
e
AD
e
AC

解析几何课件(第四版)

解析几何课件(第四版)

交线为椭圆.
上一页
下一页
返回
z a2 x2 y2 2 表示怎样的曲线? 例2 方程组 a 2 a 2 ( x ) y 2 4

z a x y
2 2
2
上半球面,
a 2 a 2 圆柱面, ( x ) y2 2 4
交线如图.
上一页
返回
§2.2
曲面的方程
下一页
返回
以下给出几例常见的曲面.
例 1 建立球心在点 M 0 ( x0 , y0 , z 0 ) 、半径为 R 的球面方程.

设 M ( x , y , z ) 是球面上任一点,
根据题意有
| MM 0 | R
x x0 2 y y0 2 z z0 2 R
所求方程为 x x0 y y0 z z0 R 2
.
旋转一周得旋转曲面 S
M(x,y,z) S
f (y1, z1)=0
z1 z
| y 1 | MP
S
x y2 2zFra bibliotekz1C
o
y1
y
.
x
上一页 下一页
返回
f ( y, z ) 0 曲线 C x 0
旋转一周得旋转曲面 S
绕 z轴
P M
z
N (0, y1 , z1 )
.
z
x2 2 y
y
o
平面
y
o
x
抛物柱面 抛物柱面方程:
x
y x
平面方程:
x 2y
2
下一页
y x
返回
只含 x, y 而缺 z 的方程 F ( x , y ) 0 ,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy 面上曲线 C :F ( x , y ) 0 .

解析几何第四版吕林根 期末复习 课后习题(重点)详解

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标§ 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21AC AB AL +=Θ )(21+=)(21CB CA CN +=0)(21=+++++=++∴7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL ++.[证明] LA OL OA +=Θ MB OM OB += NC ON OC +=)(OM +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++ ON OM OL OC OB OA ++=++∴ 从而三中线矢量,,构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB ++OD =4OM .[证明]:因为OM =21(OA +), OM =21(OB +OD ), 所以 2=21(OA +OB +OC +) 所以OA +OB ++OD =4OM .10、用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§ 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =(-1),O 是空间任意一点,求证:OP =λλ++1[证明]:如图1-7,因为=-OA ,PB =OB -,所以 -OA = (OB -),(1+)OP =+,从而 OP =λλ++1OB.4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将分解为21,e e 的线性组合 解:(1)()12123131,e e e e -==-=-=Θ, 2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为||||TC ||11e e , 且 BT 与方向相同, 所以 BT ||21e e .由上题结论有AT ||||1||212211e e e e e +||||212112e e e e e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。

解析几何吕林根第四版

解析几何吕林根第四版

解析几何吕林根第四版简介《解析几何》是解析几何学的经典教材之一,已经出版了多个版本。

其中,《解析几何吕林根第四版》是该教材的最新版本。

本文将对该版本进行详细解析,介绍其内容和特点。

第一章探索解析几何本章从引入几何、解析几何的定义和发展历程开始,引导读者了解解析几何的基本概念和研究方法。

主要内容包括:•几何与解析几何的区别•坐标系的使用和意义•向量的基本性质和运算法则•点、线、面的表示和方程通过本章的学习,读者能够建立起对解析几何的基本认知,并具备了解几何对象解析性质的能力。

第二章坐标系和变换本章介绍了坐标系的不同类型和变换方法,为后续章节的学习打下坚实的基础。

主要内容包括:•直角坐标系、极坐标系、三维坐标系的概念和表示方法•坐标变换的基本原理和应用•坐标系的旋转、平移和缩放等变换方法通过学习本章,读者可以熟练使用不同类型的坐标系,并能够进行各种坐标变换操作。

第三章直线和曲线本章介绍了直线和曲线的解析几何表示以及相关性质。

主要内容包括:•直线的一般方程和参数方程•曲线的参数方程和隐式方程•圆、椭圆、双曲线和抛物线的解析几何表示和性质•椭圆的焦点和准线通过学习本章,读者可以准确地描述直线和曲线,并能够分析其性质和特点。

第四章曲面和空间曲线本章介绍了曲面和空间曲线的解析几何表示和性质。

主要内容包括:•曲面的方程和类型•空间曲线的参数方程和表示方法•平面、二次曲面、旋转曲面的解析几何特征和性质通过学习本章,读者可以了解不同类型的曲面和曲线,并能够进行相关分析和计算。

第五章空间直线和平面本章介绍了空间直线和平面的解析几何表示和性质。

主要内容包括:•空间直线的一般方程和参数方程•平面的一般方程和参数方程•直线和平面的位置关系和交点计算•点到直线和平面的距离计算通过学习本章,读者可以准确地描述空间中的直线和平面,并能够进行相关计算和分析。

第六章空间几何与向量代数本章介绍了空间几何和向量代数的关系和应用。

主要内容包括:•空间向量的模长、方向和运算法则•空间向量的线性相关性和线性独立性•向量的点积和叉积•向量在空间几何中的应用通过学习本章,读者可以将空间几何问题转化为向量代数问题,并能够进行向量相关的计算和分析。

解析几何课件(吕林根+许子道第四版)

解析几何课件(吕林根+许子道第四版)

从而得
AP1

1 2
1 2
e1

1 2
(e2

e3 )

1 4
(e1

e2

e3 ),
同理可得
APi

1 4
(e1

e2

e3 ),(i

2,3)
所以
AP1=AP2=AP3
上一页
从而知P1, P2 , P3三点重合,命题得证 .
下一页
返回
定义1.4.2 对于n(n 1)个向量a1 , a2 ,, an,如果存
叫 做 矢 量a1, a2 ,, an的 线 性 组 合. 定理1.4.1 如果矢量e 0,那么矢量r与矢量e共
线 的 充 要 条 件 是r可 以 用 矢 量e线 性 表 示 , 或 者 说r
是e的 线 性 组 合 , 即r=xe,
(1.4 1)
并且系数x被e, r唯一确定.
这时e称为用线性组合来表示共线矢量的基底.
向M量1为的起大点小,.M| a2|为或终| 点M的1M有2 |向线段.
下一页
返回
单位向量:模为1的向量.
零向量:模为0的向量.0

e
a

e
M1M2
相同,定那义a么1.叫1.做2 =相如等果向两量个b.向记量为的模a 相b等 且方向
所有的零向量都相等.
定义1.1.3 两个模相等,方向相反的向
返回
§1.3 数乘向量
定义1.3.1 实数与矢量a的乘积是一个矢量,记做 a,它的
模是 a a ;a的方向,当 0时与a相同,当 0时与a
相反.我们把这种运算叫做数量与矢量的乘法,简称为数乘.

解析几何课件(吕林根许子道第四版)(精)

解析几何课件(吕林根许子道第四版)(精)

空间中点与平面的关系
点在平面内:点 位于平面内满足 平面的定义和性 质
点在平面外:点 不在平面内与平 面平行或与平面 相交
点的轨迹:点按 照某种规律在平 面上移动形成轨 迹
点的射影:点在 平面上的投影与 原点连线与平面 的夹角关系
空间中直线与平面的关系
直线与平面的位置关系:直线要么在平面上要么与平面平行要么与平面相交 直线与平面的交点:直线与平面的交点称为直线在平面上的投影 直线与平面的角度:直线与平面之间的角度称为线面角可以通过几何或向量方法求解 直线与平面的距离:直线到平面的最短距离称为线到面的距离可以通过几何或向量方法求解
05
解析几何中的投影与透视
投影的基本概念
投影的定义:通过光线将物体投射到平面上生成影子。 投影的分类:中心投影、平行投影。 投影的应用:建筑设计、工程制图、动画制作等领域。 投影的性质:与光源、物体和投影面的位置关系有关。
透视的基本概念
透视的定义:通过透明平面观察物体研究物体在平面上的投影从而表现出物体的三维空间 感。
应用:在解析几何中坐标变换被广泛应用于解决各种实际问题如平面几何、 立体几何、曲线和曲面等。 意义:通过坐标变换可以深入理解几何图形的内在性质和规律进一步探索 几何图形的变换和对称等特性。
图形变换
平移变换:将图形在平面内沿某一方向移动一定的距离而不改变其形状和大小。 旋转变换:将图形绕某一点旋转一定的角度而不改变其形状和大小。 伸缩变换:将图形按一定的比例进行放大或缩小而不改变其形状和大小。 对称变换:将图形关于某一直线或点进行翻转或反射而不改变其形状和大小。
第四 版)(精).ppt
单击此处添加副标题
汇报人:
目录
01 课件概览 02 解析几何基础知识 03 解析几何中的曲线与方程 04 解析几何中的平面与空间 05 解析几何中的投影与透视 06 解析几何中的变换与对称

解析几何课件(吕林根+许子道第四版)

解析几何课件(吕林根+许子道第四版)

上一页
返回
§1.3 数乘向量
定 义 1 .3 .1实 数 与 矢 量 a 的 乘 积 是 一 个 矢 量 , 记 做 a ,它 的 模 是 aa; a 的 方 向 , 当 0 时 与 a 相 同 , 当 0 时 与 a
相 反 .设我 们 把 是这 一种 个运 数算 ,叫 做 向数 量量 a与 与矢 量 的的 乘乘 积法 , a简 规称 定为 为数 乘 .
两类量: 数量(标量):可用一个数值来描述的量;
向量(矢量)既有大小又有方向的量.
向量的几何表示:有向线段 有向线段的长度表示向量的大小,
M2 a
有a向或向线M量段1的M 的模2方:以 向M 向表1 量示为 的向起 大量点 小的, .方M | a向2|为 或. 终 | 点 M的 1 M M有 21 |向 线 段 .
返回
定义1.1.4 平行于同一直线的一组向量 叫做共线向量.
零向量与任何共线的向量组共线. 定义1.1.5 平行于同一平面的一组向量 叫做共面向量.
零向量与任何共面的向量组共面.
上一页
返回
§1.2 向量的加法
定义 1.2.1 设已知矢 a、 b, 量以空间任O 意 为一 始点 点
接连作矢 OA量 a, ABb得一折O线 A, B 从折线的端
下一页
返回
单位向量:模为1的向量.
e
a

零向量:模为0的向量.0
e
M1M2
相同,定那义a么1.叫1.做2 =相如等果向两量个b.向记量为的模a相b等 且方向
所有的零向量都相等.
定义1.1.3 两个模相等,方向相反的向
量叫做互为反向量.
a的反矢量记 a 为
AB与BA互为反矢量.

解析几何(第四版吕林)-根课后答案

解析几何(第四版吕林)-根课后答案

第一章 矢量与坐标§ 矢量的概念1.下列情形中矢量终点各构成什么图形(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.[解]:(1)单位球面; (2)单位圆(3)直线;(4)相距为 2 的两点AF2. 设点 O 是正六边形 ABCDEF 的中心,在矢量 OA 、 OB 、 OC 、 OD 、 OE 、 OF 、 AB 、 BC 、 CD 、 DE 、 EF 和 FA 中,哪些矢量是相等的BEOC[解]:如图 1-1,在正六边形 ABCDEF 中,相等的矢量对是:图 1-1OA和EF;OB和FA;OC和AB;OE和CD;OF和DE. 3. 设在平面上给了一个四边形 ABCD,点 K、L、M、N 分别是边AB、BC、CD、DA的中点,求证: KL = NM . 当 ABCD 是空间四边形时,这等式是否也成立[证明]:如图 1-2,连结 AC, 则在 BAC 中,DAC 中,NM 1 AC. NM 与 AC 方向相同, 2从而 KL=NM 且 KL 与 NM 方向相同,所以 KL = NM .KL 1 AC. KL 与 AC 方向相同;在 24. 如图 1-3,设 ABCD-EFGH 是一个平行六面体, 在下列各对矢量中,找出相等的矢量和互为相 反矢量的矢量:(1) AB 、 CD ; (2) AE 、 CG ; (3) AC 、 EG ;(4) AD 、 GF ;(5) BE 、 CH .[解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。

§ 矢量的加法1.要使下列各式成立,矢量 a, b 应满足什么条件 (1) a b a b; (2) a b a b ; (3) a b a b ; (4) a b a b ; (5) a b a b. [解]:(1) a, b 所在的直线垂直时有 a b a b ;(2) a,b 同向时有 a b a b ; (3) a b , 且 a,b 反向时有 a b a b ; (4) a,b 反向时有 a b a b ; (5) a,b 同向,且 a b 时有 a b a b.图 1—3§ 数量乘矢量1 试解下列各题.⑴ 化简 (x y) (a b) (x y) (a b) . ⑵ 已知 a e1 2 e2 e3 , b 3e1 2 e2 2 e3 ,求 a b , a b 和 3 a 2 b .⑶从矢量方程组3 x4ya,解出矢量x,y.2 x 3 y b解⑴ (x y) (a b) (x y) (a b) x a x b y a y b x a x b y a y b 2x b 2y a⑵ a b e1 2 e2 e3 3e1 2 e2 2 e3 4 e1 e3 , a b e1 2 e2 e3 (3e1 2 e2 2 e3 ) 2 e1 4 e2 3e3 ,3 a 2 b 3(e1 2 e2 e3 ) 2(3e1 2 e2 2 e3 ) 3e1 10 e2 7 e3 . 2 已知四边形 ABCD中, AB a 2 c , CD 5 a 6 b 8 c ,对角线 AC 、 BD 的中点分别为 E 、 F ,求 EF .解EF1CD1AB1(5 a6 b 8 c)1(a2 c)3a3b5c.2222 3 设 AB a 5 b , BC 2 a 8 b , CD 3(a b) ,证明: A 、 B 、 D 三点共线. 证明 ∵ BD BC CD 2 a 8 b 3(a b) a 5 b AB∴ AB 与 BD共线,又∵ B 为公共点,从而 A 、 B 、 D 三点共线. 4 在四边形 ABCD中,AB a 2 b ,BC 4 a b ,CD 5 a 3b ,证明 ABCD为梯形.证明∵ AD AB BC CD (a 2 b) (4 a b) (5 a 3 b) 2(4 a b) 2 BC∴ AD ∥ BC ,∴ ABCD为梯形.6. 设 L、M、N 分别是ΔABC 的三边 BC、CA、AB 的中点,证明:三中线矢量 AL , BM , CN可 以构成一个三角形.[证明]: AL 1 (AB AC) 2BM 1 (BA BC) 2CN 1 (CA CB) 2 AL BM CN 1 (AB AC BA BC CA CB) 0 2从而三中线矢量 AL, BM ,CN 构成一个三角形。

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

r

a(

sin )i


a(1 cos ) j , (2.1-6)
(2.1-6) 是P点轨迹的向量式参数方程,参数
( ).
设P点坐标(x, y),由(2.1 6)得P点的坐标式参 数方程
x a( sin ),

y

a(1
cos
),
(
第二章 轨迹与方程
取定相应坐标系后
平面上的点 一一对应 空间上的点 一一对应
二元有序数组 (x, y). 三元有序数组(x, y, z).
将图形看作点的轨迹,本章将建立轨迹与方程的 对应。
2.1平面曲线的方程
曲线上点的特性,在坐标面上,反映为曲线上
点的坐标 x与y 应满足的制约条件,一般用方程表
示为
).
(2.1-7)
取0 时,消去 ,得P点轨迹在0 时
的一段的普通方程 x a arccosa y 2ay y2 . a
(2.1-8)
此方程要比参数方程 (2.1 7)复杂得多. 当圆在直线上每转动一 周时,点P在一周前后 的运动情况是相同的 ,因此曲线是由一系列完 全相 同的拱形组成 (如图),曲线叫旋轮线或摆线 .
F (x, y) 0.
例1 一个圆在一直线是上无 滑动地滚动,求圆 圆周上的一点的轨迹.
解 取直角坐标系,设半径为a的圆在x轴上滚动,
开始时点P恰在原点O
y
(如图),经一段时间的
滚动, 与直线的切点移
P r
Ca
到A点,圆心移到C的位 o A
x
置, 这时有
r OP OA AC CP.
P(x(t), y(t)) r (a)

解析几何课件(吕林根+许子道第四版)知识分享PPT200页

解析几何课件(吕林根+许子道第四版)知识分享PPT200页
Байду номын сангаас
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
解析几何课件(吕林根+许子道第四版) 知识分享
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GF与 CG共线
证明: AG = λGD; BG = µGE;
CG = AG − AC = λ AD − AC
=
λ

1
(
1+ λ
AB + AC)

AC
1+λ 2
= λ AB − λ + 2 AC
2(1 + λ) 2(1 + λ)
CG = BG − BC = µ BE − BC 1+ µ
= µ • (AE − AB) − BC 1+ µ
八、共面向量的条件
定理1.4.7 三向量共面的充要条件是它们线性相关. 定理1.4.8 空间任何四个向量总是线性相关.
推论 空间四个以上向量总是线性相关.
例6
设 p = a − b + 5 − 1 b + b − 3a , q = 4a + 5b,
2
5
试证明 : p // q.
证明:
p
=
(1

5
组合,即
r = xe1 + ye2 + ze3 ,
C
并且其中系数 x, y, z 被
e1, e2, e3, r 惟一确定.
P
向量 e1, e2, e3 叫做空间向量的基底.
E3 e3 r
E1 e1 O e2 E2
B
A
例1 已知三角形OAB,其中= OA a= , OB b, 而M、N分别
是三角形OA,OB 两边上的点,且有OM= λ a (0 < λ < 1) ,
线性相关.
推论 一组向量如果含有零向量,那么这组向量必线性相关.
七、共线向量的条件
定理 1.4.6 两向量共线的充要条件是它们线性相关.
证:设两向量 a,b,若它们线性相关,则有 λ a + µ b = 0, 且λ,µ不全为零,不妨设λ ≠ 0,则有a = − µλ b,即a,b共线.
反过来,由a,b共线,若b ≠ 0,则存在x,使得 =a xb,即a − x=b 0,a,b线性相关;若=b 0,a,b 显然线性相关.
解: 因为 | BT | = | e1 | | TC | | e2 |
且 BT与TC方向相同
所以
BT= | |
e1 e2
| |
TC
所以
AT=
e1
+
| |
e1 e2
| |
e2
1
+
| |
e1 e2
| |
=
|
e2 |
| e1 + e1 | +
| |
e1 e2
| e2 |
例5 试用向量方法证明:空间四边形相邻各边中点 的连线构成平行四边形.
A
AP = λ PB
P
AP = OP − OA
B
PB = OB − OP
o
OP −= OA λ ( OB − OP )
A

OP =
1 (OA + λOB). 1+λ
B
p
例4 在∆ABC 中,设 AB = e1, AC = e2 (1) 设D,E 是BC 边 三等分点,将矢量 AD, AE 分解为 e1, e2 的线性组合
A
同理可得 AP2= AP3= 14(e1 + e2 + e3).
P1 e2
C
E e1
所以
A= P1 A= P2 AP3,P1,P2,P3,三点重合.
B
例3. 已知两点A,B 及AB直线上一点 P , 满= 足AP λ PB( λ ≠ −1).
求= 证 OP 1 (OA + λOB). 1+λ
解: 设 P如图所示,则
r = xe 并且系数 x 被 e, r 惟一确定.
这时 e 称为用线性组合来表示共线向量的基底.
证 :若r = xe,则由数乘的定义知r与e共线.
r
反过来,若r与e共线,取x
=
e −
,当r与e同向时

r e
,当r与e反向时
则有r = xe.
最后证明x的唯一性.若r =xe =x'e,则(x − x')e =0, 而r ≠ 0,所以x = x'.
a2
−…−
λn-1 λn
an-1;
反过来,设a1,a2 , …an中有一个向量,不妨设是an可由其余向量线性表出, 即= an λ1a1 + λ2 a2 + … + λn-1an-1,则有λ1a1 + λ2 a2 + … + λn-1an-1 +( − 1)= an 0. 因为λ1,λ2,…λn-1,− 1不全为零,所以a1,a2,…an线性相关.
证:因为e1,e2不共线,所以有e1 ≠ 0,e2 ≠ 0.
设r与e1,e2共面,若r与e(1 或e2)共线,由定理1.4.1,有 r = xe1 + ye2,其中y = (0 或x = 0).
若r 与e1,e2都不共线,把它们归结到共同的起点O, 并设O= Ei e(= i i 1,2), O= P r,过P分别作OE2,OE1 的平行线并交OE1,OE2于A,B.
因为OA / /e1, OB / /e2, 由定理1.4.1,可= 设OA x= e1,OB ye2,
B
P
所以,
O=P OA + OB,
E2
e2
r

=r xe1 + ye2.
O e1 E1
A
反过来,设 r = xe1 + ye2,若x,y有一个是0, 例如x = 0, 则r = ye2与e2共线,从而与e1,e2,共面.
设AS
=
2 3
AP,
BT
=
2 3
BQ,
往证点S与点T重合, 即AS = AT.
( ) AS = 1 AB + AC = 1 AB + 2 AQ = 1 AB + 2 AB + 2 BQ = AB + BT = AT
3
3 3 333
五、向量的线性关系
定义 1.4.2 对于 n 个向量 a1, a2,, an ,如果存在不全为零的 n 个数
定理1.4.5 如果一组向量中的一部分向量线性相关,那 么这一组向量就线性相关.
证:设有一组向量a1,a2,…,as,…,a(r s ≤ r)其中一部分,
不妨设a1,a2,…,as线性相关,即有不全为零的数λ1,λ2, …,λs,使得λ1a1 + λ2 a2 + …λs as = 0.
则有λ1a1 + λ2 a2 + …λs as + 0as+1 + …0ar = 0.因为λ1,λ2 ,…,λs,0,…0中至少有一个不是零,所以a1,a2,…,ar
§1.4 向量的 线性关系与向量的分解
一、向量的线性组合 二、共线向量的基底
三、共面向量的基底 四、空间向量的基底
五、向量的线性关系 六、向量线性相关的条件 七、共线向量的条件
八、共面向量的条件
一、向量的线性组合
向量的加法和向量的数乘统称为向量的线性运算.
定义 1.4.1 由向量 a1, a2,, an 与实数 λ1, λ2,, λn 所组成的向量 a= λ1a1 + λ2 a2 + + λn an ,
叫做向量的线性组合.
当向量 a 是向量 a1, a2,, an 的线性组合时,我们也说:向量 a 可以用向量 a1, a2,, an 线性表示.或者说,向量 a 可以分解成向量 a1, a2,, an 的线性组合.
二、共线向量的基底
定理 1.4.1 如果向量 e ≠ 0 ,那么向量 r 与向量 e 共线的充要条件是 r 可以用向量 e 线性表示,或者说 r 是 e 的线性组合,即
= µ (1 AC − AB) − (AC − AB) 1+µ 2
= 1 AB + ( µ − 1)AC
µ +1
2(1 + µ)
AB与AC不共线;
λ =1 2(1 + λ) µ + 1
µ
− 1 =−
λ+2Leabharlann = λ2= ,µ2,
2(1 + µ)
2(1 + λ)
CG = 1 AB − 2 AC = 1 (AB − 2AC),
λ1, λ2,, λn 使得 λ1a1 + λ2 a2 + + λn an=0 ,
(1)
那么 n 个向量叫做线性相关,不是线性相关的向量叫做线性无关. 换句话说,向量 a1, a2 ,, an 叫做线性无关就是指:只有当
λ1=λ2==λn=0 时,(1)才成立.
推论 一个向量 a 线性相关的充要条件为 a=0 .
p =µ b + n(a − µ b) =na + µ(1 − n)b
B
因为
a,b 不共线,
b
N
P
所以
λ(1 − m) = n,
µb
= m µ (1 − n). O λa
p
M
a
A
解= 得 m
µ= (1 − λ ) , n 1 − λµ
λ(1 − µ ) . 1 − λµ
所= 以 p
λ(1 − µ ) a + µ(1 − λ ) b. 1 − λµ 1 − λµ
六、向量线性相关的条件
定理 1.4.4 在 n ≥ 2 时,向量 a1, a2 ,, an 线性相关的充要条件是 其中有一个向量是其余向量的线性组合.
证:设a1,a2 , …an线性相关,则(1)成立,且λ1,λ2 , …λn中至少有一
相关文档
最新文档