2014-2015学年八年级上期期中考试数学试卷及答案
2014-2015学年苏科版八年级上期中考试数学试题及答案
(第7题)A. B. C. D.A A 1A AA(说明:本试卷满分120分,考试时间:100分钟)一、选择题(本大题共有10小题,每小题3分,满分30分)1.9的平方根是……………………………………………………………………( )A .3B .-3C .±3D .32.在数0、2.0 、π3 、227、0.1010010001、7中,无理数有 ………………( ) A .1个 B .2个 C .3个 D .4个3.下列各式中,正确的是……………………………………………………………( )A .3-9=-3 B .(-3)2=9 C . ±9=±3 D .(-2)2=-2 4.下面的图形都是常见的安全标记,其中是轴对称图形的是……………………( )5.如果等腰三角形的一个角是80°,则它的顶角度数是………………………( ) A .80° B .80°或20° C .80°或50° D .20°6.有下列说法: ①有理数与数轴上的点一一对应;②直角三角形的两边长是5和12,则第三边长是13;③近似数 1.5万精确到十分位;④无理数是无限小数.其中错误..说法的个数有………………………………………………………………………( ) A .4个 B .3个 C .2个 D .1个7. 如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有……………( )A .1个B .2个C .3个D .4个8.如图,△ABD ≌△ACE ,∠AEC =110°,则∠DAE 的度数为………………( )A .30°B .40°C .50°D .60°9.如图,在△ABC 中,AB =AC ,AD =AE ,∠BAD =30°,∠EDC 的度数是……………( ) A .10° B .15° C .20° D .25°10.如图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2015-θ2014的值为……………………( )A .180°+α22014B .180°-α22014C .180°+α22015 D .180°-α22015(第16题) (第18题)(第17题) DBQPEA CO乙甲ACE 1BD 1EDCBANM BDCA二、填空题(本大题共有8小题,每空2分,满分22分) 11.16的算术平方根是 ,-8的立方根是 .12.地球七大洲的总面积约为149480000km 2,若要把这个数据精确到百万位,用科学记数法可表示为km 2.13.若x 与2x -6是同一个正数m 的两个不同的平方根,则x = , m = . 14. (25)2 ,32 53(用“>、=、<”号连结). 15.若实数x 、y 满足x -2+(y +3)2=0,则y x = .16.如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当△BPE 与△CQP 全等时,时间t 为 s.17.如图,在等边△ABC 中,AB =6,N 为线段AB 上的任意一点,∠BAC 的平分线交BC 于点D ,M 是AD18. 把一副三角板如图甲放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =18,CD =21,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为________.三、解答题:(本大题共9小题,满分68分) 19.计算题.(每题4分,共8分)(1)计算:25-(12)-2+(5-1)0; (2)3-8+(-5)2 + ||3-11.20.求出下列x 的值.(每小题4分,共8分))(1)4x 2-49=0 ; (2) 27 (x +1)3=-6421.(本题满分6分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数.因此,2的小数部分不可能全部地写出来,但可以用2-1来表示2的小数部分.理由:因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答,已知:3+6=x+y,其中x是整数,且0<y<1,求x-y的值.EBCA23.(本题满分5分)已知,如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点,求作:点E ,使直线DE ∥AB ,且点E 到B 、D 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)(1)求DE 的长;(2)若AC =6,BC =8,求△ADB 的面积.25.(本题满分5分)小明将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?如果同意,请你给出证明,如果不同意,请说明理由.OF EA B C DD C B A图① 图 26.(本题满分12分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 为△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC =DM ,请判断ME 、BD 的数量关系,并给出证明.27.(本题满分12分)数学活动——“关于三角形全等的条件”1.【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、 “AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.2.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.3.【逐步探究】(1)第一种情况:当∠B 是直角时,如图①,根据______定理,可得△ABC ≌△DEF .(2)第二种情况:当∠B 是钝角时,△ABC ≌△DEF 仍成立.请你完成证明.已知:如图②,△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角,求证:△ABC ≌△DEF .证明:EA ①FEB CA②FBEDCA③BCA(3)第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,请你用尺规在图③中作出△DEF ,使△DEF 和△ABC 不全等.(不写作法,保留作图痕迹)4.【深入思考】∠B 还要满足什么条件,就可以使△ABC ≌△DEF ?(请直接写出结论.)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,若∠B _________,则△ABC ≌△DEF .二、选择题(本大题共有10小题,每小题3分,满分30分)1. C 2. B 3. C 4. A 5. B 6. B 7. C 8. B 9. B 10.D 二、填空题(本大题共有8小题,每空2分,满分22分)11.4,-2 12.1.49×108 13. 2,4 14.= ,> 15. 1816.1或4 (少一个答案扣一分) 17. 3 3 (27也算对) 18.15三、解答题:(本大题共9小题,满分68分)20.求出下列x 的值.(每小题4分,共8分)) (1)4x 2-49=0x 2=494…………………………………………………………2分x =±72…………………………………………………………4分(2) 27 (x +1)3=﹣64(x +1)3 =﹣6427………………………………………………1分(x +1)=﹣43 …………………………………………………3分x =﹣73………………………………………………………4分21.(本题满分6分)由题知:x =5, ……………………………1分y =6—2, ……………………………………………………3分x -y =5-(6-2) ………………………………………5分 x -y =7-6… ………………………………………………6分 22.(本题满分6分)由题知:a —3≥0且3—a ≥0,…………………………………1分 解得a ≥3且a ≤3,所以,a =3,………………………………………………………2分所以,b=5,………………………………………………………3分①当腰为3,底为5时,周长3+3+5=11;…………………4分②当腰为5,底为3时,周长为5+5+3=13.…………………5分∴这个等腰三角形的周长为11或13……………………………6分23.(本题满分5分)(1)以D为顶点,DC为边作一个角等于∠ABC(也可画∠ABC的内错角)……………………………………………………………………2分(2)作出BD中垂线………………………………………………4分(3)标出点E ………………………………………………………5分∴点E为所求作的点.25.(本题满分5分)答:同意………………………………………………………1分理由:由第一次折叠得∠BAD=∠CAD………………………2分由第二次折叠得EF⊥AD ……………………………3分由ASA证得三角形△AEO≌△AFO…………………4分得AE=AF………………………………………………5分(此参考答案为简要思路,方法不唯一,请酌情给分)26.(本题12分)(1)证明:∵AC=BC∴∠CBA=∠CAB又∵∠ACB=90°∴∠CBA=∠CAB=45°……………………………………1分又∵∠CAD=∠CBD=15°∴∠DBA=∠DAB=30°……………………………………2分∴∠BDE=30°+30°=60°………………………………3分又易证得△ADC≌△BDC ………………………………4分得∠ACD=∠BCD=45°由外角得∠CDE=60°………………………………………5分得∠CDE=∠BDE=60°所以DE平分∠BDC ………………………………………6分(此小题证明方法不唯一,请参照给分)(2)答:ME=BD …………………………………………7分证明:连结MC ………………………………………8分证得△MCD为等边三角形……………………………9分证得△BDC≌△EMC…………………………………11分得ME=BD ……………………………………………12分27.(本题12分)3.【逐步探究】(1)HL ………………………………………………………2分(2)证明:分别作CG⊥AB,FH⊥DE ……………………3分由∠ABC=∠DEF得∠CBG=∠FEH…………………………………………4分证明△ACG≌△DFH(AAS)……………………………6分得CG=FH得Rt△ACG≌Rt△DFH(HL)…………………………7分得△ABC≌△DEF(AAS)…………………………………8分(3)如图,……………………………10分4.【深入思考】∠B≥∠A.……………………………………12分。
2014-2015八上期中数学答案
2014-2015学年度第一学期淮北市“五校”联考八年级数学期中考试试卷参考答案及评分标准一、选择题(本题共10小题,每小题4分,满分40分)1-5 ADADC 6-10 BBDAD二、填空题(本题共5小题,每小题4分,满分20分)11、(3,-2)或(3,2)12、答案不唯一,正确即可。
13、x ≥-1且x ≠2 14、一 15、5三、解答题(共60分)16、解:(1)由题意得,2x=3x ﹣1,解得x=1; ………………4分(2)由题意得,﹣2x+[﹣(3x ﹣1)]=16,则﹣5x=15,解得x=﹣3. ………………8分17、解:设腰长为2xcm ,底长为ycm ,依题意得⎩⎨⎧=+=+⎩⎨⎧=+=+12182,18122y x x x y x x x 或………3分 解得⎩⎨⎧==⎩⎨⎧==66144y x y x 或,2x=8或2x=12,且两种情况的边长均满足三边关系, 所以等腰ΔABC 的底和腰分别为14 、8 cm 或6 cm 、12 cm 。
………………8分 (其他方法正确即可)18、解:(1)填空:A ,B 两地相距420千米;………………2分(2)由图可知货车的速度为60÷2=30千米/小时,货车到达A 地一共需要2+360÷30=14小时,设y 2=kx +b ,代入点(2,0)、(14,360)得, 解得,所以y 2=30x ﹣60; ………………5分(3)设y 1=mx +n ,代入点(6,0)、(0,360)得 解得,所以y 1=﹣60x +360由y 1=y 2得30x ﹣60=﹣60x +360解得x =答:客、货两车经过小 小时相遇.………………8分19、解:(1)设A 、B 两种奖品单价分别为x 元、y 元,由题意,得⎩⎨⎧=+=+95356023y x y x 解得:⎩⎨⎧==1510y x 答:A 、B 两种奖品单价分别为10元、15元.………………4分(2)由题意,得)100(1510m m W -+=m m 15150010-+=m 51500-= ………………6分由⎩⎨⎧-≤≤-)100(3115051500m m m ,解得:7570≤≤m .………………8分由一次函数m W 51500-=可知,W 随m 增大而减小∴当75=m 时,W 最小,最小为11257551500=⨯-=W (元)答:当购买A 种奖品75件,B 种奖品25件时,费用W 最小,最小为1125元.……10分20、解:(1)如果一个三角形的一边上的中线的长等于这条边长的一半,那么这个三角形是直角三角形。
2014-2015年山西省太原市八年级上学期期中数学试卷和答案
2014-2015学年山西省太原市八年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题2分,共20分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.(2.00分)下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.2.(2.00分)下列四组数中,能作为直角三角形三边长的是()A.8,15,17 B.4,5,6 C.2,3,4 D.1,3.(2.00分)下列计算结果错误的是()A.B.|﹣|=C. D.4.(2.00分)一次函数y=﹣x+3的图象经过坐标系的()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.(2.00分)一种正方形瓷砖的面积是15平方分米,估计它的边长(单位:分米)在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.(2.00分)如图,已知点P的坐标为(12,5),则点P到原点O的距离为()A.5 B.12 C.13 D.177.(2.00分)计算的结果是()A.±3B.3 C.±3 D.38.(2.00分)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.y1与y2的大小关系不能确定9.(2.00分)如图,数轴上点C表示实数是﹣2,O为原点,BC⊥OC,且BC=1,以点O为圆心,OB长为半径作弧,交数轴负半轴于点A,则点A表示的实数是()A.﹣2.2 B.C.﹣D.﹣2.510.(2.00分)下列图象不能表示变量y是变量x的函数的是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分,把答案直接填在答题纸对应的位置上)11.(3.00分)9的算术平方根是.12.(3.00分)若等边△ABC的边长为4,顶点A在y轴正半轴上,边BC在x轴上,则点A的坐标为.13.(3.00分)计算的结果为.14.(3.00分)如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=时∠ACB=90°.15.(3.00分)一次函数y=2x﹣1的图象经过点P(m,m+1),则m=.16.(3.00分)如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=6cm,BC=8cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题,本大题共8小题,共62分,解答时应写出文字说明、证明过程或演算步骤)17.(16.00分)计算:(1)3;(2);(3)()2;(4).18.(7.00分)如图,已知Rt△ABC中,∠C=90°,AC=3,BC=4,在如图的坐标系中,点A的坐标为(0,1),点B的坐标为(﹣3,5),AC与x轴平行.(1)点C的坐标为;(2)在如图的坐标系中作出△ABC关于y轴对称的△A1B1C1,并在图中标出B1,C1两点的坐标;(3)若△A2B2C2与△ABC关于x轴对称,则△A2B2C2的各顶点的坐标分别为.19.(5.00分)当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响I”来衡量,某类型汽车的撞击影响I可以用公式I=2v2来表示,其中v(单位:千米/分)表示汽车的速度,在一次撞车试验中测得撞击影响I=72(千米/分)2,求此次撞击时的车速.20.(6.00分)已知一次函数的表达式为y=2x+4.(1)填表,用表格表示变量y与x的一次函数关系.(2)在如图的平面直角坐标系中画出该函数的图象.21.(5.00分)一个长方形门框内框的尺寸(单位:米)如图所示,一块长4米,宽3米的玻璃板(厚度不计),能否从门框内通过?为什么?22.(7.00分)获取信息:某市体育馆将举办明星篮球赛,为此体育馆推出两种团体购票方案(设购票张数为x张,购票总价为y元):方案一:购票总价由图中的折线OAB所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.(1)根据方案一的函数图象解答下列问题:购买120张门票的总价为元,购买门票超过100张,每张门票的价格为元;购买门票100张以内,购票总价y(元)与购票张数x(张)之间的函数关系式为;(2)方案二中的购票总价y(元)与购票张数x(张)之间的函数关系式为;问题解决:(3)若购买90张门票,通过计算比较以上哪种方案更合算?23.(6.00分)勾股定理神秘而美妙,它的验证方法多样,其巧妙各有不同,其中“面积法”最为常见,将四个全等的直角三角形如图1摆放时,可以用“面积法”来验证勾股定理;将两个全等的直角三角形按图2摆放时,其中∠DAB=90°,得到梯形DECB,也能验证勾股定理.下面是小聪利用图2验证勾股定理的过程,请将其补充完整:解:连接DB,由条件可得,四边形DECB是梯形.∴S==四边形DECB24.(10.00分)如图,已知一次函数y=﹣x+1的图象与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标及线段的AB的长度;(2)在如图的坐标系中给△AOB拼接一个直角三角形(不重叠且无缝隙的拼接),使得拼成的图形是以AB为边的等腰△ABP的顶点P的坐标.2014-2015学年山西省太原市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.(2.00分)下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.【解答】解:A、﹣3是整数,是有理数,故A选项错误;B、3.14是小数,是有理数,故B选项错误;C、是有限小数,是有理数,故C选项错误.D、是无理数,故D选项正确故选:D.2.(2.00分)下列四组数中,能作为直角三角形三边长的是()A.8,15,17 B.4,5,6 C.2,3,4 D.1,【解答】解:A、82+152=172,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、22+32≠42,故不是直角三角形,故错误;D、12+()2≠32,故不是直角三角形,故错误.故选:A.3.(2.00分)下列计算结果错误的是()A.B.|﹣|=C. D.【解答】解:A、原式==,正确;B、原式=,正确;C、原式===2,正确;D、原式==,错误.故选:D.4.(2.00分)一次函数y=﹣x+3的图象经过坐标系的()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【解答】解:∵y=﹣x+3,∴k<0,b>0,故直线经过第一、二、四象限.故选:B.5.(2.00分)一种正方形瓷砖的面积是15平方分米,估计它的边长(单位:分米)在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:由算术平方根的定义可知:正方形的边长=.∵9<15<16,∴.∴3<<4.故选:B.6.(2.00分)如图,已知点P的坐标为(12,5),则点P到原点O的距离为()A.5 B.12 C.13 D.17【解答】解:连接OP,如图所示:∵点P的坐标为(12,5),∴OA=12,PA=5,根据题意得:∠OAP=90°,∴OP===13.故选:C.7.(2.00分)计算的结果是()A.±3B.3 C.±3 D.3【解答】解:∵33=27,∴=3.故选:D.8.(2.00分)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.y1与y2的大小关系不能确定【解答】解:∵一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,∴y1=2x1+1,y2=2x2+1,而x1<x2,∴y1<y2.故选:C.9.(2.00分)如图,数轴上点C表示实数是﹣2,O为原点,BC⊥OC,且BC=1,以点O为圆心,OB长为半径作弧,交数轴负半轴于点A,则点A表示的实数是()A.﹣2.2 B.C.﹣D.﹣2.5【解答】解:由勾股定理得:OB===.∵OA=OB,∴点A表示的数为﹣.故选:C.10.(2.00分)下列图象不能表示变量y是变量x的函数的是()A.B.C.D.【解答】解:A、对于x的每一个取值,y都有唯一确定的值,故A正确;B、对于x的每一个取值,y有不唯一确定的值,故B错误;C、对于x的每一个取值,y都有唯一确定的值,故C正确;D、对于x的每一个取值,y都有唯一确定的值,故D正确;故选:B.二、填空题(本大题共6个小题,每小题3分,共18分,把答案直接填在答题纸对应的位置上)11.(3.00分)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.12.(3.00分)若等边△ABC的边长为4,顶点A在y轴正半轴上,边BC在x轴上,则点A的坐标为(0,2).【解答】解:如图,因为顶点A在y轴正半轴上,边BC在x轴上,∵AO⊥BC,∴BO=BC=2,在Rt△AOB中,AB=4,BO=2,由勾股定理可求得AO=2,∴A点坐标为(0,2),故答案为:(0,2).13.(3.00分)计算的结果为1.【解答】解:原式=()2﹣1=2﹣1=1.故答案为1.14.(3.00分)如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=16时∠ACB=90°.【解答】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.15.(3.00分)一次函数y=2x﹣1的图象经过点P(m,m+1),则m=2.【解答】解:把P(m,m+1)代入y=2x﹣1得2m﹣1=m+1,解得m=2.故答案为2.16.(3.00分)如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=6cm,BC=8cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为3cm.【解答】解:在Rt△ABC中,∵AC=6,BC=8,∴AB==10,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=6,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=10﹣6=4,设CD=x,则BD=8﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴42+x2=(8﹣x)2,解得x=3,即CD的长为3cm.故答案为:3.三、解答题,本大题共8小题,共62分,解答时应写出文字说明、证明过程或演算步骤)17.(16.00分)计算:(1)3;(2);(3)()2;(4).【解答】解:(1)原式=3+2=5;(2)原式=+=2+2=4;(3)原式=5+2+2=7+2;(4)原式=2﹣+=.18.(7.00分)如图,已知Rt△ABC中,∠C=90°,AC=3,BC=4,在如图的坐标系中,点A的坐标为(0,1),点B的坐标为(﹣3,5),AC与x轴平行.(1)点C的坐标为(﹣3,1);(2)在如图的坐标系中作出△ABC关于y轴对称的△A1B1C1,并在图中标出B1,C1两点的坐标;(3)若△A2B2C2与△ABC关于x轴对称,则△A2B2C2的各顶点的坐标分别为A2(0,﹣1),B2(﹣3,﹣5),C2(﹣3,﹣1).【解答】解:(1)由图可知,C(﹣3,1).故答案为:(﹣3,1);(2)如图所示;(3)由图可知A2(0,﹣1),B2(﹣3,﹣5),C2(﹣3,﹣1).故答案为:A2(0,﹣1),B2(﹣3,﹣5),C2(﹣3,﹣1).19.(5.00分)当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响I”来衡量,某类型汽车的撞击影响I可以用公式I=2v2来表示,其中v(单位:千米/分)表示汽车的速度,在一次撞车试验中测得撞击影响I=72(千米/分)2,求此次撞击时的车速.【解答】解:∵I=2ν2,∴当I=72时,72=2ν2,∴ν2==36(千米/分)2,∴v==6千米/分.答:撞击时的车速是6千米/分.20.(6.00分)已知一次函数的表达式为y=2x+4.(1)填表,用表格表示变量y与x的一次函数关系.(2)在如图的平面直角坐标系中画出该函数的图象.【解答】解:(1)把x=﹣2,﹣1,0,1,代入解析式,可得:y=0,2,4,6,填表如下:(2)画出图象如下:21.(5.00分)一个长方形门框内框的尺寸(单位:米)如图所示,一块长4米,宽3米的玻璃板(厚度不计),能否从门框内通过?为什么?【解答】解:连接AC,则AC与AB、BC构成直角三角形,根据勾股定理得AC===<3.故薄木板不能从门框内通过.22.(7.00分)获取信息:某市体育馆将举办明星篮球赛,为此体育馆推出两种团体购票方案(设购票张数为x张,购票总价为y元):方案一:购票总价由图中的折线OAB所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.(1)根据方案一的函数图象解答下列问题:购买120张门票的总价为13200元,购买门票超过100张,每张门票的价格为60元;购买门票100张以内,购票总价y(元)与购票张数x(张)之间的函数关系式为y=120x;(2)方案二中的购票总价y(元)与购票张数x(张)之间的函数关系式为y=50x+8000;问题解决:(3)若购买90张门票,通过计算比较以上哪种方案更合算?【解答】解:(1)由信息可得:购买120张门票的总价为13200元,购买门票超过100张,每张门票的价格为(13200﹣12000)÷20=60元;购买门票100张以内,购票总价y(元)与购票张数x(张)之间的函数关系式为y=120x;(2)方案二的解析式为:y=50x+8000;(3)把x=90代入y=120x=10800元,把x=90代入y=50x+8000=12500元,所以选择方案一合适.故答案为:13200;60;y=120x;y=50x+8000.23.(6.00分)勾股定理神秘而美妙,它的验证方法多样,其巧妙各有不同,其中“面积法”最为常见,将四个全等的直角三角形如图1摆放时,可以用“面积法”来验证勾股定理;将两个全等的直角三角形按图2摆放时,其中∠DAB=90°,得到梯形DECB,也能验证勾股定理.下面是小聪利用图2验证勾股定理的过程,请将其补充完整:解:连接DB,由条件可得,四边形DECB是梯形.∴S==四边形DECB==(a+b)2=ab+(a2+b2);【解答】证明:S四边形DECB由△AED和△ABC全等得到:∠BAD=90°,所以S=S△AED+S△ABC+S△ABD=ab+ab+c2=ab+c2,四边形DECB即ab+(a2+b2)=ab+c2,所以a2+b2=c2.24.(10.00分)如图,已知一次函数y=﹣x+1的图象与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标及线段的AB的长度;(2)在如图的坐标系中给△AOB拼接一个直角三角形(不重叠且无缝隙的拼接),使得拼成的图形是以AB为边的等腰△ABP的顶点P的坐标.【解答】解:(1)直线AB解析式为y=﹣x+1,∵x=0时,y=1,∴点B坐标为(0,1),∵y=0时,x=3,∴点A坐标为(3,0),AB==.(2)如图,①当BA=BP1,满足条件,此时P1(﹣3,0);②当AB=AP2时,满足条件,此时P2(3﹣,0);③当AB=AP3时,满足条件,此时P3(0,﹣1);④当BA=BP5时,满足条件,此时P5(0,1﹣);⑤当P4A=P4B时,满足条件,设P4A=P4B=m,在Rt△AOP4中,OA=3,OP4=m﹣1,AB=m,∴m2=32+(m﹣1)2,解得m=5,∴P4(0,﹣4).综上所述,满足条件的点P坐标为(﹣3,0),(3﹣,0),(0,﹣1),(0,1﹣),(0,﹣4).赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2014-2015学年八年级上学期期中联考数学试题(含答案)
2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。
初中数学八年级2014—2015第一学期期中学业水平测试卷附参考答案
2014—2015 第一学期初二数学期中学业水平测试、选一选,牛刀初试露锋芒!(每小题3分,共42分)1.下列图形中,轴对称图形的个数是()A. 4个2 .下列说法正确的是()A .三角形的角平分线是射线。
B.三角形三条高都在三角形内。
C. 三角形的三条角平分线有可能在三角形内,也可能在三角形外。
D. 三角形三条中线相交于一点。
3 .两根木棒长分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,?如果第三根木棒长为偶数, 则组成方法有b5E2RGbCAPA. 3种B. 4种C. 5种D. 6种4. 下列各组条件中,不能判定△AB4A A/B/C/的一组是()/ / / / / //—”//A、/ A=Z A,/B=Z B ,AB= A BB、/ A=Z A , AB= A B , AC=A C/ / / J / / / / / / /C、/ A=/ A , AB= A B , BC= B CD、AB= A B , AC=A C ,BC= B C5. 如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和△ ABC全等的图形是(D.只有丙6.如图1,将长方形ABCD纸片沿对角线BD折叠,使点C落在C •处,BC交AD于丘,若• DBC =22.5 °,贝恠不添加任何辅助线的情况下, 则图中45的角(虚线也视为角的边)的个数是()A. 5个E 22.12.如图5,△ ABC 的三边 AB 、BC CA 长分别是 20、30、40,其三条 角平分线将△ ABC 分为三个三角形,则 S A ABO : S A BCO:CAO 等于( )A . 1 : 1 : 1B . 1 : 2 : 3C . 2 : 3 : 4D . 3 : 4 : 513.如图6, 一圆柱高8cm,底面半径2cm,—只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 (二 取 3)是() DXDiTa9E3dA.20cm;B.10cm;C.14cm;D. 无法确定.7•如图2,有一张直角三角形纸片,两直角边 △ ABC 折叠,使点B 与点A 重合,折痕为DE 为( )A. 10 cm B . 12cmC8、若等腰三角形的腰长为10,底边长为12,A 、6B 、7C 、8AC=5cm BC=10cm则厶ACD 的周长盒命 图2 E.15cmD . 20cm则底边上的高为()D 、99.如图3,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事 的办法是()p1EanqFDPwA.带①去B.带②去C.带③去D.带①和②去10、下列条件中,不能确定三角形是直角三角形的是(A.三角形中有两个角是互为余角; B.三角形三个内角之比为3 : 2 : 1; C.三角形的三边之比为3 : 2 : 1 ; D.三角形中有两个内角的差等于第三个内角 11.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 4所示的图形,两条直角边在同一直线上.则图中等腰三角形有( )个. A. 1个B . 2个C.3 个D.4 个F C D图4图5A图614.如图7所示,已知△ ABC和厶BDE都是等边三角形。
2014——2015学年度第一学期八年级数学期中考试卷(含答案)
2014——2015学年度第一学期 八年级数学期中考试卷(含答案)(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确1、4的算术平方根是A . 2B . 2-C . 2±D . 2±2、与数轴上的点成一一对应关系的数是A . 有理数B . 无理数C . 实数D . 整数 3、下列从左边到右边的变形,属于因式分解的是A . 1)1)(1(2-=-+x x x B . 1)2(122+-=+-x x x xC . )4)(4(422y x y x y x -+=-D . 22)3(96-=+-x x x4、下列命题中是真命题的是A .三角形的内角和为180°B .同位角相等C .三角形的外角和为180°D .内错角相等 5、使式子32+x 有意义的实数x 的取值范围是A .32>x B . 23>x C . 23-≥x D . 32-≥x6、在实数73,1+π,4,3.14,38,8,0, 11.21211211中,无理数有A . 2个B . 3个C . 4个D . 5个7、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为 A . 6cm B . 5cm C . 8cm D . 7cm8、计算:()20132013125.08-⨯等于A . 1-B . 1C . 2013D . 2013- 9、下列条件中,不能证明△ABC ≌△'''C B A 的是 A .''''C A AC B B A A =∠=∠∠=∠,,学校:班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分 B'C BB .''''B A AB B B A A =∠=∠∠=∠,,C .'''''C A AC A A B A AB =∠=∠=,,D .'''''C B BC B A AB A A ==∠=∠,, 10、下列算式计算正确的是A .523a a a =+B .623a a a =⋅C .923)(a a =D . a a a =÷2311、估计15的大小在A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间12、若(x+a)(x-5)展开式中不含有x 的一次项,则a 的值为A . 5-B . 5C . 0D . 5± 13、如右图,△ABC ≌△EDF ,DF =BC ,AB=ED ,AF =20,EC =10,则AE 等于 A . 5 B . 8 C .10 D . 15 14、如果则的值分别是A . 2 和 3B . 2和-3C . 2和D .二、填空题:(每小题4分,共16分) 15、计算:=⨯-2016201020132________。
2014-2015学年新人教版八年级上期中数学试卷及答案解析
2014-2015学年新人教版八年级上期中数学试卷及答案解析一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C.D.2.三角形的一个外角小于和它相邻的内角,那个三角形为( )A.锐角三角形 B.直角三角形C.钝角三角形 D.以上三种都有可能3.已知图中的两个三角形全等,则∠1等于( )A.72° B.60°C.50°D.58°4.已知三角形的两边长分不为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6 D.(﹣2m)2÷2m3=6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是()A.4 B.8 C.±4 D.±87.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣38.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BC D=160°,那么△ABC是( )A.直角三角形 B.等腰三角形C.钝角三角形D.锐角三角形9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD的长为( )A.6cm B.8cm C.3cm D.4cm10.随着生活水平的提升,小林家购置了私家车,如此他乘坐私家车内学比乘坐公交车内学所需的时刻少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,按照题意可列方程为( )A.B.C. D.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则那个最小值为( )A.B.3 C.4 D.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发觉某种植物的细胞直径约为0.000000102 mm,用科学记数法表示那个数为__________.14.分解因式:ab2﹣4ab+4a=__________.15.若3x=4,9y=7,则3x﹣2y的值为__________.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=__________.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=18 0°;④∠AFB>∠ACB其中正确命题的代号是__________.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试讲明∠BPD与∠CPG的大小关系,并讲明理由.22.用电脑程序操纵小型赛车进行50m竞赛,“畅想号”和“和谐号”两辆赛车进入了决赛.竞赛前的练习中,两辆车从起点同时动身,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2. 5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始竞赛,“畅想号”从起点向后退3m,两车同时动身,两车能否同时到达终点?若能,求出两车到达终点的时刻;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.23.如图③,点E,D分不是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为__________,图③中,∠AFB的度数为__________;(3)连续探究,可将本题推广到一样的正n边形情形,用含n的式子表示∠AFB的度数.2014-2015学年四川省绵阳中学八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】按照轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是查找对称轴,图形两部分沿对称轴折叠后可重合.2.三角形的一个外角小于和它相邻的内角,那个三角形为( )A.锐角三角形 B.直角三角形C.钝角三角形 D.以上三种都有可能【考点】三角形的外角性质.【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判定出此三角形有一内角为钝角,从而得出那个三角形是钝角三角形的结论.【解答】解:∵三角形的一个外角与它相邻的内角和为180°,而题中讲那个外角小于它相邻的内角,∴与它相邻的那个内角是一个大于90°的角即钝角,∴那个三角形确实是一个钝角三角形.故选C.【点评】本题考查的是三角形的外角性质,解题的关键是熟练把握三角形的外角与它相邻的内角互为邻补角.3.已知图中的两个三角形全等,则∠1等于( )A.72° B.60°C.50°D.58°【考点】全等三角形的性质.【分析】按照三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.4.已知三角形的两边长分不为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm【考点】三角形三边关系.【分析】此题第一按照三角形的三边关系,求得第三边的取值范畴,再进一步找到符合条件的数值.【解答】解:按照三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范畴应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6 D.(﹣2m)2÷2m3=【考点】负整数指数幂;整式的除法.【分析】按照负整数指数幂、同底数幂的乘法以及整式的除法运算法则进行运算.【解答】解:A、原式=9,故本选项错误;B、原式=m(1﹣2+3)=m2,故本选项错误;C、原式=(﹣1)﹣2•a﹣1×(﹣2)•b(﹣3)×(﹣2)=a2b6,故本选项错误;D、原式==,故本选项正确.‘故选:D.【点评】本题考查了负整数指数幂、整式的除法.把握运算法则的解题的关键.6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是()A.4 B.8 C.±4 D.±8【考点】完全平方式.【专题】常规题型.【分析】先按照两平方项确定出这两个数,再按照完全平方公式的乘积二倍项即可确定b的值.【解答】解:16x2+bx+1=(4x)2+bx+1,∴bx=±2×4x×1,解得b=±8.故选D.【点评】本题要紧考查了完全平方式,按照平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题专门重要.7.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣3【考点】分式的值为零的条件.【专题】运算题.【分析】按照分式的值为零的条件得到当x2﹣9=0且x+3≠0时,分式的值为零,然后解方程和不等式即可得到x的值.【解答】解:∵分式的值为零,∴x2﹣9=0且x+3≠0,∴x=3.故选C.【点评】本题考查了分式的值为零的条件:分式的分子为零且分母不为零时,分式的值为零.也考查了解方程与不等式.8.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BC D=160°,那么△ABC是( )A.直角三角形 B.等腰三角形C.钝角三角形D.锐角三角形【考点】轴对称的性质.【分析】作出图形,按照轴对称的性质可得∠BAC=∠DAC,∠ACB=∠ACD,然后求出∠BAC+∠ACB,再按照三角形的内角和定理求出∠B,然后判定三角形的形状即可.【解答】解:如图,∵△ABC和△ADC关于直线AC轴对称,∴∠BAC=∠DAC,∠ACB=∠ACD,∴∠BAC+∠ACB=(∠BAD+∠BCD)=×160°=80°,在△ABC中,∠B=180°﹣(∠BAC+∠ACB)=180°﹣80°=100°,∴△ABC是钝角三角形.故选C.【点评】本题考查了轴对称的性质,按照成轴对称的两个图形能够完全重合得到相等的角是解题的关键,作出图形更形象直观.9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD的长为( )A.6cm B.8cm C.3cm D.4cm【考点】线段垂直平分线的性质;含30度角的直角三角形;三角形中位线定理.【专题】运算题.【分析】过A作AF∥DE交BD于F,则DE是△CAF的中位线,按照线段垂直平分线的性质,即可解答.【解答】解:过A作AF∥DE交BD于F,则DE是△CAF的中位线,∴AF=2DE=2,又∵DE⊥AC,∠C=30°,∴FD=CD=2DE=2,在△AFB中,∠1=∠B=30°,∴BF=AF=2,∴BD=4.故选D.【点评】此题要紧考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段两个端点的距离相等.10.随着生活水平的提升,小林家购置了私家车,如此他乘坐私家车内学比乘坐公交车内学所需的时刻少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,按照题意可列方程为( )A.B.C. D.【考点】由实际咨询题抽象出分式方程.【分析】按照乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车内学比乘坐公交车内学所需的时刻少用了15分钟,利用时刻得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,按照题意可列方程为:=+,故选:D.【点评】此题要紧考查了由实际咨询题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的咨询题转化为列代数式的咨询题.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】运算题.【分析】分不运算出甲图中阴影部分面积及乙图中阴影部分面积,然后运算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会运算矩形的面积及熟悉分式的运确实是解题的关键.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则那个最小值为( )A.B.3 C.4 D.【考点】轴对称-最短路线咨询题;正方形的性质.【分析】由于点B与D关于AC对称,因此连接BE,与AC的交点即为P点.现在PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=4,又∵△ABE是等边三角形,∴BE=AB=4.故选C.【点评】本题考查的是正方形的性质和轴对称﹣最短路线咨询题,熟知“两点之间,线段最短”是解答此题的关键.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发觉某种植物的细胞直径约为0.000000102 mm,用科学记数法表示那个数为1.02×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也能够利用科学记数法表示,一样形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一样形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再按照完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要完全.15.若3x=4,9y=7,则3x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】按照3x﹣2y=3x÷32y=3x÷9 y即可代入求解.【解答】解:3x﹣2y=3x÷32y=3x÷9 y=.故答案是:.【点评】本题考查了同底数的幂的除法运算,正确明白得3x﹣2y=3x ÷32y=3x÷9 y是关键.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=70°或20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由于△ABC的形状不能确定,故应分△ABC是锐角三角形与钝角三角形两种情形进行讨论.【解答】解:如图①,当AB的中垂线与线段AC相交时,则可得∠A DE=50°,∵∠AED=90°,∴∠A=90°﹣50°=40°,∵AB=AC,∴∠B=∠C==70°;如图②,当AB的中垂线与线段CA的延长线相交时,则可得∠ADE= 50°,∵∠AED=90°,∴∠DAE=90°﹣50°=40°,∴∠BAC=140°,∵AB=AC,∴∠B=∠C==20°.∴底角B为70°或20°.故答案为:70°或20°.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=18 0°;④∠AFB>∠ACB其中正确命题的代号是①③④.【考点】矩形的性质;全等三角形的判定与性质.【分析】由矩形的性质得出∠ABC=∠D=∠BCD=∠BAD=90°,BC= DA,AB=CD,由SAS证明△ABC≌△CDA,①正确;由△ABF的面积=△ABC的面积,得出△AEF的面积=△BCE的面积,②不正确;证明A、E、F、D四点共圆,得出∠DAE+∠DFE=180°,③正确;延长AF交矩形ABCD的外接圆于G,连接BG,由圆周角定理得出∠AGB=∠ACB,由三角形的外角性质得出∠AFB>∠AGB,得出∠AFB>∠ACB,④正确;即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴①正确;∵△ABF的面积=△ABC的面积=AB•BC,∴△AEF的面积=△BCE的面积,∴②不正确;∵BE⊥AC,∴∠AEF=90°,∴∠AEF+∠D=180°,∴A、E、F、D四点共圆,∴∠DAE+∠DFE=180°,∴③正确;∵A、B、C、D四点共圆,如图所示:延长AF交矩形ABCD的外接圆于G,连接BG,则∠AGB=∠ACB,∵∠AFB>∠AGB,∴∠AFB>∠ACB,∴④正确;正确的代号是①③④;故答案为:①③④.【点评】本题考查了矩形的性质、全等三角形的判定与性质、四点共圆、圆周角定理、圆内接四边形的性质;熟练把握矩形的性质,并能进行推理论证是解决咨询题的关键.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.【考点】整式的混合运算;解分式方程;解一元一次不等式.【分析】(1)直截了当利用完全平方公式化简求出即可;(2)第一去分母进而合并同类项求出即可.【解答】解:(1)(2x﹣5)2+(3x+1)2>13(x2﹣10)去括号得:4x2+25﹣20x+9x2+1+6x>13x2﹣130整理得:﹣14x>﹣156解得:x<11;(2)去分母得:x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),x2+2x﹣(x2+2x﹣x﹣2)=3x﹣3,则﹣2x=﹣5,解得:x=,检验:当x=时,(x﹣1)(x+2)≠0,则x=是原方程的根.【点评】此题要紧考查了整式的混合运算以及分式方程的解法,正确利用乘法公式是解题关键.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.【考点】分式的化简求值.【专题】开放型.【分析】要紧考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.注意化简后,代入的数不能使分母的值为0.【解答】解:原式=÷==,∵a≠0、a≠±1,∴答案不唯独.当a=2时,原式=1.【点评】本题要紧考查分式的化简求值,式子化到最简是解题的关键.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练把握全等三角形的判定方法,证明三角形全等是解决咨询题的关键.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试讲明∠BPD与∠CPG的大小关系,并讲明理由.【考点】三角形内角和定理.【分析】利用AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,得出∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,再利用三角形的外角意义得出∠BPD=∠BAD+∠ABE等量代换得出∠BPD=90°﹣∠AC B;再利用PG⊥BC,得出三角形CPG是直角三角形,利用三角形的内角和表示出∠CPG=90°﹣∠ACB,证明结论成立.【解答】∠BPD=∠CPG证明:∵AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,∴∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,∴∠BPD=∠BAD+∠ABE=(∠BAC+∠ABC),∵∠BAC+∠ABC=180﹣∠ACB,∴∠BPD=(180﹣∠ACB)=90°﹣∠ACB;∵PG⊥BC,∴∠PGC=90°,∴∠BCP+∠CPG=180°﹣∠PGC=90°,∴∠CPG=90°﹣∠BCP=90°﹣∠ACB,∴∠BPD=∠CPG.【点评】此题考查角平分线的性质,三角形内角和定理,三角形外角的意义,垂直的性质等知识点.22.用电脑程序操纵小型赛车进行50m竞赛,“畅想号”和“和谐号”两辆赛车进入了决赛.竞赛前的练习中,两辆车从起点同时动身,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2. 5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始竞赛,“畅想号”从起点向后退3m,两车同时动身,两车能否同时到达终点?若能,求出两车到达终点的时刻;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.【考点】分式方程的应用.【分析】(1)设“和谐号”的平均速度为x,按照,“畅想号”运动50 m与“和谐号”运动47m所用时刻相等,可得方程,解出即可.(2)不能同时到达,设调整后“和谐号”的平均速度为y,按照时刻相等,得出方程求解即可.【解答】解:(1)设“和谐号”的平均速度为x,由题意得,=,解得:x=2.35,经检验x=2.35是原方程的解.答:“和谐号”的平均速度2.35m/s.(2)不能同时到达.设调整后“和谐号”的平均速度为y,=,解得:y=.答:调整“畅想号”的车速为m/s可使两车能同时到达终点.【点评】本题考查了分式方程的应用,解答本题的关键是认真审题,找到等量关系,建立方程,难度一样.23.如图③,点E,D分不是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为90°,图③中,∠AFB的度数为10 8°;(3)连续探究,可将本题推广到一样的正n边形情形,用含n的式子表示∠AFB的度数.【考点】正多边形和圆;全等三角形的判定与性质;相似三角形的判定与性质.【分析】(1)先按照等边三角形的性质得出∠AC=60°,再由补角的定义可得出∠ABE与∠BCD的度数,按照△ABE与△BCD能相互重合可得出∠E=∠D,∠DBC=∠BAE,由三角形外角的性质可得出结论;(2)按照(1)中的方法可得出△BEF∽△BDC,进而可得出结论;(3)按照(1)(2)的结论找出规律即可.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∴∠ABE=∠BCD=120°.∵△ABE与△BCD能相互重合,∴∠E=∠D,∠DBC=∠BAE.∵∠FBE=∠CBD,∴∠AFB=∠E+∠FBE=∠D+∠CBD=∠ACB=60°;(2)图②中,∵△ABE与△BCD能相互重合,∴∠E=∠D.∵∠FBE=∠CBD,∠D+∠CBD=90°,∴∠AFB=∠E+∠FBE=∠D+∠CBD=90°;同理可得,图③中∠AFB=108°.故答案为:90°,108°;(3)由(1)(2)可知,在正n边形中,∠AFB=.【点评】本题考查的是正多边形和圆,在解答此题时要注意正三角形、正四边形及正五边形的性质的应用,按照题意找出规律是解答此题的关键.。
2014---2015八年级上学期数学期中考试试题
2015-2016学年度上学期期中试题(1)八年级数学一、选择题(每小题3分,共36分)1.如图所示,图中不是轴对称图形的是( )A B C D 2.下列图形具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 3.以下列各组线段为边,能组成三角形的是( )A. 2 cm ,3 cm ,5 cmB. 3 cm ,3 cm ,6 cmC. 5 cm ,8 cm ,2 cmD. 4 cm ,5 cm ,6 cm4. 如图所示,已知∠A=72°,∠ACD=136°,那么∠B 的大小为( )A 44°B 54°C 64°D 74°第4题图BD5.已知等腰三角形的两边长分别为3和6,则它的周长等于( )A. 12B. 12或15C. 15D. 15或186.如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( )米A . 20B .10C . 15D .56题图7题图 8题图7.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) 1 2311题图1P OMACBD 图3A CFEBA .50°B .30°C .20°D .15°8.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为( )A.72°B.36°C.60°D.82° 9.下列叙述正确的语句是( ) A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等10.点M (—1,2)关于y 轴对称的点的坐标为( )A.(-1,-2)B.(1,2)C.(1,-2)D.(2,-1)11.如图9所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 ( )A 、2平方厘米B 、1平方厘米C 、12平方厘米D 、14平方厘米N12. 如图,MP=MQ ,PN=QN ,MN 交PQ 于点O 。
2014-2015学年八年级上学期期中考试数学试题
2014-2015学年八年级上学期期中考试 数学试题一、填空题(每题2分,计30分) 16的算术平方根是 。
338的立方根是 。
若236x =,则x = 。
3.142-≈ 。
(结果保留三个有效数字) 已知a 的算术平方根是7,则a 的平方根是 。
x 的取值范围是: 。
2±,那么a = 。
计算()()44a a +-= 。
计算()21x += 。
计算()2422a b ab ab -÷= 。
分解因式:24a -= 。
已知210x y -=,则24y x -= 。
把198202⨯写成两个整数的平方差等于 。
若多项式29x kx ++恰好是另一个多项式的平方,则k = 。
已知12,2x y -= 2,xy = 则43342x y x y -= 。
二、选择题(每题2分,计30分)1、下列各数中,没有平方根的是( )(A )-64; (B )0; (C )()23-; (D )10。
2、)。
(A )相反数; (B )倒数; (C )绝对值; ( D )算术平方根。
3、4的平方根是( )(A; ( B )2; (C )2±; (D)。
4、和数轴上的点一一对应的数是( )(A )整数; (B )有理数; (C )无理数; (D )实数。
5、一个数的平方根是它本身,则这个数是( )。
(A )+1; (B )-1; (C )0; (D )100。
6、若某数的平方根为23a +和15a -,则这个数是( )。
(A )-18; (B )23-; (C )121; (D )以上结论都不是。
7、下列各数0,9,70.1235中无理数的个数是( )。
(A )0个; (B )1个; ( C )2个; (D )3个。
8、()2a b -等于( )。
(A )22a b +; (B )222a ab b -+; (C )22a b -; (D )222a ab b ++。
9、下列运算正确的是( )(A )235a a a ∙=; (B )()325a a =;(C )623a a a ÷=; (D )624a a a -=。
2014--2015学年八年级上数学期中测试卷含答案R
《二元一次方程组》提高测试姓名 班级 学号(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. 4.2x -3y =4x -y =5的解为_______________.5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D )1110.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10 11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3(C )y =2x +1 (D )y =-2x +112.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1) 13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+1cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=014.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )015.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,216.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x 18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x《二元一次方程组》提高测试姓名班级学号(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+25434zyxzyx,xyz≠0,求222223yxzxyx+++的值.22.甲、乙两人解方程组⎩⎨⎧=+-=-514byaxbyx,甲因看错a,解得⎩⎨⎧==32yx,乙将其中一个方程的b写成了它的相反数,解得⎩⎨⎧-=-=21yx,求a、b的值.23.已知满足方程2 x-3 y=m-4与3 x+4 y=m+5的x,y也满足方程2x+3y=3m-8,求m的值.24.当x=1,3,-2时,代数式ax2+bx+c的值分别为2,0,20,求:(1)a、b、c的值;(2)当x=-2时,ax2+bx+c的值.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.⎩⎨⎧=++=-+.y x xy y x 391045100 26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.《二元一次方程组》提高测试 答案(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. 【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________. 【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数.【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a cb a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值. 【答案】a =61,b =41,c =31.【点评】设“比例系数”是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10 【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法.12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解. 【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( ) (A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0 【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值. 【答案】B . 【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键. 16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A BA , 进而求得x ,y .【答案】⎩⎨⎧-==.11y x20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x zxy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k ,y =2 k ,z =3 k ,代入代数式.【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的.22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错. 【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5. 【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数. 【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间. 【提示】设原计划用x 小时,AB 两地距离的一半为y 千米, 根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
2014-2015八年级第一学期期中试卷(含答案)
ACB D E 人教版2014-2015学年度第一学期八年级数学期中考试试卷(含参考答案)一、选择题:(本题满分24分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填在题后的括号内。
......... 1.下列各组线段能组成一个三角形的是( ).(A)5cm ,8cm ,12cm (B)2cm ,3cm ,6cm (C)3cm ,3cm ,6cm (D)4cm ,7cm ,11cm 2.下列图案是轴对称图形的有( )。
A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)(1) (2) (3) (4)3.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是( )。
A. ①② B. ②③ C. ③④ D. ①④ 4.已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )。
A. 2 ㎝B. 4 ㎝C. 6 ㎝D. 8㎝ 5.点M (1,2)关于y 轴对称的点的坐标为 ( )。
A.(—1,2)B.(-1,-2)C. (1,-2)D. (2,-1) 6.如图,∠B=∠D=90°,CB=CD ,∠1=40°,则∠2=( )。
A .40° B. 45° C. 60° D. 50°7. 如图所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且S △ABC=4cm 2,则阴影部分的面积等于( )A.2cm 2B.1cm 2C.12cm 2D.1 4 cm 28.已知等腰三角形一个内角是70°,则另外两个内角的度数是( )A.55°, 55°B.70°, 40°C.55°, 55°或70°, 40°D.以上都不对 二 、填空题:(本题满分24分,每小题3分)9.一扇窗户打开后,用窗钩可将其固定,这里运用的几何原理为 。
2014-2015学年八年级第一学期期中质量调研检测数学试(含答案)
A.3.14B. C. D.
4.如图,AF=DC,BC∥EF,只需补充一个条件
,就可得△ABC≌△DEF.下列条件中
不符合要求的是(▲)
A.BC=EFB.AB=DE
C.∠B=∠ED.AB∥DE
5.如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性
则DE=.
16.如图,OA⊥OB,垂足为O,P、Q分别是射线OA、OB
上的两个动点,点C是线段PQ的中点,且PQ=4.则动点C
运动形成的路径长是.
三、解答题(本大题共8小题,共68分)
17.(6分)写出3个无理数与3个负实数,分别填入下列的集合中,且使两集合重叠部分中的数有且只有一个.
18.(7分)如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转
7.3.8.<.9.-4.10.- .11.5.
12.35°.13.60.14. .15. .16.π.
三、解答题(本大题共9题,68分)
17.答案不唯一,填对一个处得2分,共6分
18.证明:∵S梯形ABEF= (EF+AB)·BE= (a+b)·(a+b)= (a+b)2……2分
∵Rt△CDA≌Rt△CGF,∴∠ACD=∠CFG
∵∠CFG+∠GCF=90°,∴∠ACD+∠GCF=90°
即∠ACF=90°………………………………3分
∵S梯形ABEF=S△ABC+S△CEF+S△ACF
∴S梯形ABEF= ab+ ab+ c2………………………………5分
∴ (a+b)2= ab+ ab+ c2…………………………6分
∴a2+2ab+b2=2ab+c2
= ×5×2+ ×5×1……………7分
2014-2015年山东省烟台市八年级(上)数学期中试卷及参考答案
第一场 甲 乙 82 106
第二场 86 90
第三场 95 85
第四场 91 87
第五场 96 82
26. (10 分)描述证明: 海宝在研究数学问题时发现了一个有趣的现象:
(1)请你用数学表达式补充完整海宝发现的这个有趣的现象; (2)请你证明海宝发现的这个有趣现象.
2014-2015 学年山东省烟台市八年级(上)期中数学试卷 (五四学制)
)
6. (3 分)一个射手连续射靶 10 次,成绩(环)如图,则该射手射中环数的中 位数和众数分别为( )
A.8,9
B.8,8
C.8.5,8 D.8.5,9 )
7. (3 分)下列说法中错误的是(
A.一组数据的平均数、中位数可能相同 B.一组数据的中位数可能不唯一确定 C.一组数据中平均数、中位数、众数是从不同角度描述了一组数据的集中趋势
参考答案与试题解析
一、选择题(每小题 3 分,共 30 分) 1. (3 分)下列各式: A.1 个 B.2 个 C.3 个 D.4 个 【解答】解: (1﹣x) , 式,而不是分式. 的分母中含有字母,因此是分式. 故选:A. , 的分母中均不含有字母,因此它们是整 ,其中分式共有( )
2. (3 分)若分式 A.x=1 B.x=﹣1
的值为 0,则 x 的取值是( C.x=±1 D.x=0
)
【解答】解:由分式的值为零的条件得:|x|﹣1=0,x﹣1≠0, 解得:x=﹣1, 故选:B.
3. (3 分)下列约分正确的是( A. C. 【解答】解:A、 B、 C、 D、 故选:C. B. D.
)
≠1+ ,错误;
≠1﹣ ,错误; = ,正确;
3. (3 分)下列约分正确的是( A. C. B. D.
2014-2015学年度人教版八年级上期中测试数学试卷及答案
1驻马店市2014-2015学年度上期期中素质测试八年级数学试卷一、选择题.(每题3分,共30分) 下列各小题均有四个答案,其中只有一个是正确的,将正确答案的字母序号填入题后括号内.1. 8的立方根是( )A. 2B. -2C. 3D. 4 2. 实数4,0,722,3.125.0,0.1010010001…,3,2中无理数有( ) A. O 个 B. 1个 C. 2个 D. 3个3.如图,小强利用全等三角形的知识,测量池塘两端M 、N 的距离,如果ΔPQO ≌ΔNMO ,则只需测出其长度的线段是( )A. POB. PQC.MOD. MQ 4. 下列四个结论中,错误的有( ) ⑴负数没有平方根⑵一个数的立方根不是正数就是负数 ⑶一个正数的平方根一定是它的算术平方根 ⑷一个数的平方根一定有两个A. 1个B. 2个C. 3个D. 4个 5. x 2+2(k -1)x+64是一个整式的平方,那么k 的值是( ) A. 17 B. 9 C. 17或-15 D. 9或-76. 等腰三角形的一条边长为6,另一边长为13,则它的周长为( ) A. 25 B. 25或32 C. 32 D. 197.下列式子变形是因式分解的是( )A. x 2-5x+6=x(x -5)+6B. x 2-5x+6=(x -2)(x -3)C. (x -2)(x -3)=x 2-5x+6D. x 2-5x+6=(x+2)(x+3)(第3题图)28. 利用基本作图,不能作出唯一三角形的是( ) A. 已知两边及夹角 B. 已知两角及夹边 C. 已知两边及一边的对角 D. 已知三边 9. 计算(x 2)3·(21x 3-3x 2+4x -1)÷(-x·x 2)的结果为( ) A.21x 6+3x 5+4x 4-x 3B.-2x 6+3x 5-4x 4-x 3C. -21x 6+3x 5-4x 4+x 3 D. 2x 6-3x 5-4x 4+x 310.如图,已知∠MON=30°,点A 1,A 2,A 3… 在射线ON 上,点B 1,B 2,B 3… 在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4… 均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A. 6B. 12C. 64D. 32二、填空.(每小题3分,共24分)11.36的平方根是______.3216-的立方根是12.已知5是无理数,则5-1在相邻整数________ 和________之间.13.计算:20152014237472325.0)()(⨯⨯⨯-= ________. 14.已知a 、b 均为实数,且0)7(52=-+++ab b a ,则a 2+b 2=________. 15.若2m =3,4n =5,则22m-2n =________.16. 已知x 2+x -1=0,则代数式x 3+2x 2+2014= . 17.把命题“全等三角形的对应边相等”改写成“如果……那么……”的形式 .18.如图,ΔABC 中,AB=AC,AD ⊥BC,点E 、F 是AD 的三等分点,若S ΔABC =12m 2,则S 阴影=_______.(第10题图)(第18题图)3三、解答题.(19题12分,20题16分,21、22各6分,23、24各8分,25题10分,共66分)19.计算:⑴ 33327105312725---++ ⑵ (2m 2n)3·(-3m 3)2÷(-5m 2n 2)⑶ -2a(3a 2-a+3)+6a(a -1)220.分解因式:⑴ 4x 3y+xy 3-4x 2y 2⑵ n 2(m -2)-n(2-m)⑶ (x -1)(x -3)+1 ⑷ 9(a+b)2-25(a -b)221.先化简,再求值:[(x-2y)2+(x-2y)(x+2y)-2x(2x-y)]÷2x,其中x=-1,y=2.22.如图所示,在ΔABC中,AB=AC, ∠ABC=72°.⑴用直尺和圆规作∠ABC的平分线BD交AC于点D,(保留作图痕迹,不要求写作法)⑵在⑴中作出∠ABC的平分线BD后,求∠BDC的度数.4523.已知,如图AE=AC,AD=AB,∠EAC=∠DAB.求证:⑴ ΔEAD ≌ΔCAB⑵ ∠DCB=∠BAD24.如图,在ΔABC 中,∠ABC=90°,BE ⊥AC 于点E,点F 在线段BE 上,∠1=∠2,点D 在线段EC 上,给出两个条件:⑴DF ∥BC, ⑵BF=DF,请你从中选择一个作为条件,证明:ΔAFD ≌ΔAFB.25.如图甲,已知,ΔABC和ΔCEF是两个不等的等边三角形,且有一个公共顶点C,连接AF和BE.⑴线段AF和BE有怎样的大小关系?证明你的猜想.⑵将图中的ΔCEF绕点C旋转一定的角度,得到图乙,(1)中的结论还成立吗?做出判断并说明理由.67参考答案一、选择题:1-10 A D B C D C B C C D 二、填空题11. ±6 -36 12.1和2 13.2328 14. 11 15. 59 16. 2015 17. 略 18. 6 三、解答题19. ⑴ 2 ⑵ -n m 57210 ⑶ -10a 220. ⑴ xy(2x -y)2 ⑵ n(m -2)(n+1)⑶ (x -2)2 ⑷ -4(4a -b)(a -4b) 21.-x-y 值为-122. ⑴ 略 ⑵ 72° 23. 略24. 选择⑴ 证明:略 25. ⑴相等. 证明略⑵ 成立. 可证ΔAFC ≌ΔBEC。
2014-2015年四川省南充市八年级上期中数学试卷及答案解析
2014-2015年四川省南充市八年级上期中数学试卷及答案解析一.精心选一选1.的平方根是( )A.2 B.±2 C.4 D.±42.在实数﹣,0,,π,,,0.1010010001…中,无理数有( )A.1个B.2个C.3个D.4个3.下列图形中,是轴对称图形同时对称轴条数最多的是( )A.B.C.D.4.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为( )A.30° B.50°C.90°D.100°5.如果实数x、y满足y=,那么的值是( ) A.0 B.1 C.2 D.﹣26.和三角形三个顶点的距离相等的点是( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点7.如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有( )A.1个B.2个C.3个D.4个8.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是( )A.B.1.4 C. D.9.如图点A和B关于直线y=1对称,已知点A坐标是(4,4),则点B的坐标是( )A.(4,﹣4)B.(4,﹣2)C.(﹣2,4)D.(﹣4,2)10.如图,在△ABC中,AB=AC,AD=AE,则图中全等三角形的对数是( )A.3 B.2 C.1 D.0二.耐心填一填(每题3分,共18分,直截了当写出结果)11.运算|﹣|+2的结果是__________.12.①25x2=36,则x=__________;②若,则y=__________.13.点P关于x轴对称的点是(3,﹣4),则点P关于y轴对称的点的坐标是__________.14.如图,∠BAC=∠ABD,请你添加一个条件:__________,使OC =OD(只添一个即可).15.如图,在△ABC 中,AD=DE,AB=BE,∠A=110°,则∠DEC= __________.16.如图,在△ABD和△ACE中,有下列四个论断:①AB=AC;②A D=AE;③∠B=∠C;④BD=CE.请以其中三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题__________.(用序号ⓧⓧⓧ⇒ⓧ的形式写出)三.运算题17.解方程:25(x2﹣1)=24.18.运算:()2﹣+4×+﹣|﹣3|19.如图,AB=AC,AD=AE.求证:∠B=∠C.四.解答题(解答要有理由和逻辑性,本大题有3个小题,每题8分,共24分)20.△ABC中,AD为角平分线,DE⊥AB于E,DF⊥AC于F,AB= 10cm,AC=8cm,△ABC的面积为54cm2,求DE的长.21.某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),同时使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案.22.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C (﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.五.解答题23.如图,AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB= CD=4cm,求四边形ABCD的周长.24.在你周围45°角的三角板ABC中,AB=AC,∠BAC=90°,O为BC的中点,(1)试咨询点O到△ABC的三个顶点A、B、C的距离有何关系,讲明理由.(2)如果将你周围另一块三角板的直角顶点放在O点上,两条直角边分不与AC、AB相交于N、M,请你探究讲明△OMN的形状,并证明你的结论.25.如图,△ABC为等边三角形,D、E是BC、AC边上的点,且B D=CE,线段AD、BE交于F,(1)求∠AFE的度数;(2)若作EG⊥AD,G为垂足,且FG=3,BF=1,求AD的长;(3)如果D、E分不在BC、CA的延长线上,且仍有BD=CE,请探究BE、AD所在直线夹的锐角的度数是否是定值,请画图讲明理由.2014-2015学年四川省南充市八年级(上)期中数学试卷一.精心选一选1.的平方根是( )A.2 B.±2 C.4 D.±4【考点】平方根;算术平方根.【分析】先求出16的算术平方根为4,再求出4的平方根即可.【解答】解:∵=4,4的平方根为±2,∴的平方根是±2.故选B.【点评】此题考查了平方根,熟练把握平方根的定义是解本题的关键.2.在实数﹣,0,,π,,,0.1010010001…中,无理数有( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数确实是无限不循环小数.明白得无理数的概念,一定要同时明白得有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项【解答】解:,π,0.1010010001…是无理数.故选:C.【点评】此题要紧考查了无理数的定义,其中初中范畴内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有如此规律的数.3.下列图形中,是轴对称图形同时对称轴条数最多的是( )A.B.C.D.【考点】轴对称图形.【分析】按照轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,如此的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,有一条对称轴;B、是轴对称图形,有四条对称轴;C、是轴对称图形,有八条对称轴;D、是轴对称图形,有五条对称轴.故选C.【点评】把握轴对称图形的概念.轴对称图形的关键是查找对称轴,图形两部分折叠后可重合.同时要熟记一些常见图形的对称轴条数.4.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为( )A.30° B.50°C.90°D.100°【考点】轴对称的性质;三角形内角和定理.【分析】由已知条件,按照轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选D.【点评】要紧考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.5.如果实数x、y满足y=,那么的值是( ) A.0 B.1 C.2 D.﹣2【考点】二次根式有意义的条件.【分析】按照二次根式有意义的条件确定x的值,进而求得y的值,然后代入求解.【解答】解:按照题意,得x﹣1≥0,1﹣x≥0,∴x=1.把x=1代入已知等式,得y=1.∴=1+1=2.故选C.【点评】注意式子中的隐含条件:二次根式的被开方数必须是非负数.6.和三角形三个顶点的距离相等的点是( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点【考点】线段垂直平分线的性质.【分析】三角形三条边的垂直平分线相交于一点,同时这一点到三个顶点的距离相等.【解答】解:按照线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选D.【点评】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,同时这一点到三个顶点的距离相等.此点称为外心,也是那个三角形外接圆的圆心.),难度一样.7.如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】先由1=∠2得到∠CAB=∠DAE,然后分不利用“SAS”、“A SA”和“AAS”对各添加的条件进行判定.【解答】解:∵1=∠2,∴∠CAB=∠DAE,∵AC=AD,∴当AB=AE时,可按照“SAS”判定△ABC≌△AED;当BC=ED时,不能判定△ABC≌△AED;当∠C=∠D时,可按照“ASA”判定△ABC≌△AED;当∠B=∠E时,可按照“AAS”判定△ABC≌△AED.故选C.【点评】本题考查了全等三角形的判定:三条边分不对应相等的两个三角形全等;两边及其夹角分不对应相等的两个三角形全等;两角及其夹边分不对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.8.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是( )A.B.1.4 C. D.【考点】实数与数轴;勾股定理.【分析】先按照勾股定理求出正方形的对角线长,再按照两点间的距离公式即可求出A点的坐标.【解答】解:数轴上正方形的对角线长为:=,由图中可知0和A之间的距离为.∴点A表示的数是.故选D.【点评】本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.9.如图点A和B关于直线y=1对称,已知点A坐标是(4,4),则点B的坐标是( )A.(4,﹣4)B.(4,﹣2)C.(﹣2,4)D.(﹣4,2)【考点】坐标与图形变化-对称.【专题】运算题.【分析】按照题意,可得A、B的连线与y=1垂直,且两点到直线y= 1的距离相等,由此分不可得AB两点纵横坐标间的关系,解之可得答案.【解答】解:按照题意,A和B关于直线y=1对称,则A、B的连线与y=1垂直,且两点到直线y=1的距离相等;由A、B的连线与y=1垂直,可得A、B的横坐标相等,又有两点到直线y=1的距离相等,可得yA﹣1=1﹣yB,解可得yB=﹣2;故B点的坐标为(4,﹣2);答案为B.【点评】本题考查了坐标与图形的变化﹣对称的性质与运用,解决此类题应认真观看,发觉横坐标不变,二纵坐标到y=1的距离相等是正确解答本题的关键.10.如图,在△ABC中,AB=AC,AD=AE,则图中全等三角形的对数是( )A.3 B.2 C.1 D.0【考点】全等三角形的判定.【分析】按照等腰三角形的性质求出∠B=∠C,∠ADE=∠AED,按照三角形的外角性质求出∠BAD=∠CAE,按照全等三角形的判定推出即可.【解答】解:图中全等三角形有△ADB≌△AEC,△AEB≌△ADC,理由是:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AEB,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),在△AEB和△ADC中,,∴△AEB≌△ADC(AAS),即共2个.故选B.【点评】本题考查了对等腰三角形的性质,三角形外角性质和全等三角形的判定的应用,能按照全等三角形的判定找出符合的因此情形是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.二.耐心填一填(每题3分,共18分,直截了当写出结果)11.运算|﹣|+2的结果是+.【考点】二次根式的加减法.【分析】由于<,故|﹣|=﹣.【解答】解:原式=﹣+2=+.【点评】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.12.①25x2=36,则x=±;②若,则y=﹣8.【考点】立方根;平方根.【分析】①利用平方根的定义运算即可;②利用立方根的定义运算即可.【解答】解:①∵25x2=36∴x=;②∵,∴y=﹣8.故答案为:①;②﹣8.【点评】此题要紧考查了平方根、立方根的定义,注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.13.点P关于x轴对称的点是(3,﹣4),则点P关于y轴对称的点的坐标是(﹣3,4).【考点】关于x轴、y轴对称的点的坐标.【分析】关于横轴的对称点,横坐标相同,纵坐标变成相反数;关于纵轴的对称点,纵坐标相同,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.【解答】解:∵点P关于x轴对称的点是(3,﹣4),则P点的坐标是(3,4).∴点P关于y轴对称的点的坐标是(﹣3,4)【点评】这一类题目是需要识记的基础题.能够结合平面直角坐标系和对称的性质进行经历.14.如图,∠BAC=∠ABD,请你添加一个条件:∠C=∠D或AC=BD,使OC=OD(只添一个即可).【考点】全等三角形的判定.【专题】开放型.【分析】本题可通过全等三角形来证简单的线段相等.△AOD和△B OC中,由于∠BAC=∠ABD,可得出OA=OB,又已知了∠AOD=∠BOC,因此只需添加一组对应角相等即可得出两三角形全等,进而的得出OC=O D.也可直截了当添加AC=BD,然后联立OA=OB,即可得出OC=OD.【解答】解:∵∠BAC=∠ABD,∴OA=OB,又有∠AOD=∠BOC;∴当∠C=∠D时,△AOD≌△BOC;∴OC=OD.故填∠C=∠D或AC=BD.【点评】本题考查了全等三角形的判定;题目是开放型题目,按照已知条件结合判定方法,找出所需条件,一样答案不唯独,只要符合要求即可.15.如图,在△ABC 中,AD=DE,AB=BE,∠A=110°,则∠DEC= 70°.【考点】全等三角形的判定与性质.【分析】证得△ABD≌△EBD后得到∠DEB=∠A=110°,从而得到∠DEC=70°.【解答】解:在△ABD和△EBD中,,∴△ABD≌△EBD,∴∠DEB=∠A=110°,∴∠DEC=70°.故答案为:70°.【点评】本题考查了全等三角形的判定及等腰三角形的性质,解决本题的关键是证明△ABD≌△EBD.16.如图,在△ABD和△ACE中,有下列四个论断:①AB=AC;②A D=AE;③∠B=∠C;④BD=CE.请以其中三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题①③④⇒②(答案不唯独).(用序号ⓧⓧⓧ⇒ⓧ的形式写出)【考点】命题与定理.【专题】压轴题;开放型.【分析】本题的题意是先证三角形全等,然后得出简单的角或边相等.按照全等三角形的判定定理可知:①②④⇒③是按照SSS来判定其全等,从而得到全等三角形的对应角相等.①③④⇒②是按照SAS来判定其全等,从而得到全等三角形的对应边相等.【解答】解:由①②④⇒③或①③④⇒②;先证前一种:∵AB=AC,AD=AE,BD=CE,∴△ABD≌△ACE(SSS);∴∠B=∠C;再证第二种:∵AB=AC,∠B=∠C,BD=CE,∴△ABD≌△ACE(SAS);∴AD=AE.故答案为:①③④⇒②(答案不唯独).【点评】此题要紧考查全等三角形的判定方法,常用的判定方法有SA S、SSS、AAS、ASA、HL等,要求学生对常用的这几种判定方法要熟练把握.三.运算题17.解方程:25(x2﹣1)=24.【考点】平方根.【分析】先去括号,然后再移项、合并同类项、最后再开平方即可.【解答】解:去括号得25x2﹣25=24,移项、合并同类项得:25x2=49,系数化为1得:.直截了当开平方得:x=±.【点评】本题要紧考查的是平方根的应用,把握平方根的定义和性质是解题的关键.18.运算:()2﹣+4×+﹣|﹣3|【考点】实数的运算.【专题】运算题.【分析】原式利用二次根式性质,立方根定义,以及绝对值的代数意义化简,运算即可得到结果.【解答】解:原式=2﹣4+4×+5﹣3+=2+.【点评】此题考查了实数的运算,熟练把握运算法则是解本题的关键.19.如图,AB=AC,AD=AE.求证:∠B=∠C.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题要紧考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观看出公共角∠A是解决本题的关键.四.解答题(解答要有理由和逻辑性,本大题有3个小题,每题8分,共24分)20.△ABC中,AD为角平分线,DE⊥AB于E,DF⊥AC于F,AB= 10cm,AC=8cm,△ABC的面积为54cm2,求DE的长.【考点】角平分线的性质.【分析】按照角平分线上的点到角的两边距离相等可得DE=DF,然后利用三角形的面积公式列方程求解即可.【解答】解:∵AD为角平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC的面积为54cm2,∴AB•DE+AC•DF=54,∵AB=10cm,AC=8cm,∴×10×DE+×8×DE=54,解得DE=6cm.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.21.某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),同时使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案.【考点】利用轴对称设计图案.【专题】方案型.【分析】利用轴对称图形的性质结合等腰三角形和正方形的特点进行设计.【解答】解:【点评】本题要紧考查了轴对称图形的性质.22.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C (﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图-轴对称变换.【专题】综合题.【分析】(1)按照网格能够看出三角形的底AB是5,高是C到AB 的距离,是3,利用面积公式运算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.五.解答题23.如图,AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB= CD=4cm,求四边形ABCD的周长.【考点】等腰梯形的性质;平行线的性质;角平分线的性质.【专题】运算题.【分析】由已知可推出AB=AD,BC=2AB,那么周长自然就能够得到了.【解答】解:∵AD∥BC,∠A=120°,∠C=60°,∴∠ADC=120°,∠ABC=60°,∠ADB=∠DBC;∵BD平分∠ABC,∴∠ABD=∠ADB=30°,∠BDC=90°;∴AB=AD,BC=2CD;又AB=CD=4cm,∴AD=4,BC=8,∴AB+BC+CD+AD=4+8+4+4=20(cm),∴四边形ABCD的周长为20cm.【点评】此题要紧考查学生对等腰梯形的性质的明白得及运用.24.在你周围45°角的三角板ABC中,AB=AC,∠BAC=90°,O为BC的中点,(1)试咨询点O到△ABC的三个顶点A、B、C的距离有何关系,讲明理由.(2)如果将你周围另一块三角板的直角顶点放在O点上,两条直角边分不与AC、AB相交于N、M,请你探究讲明△OMN的形状,并证明你的结论.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)连接OA,得出△ABO和△ACO差不多上等腰直角三角形,得出0A=0B=OC,据此即可解答;(2)△OMN的为等腰直角三角形,证明△ONA≌△OMB,得到ON =OM,又∠NOM直角,因此△OMN的为等腰直角三角形.【解答】解:(1)点O到△ABC的三个顶点A、B、C的距离相等,如图,连接OA,∵AB=AC,∠BAC=90°,O为BC的中点,∴△ABO和△ACO差不多上等腰直角三角形,∴0A=0B=OC,∴点O到△ABC得三个顶点A、B、C的距离相等;(2)△OMN的形状为等腰直角三角形.∵AB=AC,∠BAC=90°,O为BC的中点,∴∠AOB=90°,∠CAO=∠BAO=45°,∠ABO=45°,∵∠MON=90°,∴∠AON+∠AOM=90°,∵∠BOM+∠AOM=90°,∴∠AON=∠BOM,在△ONA和△OMB中,∴△ONA≌△OMB,∴ON=OM,又∵∠NOM直角,∴△OMN的为等腰直角三角形.【点评】本题要紧考查了等腰直角三角形的性质、全等三角形的判定和性质,在(2)中的关键是证明△ONA≌△OMB.25.如图,△ABC为等边三角形,D、E是BC、AC边上的点,且B D=CE,线段AD、BE交于F,(1)求∠AFE的度数;(2)若作EG⊥AD,G为垂足,且FG=3,BF=1,求AD的长;(3)如果D、E分不在BC、CA的延长线上,且仍有BD=CE,请探究BE、AD所在直线夹的锐角的度数是否是定值,请画图讲明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)利用等边三角形的性质,证明△ABD≌△BCE,得到∠B AD=∠CBE,又∠AFE=∠ABF+∠BAD=∠ABC,因此∠AFE=60°;(2)利用直角三角形的性质求出EB=1+6=7,按照△ABD≌△BCE,得到AD=BE,即可解答.(3)是定值,仍为60°,证明△ABE≌△ACD,得到∠E=∠D,利用外角的性质得到∠BFD=∠E+∠EAF=∠D+∠DAC=∠ACB=60°.【解答】解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=∠C=60°.在△ABD和△BCE中,,∴△ABD≌△BCE,∴∠BAD=∠CBE.又∵∠AFE=∠ABF+∠BAD=∠ABC∴∠AFE=60°.(2)∵EG⊥AD,∠AFE=60°,∴∠FEG=30°,∴EF=2FG=6,∵BF=2,∴EB=1+6=7,∵△ABD≌△BCE,∴AD=BE,∴AD=7.(3)是定值,仍为60°,如图.∵△ABC为等边三角形,∴AC=BC,∠BAC=∠ACB=60°.∴∠BAE=∠ACD=120°,∵BD=CE,∴BD﹣BC=CE﹣AC,即CD=AE,在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠E=∠D.∴∠BFD=∠E+∠EAF=∠D+∠DAC=∠ACB=60°.【点评】此题考查了等边三角形的判定与性质,全等三角形的判定与性质,利用了等量代换及转化的思想,熟练把握等边三角形的判定与性质是解本题的关键.。
2014-2015学年北师大版八年级上期中考试数学试题及答案
2014-2015学年北师大版八年级上期中考试数学试题及答案2014-2015学年度八年级第一学期期中数学考试试卷考试时间为90分钟,试卷总分为100分。
一、选择题(每小题2分,共计16分)1.点P(-2,3)所在的象限是()。
A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限2.如图1所示,是一局围棋比赛的几手棋。
为了记录棋谱方便,横线用数字表示,纵线用字母表示。
这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为()。
A.(C,5) B。
(C,4) C。
(4,C) D。
(5,C)3.下列说法正确的是()。
A。
-6是36的算术平方根 B。
±6是36的算术平方根C。
6是36的算术平方根 D。
6是36的算术平方根4.以下列各组数为边的三角形中,是直角三角形的有()。
1) 3,4,5;(2) 5,12,13;(3) 6,8,10;(4) 0.03,0.04,0.05.A。
1个 B。
2个 C。
3个 D。
4个5.下列各组数中互为相反数的是()。
A。
-2与(-2)^2 B。
-2与3-8 C。
2与(-2) D。
-2与26.下列各数中无理数的个数有()。
2,22/7,3.xxxxxxxx,7,-8,32,0.6,√3,√7,36,√73A。
3 B。
4 C。
5 D。
67.如图2,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为()。
A。
-2-3 B。
-1-3 C。
-2+3 D。
1+38.如图3,在三角形纸片ABC中,∠C=90°,AC=18,将∠A沿DE折叠,使点A与点B重合,折痕和AC交于点E,EC=5,则BC的长为()。
A。
9 B。
12 C。
15 D。
18二、填空题(每小题3分,共计24分)9.已知一个直角三角形的两边的长分别是3和4,则第三边长为()。
10.如图4所示的圆柱体中底面圆的半径是√2,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是(结果保留根号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014~2015学年度洪山区八年级期中数学试卷一、选择题(每小题3分,共30分)1.下列图形中不是轴对称图形的是()2.若下列各组值代表线段的长度,以它们为边不能构成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,83.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是()A.AC=AD B.BC=BD C.∠C=∠D D.∠ABC=∠ABD4.如图,△ABC中,∠B=∠C,D是BC上一点,DE⊥BC交AC于E,DF⊥AB,垂足为F,若∠AED=160°,则∠EDF等于()A.50°B.60° C.70° D.80°5.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm 6.下列条件中,能判定△ABC≌△DEF的是()A. AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=DEC.∠A=∠D,∠B=∠E,∠C=∠F D. AB=DE,BC=EF,△ABC的周长=△DEF的周长7.如图,AB=AC,BD=EC,AF⊥BC,则图中全等三角形有()A.2对B.3对C.4对D.5对8.如图,平面直角坐标系xOy中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有()个.A.2 B.3 C. 4 D.59.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A.2个B.3个C.4个D.5个10.如图,△ABC中,∠ACB=75°,D为BC上一点,CE⊥AD于E,且AE=CE,点E在AB的垂直平分线上,若CD=2,则BD的长为()A.2 B.C.D.1二、填空题11.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_.12.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于_________.13.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),则B点的坐标是_________.14.锐角△ABC中,∠A=50°,两条高线BD、CE所在直线交于点H,则∠BHC的度数为_________.15.如图,点P关于OA、OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若PMN的周长=8厘米,则CD为_________厘米.16.如图,△ABC中,AC=8,AB=10,△ABC的面积为30,AD平分∠BAC,F、E分别为AC、AD上两动点,连接CE、EF,则CE+EF的最小值为_________.三、解答题(共72分)17.(8分)如图:线段AB与直线EF不相交,在直线EF上求作一点C,使△ABC周长最短.(不要求写作法,但请保留作图痕迹)18.(8分)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE,求证:AB=AC.19.(8分)已知:如图,AB=AD,AC=AE,∠1=∠2,求证:∠DEB=∠2.20.(8分)已知等腰三角形的周长为24cm,腰长为xcm,底边为ycm,请你用x的式子表示y,并求x的取值范围.21.(8分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC沿y轴翻折,则翻折后点A的对应点的坐标是_________.(2)若△DBC与△ABC全等,请画出符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标.22.(10分)△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC.(1)如图1,连接DE,求∠BDE的度数;(2)如图2,过E作EF⊥AB于F,若BF=4,求CE的长.23.(10分)已知四边形ABCD中,AD∥BC,AB=AD,∠ABC=2∠C=2α,点E在AD上,点F在DC上.(1)如图1,若α=45°,∠BDC的度数为_________;(2)如图2,当α=45°,∠BEF=90°时,求证:EB=EF;(3)如图3,若α=30°,则当∠BEF=_________时,使得EB=EF成立?(请直接写出结果)24.(12分)如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴与G,连OB、OC.(1)判断△AOG的形状,并予以证明;(2)若点B、C关于y轴对称,求证:AO⊥BO;(3)在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.试卷参考答案及分析一试卷分析及参考答案解答题详细答案及评分标准17.作图5分 ,写作法3分 18.省略19.(本题8分)证明:∵ ∠1=∠2 ∴ ∠1+∠BAE =∠2+∠BAE ∴ ∠DAB =∠CAB …… ……2 ′ 在△DAB 和△CAB 中 AD =AB∠DAB =∠CAB AE =AC∴ △DAB ≌ △CAB(SAS) …… ……5 ′∴∠DEA =∠C∵∠DEB+∠AEC+∠DEA =∠2+∠AEC+ ∠C= 180°… ……7 ′ ∴∠DEB =∠2 …… ……8 ′20.(1)242y x =- …… ……3 ′(2)由三角形三边之间的关系可得2x y >即2242x x >-解得6x > ………5 ′ 有因0y >即2420x ->解得12x <…… ……7 ′ ∴x 的范围是612x <<… ……8 21题.(本题8分) (1)(2,3) …… ……2′(2)画图每个1分……5′(-5,3),(-5,-3),(-2,-3)--------8分21.(1)(2,3) …… ……2′(2)画图每个1分……5′(-5,3),(-5,-3),(-2,-3)--------8分22题.(本题10分)解:(1)连CD,易证△BDE≌△ACD,∵∠B=45°,BC=BD,∴∠BCD=67.5°∵∠ACB=90°,∴∠ACD=22.5°=∠BDE.…………5′(2)连CD,由(1)知CD=DE,∴∠DCE=∠DEC=67.5°,∴∠CDE=45°,过D作DM⊥CE于M,∴CM=ME,∠CDM=∠EDM=∠BDE=22.5°,∵EM⊥DM,EF⊥DB,∴EF=EM,易证EF=BF,∴CE=2BF=8.…………10′23题.(本题8分)答案:(1)∠BDC=90°…………2′(2)解法一:连BD,由(1)知∠BDC=90°,作EM//AB交BD于M,易证△EMD为等腰直角△,△EDF≌△EMB故EB=EF解法二:连BD,作EN∥BD交AB于N,证△ENB≌△FDE.…………7′(3)120°.…………10′24题.(本题12分)解:(1)等腰三角形,证明略.…………3′(2)解法一:设BC交y轴于K,过A作AN⊥y轴于N,易证AN=CK=BK,△ANG≌△BKG,∴AG=BG,又易证AG=OG,故设∠OAG=∠AOG=x,∠GOB=∠GBO=y,∴2x+2y=180°,x+y=90°,∴AO⊥BO.解法二:连BC,∵B、C关于y轴对称,AC//y轴,∴AC⊥BC,易证△COD≌△BOE(HL),∴∠DCO=∠ABO,∴∠BAC+∠BOC=180°,设∠BAO=∠CAO=x,∠OBC=∠OCB=y,∴2x+∠BOC=180°,又2y+∠BOC=180°,∴x=y,故∠OAC=∠OBC,∴∠AOB=∠ACB=90°,∴AO⊥OB.…………7′(3)连BC,则∠ACB=90°,∵∠ACM=45°,∴CM平分∠ACB,又AM平分∠BAC,∴BM平分∠ABC,设∠ABM=∠CBM=z,由(2)可得∠OMB=x+z,∠OBM=y+z=x+z∴∠OMB=∠OBM,∴OM=OB故△OBM为等腰直角△,作MG⊥x轴于G,BH⊥x轴于H,易证△OMG≌△OBH,∴OG=BH=1,MG=OH=3∴M(-1,3).…………12′二、试卷特点分析整套试卷的整体难度不大,选择题1-8与填空题11-15,解答题17-22以考察基础知识与基本技能为主,注重学生对基础知识能力的考查。
但试卷同时也有一定梯度,例如选择题9,10,填空题16题,解答题的23,24侧重对学生知识灵活运用和综合能力的的考察。
这张这卷重点在检测学生八年级上册上半学期所学内容,师生可以参考这张试卷的考试内容和考点情况,在期中考试前有针对性有目的性的复习备考三、复习建议1以人教版课本中的例题,习题为重点。
2.在掌握基础的前提下,灵活运用知识点,并且熟悉不同辅助线的做法3.注重全等中共顶点等腰三角形的证明和结论,等腰直角三角形的辅助线做法,角平分线和垂直平分线的性质和运用以及平面直角坐标系中几何证明。