(word完整版)高一数学必修一期末试卷及答案,推荐文档
高一上学期数学第三章函数的概念与性质单元测试人教版(2019)必修第一册(word版,含答案)
湖南武冈二中2021-2022学年高一上学期数学第三章函数的概念与性质单元测试人教版(2019)必修第一册考试范围:第三章函数的概念与性质;考试时间:100分钟;命题人:邓 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共40分)1.(本题4分)已知()f x 是一次函数,()()()()22315,2011f f f f -=--=,则()f x =( ) A .32x +B .32x -C .23x +D .23x -2.(本题4分)函数221y x x =++,[]2,2x ∈-,则( ) A .函数有最小值0,最大值9 B .函数有最小值2,最大值5 C .函数有最小值2,最大值9D .函数有最小值0,最大值53.(本题4分)下列各组函数()f x 与()g x 的图象相同的是( ) A .()()2,f x x g x ==B .()()()22,1f x x g x x ==+C .()()01,f x g x x ==D .()(),0,,0x x f x x g x x x ≥⎧==⎨-<⎩4.(本题4分)已知函数()M f x 的定义域为实数集R ,满足()1,=0,M x Mf x x M ∈⎧⎨∉⎩(M 是R的非空子集),在R 上有两个非空真子集A ,B ,且A B =∅,则()()()()11A B A B f x F x f x f x +=++的值域为( )A .20,3⎛⎤ ⎥⎝⎦B .{}1C .12,,123⎧⎫⎨⎬⎩⎭D .1,13⎡⎤⎢⎥⎣⎦5.(本题4分)已知函数()y f x =的定义域为[)1,2-,则函数(2)y f x =+的定义域为( ) A .[]3,0-B .(3,0)-C .[)3,0-D .(]3,0-6.(本题4分)若()232a =,233b =,231c ⎛⎫= ⎪,231()d =,则a ,b ,c ,a 的大小关系是( ) A .a b c d >>>B .b a d c >>>C .b a c d >>>D .a b d c >>>7.(本题4分)已知()()22327m f x m m x-=--是幂函数,且在()0,∞+上单调递增,则满足()11f a ->的实数a 的范国为( ) A .(),0-∞B .()2,+∞C .()0,2D .()(),02,-∞+∞8.(本题4分)已知()f x 是定义域为(,)-∞+∞的奇函数,满足()()11f x f x -=+.若(1)1f =,则(1)(2)(3)(4)(2020)(2021)f f f f f f ++++++=( )A .0B .1C .2D .20219.(本题4分)若函数2()2(1)2f x x a x =+-+,在(],5-∞上是减函数,则a 的取值范围是( ) A .(],5-∞-B .[)5,+∞C .[)4,+∞D .(],4-∞-10.(本题4分)若不等式243x px x p +>+-,当04p ≤≤时恒成立,则x 的取值范围是( ) A .[]1,3- B .(],1-∞- C .[)3,+∞ D .()(),13,-∞-+∞第II 卷(非选择题)二、填空题(共40分)11.(本题4分)已知函数()223f x x ax =-+在区间[]28,是单调递增函数,则实数a 的取值范围是______.12.(本题4分)已知函数2(1)22f x x x -=++,则(2)f =___________.13.(本题4分)已知二次函数()f x 满足(0)2f =,()(1)21f x f x x --=+,则函数2(1)f x +的最小值为__________.14.(本题4分)已知函数21()2x f x x ⎧+=⎨-⎩(0)(0)x x ≤>,若()5f a =则a =___________.15.(本题4分)定义在R 上的函数f (x )满足f (x +6)=f (x ).当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 019)=___.16.(本题4分)已知函数()12,1x x f x -⎧≥=⎨,则满足不等式(1)((2))f a f f +≥的实数a 的取值范围为______.17.(本题4分)函数2()21x xf x ax =+-是偶函数,则实数a =__________. 18.(本题4分)已知函数()22f x x +=,则()f x =______.19.(本题4分)已知函数()f x 是定义在R 上的奇函数,满足(1)(1)f x f x -=+,若(1)2020f =,则(2019)(2020)f f +=___________.20.(本题4分)已知函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有(()2)1f f x x +=,则(2)f -=_________.三、解答题(共70分)21.(本题8分)已知幂函数223()m m f x x --=(m ∈Z )为偶函数,且在区间(0,+∞)上是单调减函数. (1)求函数()f x ; (2)讨论()()bF x xf x =的奇偶性. 22.(本题10分)已知函数f (x )=2x 2+1. (1)用定义证明f (x )是偶函数; (2)用定义证明f (x )在(-∞,0]上是减函数.23.(本题12分)设函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数; (1)若()10f >,判断()f x 的单调性并求不等式(2)(4)0f x f x ++->的解集; (2)若()312f =,且22()4()x xg x a a f x -=+-,求()g x 在[1,)+∞上的最小值. 24.(本题12分)已知函数2()|1||1|f x x m x a =-+++有最小值(2)4f =-, (1)作出函数()y f x =的图象, (2)写出函数(12)f x -的递增区间.25.(本题12分)已知函数f (x )=()()1,01,1?x x x x ⎧<≤⎪⎨⎪>⎩(1)画出函数f (x )的图像; (2)求函数f (x )的值域;(3)求函数f (x )的单调递增区间,单调递减区间. 26.(本题16分)已知函数11,1()11,01x xf x x x⎧-⎪⎪=⎨⎪-<<⎪⎩.(1)当0a b <<,且()()f a f b =时,求11a b+的值; (2)是否存在实数a 、b (a b <),使得函数()y f x =的定义域、值域都是[,]a b .若存在,则求出a 、b 的值;若不存在,请说明理由;(3)若存在实数a 、b (a b <)使得函数()y f x =的定义域为[,]a b 时,值域为[,]ma mb (0m ≠),求m 的取值范围.参考答案1.B 【分析】设函数()(0)f x kx b k =+≠,根据题意列出方程组,求得,k b 的值,即可求解. 【详解】由题意,设函数()(0)f x kx b k =+≠,因为()()()()22315,2011f f f f -=--=,可得51k b k b -=⎧⎨+=⎩,解得3,2k b ==-,所以()32f x x =-. 故选:B. 2.A 【分析】求出二次函数的对称轴,判断在区间[]22-,上的单调性,进而可得最值. 【详解】()22211y x x x =++=+对称轴为1x =-,开口向上,所以221y x x =++在[]2,1--上单调递减,在[]1,2-上单调递增,所以当1x =-时,min 1210y =-+=,当2x =时,2max 22219y =+⨯+=,所以函数有最小值0,最大值9, 故选:A. 3.D 【分析】分别看每个选项中两个函数的定义域和解析式是否相同即得. 【详解】对于A ,()f x 的定义域是R ,()g x 的定义域是[)0+,∞,故不满足; 对于B ,()f x 与()g x 的解析式不同,故不满足;对于C ,()f x 的定义域是R ,()g x 的定义域是{}0x x ≠,故不满足;对于D ,()()f x g x =,满足 故选:D 4.B 【分析】讨论x 的取值,根据函数的新定义求出()F x 即可求解. 【详解】 当()Rx A B ∈⋃时,()0A B f x ⋃=,()0A f x =,()0B f x =,()1F x ∴=同理得:当x B ∈时,()1F x =; 当x A ∈时,()1F x =;故()()R 1,1,1,x A F x x B x A B ⎧∈⎪=∈⎨⎪∈⋃⎩,即值域为{1}.故选:B 5.C 【分析】根据函数()y f x =的定义域为[)1,2-,则[)21,2x +∈-,从而可得出答案. 【详解】解:因为函数()y f x =的定义域为[)1,2-, 所以122x -≤+<,解得-<3≤0x , 所以函数函数(2)y f x =+的定义域为[)3,0-. 故选:C. 6.C 【分析】根据幂函数的概念,利用幂函数的性质即可求解. 【详解】203> ∴幂函数23y x =在()0,∞+上单调递增,又1132023>>>>, 22223333113223⎛⎫⎛⎫∴>>> ⎪ ⎪⎝⎭⎝⎭,b acd ∴>>>故选:C. 7.D 【分析】由幂函数的定义求得m 的可能取值,再由单调性确定m 的值,得函数解析式,结合奇偶性求解. 【详解】由题意2271m m --=,解得4m =或2m =-, 又()f x 在()0,∞+上单调递增,所以203m ->,2m >, 所以4m =,23()f x x =,易知()f x 是偶函数, 所以由()11f a ->得11a ->,解得0a <或2a >. 故选:D. 8.B 【分析】先由奇函数的定义得到()00f =且()()f x f x -=-,再结合()()11f x f x -=+得到函数()f x 的周期性,进而利用()00f =,()11f =化简求解.【详解】因为()f x 是定义域为()∞∞-+,的奇函数, 所以()00f =且()()f x f x -=-, 又因为函数()f x 满足()()11f x f x -=+, 所以()()()111f x f x f x +=-=--, 令1x t +=,则()()2f t f t =--, 即()()2f x f x =--,则()()()24f x f x f x =--=-, 所以函数()f x 是以4为周期的周期函数, 因为()00f =,()11f =,所以()()420f f =-=,()()311f f =-=-, 则()()()()()()123420202021f f f f f f ++++⋯++ ()()()()()50012342021f f f f f ⎡⎤=++++⎣⎦()050041f =+⨯+ ()11f ==.故选:B. 9.D 【分析】根据二次函数的开口方向以及对称轴确定出a 满足的不等式,由此求解出a 的取值范围. 【详解】因为()f x 的对称轴为1x a =-且开口向上,且在(],5-∞上是减函数, 所以15a -≥,所以4a ≤-, 故选:D. 10.D 【分析】由已知可得()2min [143]0x p x x -+-+>,结合一次函数的性质求x 的范围.【详解】不等式243x px x p +>+-可化为()21430x p x x -+-+>, 由已知可得()21430min x p x x ⎡⎤-+-+>⎣⎦令()()2143x p x f x p +--+=,可得()()()220430441430f x x f x x x ⎧=-+>⎪⎨=-+-+>⎪⎩∈ 1x <-或3x >, 故选D. 11.2a ≤ 【分析】求出二次函数的对称轴,即可得()f x 的单增区间,即可求解. 【详解】函数()223f x x ax =-+的对称轴是x a =,开口向上,若函数()223f x x ax =-+在区间[]28,是单调递增函数,则2a ≤, 故答案为:2a ≤. 12.17 【分析】先令12x -=,得3x =,再把3x =代入函数中可求得答案 【详解】解:令12x -=,得3x =, 所以2(2)323217f =+⨯+=, 故答案为:17 13.5. 【分析】根据()f x 为二次函数可设2()(0)f x ax bx c a =++≠,由(0)2f =可得2c =,再根据()(1)21f x f x x --=+,比较对应项系数即可求出,a b ,再根据二次函数的性质即可得到函数2(1)f x +的最小值. 【详解】()f x 为二次函数,∴可设2()(0)f x ax bx c a =++≠,∴(0)2f c ==,因为()(1)21f x f x x --=+∴22(1)(1)21ax bx c a x b x c x ++-----=+,即221ax a b x -+=+,∴221a b a =⎧⎨-=⎩,解得12a b =⎧⎨=⎩,∴2()22f x x x =++,令21t x =+,则1t ≥,函数2(1)f x +即为()f t =2222(1)1t t t ++=++.()f t 的图象开口向上,图象的对称轴为直线1t =-,()f t ∴在[)1,+∞上单调递增,∴min ()(1)5f t f ==,即2(1)f x +的最小值为5. 故答案为:5. 14.2-. 【分析】根据分段函数的定义分类讨论求解. 【详解】若0a >,则()25f a a =-=,502a =-<,不合题意,舍去.若0a ≤,则2()15f a a =+=,2a =-(正的舍去). 故答案为:2-. 15.338 【分析】首先判断函数的周期,并计算一个周期内的函数值的和,即可求解. 【详解】由f (x +6)=f (x )可知,函数f (x )的周期为6,∈f (-3)=f (3)=-1,f (-2)=f (4)=0,f (-1)=f (5)=-1,f (0)=f (6)=0,f (1)=1,f (2)=2,∈在一个周期内有f (1)+f (2)+…+f (6)=1+2-1+0-1+0=1,∈f (1)+f (2)+…+f (2 019)=f (1)+f (2)+f (3)+336×1=1+2+(-1)+336=338. 故答案为:33816.1(,][1,)2-∞-⋃+∞.【分析】根据函数的解析式,求得(2)2f =,把不等式(1)((2))f a f f +≥转化为(1)2f a +≥,得出等价不等式组,即可求解. 【详解】由题意,函数()12,132,1x x f x x x -⎧≥=⎨-<⎩,可得()()()22,22,f f f ==,所以由不等式(1)((2))f a f f +≥,可得(1)2f a +≥,则1122a a +≥⎧⎨≥⎩或1132(1)2a a +<⎧⎨-+≥⎩,解得1a ≥或12a ≤-,即实数a 的取值范围为1(,][1,)2-∞-⋃+∞.故答案为:1(,][1,)2-∞-⋃+∞.17.1 【分析】由已知奇偶性可得()()f x f x -=,结合已知解析式可求出22a =,即可求出a . 【详解】 因为2()(0)21xxf x ax x =+≠-,且()f x 是偶函数,则()()f x f x -=, 2222222,,20212121212121xx x x x x x x x ax ax a a a --⨯--=+--=++-=------,即22a =,所以实数1a =. 故答案为: 1. 18.244x x -+ 【分析】采用换元法即可求出函数解析式. 【详解】令2x t +=,则2x t =-,所以()()22244t t f t t =--+=,因此()244f x x x =-+,故答案为:244x x -+. 19.2020- 【分析】由题设可得(4)()f x f x +=,即()f x 的周期为4,利用周期性、奇偶性求(2019)(2020)f f +的值即可. 【详解】由题设,知:()(2)()f x f x f x -=+=-,∈(4)(2)()f x f x f x +=-+=,即()f x 的周期为4,∈()f x 是定义在R 上的奇函数,即(0)0f =,又(1)2020f =,∈(2019)(2020)(50541)(5054)(1)(0)(0)(1)2020f f f f f f f f +=⨯-+⨯=-+=-=-. 故答案为:2020- 20.3 【分析】根据题意,分析可得()2f x x +为常数,设()2f x x t +=,解可得t 的值,即可得函数的解析式,将2x =-代入计算可得答案. 【详解】根据题意,函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有()()21f f x x +=, 则()2f x x +为常数,设()2f x x t +=,则()2f x x t =-+, 则有()21f t t t =-+=,解可得1t =-,则()21f x x =--, 故()2413f -=-=, 故答案为:3.21.(1)4()f x x -=;(2)答案见解析. 【分析】(1)由()f x 是偶函数,且在(0,+∞)上是单调减函数,可得m 的值;(2)求出()F x -,分0a ≠且0b ≠,0a ≠且0b =,0a =且0b ≠和0a =且0b =四种情况,分别得出函数的奇偶性. 【详解】(1)∈()f x 是偶函数,∈223m m --应为偶数.又∈()f x 在(0,+∞)上是单调减函数,∈223m m --<0,-1<m <3.又m ∈Z ,∈m =0,1,2.当m =0或2时,223m m --=-3不是偶数,舍去;当m =1时,223m m --=-4;∈m =1,即4()f x x -=.(2)32()a F x bx x =-,∈32()aF x bx x-=+ ∈当0a ≠且0b ≠时,函数()F x 为非奇非偶函数; ∈当0a ≠且0b =时,函数()F x 为偶函数; ∈当0a =且0b ≠时,函数()F x 为奇函数;∈当0a =且0b =时,函数()F x 既是奇函数,又是偶函数. 22.(1)证明见解析;(2)证明见解析. 【分析】(1)先求得函数f (x )的定义域为R ,再对于任意的x ∈R ,都有 f (-x )=f (x ),由此可得证; (2)任取x 1,x 2∈(-∞,0],且x 1 < x 2,作差 f (x 1)-f (x 2)=2(x 1-x 2)(x 1+x 2),判断差的符号,可得证. 【详解】解:(1)函数f (x )的定义域为R ,对于任意的x ∈R ,都有 f (-x )=2(-x )2+1=2x 2+1=f (x ), ∈f (x )是偶函数.(2)任取x 1,x 2∈(-∞,0],且x 1 < x 2,则有f (x 1)-f (x 2)=(2x 12+1)-(2x 22+1)=2(x 12-x 22)=2(x 1-x 2)(x 1+x 2), ∈x 1,x 2∈(-∞,0],∈x 1+x 2 < 0, ∈x 1 < x 2,∈x 1-x 2 < 0, ∈f (x 1)-f (x 2) > 0,∈f (x 1) > f (x 2),∈f (x )在(-∞,0]上是减函数. 23.(1)增函数,(1,)+∞;(2)2-. 【分析】(1)由(0)0f =,求得1k =,得到()x x f x a a -=-,根据()10f >,求得1a >,即可求得函数()x x f x a a -=-是增函数,把不等式转化为(2)(4)f x f x +>-,结合函数的单调性,即可求解;(2)由(1)和()312f =,求得2a =,得到()2(22)4(22)2x x x xg x -----+=,令22x x t -=-,得到()2342,2g t t t t =-+≥,结合二次函数的性质,即可求解.【详解】(1)因为函数()(0x xf x ka a a -=->且1)a ≠是定义域为R 的奇函数,可得(0)0f =,从而得10k -=,即1k =当1k =时,函数()x xf x a a -=-,满足()()()x x x xf x a a a a f x ---=-=--=-,所以1k =,由()10f >,可得10a a->且0a >,解得1a >,所以()x x f x a a -=-是增函数, 又由(2)(4)0f x f x ++->,可得(2)(4)(4)f x f x f x +>--=-, 所以24x x +>-,解得1x >,即不等式的解集是(1,)+∞. (2)由(1)知,()x x f x a a -=-, 因为()312f =,即132a a -=,解得2a =, 故()222(22)2(22)4(22)224x x x x x xx x g x -----=---+-+=,令22x x t -=-,则在[1,)+∞上是增函数,故113222t -≥+=, 即()2342,2g t t t t =-+≥, 此时函数()g t 的对称轴为322t =>,且开口向上, 所以当2t =,函数()g t 取得最小值,最小值为()2224222g =-⨯+=-,即函数()g x 的最小值为2-.24.(1)答案见解析;(2)1[2-,1],3[2,)+∞. 【分析】(1)由函数最小值(2)4f =-,可求出函数2()|1|4|1|5f x x x =--++,即得; (2)利用图象可得函数()f x 的单调性,利用复合函数的单调性即得. 【详解】(1)当1x >时,2()1f x x mx a m =+++-又函数2()|1||1|f x x m x a =-+++有最小值f (2)4=-, 故22m-=,即4m =- 则2()45f x x x a =-+-则(2)4854f a =-+-=-,故5a = 则2()|1|4|1|5f x x x =--++ 则22248,1()42,114,1x x x f x x x x x x x ⎧++<-⎪=--+-⎨⎪->⎩其函数的图象如图:(2)由(1)我们可得函数()y f x =在区间(-∞,2]-,[1-,2]上单调递减, 在区间[2-,1]-,[1,)+∞上单调递增, 又函数(12)f x -的内函数为减函数,()y f x =在区间(-∞,2]-,[1-,2]上单调递减,故令12(x -∈-∞,2]-或12[1x -∈-,2],得1[2x ∈-,1]或3[2x ∈,)+∞,故函数(12)f x -的递增区间为1[2-,1],3[2,)+∞.25.(1)图象见详解 (2)[1,)+∞ (3)单调递增区间为(1,)+∞,单调递减区间为(0,1]【分析】(1)分段画出函数图象即可;(2)结合反比例函数和一次函数的性质分段求出y 的取值范围,再取并集即可; (3)结合反比例函数和一次函数的单调性,即得解 【详解】(1)由题意,画出分段函数图象如下图:(2)当01x <≤,11[1,)y y x=≥∴∈+∞; 当1x >,1(1,)y x y =>∴∈+∞ 综上,函数f (x )的值域为[1,)+∞(3)根据反比例函数的单调性,可知函数f (x )在(0,1]单调递减; 由一次函数的单调性,可知f (x )在(1,)+∞单调递增; 故函数f (x )的单调递增区间为(1,)+∞,单调递减区间为(0,1]. 26.(1)2;(2)不存在,理由见解析;(3)104m <<. 【分析】(1)结合函数单调性化简()()f a f b =,由此可求11a b+,(2)根据函数单调性,求函数()y f x =在[,]a b 上的值域,由此可确定实数a 、b 的值是否存在,(3)讨论实数a 、b 的取值,求函数()y f x =在[,]a b 上的值域,由此求m 的值. 【详解】解:(1)∈11,1()11,01x xf x x x ⎧-⎪⎪=⎨⎪-<<⎪⎩,∈()f x 在(0,1)上为减函数,在(1,)+∞上为增函数,由0a b <<且()()f a f b =,可得01a b <<<且1111a b-=-,故112a b +=.(2)不存在满足条件的实数a 、b .若存在满足条件的实数a 、b ,则0a b <<.∈当a ,(0,1)b ∈时,1()1f x x=-在(0,1)上为减函数 故()()f a b f b a =⎧⎨=⎩,即1111b aa b⎧-=⎪⎪⎨⎪-=⎪⎩,解得a b =,故此时不存在符合条件的实数a 、b .∈当a ,[1,)b ∈+∞时,1(1)f x x=-在[1,)+∞上是增函数.故()()f a b f b a =⎧⎨=⎩,即1111a abb⎧-=⎪⎪⎨⎪-=⎪⎩,此时,a 、b 是方程210x x -+=的根.此方程无实根,故此时不存在符合条件的实数a 、b . ∈当(0,1)∈a ,[1,)b ∈+∞时,由于1[,]a b ∈,而(1)0[,]f a b =∉,故此时不存在符合条件的实数a 、b . 综上可知,不存在符合条件的实数a 、b .(3)若存在实数a 、b (a b <),使得函数()y f x =的定义域为[,]a b 时,值域为[,]ma mb ,且0a >,0m >.∈当a ,(0,1)b ∈时,由于()f x 在(0,1)上是减函数,故1111mb ama b⎧-=⎪⎪⎨⎪-=⎪⎩.此时得11a bm ab ab--==,得a b =与条件矛盾,所以a 、b 不存在 ∈当(0,1)∈a ,[1,)b ∈+∞时,易知0在值域内,值域不可能是[,]ma mb ,所以a 、b 不存在. ∈故只有a ,[1,)b ∈+∞.∈()f x 在[1,)+∞上是增函数,∈()()f a ma f b mb =⎧⎨=⎩,即1111ma amb b⎧-=⎪⎪⎨⎪-=⎪⎩,a 、b 是方程210mx x -+=的两个根.即关于x 的方程210mx x -+=有两个大于1的实根. 设这两个根为1x 、2x ,则121x x m +=,121x x m⋅=. ∈∈>0,1-4m >0,∈12120(1)(1)0(1)(1)0x x x x ∆>⎧⎪-+->⎨⎪-->⎩,即140120m m ->⎧⎪⎨->⎪⎩,解得104m <<.故m 的取值范围是104m <<.。
高一必修一数学期末试卷及答案
高一必修一数学期末试卷及答案第一部分:选择题(共80分)1.解下列各方程:5x+8=3x+12. A. x=3B. x=2C. x=−3D. x=13.若x+3=2x−1,则x= A. 2B. 4C. -4D. -24.已知a=2,当x=3时,y=ax2的值是: A. 18B. 54C. 36D. 125.若f(x)=3x+4,则f(−2)= A. -2B. -6C. -2D. -10第二部分:填空题(共20分)1.已知直线y=2x+3与y=−x+1的交点坐标为(a,b),则a=(填入具体数字)2.设x是保证2x+5>3x成立的x的取值范围,x的范围是(m,n),则m=(填入具体数字),n=(填入具体数字)第三部分:计算题(共60分)1.已知a+b=5,a−b=1,求a与b的值。
2.计算$\\frac{3}{5} \\div \\frac{4}{9}$的结果。
3.若y=x2−3x+2,求当x=2时,y=?第四部分:简答题(共40分)1.简述解一元一次方程的基本步骤。
2.什么是函数?函数的概念及符号表示是什么?高一必修一数学期末试卷参考答案第一部分:选择题答案1. A. x=32. B. 43. C. 364. B. -2第二部分:填空题答案1.$(\\frac{2}{3}, \\frac{7}{3})$2.$(5, \\infty)$第三部分:计算题答案1.a=3,b=22.$\\frac{27}{20}$3.y=0第四部分:简答题答案1.解一元一次方程的基本步骤包括化简方程、移项、合并同类项、求解等。
2.函数是自变量和因变量之间的对应关系,通常用f(x)表示。
高中数学人教版A版必修一学案:第二单元 章末复习课 Word版含答案
章末复习课网络构建核心归纳1.指数函数的图象和性质一般地,指数函数y =a x(a >0且a ≠1)的图象与性质如下表所示.数的范围,通常要用分类讨论思想.(2)a >1时,a 值越大,图象向上越靠近y 轴,递增速度越快;0<a <1时,a 值越小,图象向上越靠近y 轴,递减速度越快.(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.2.对数函数的图象和性质对数函数y =log a x (a >0且a ≠1)与指数函数y =a x(a >0且a ≠1)互为反函数,其图象关于直线y =x 对称.(如图)4.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1). (2)如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数.(3)如果α<0,则幂函数的图象在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限地逼近x 轴.(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.要点一 指数、对数的运算指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.【例1】 (1)化简:a 43 -8a 13 b4b 23 +23ab +a 23 ÷⎝ ⎛⎭⎪⎫1-23b a ×3ab ; (2)求值:12lg 3249-43lg 8+lg 245.解 (1)原式=a 13 a -8bb 13 2+2a 13 b 13 +a 132×a 13a 13 -2b 13×a 13 b 13=a 13a -8b a -8b×a 13 ×a 13 b 13 =a 3b .(2)法一 12lg 3249-43lg 8+lg 245=lg 427-lg 4+lg 7 5=lg ⎝⎛⎭⎪⎫427×14×75 =lg 10=12lg 10=12.法二 原式=12(5lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 【训练1】 (1)化简:(8)-23 ×(3102)92 ÷105;(2)计算:2log 32-log 3329+log 38-25log 53.解 (1)原式=⎝⎛⎭⎫232 -23 ×⎝⎛⎭⎫1023 92 ÷1052 =2-1×103×10-52 =2-1×1012 =102.(2)原式=log 34-log 3329+log 38-5log 59=log 3⎝ ⎛⎭⎪⎫4×932×8-9=-7. 要点二 指数函数、对数函数、幂函数的图象问题 函数图象的画法4解析 法一 当x =0时,y =0,故可排除选项A ,由1-x >0,得x <1,即函数的定义域为(-∞,1),排除选项B ,又易知函数在其定义域上是减函数,故选C .法二 函数y =2log 4(1-x )的图象可认为是由y =log 4x 的图象经过如下步骤变换得到的:(1)函数y =log 4x 的图象上所有点的横坐标不变.纵坐标变为原来的2倍,得到函数y =2log 4x 的图象;(2)把函数y =2log 4x 关于y 轴对称得到函数y =2log 4(-x )的图象;(3)把函数y =2log 4(-x )的图象向右平移1个单位,即可得到y =2log 4(1-x )的图象,故选C .答案 C【训练2】在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是( )解析法一当a>1时,y=x a与y=log a x均为增函数,但y=x a递增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除A.由于y=x a递增较慢,所以选D.法二幂函数f(x)=x a的图象不过(0,1)点,故A错;B项中由对数函数f(x)=log a x的图象知0<a<1,而此时幂函数f(x)=x a的图象应是增长越来越慢的变化趋势,故B错;D对;C项中由对数函数f(x)=log a x的图象知a>1,而此时幂函数f(x)=x a的图象应是增长越来越快的变化趋势,故C错.答案 D要点三大小比较问题数的大小比较常用方法:(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查数、指数函数、对数函数幂函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.π,c=π-2,则( )【例3】设a=log2π,b=log12A.a>b>c B.b>a>c C.a>c>b D.c>b>a解析因为π>2,所以a=log2π>1,所以b=log1π<0.因为π>1,所以0<π-2<1,即20<c<1,所以a>c>b.答案 C【训练3】 设a =log 123,b =⎝ ⎛⎭⎪⎫130.2,c =213 ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析 a =log 123<0,0<b =⎝ ⎛⎭⎪⎫130.2<1,c =213 >1,故有a <b <c . 答案 A要点四 函数的定义域与值域 函数值域(最值)的求法(1)直观法:图象在y 轴上的“投影”的范围就是值域的范围. (2)配方法:适合二次函数.(3)反解法:有界量用y 来表示.如y =1-x 21+x 2中,由x 2=1-y 1+y ≥0可求y 的范围,可得值域.(4)换元法:通过变量代换转化为能求值域的函数,特别注意新变量的范围. (5)单调性:特别适合于指、对数函数的复合函数. 【例4】 (1)函数f (x )=1log 2x -的定义域为( ) A .(-∞,2) B .(2,+∞) C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)(2)设0≤x ≤2,y =4x -12 -3·2x+5,试求该函数的最值. (1)解析 由题意知⎩⎪⎨⎪⎧log 2x -,x -2>0,解得⎩⎪⎨⎪⎧x ≠3,x >2,所以函数f (x )的定义域为(2,3)∪(3,+∞).答案 C(2)解 令k =2x(0≤x ≤2),∴1≤k ≤4.则y =22x -1-3·2x+5=12k 2-3k +5.又y =12(k -3)2+12,k ∈[1,4],∴y =12(k -3)2+12,在k ∈[1,3]上是减函数,在k ∈[3,4]上是增函数,∴当k =3时,y min =12;当k =1时,y max =52.即函数的最大值为52,最小值为12.【训练4】 (1)若f (x )=1log 0.5x +,则函数f (x )的定义域为( )A .⎝ ⎛⎭⎪⎫-12,+∞ B .(0,+∞)C .⎝ ⎛⎭⎪⎫-12,0D .⎝ ⎛⎦⎥⎤-12,0(2)函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析 (1)f (x )=1log 0.5x +的定义域为:⎩⎨⎧⎭⎬⎫x ⎩⎪⎨⎪⎧2x +1>0,log 0.5x +,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎩⎪⎨⎪⎧ x >-12,2x +1<1, 解得{x |-12<x <0}.故选C .(2)由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒x ∈(0,1].答案 (1)C (2)(0,1]。
人教A版(2019)高中必修第一册数学第一章《集合与常用逻辑用语》训练卷 word版,含答案
人教A 版(2019)高中必修第一册数学第一章《集合与常用逻辑用语》训练卷一、选择题1.下列四组对象中能构成集合的是( ).A .本校学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数2.下列命题不是存在量词命题的是( )A .有的无理数的平方是有理数B .有的无理数的平方不是有理数C .对于任意x ∈Z ,21x +是奇数D .存在x ∈R ,21x +是奇数 3.集合A ={x |0≤x <3,x ∈N}的真子集的个数是( )A .7B .8C .16D .44.设,a b ∈R ,则“a b >”是“22a b >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5.已知集合{}2A x x x ==,那么 A .0∈A B .1∉A C .{}1∈A D .{0,1}≠A6.设集合{}2,1,2A a =-,{}2,4B =,则“2a =”是“{}4A B ⋂=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 7.若集合3,2,1,0,1,2A ,集合{}1,B y y x x A ==+∈,则B =( ) A .{}1,2,3 B .{}0,1,2 C .{}0,1,2,3 D .{}1,0,1,2,3- 8.设集合{|12},{|}A x x B x x a =-≤<=<,若A B ⋂≠∅,则a 的取值范围是( )A .(1,2]-B .(2,)+∞C .[1,)-+∞D .(1,)-+∞9.设集合A ={0,1,2},B ={m |m =x +y ,x ∈A ,y ∈A },则集合A 与B 的关系为( )A .AB ∈ B .A B =C .B A ⊆D .A B ⊆10.已知集合{0,1}A =,{|}B x x A =⊆,则下列关于集合A 与B 的关系正确的是( )A .AB ⊆B .A B ≠⊂C .B A ≠⊂D .A B ∈ 二、填空题11.用符号“∈”或“∉”填空:0______N ;3-______N ;0.5______Z Z ;13______Q ;π______R . 12.命题“对任意一个实数x ,221x x ++都不小于零”,用“∃”或“∀”符号表示为________________.13.满足{1,2}{1,2,3,4,5}M ≠⊂⊆的集合M 有______个. 14.若命题“存在x∈R ,使得2ax 2x a 0++≤”为假命题,则实数a 的取值范围为_____.15.已知:13p x ,:11q x m -<<+,若q 是p 的必要不充分条件,则实数m 的取值范围是_____.16.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R =,则实数a 的取值范围是______________________ .17.若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____. 三、解答题18.用列举法表示下列集合:(1)大于1且小于6的整数;(2){}(1)(2)0A x x x =-+=;(3){}3213B x Z x =∈-<-<.19.已知A ={|x x 满足条件p },B ={|x x 满足条件q },(1)如果A B ⊆,那么p 是q 的什么条件?(2)如果B A ⊆,那么p 是q 的什么条件?(3)如果A B =,那么p 是q 的什么条件?20.设集合{|116}A x x =-≤+≤,{|121}B x m x m =-<<+.(1)当x ∈Z 时,求A 的非空真子集的个数;(2)若A B ⊇,求m 的取值范围.21.设2{|450}A x x x =--=,2{|1}B x x ==,求A B ,A B .22.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()U U A B ; (2)()()UU A B ⋃.23.已知集合{}25A x x -≤≤=,{}121B x m x m +≤≤-=.(1)若B A ,求实数m 的取值范围;(2)若A B ⊆,求实数m 的取值范围.24.设集合{|12}A x x =-≤≤,集合{|21}B x m x =<<.(1)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围;(2)若()R B C A ⋂中只有一个整数,求实数m 的取值范围.参考答案1.D【分析】根据集合中元素具有确定性判断选项即可得到结果.【详解】集合中的元素具有确定性,对于,,A B C ,学习好、非常近、很小都是模糊的概念,没有明确的标准,不符合确定性;对于D ,符合集合的定义,D 正确.故选:D .【点睛】本题考查集合的定义,关键是明确集合中的元素具有确定性,属于基础题.2.C【分析】直接根据全称量词与存在量词的概念,找出四个选项中的全称量词与存在量词得答案.【详解】A 、B 、D 中都有存在量词,是存在量词命题,C 中含有量词“任意”,为全称量词命题,故选:C .【点睛】本题考查存在量词与存在量词命题,是基础题.3.A【分析】首先用列举法表示集合A ,含有n 个元素的集合的真子集的个数是21n -个.【详解】{}0,1,2A =,集合含有3个元素,真子集的个数是3217-=,故选A.【点睛】本题考查集合的真子集个数的求解,属于基础题型,一个集合含有n 个元素,其子集个数是2n 个,真子集个数是21n -个.4.D【详解】若0,2a b ==-,则22a b <,故不充分;若2,0a b =-=,则22a b >,而a b <,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.5.A【分析】解方程x 2=x ,化简集合A ,然后根据元素与集合的关系,以及集合之间的关系判断.【详解】已知A={x|x 2=x},解方程x 2=x ,即x 2-x=0,得x=0或x=1,∈A={0,1}.故选A【点睛】本题主要考查元素与集合的关系,以及集合之间的关系,这类题目通常需要先化简集合,再进行判断.6.A【分析】由2a =可以推出{}4A B ⋂=,由{}4A B ⋂=,推出2a =或2a =-,从而进行判断,得到答案.【详解】当“2a =”时,{}1,4,2A =-,{2,4}B =,所以可以推出“{}4A B ⋂=”.当“{}4A B ⋂=”时,得到24a =,所以2a =或2a =-,故不能推出“2a =”.由此可知“2a =”是“{4}A B ⋂=”的充分不必要条件.故选:A.【点睛】本题考查判断充分不必要条件,根据交集运算结果求参数,属于简单题.7.C【分析】将A 集合中元素逐个代入1y x =+中计算y 的值,然后根据元素的互异性得到B 集合的组成.【详解】 由1y x =+,x A ∈得,当3x =-,1时,2y =;当2x =-,0时,1y =;当1x =-时,0y =;当2x =时,3y =.故集合{}0,1,2,3B =,故选C.【点睛】本题考查对集合的两种表示方法的理解,难度较易.通过运算得到函数值的集合时,注意利用互异性对函数值进行取舍.8.D【分析】由A B ⋂≠∅知,集合A ,B 有公共元素,作出图示即可得到结论.【详解】因为A B ⋂≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知1a >-.故选:D.【点睛】本题考查集合的交集的运算,属于基础题.9.D【分析】先分别求出集合A 和B ,由此能求出结果.【详解】∈合A={0,1,2},B={m|m=x+y ,x∈A ,y∈A}={0,1,2,3,4},∈A∈B .故选D .【点睛】本题考查命题真假的判断,考查集合的包含关系等基础知识,考查运算求解能力,是基础题.10.D【分析】根据集合间的基本关系分析即可.【详解】因为x A ⊆,所以{,{0},{1},{0,1}}B =∅,集合{0,1}A =是集合B 中的元素,所以A B ∈.故选:D【点睛】本题主要考查了集合间的基本关系的理解,属于基础题型.11.∈ ∉ ∉ ∉ ∈ ∈【分析】根据自然数,整数,有理数,实数的定义即可判断.【详解】0是自然数,则0N ∈;3-不是自然数,则3N -∉;不是整数,则0.5Z Z ∉;13是有理数,则13Q ∈;π是无理数,则R π∈ 故答案为:(1)∈;(2)∉;(3)∉;(4)∉;(5)∈;(6)∈【点睛】本题主要考查了元素与集合间的关系,属于基础题.12.x ∀∈R ,2210x x ++≥【分析】根据全称量词命题:()x M p x ∀∈,,以及含有全称量词“任意一个”,用符号“∀”表示,“不小于零”就是“0≥”,据此即可表示出结果.【详解】含有全称量词“任意一个”,用符号“∀”表示,“不小于零”就是“0≥”,因此命题用符号表示为“x ∀∈R ,2210x x ++≥”,故填:x ∀∈R ,2210x x ++≥.【点睛】本题考查含有全称量词的命题就称为全称量词命题.一般形式为:全称量词命题:()x M p x ∀∈,.13.7【分析】利用枚举法直接求解即可.【详解】由{1,2}{1,2,3,4,5}M ≠⊂⊆,可以确定集合M 必含有元素1,2,且至少舍有元素3,4,5中的一个,因此依据集合M 的元素个数分类如下:含有三个元素:{1,2,3},{1,2,4},{1,2,5};含有四个元素:{1,2,3,4},{1,2,35},,{1,2,4,5};含有五个元素:{1,2,3,4,5},故满足题意的集合M 共有7个.故答案为:7【点睛】本题主要考查了集合间的基本关系与枚举法的运用,属于中等题型.14.()1,+∞【解析】【分析】由原命题为假命题,则其否定为真命题,得x R ∀∈,使得2ax 2x a 0++>恒成立,即可得a 的范围.【详解】命题“0x R ∃∈,使得a 2x 2x a 0++≤”是假命题,则命题“x R ∀∈,使得2ax 2x a 0++>”是真命题,∈∈a=0,x>0不恒成立;22a>024a 0⎧⇒⎨∆=-<⎩②a >1. 故答案为(1,+∞).【点睛】本题考查了存在命题的否定,不等式恒成立问题,考查转化思想以及计算能力,属于基础题.15.()2,+∞【分析】由题意,命题:13p x ,:11q x m -<<+,因为q 是p 的必要不充分条件,即p q ⊆,根据集合的包含关系,即可求解.【详解】由题意,命题:13p x ,:11q x m -<<+,因为q 是p 的必要不充分条件,即p q ⊆,则13m +>,解得2m >,即实数m 的取值范围是(2,)+∞.【点睛】本题主要考查了必要不充分条件的应用,以及集合包含关系的应用,其中解答中根据题意得出集合p 是集合q 的子集,根据集合的包含关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.16.1a ≤【分析】由并集的定义及数轴表示可得解.【详解】在数轴上表示出集合A 和集合B ,要使A B R =,只有1a ≤.【点睛】本题主要考查了集合的并集运算,利用数轴找关系是解题的关键,属于基础题.17.-2【分析】根据题意可知,集合A 只有一个元素,从而2k =-时,满足条件,而2k ≠-时,可得到()24420k k ∆=-+=,求出k ,找到最小的k 即可.【详解】 A 只有2个子集;A ∴只有一个元素;2k ①∴=-时,14A ⎧⎫=⎨⎬⎩⎭,满足条件; ∈2k ≠-时,()24420k k ∆=-+=; 解得1k =-或2;综上,满足条件的实数k 的最小值为﹣2.故答案为﹣2.【点睛】考查子集的概念,描述法和列举法表示集合的定义,以及一元二次方程实根个数和判别式∆的关系.18.(1){}2,3,4,5;(2){}1,2A =-;(3){}0,1B =【分析】根据题意,求出集合的元素,用列举法表示出来即可.【详解】解:用列举法表示下列集合(1)大于1且小于6的整数,{}2,3,4,5;(2){|(1)(2)0}A x x x =-+=;所以{}1,2A =-(3){|3213}B x Z x =∈-<-<,由3213x -<-<解得12x -<<,x ∈Z ,故表示为{}0,1B =,19.(1)充分条件;(2)必要条件;(3)充要条件.【分析】(1) 根据集合间的基本关系判断p 和Q 的包含关系再即可.(2) 根据集合间的基本关系判断p 和Q 的包含关系再即可.(3) 根据集合间的基本关系判断p 和Q 的包含关系再即可.【详解】(1)如果A B ⊆,则满足条件p 也满足条件q .故p 是q 的充分条件.(2)如果B A ⊆,则满足条件q 也满足条件p .故p 是q 的必要条件.(3)如果A B =,则满足条件p 满足条件q ,且满足条件q 也满足条件p .故p 是q 的充要条件.【点睛】本题主要考查了集合的关系与充分必要条件的关系,属于基础题型.20.(1)254;(2){|122}m m m -≤≤-或.【分析】对于(1),根据x 的取值范围,可确定集合A 中所含元素,根据其元素的个数可判断出其子集的个数,若集合含有n 个元素时,则有2n 的子集,当1n >时,其非空真子集的个数为22n -,即可得到答案;对于(2),由于空集是任何非空集合的子集,故对于B 集合是否为空集需分情况讨论:∈集合B 为空集,即121m m -≥+; ∈集合B 为非空集合,即121m m -<+.【详解】由题意得{|25}A x x =-≤≤.(1)∈x ∈Z ,∈{2,1,0,1,2,3,4,5}A =--,即A 中含有8个元素,∈A 的非空真子集的个数为822254-=.(2)∈当121m m -≥+,即2m ≤-时,B A =∅⊆;∈当121m m -<+,即2m >-时,{|121}B x m x m =-<<+,因此,要使B A ⊆,则12,12215m m m --⎧⇒-⎨+⎩. 综上所述,m 的取值范围{|12m m -≤≤或2}m -.【点睛】本题主要考查的是非空子集和真子集的定义,集合的包含关系及应用,考查不等式的解法,考查学生的计算能力,考查的核心素养是数学运算、逻辑推理,误区警示:(1)确定方程的解的集合或不等式的解集之间的关系时,当其含有参数时,注意要分类讨论,不讨论易导致误判.(2)()A B B ⊆≠∅包含三种可能,∈A 为∅;∈A 不为必∅,且A B ;∈A 不为∅,且A B =.只写其中一种是不全面的,如果A ,B 是确定的,就只有一种可能,此时只能写出一种形式.是基础题.21.{}1,1,5A B =-,{}1A B ⋂=-.【分析】根据一元二次方程的解法分别求得集合,A B ,由并集和交集的定义直接得到结果.【详解】{}()(){}{}24505101,5A x x x x x x =--==-+==-,{}{}211,1B x x ===- {}1,1,5A B ∴=-,{}1A B ⋂=-【点睛】本题考查集合运算中的交集和并集运算,涉及到一元二次方程的求解问题,属于基础题.22.(1)图象见解析;(2)图象见解析.【分析】根据补集、交集和并集的定义,利用Venn 图表示出来即可.【详解】 如下图阴影部分所示.【点睛】本题考查Venn 图表示集合,涉及到集合的交集、并集和补集运算,属于基础题.23.(1){}3m m ≤;(2)不存在实数m 使A B ⊆.【分析】(1) ∈当B ∅=时,由121m m +>-,得2m <,满足题意;∈当B ≠∅时,根据子集关系列式可解得;(2)根据两个集合的子集关系列式无解,故不存在实数m .【详解】(1)∈当B ∅=时,由121m m +>-,得2m <,满足题意;∈当B ≠∅时,如图所示,12215121m m m m +≥-⎧⎪∴-≤⎨⎪+≤-⎩且12m +=-与215m -=不能同时取等号,解得23m ≤≤. 综上可得,m 的取值范围是:{}3m m ≤.(2)当A B ⊆时,如图所示,此时B ≠∅,21112215m m m m ->+⎧⎪∴+≤-⎨⎪-≥⎩,即233m m m >⎧⎪≤-⎨⎪≥⎩,∈m 不存在,即不存在实数m 使A B ⊆.【点睛】本题考查了根据集合间的子集或真子集关系,容易漏掉空集情况,属于中档题.24.(1)1[,)2-+∞;(2)3[,1)2--. 【分析】(1)由“x A ∈”是“x B ∈”的必要条件,得B∈A ,然后分1122m m =<,,m >12三种情况讨论求解实数m 的取值范围;(2)把()R B C A ⋂中只有一个整数,分1122m m =<,,m >12时三种情况借助于两集合端点值间的关系列不等式求解实数m 的取值范围.【详解】(1)若“x A ∈”是“x B ∈”,则B∈A ,∈A={x|-1≤x≤2}, ∈当12m <时,B={x|2m <x <1},此时-1≤2m <1∈1122m -≤< ; ∈当12m = 时,B=∈,有B∈A 成立; ∈当12m >时B=∈,有B∈A 成立; 综上所述,所求m 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭. (2)∈A={x|-1≤x≤2},∈∈R A={x|x <-1或x >2},∈当12m <时,B={x|2m <x <1}, 若(∈R A)∩B 中只有一个整数,则-3≤2m <-2,得312m -≤-<; ∈当m 当12m =时,不符合题意; ∈当12m >时,不符合题意;综上知,m的取值范围是3,12⎡⎫--⎪⎢⎣⎭.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.。
(完整)高一数学第一学期函数压轴[大题]练习[含答案及解析],推荐文档
10. (本题 16 分)已知函数 f (x) log9 (9x 1) kx ( k R )是偶函数.
(1)求 k 的值;
(2)若函数 y f (x) 的图象与直线 y 1 x b 没有交点,求 b 的取值范围; 2
(3)设 h(x) log9
f
1 ()
2
.
1 x2
25
(1) 求实数 a , b 的值;
(2) 用定义证明:函数 f (x) 在区间 (1,1) 上是增函数;
(3) 解关于 t 的不等式 f (t 1) f (t) 0 .
4. (14 分)定义在 R 上的函数 f(x)对任意实数 a,b R ,均有 f(ab)=f(a)+f(b)成立,且当 x>1 时,f(x)
技术资料.整理分享
WORD 格式.可编辑
13.(本小题满分 16 分)
设 a 0 , b 0 ,已知函数 f (x) ax b . x 1
(Ⅰ)当 a b 时,讨论函数 f (x) 的单调性(直接写结论);
(Ⅱ)当 x 0 时,(i)证明 f (1) f ( b ) [ f ( b )]2 ;
6. (12 分)设函数 f (x) loga (x 3a)(a 0,且a 1) ,当点 P(x, y) 是函数 y f (x) 图象上的点时,
点 Q(x 2a, y) 是函数 y g(x) 图象上的点. (1)写出函数 y g(x) 的解析式; (2)若当 x [a 2, a 3] 时,恒有 | f (x) g(x) |„ 1 ,试确定 a 的取值范围; (3)把 y g(x) 的图象向左平移 a 个单位得到 y h(x) 的图象,函数
WORD 格式.可编辑
2019-2020学年高中北师版数学a版高一必修1(45分钟课时作业与单元测试卷):第一章_章末检测_word版含解析
第一章章末检测班级__________ 姓名__________ 考号__________ 分数__________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列表示①{0}=∅,②{3}∈{3,4,5},③∅{0},④0∈{0}中,正确的个数为( )A .1B .2C .3D .4答案:B解析:③④正确.2.设全集U =R ,M ={x |x ≥1},N ={x |0≤x <5},则(∁U M )∪(∁U N )为( )A .{x |x ≥0)B .{x |x <1或x ≥5}C .{x |x ≤1或x ≥5}D .{x |x <0或x ≥5}答案:B解析:借助数轴直观选择.3.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( )A .{0,1,2,6}B .{3,7,8}C .{1,3,7,8}D .{1,3,6,7,8}答案:C解析:直接进行交并运算.4.若集合M ={a ,b ,c }中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:D解析:由集合中元素的互异性可知.5.设集合A ={0,1},集合B ={1,2,3},定义A *B ={z |z =xy +1,x ∈A ,y ∈B },则A *B 集合中真子集的个数是( )A .14B .15C .16D .17答案:B解析:A *B ={1,2,3,4},故集合中有4个元素,则真子集有24-1=15个.6.设集合A ={(x ,y )|x -y =1},B ={(x ,y )|2x +y =8},则A ∩B =( )A .{(3,2)}B .{3,2}C .{(2,3)}D .{2,3}答案:A解析:解⎩⎪⎨⎪⎧ x -y =12x +y =8得⎩⎪⎨⎪⎧x =3y =2. 7.已知集合A ={x ∈R |x <5-2},B ={1,2,3,4},则(∁R A )∩B 等于( )A .{1,2,3,4}B .{2,3,4}C .{3,4}D .{4}答案:D解析:借助数轴直观判断.8.设集合P ={1,2,3,4,5,6},Q ={x ∈R |2≤x ≤6},那么下列结论正确的是( )A .P ∩Q =PB .P ∩Q ÙQC .P ∪Q =QD .P ∩Q ØP答案:D解析:对照答案逐一验证.9.全集U =R ,集合M ={x |x 2-4≤0}则∁U M =( )A .{x |-2<x <2}∴a=4.(2)若P∪Q=Q,即P⊆Q.用数轴表示如下:∴a≤2.。
江西省上饶市广丰一中2021—2022学年高一上学期期末试题 数学(理) Word版含答案
广丰一中2021—2022学年度第一学期期末教学质量测试高一数学(理B )试卷留意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知集合A={x|x >1},B={x|x 2﹣2x <0},则A∪B=( )A .{x|x >0}B .{x|x >1}C .{x|1<x <2}D .{x|0<x <2}2.假如指数函数y=(a ﹣2)x 在x ∈R 上是减函数,则a 的取值范围是( )A .a >2B .0<a <1C .2<a <3D .a >3 3.若函数f (x )=x 2+bx+c 的对称轴方程为x=2,则( ) A .f (2)<f (1)<f (4)B .f (1)<f (2)<f (4)C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1)4. 函数f (x )在(﹣4,7)上是增函数,则使y=f (x ﹣3)+2为增函数的区间为( ) A .(﹣2,3) B .(﹣1,7)C .(﹣1,10)D .(﹣10,﹣4)5.设m ,n 为两条不同的直线,α,β为两个不同的平面,下列命题中为真命题的是( ) A .若m∥α,n∥α,则m∥nB .若m⊥α,α⊥β,则m∥βC .若m⊥α,α⊥β,则m⊥βD .若m⊥α,m∥β,则α⊥β 6.过点(3,1)A 且倾斜角为60的直线方程为( )A .32y x =-B .32y x =+C . 323y x =-D .323y x =+7.点(2,5)A 到直线:230l x y -+=的距离为( )A. 25B. 5C. 55D. 2558. 设函数f (x )=,则f (﹣2)+f (log 212)=( )A .3B .6C .9D .129.函数的零点所在的大致区间是( )A .(3,4)B .(2,e )C .(1,2)D .(0,1)10. 已知某几何体的三视图如图所示,依据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .32 B .34C .1D .2 11.如图,ABCD ﹣A 1B 1C 1D 1为正方体,下面结论错误的是( ) A .BD∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°12.若直角坐标平面内的两个不同的点M 、N 满足条件①M、N 都在函数y=f (x )的图象上; ②M、N 关于原点对称. 则称点对[M ,N]为函数y=f (x )的一对“友好点对”(注:点对[M ,N]与[N ,M]为同一“友好点对”).已知函数f (x )=,此函数的“友好点对”有( )A .0对B .1对C .2对D .3对第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.若函数f (2x+1)=x 2﹣2x ,则f (3)=14.已知两条直线1:3420l x y ++=,2:340l x y m ++=之间的距离为2,则m =15.长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=3,AA 1=5,则一只小虫从A 点沿长方体的表面爬 到C 1点的最短距离是 .16.已知函数 是(﹣∞,+∞)上的减函数,那么a 的取值范围为 .三、解答题(本题共6道小题,第17题10分,第18题12分,第19题12分,第20题12分,第21题12分,第22题12分)17.集合A={x|a ﹣1<x <2a+1},B={x|0<x <1},若A ∩B=∅,求实数a 的取值范围.18.已知函数f(x)=﹣x2+2x+2(1)求f(x)在区间[0,3]上的最大值和最小值;(2)若g(x)=f(x)﹣mx在[2,4]上是单调函数,求m的取值范围.19.已知平面内两点(8,6)(22) A B-,,.(Ⅰ)求过(2,3)P-点且与直线AB平行的直线l的方程;(Ⅱ)求AB的中垂线方程;20.若函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)写出函数f(x)(x∈R)的解析式.(2)若函数g(x)=f(x)﹣4x+2(x∈[1,2]),求函数g(x)的最小值21.如图,在正方体ABCD﹣A1B1C1D1的棱长为a,若E为棱AB的中点,①求四棱锥B1﹣BCDE的体积②求证:面B1DC⊥面B1DE21.已知:定义在R上的函数f(x),对于任意实数a,b都满足f(a+b)=f(a)f(b),且f(1)≠0,当x >0时,f(x)>1.(Ⅰ)求f(0)的值;(Ⅱ)证明f(x)在(﹣∞,+∞)上是增函数;(Ⅲ)求不等式f(x2+x )<的解集.广丰一中2021--2022学年第一学期高一数学(理)期末考试高一数学答案(理科B)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A C A C D A B C C B D C 第II 卷(用黑色墨水签字笔书写)二、填空题(每小题5分,共20分)13、 -1 14、 12或-815、25 16、(0,2]三、解答题(解答应写出必要计算过程,推理步骤和文字说明,共70分)17.解:∵集合A={x|a﹣1<x<2a+1},B={x|0<x<1},A∩B=∅,①当A=∅时,a﹣1≥2a+1,解得a≤﹣2.……………………………. 2(分)②当A ≠∅时,有 或 …………………………6(分) 解得﹣2<a ≤﹣,或 a ≥2.……………………………………………. 8(分)综上可得a ≤﹣,或 a ≥2,即实数a 的取值范围为(﹣∞,﹣]∪[2,+∞).…. 10(分)18.解(1)∵f (x )=﹣x 2+2x+2=﹣(x ﹣1)2+3,x ∈[0,3],对称轴x=1,开口向下, ∴f (x )的最大值是f (1)=3,又f (0)=2,f (3)=﹣1,所以f (x )在区间[0,3]上的最大值是3,最小值是﹣1................6(分) (2)∵g (x )=f (x )﹣mx=﹣x 2+(2﹣m )x+2,函数的对称轴是 ,开口向下,又g (x )=f (x )﹣mx 在[2,4]上是单调函数∴≤2或≥4,即m ≥﹣2或m ≤﹣6............11(分)故m 的取值范围是m ≥﹣2或m ≤﹣6......................12(分)19.Ⅰ)由点斜式43(2)3y x +=-- ---------------------------------3分∴直线l 的方程4310x y ++= ---------------------------------5分(Ⅱ) 8252+=,6222-+=-,∴AB 的中点坐标为(5,2)-----------6分 624823AB k --==--,∴AB 的中垂线斜率为34 ----------------------------8分∴由点斜式可得32(5)4y x +=- ------------------------------10分∴AB 的中垂线方程为34230x y --= ------------------------------12分 20.解:(1)x≤0时,f (x )=x 2+2x , 若x >0,则﹣x <0,∵函数f (x )是定义在R 上的偶函数,∴f (x )=f (﹣x )=(﹣x )2+2(﹣x )=x 2﹣2x ,------------------------------4分则------------------------------6分(2)g (x )=f (x )﹣4x+2=x 2﹣2x ﹣4x+2=x 2﹣6x+2,x ∈[1,2], ∵y=x 2﹣6x+2的图象是开口朝上,且以x=3为对称轴的抛物线, 故g (x )=x 2﹣6x+2,x ∈[1,2]为减函数,当x=2时,函数g (x )取最小值﹣6------------------------------12分21.证明:(1)①∵正方体ABCD ﹣A 1B 1C 1D 1∴B 1B 平面BEDC , ∴V=•S 梯形BCDE •B 1B=•(a+)•a •a=.--------------------5分②取B 1D 的中点O ,设BC 1∩B 1C=F ,连接OF ,∵O ,F 分别是B 1D 与B 1C 的中点,∴OF ∥DC ,且OF=DC ,又∵E 为AB 中点,∴EB ∥DC ,且EB=DC ,∴OF ∥EB ,OF=EB ,即四边形OEBF 是平行四边形,∴OE ∥BF ,∵DC ⊥平面BCC 1B 1,BC 1⊂平面BCC 1B 1,∴BC 1⊥DC ,∴OE ⊥DC .------------------8分 又BC 1⊥B 1C ,∴OE ⊥B 1C ,又∵DC ⊂平面B 1DC ,B 1C ⊂平面B 1DC ,DC ∩B 1C=C ,∴OE ⊥平面B 1DC ,又∵OE ⊂平面B 1DE ,∴平面B 1DC ⊥面B 1DE .-------------------12分22.解:(Ⅰ)令a=1,b=0则f (1)=f (1+0)=f (1)f (0), ∵f (1)≠0,∴f (0)=1,-------------------3分 (Ⅱ)证明:当x <0时﹣x >0由f (x )f (﹣x )=f (x ﹣x )=f (0)=1,f (﹣x )>0得f (x )>0,---------5分 ∴对于任意实数x ,f (x )>0, 设x 1<x 2则x 2﹣x 1>0,f (x 2﹣x 1)>1,∵f (x 2)=f (x 1+(x 2﹣x 1))=f (x 1)f (x 2﹣x 1)>f (x 1),∴函数y=f (x )在(﹣∞,+∞)上是增函数.-------------------7分 (Ⅲ)∵∴,-------------------9分由(Ⅱ)可得:x 2+x <﹣2x+4解得﹣4<x <1,-------------------10分所以原不等式的解集是(﹣4,1)-------------------12分。
天津市西青区2020-2021学年高一上学期期末考试数学试卷 Word版含解析
西青区2020~2021学年度第一学期期末考试高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.注意事项:答卷前务必将自己的姓名、准考号填写在答题卡上;答卷时,考生务必把答案涂写在答题卡各题目指定区域内相应的位置,答在试卷上的无效. 祝各位考生考试顺利!第Ⅰ卷一.选择题:本大题共9小题,每小题5分,共45分.1. 已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,则()UA B =( )A. {}2,3B. {}1,2,3,4C. {}1,4D. {}2,3,4【答案】C 【解析】 【分析】利用补集和交集的定义可求得集合()UA B .【详解】已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,{}2,3A B ∴=,因此,(){}1,4UA B ⋂=.故选:C.2. 下列四个函数中,在其定义域上既是奇函数又是递增函数的是( )A. x y e =B. sin y x =C. y =D. 3y x =【答案】D 【解析】 【分析】根据函数的解析式直接判断函数的奇偶性和单调性即可. 【详解】对A:xy e =它不奇函数也不是偶函数; 对B: sin y x =是奇函数,它在区间(2,2)()22k k k Z ππππ-+∈上递增,在定义域内不能说对C: y =对D:3y x =是奇函数,在定义域内是增函数. 故选:D .3. 设a ∈R ,则“1a >”是“2a a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题. 4. 下列说法正确的是( ) A. 若0a b >>,则22ac bc > B. 若a b >,则22a b > C. 若0a b <<,则22a ab b >> D. 若a b <,则11a b> 【答案】C 【解析】 【分析】根据已知条件结合不等式的性质可判断C 正确;举反例可判断ABD 错误. 【详解】对于A ,若0c,则22ac bc =,故A 错误;对于B ,若1,2a b ==-,则22a b <,故B 错误; 对于C ,若0a b <<,则22a ab b >>,故C 正确; 对于D ,若1,1a b =-=,则11a b<,故D 错误.5. 设函数1()ln (0),3f x x x x =->则()y f x =( ) A. 在区间1(,1),(1,e)e 内均有零点.B. 在区间1(,1),(1,e)e内均无零点.C. 在区间1(,1)e 内无零点,在区间(1,)e 内有零点.D. 在区间1(,1)e内有零点,在区间(1,)e 内无零点.【答案】C 【解析】 【分析】令()0f x =,画出函数13y x =和ln y x =的图像,观察两图像的交点所在的区间,即可得答案【详解】解:令()0f x =,得1ln 3x x =,作出函数13y x =和ln y x =的图像,如图所示根据图像可知,()y f x =区间1(,1)e内无零点,在区间(1,)e 内有零点,故选:C6. 已知函数()sin 12f x x π⎛⎫=++ ⎪⎝⎭,则( ) A. ()f x 是偶函数,最大值为1 B. ()f x 是偶函数,最大值为2 C. ()f x 是奇函数,最大值为1 D. ()f x 是奇函数,最大值为2【答案】B【分析】利用诱导公式进行化简,得到()cos 1f x x =+,结合余弦函数的性质,即可求解,得到答案. 【详解】由题意,函数()sin 1cos 12f x x x π⎛⎫=++=+ ⎪⎝⎭, 则()cos()1cos 1()f x x x f x -=-+=+=,所以()f x 是偶函数; 又由cos y x =的最大值为1,()f x ∴的最大值为2; 故选:B.【点睛】本题主要考查了三角函数的诱导公式,以及余弦函数的性质的应用,其中解答中熟记三角函数的诱导公式,以及三角函数的性质是解答的关键,着重考查了计算能力,属于基础题. 7. 设1ln2a =,12eb =,2c e -=,则a 、b 、c 的大小关系为( ) A. a c b << B. a b c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】利用指数函数和对数函数的单调性比较a 、b 、c 三个数与0、1的大小关系,由此可得出a 、b 、c 的大小关系.【详解】1lnln102a =<=,10221eb =>=,2001c e e -<=<=,因此,a c b <<. 故选:A8. 对于函数()sin(2)6f x x π=+,下列命题①函数图象关于直线12x π=-对称; ②函数图象关于点(,0)对称;③函数图象可看作是把sin 2y x =的图象向左平移个单位而得到;④函数图象可看作是把sin()6y x π=+的图象上所有点的横坐标缩短到原来的倍(纵坐标不变)而得到;其中正确的命题的个数是( ▲ ) A. 0 B. 1 C. 2 D. 3【答案】C考点:正弦函数的对称性;函数y=Asin (ωx+φ)的图象变换. 专题:综合题. 分析:①把x=-π12代入函数的表达式,函数是否取得最大值,即可判定正误; ②把x=5π12,代入函数,函数值是否为0,即可判定正误; ③函数图象可看作是把y=sin2x 的图象向左平移个 π6单位,推出函数的表达式是否相同,即可判定;④函数图象可看作是把y=sin (x+π6)的图象上所有点的横坐标缩短到原来的 12倍,得到函数的表达式是否相同,即可判定正误.解答:解:①把x=-π12代入函数f (x )=sin (2x+π6)=0,所以,①不正确; ②把x=5π12,代入函数f (x )=sin (2x+π6)=0,函数值为0,所以②正确;③函数图象可看作是把y=sin2x 的图象向左平移π6个单位得到函数为f (x )=sin (2x+3π),所以不正确;④函数图象可看作是把y=sin (x+π6)的图象上所有点的横坐标缩短到原来的12倍,得到函数f (x )=sin (2x+π6),正确; 故选C .点评:本题是基础题,考查三角函数的基本性质的应用,考查逻辑推理能力,常考题型. 9. 定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( ) A. f()sin αf >(cos β)B. f ()sin αf < (cos β)C. f (sin α)f > (sin β)D. f()cos αf <(cos β)【答案】A 【解析】 【分析】根据题意,分析可得f (﹣x )=f (x +2),即函数f (x )的图象关于直线x =1对称,据此分析可得f (x )在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便可得出sin α>cos β,从而根据f (x )在(0,1)上是增函数即可得出f (sin α)>f (cos β),即可得答案. 【详解】根据题意,定义在R 上的偶函数f (x )满足f (x +2)=f (x ), 则有f (﹣x )=f (x +2),即函数f (x )的图象关于直线x =1对称, 又由函数f (x )在[1,2]上是减函数,则其在[0,1]上是增函数, 若α,β是锐角三角形的两个内角, 则α+β2>π,则有α2>π-β,则有sin α>sin (2π-β)=cos β, 又由函数f (x )在[0,1]上是增函数, 则f (sin α)>f (cos β); 故选A .【点睛】本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性.第Ⅱ卷温馨提示:请将答案写在答题纸上,写在卷面上无效.二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知幂函数()y f x =的图象过点,则()f x =_____________.【答案】12x 【解析】 【分析】设出幂函数解析式,根据点(求得幂函数的解析式.【详解】由于()f x 为幂函数,设()f x x α=,将(代入得122αα==,所以()12f x x=.故答案为12x【点睛】本小题主要考查幂函数解析式的求法,属于基础题.11. 132327log 3log 48⎛⎫⋅+= ⎪⎝⎭______.【答案】112【分析】根据指数、对数的运算性质计算即可得答案.【详解】原式=1323227311log 3log 4log +2=822⎛⎫⋅++= ⎪⎝⎭.故答案为:11212. 命题“x ∀∈R ,*n ∃∈N ,使得2n x ≥”的否定形式是__________. 【答案】x ∃∈R ,*n ∀∈N ,使2n x < 【解析】因为“∀”的否定是“∃”,“∃”的否定是“∀”,“2n x ≥”的否定是“2n x <”,所以命题“x R ∀∈,*n N ∃∈,使得2n x ≥”的否定形式是x R ∃∈,*n N ∀∈,使2n x <,故答案为x ∃∈R ,*n ∀∈N ,使2n x <.13. 函数tan y x =的定义域为______;若tan 2x =,则5cos sin sin 2cos x xx x-=+______.【答案】 (1). ,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭(2). 34 【解析】 【分析】根据正切函数的性质可直接得出定义域,将5cos sin sin 2cos x xx x-+化为关于tan x 的式子即可求出.【详解】可知tan y x =的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, tan 2x =,5cos sin 5tan 523sin 2cos tan 2224x x x x x x ---∴===+++.故答案为:,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭;34. 14. 用长度为28米的篱笆围成一边靠墙的矩形花园,墙长为16米,则矩形花园面积的最大值是______平方米.【解析】 【分析】设与墙平行的篱笆长为x 米,表示出矩形花园面积,利用二次函数的性质可求出. 【详解】设与墙平行的篱笆长为x 米,由题可得016x <≤, 则花园面积()2281149822x S x x -=⋅=--+,016x <≤, 则当14x =时,S 取得最大值为98,故矩形花园面积的最大值是98平方米. 故答案为:98.15. 已知函数()()232115,14ln ,1x a x x f x a a x x ⎧+-+≤=⎨-+>⎩,若对任意的1x 、2x R ∈,12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.【答案】8,23⎡⎤--⎢⎥⎣⎦【解析】 【分析】分析出函数()f x 为R 上的减函数,结合已知条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】设12x x <,则120x x -<,由()()12120f x f x x x -<-可得()()120f x f x ->,即()()12f x f x >,所以,函数()f x 为R 上的减函数.由于()()232115,14ln ,1x a x x f x a a x x ⎧+-+≤=⎨-+>⎩,由题意可知,函数()232115y x a x =+-+在(],1-∞上为减函数,则113a-≥, 函数ln 4y a x a =-在()1,+∞上为减函数,则0a <,且有()321154a a +-+≥-,所以11301624a a a a-⎧≥⎪⎪<⎨⎪+≥-⎪⎩,解得823a -≤≤-.因此,实数a 的取值范围是8,23⎡⎤--⎢⎥⎣⎦.故答案为:8,23⎡⎤--⎢⎥⎣⎦.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. 已知,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=.(1)求tan α的值; (2)求cos2α的值; (3)若0,2⎡⎤∈⎢⎥⎣⎦πβ,()5sin 13αβ+=-,求sin β. 【答案】(1)34-;(2)725;(3)5665. 【解析】 【分析】( 1 ) 根据同角的三角函数的关系即可求出; ( 2 ) 根据二倍角的正弦公式、二倍角的余弦公式以及两角差的余弦公式即可求出; ( 3 ) 由 β=[(α+β)−α] ,根据同角的三角函数的关系结合两角差的正弦公式即可求出. 【详解】(1)3sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭.4cos 5α∴==-.sin 3tan cos 4ααα∴==-. ( 2) 27cos 22cos 125αα=-=. (3)0,2⎡⎤∈⎢⎥⎣⎦πβ,,2παπ⎛⎫∈ ⎪⎝⎭322ππαβ∴<+<()5sin 13αβ+=-. 32ππαβ∴<+<()12cos 13αβ∴+==-. ()()()5412356sin sin sin cos cos sin 13513565βαβααβααβα⎛⎫=+-=+-+=-⨯-+⨯=⎡⎤ ⎪⎣⎦⎝⎭.17. 若()()211f x ax a x =-++,a R ∈.(Ⅰ)若()0f x <的解集为1,14⎛⎫⎪⎝⎭,求a 的值; (Ⅱ)求关于x 的不等式()0f x <的解集. 【答案】(Ⅰ)4a =;(Ⅱ)答案见解析. 【解析】 【分析】 (Ⅰ)14,1为方程()0f x =的两个根,用韦达定理构建方程解出来即可. (Ⅱ)(1)(1)0ax x -->,分0a <、0a =、01a <<、1a =和1a >五种情况讨论即可 【详解】(Ⅰ)()2110ax a x -++<的解集为1,14⎛⎫⎪⎝⎭,14,1是()2110ax a x -++=的解.1114114a aa+⎧+=⎪⎪⎨⎪=⎪⎩. 解得:4a =(Ⅱ)当0a =时,不等式的解为1x >,解集为{}1x x > 当0a ≠时,分解因式()()110x ax --<()()110x ax --=的根为11x =,21x a=. 当0a <时,11a >,不等式的解为1x >或1x a <;解集为11x x x a ⎧⎫><⎨⎬⎩⎭或.当01a <<时,11a <,不等式的解为11x a <<;解集为11x x a ⎧⎫<<⎨⎬⎩⎭.当1a >时,11a <,不等式的解为11x a <<;等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭. 当1a =时,原不等式为()210x -<,不等式的解集为∅. 综上:当0a =时,不等式的解集为{}1x x >; 当0a <时,不等式的解集为11x x x a ⎧⎫><⎨⎬⎩⎭或; 当01a <<时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭; 当1a >时,不等式的解集为11xx a ⎧⎫<<⎨⎬⎩⎭; 当1a =时,不等式的解集为∅. 18. 已知函数log ay x =过定点(),m n ,函数()2xf x n x m=++的定义域为[]1,1-. (Ⅰ)求定点(),m n 并证明函数()f x 的奇偶性; (Ⅱ)判断并证明函数()f x 在[]1,1-上的单调性;(Ⅲ)解不等式()()210f x f x -+<.【答案】(Ⅰ)定点为()1,0,奇函数,证明见解析;(Ⅱ)()f x 在[]1,1-上单调递增,证明见解析;(Ⅲ)1|03x x ⎧⎫≤<⎨⎬⎩⎭. 【解析】 【分析】(Ⅰ)根据解析式可求得定点为()1,0,即可得()f x 的解析式,根据奇函数的定义,即可得证; (Ⅱ)利用定义法即可证明()f x 的单调性;(Ⅲ)根据()f x 的单调性和奇偶性,化简整理,可得()()21f x f x -<-,根据函数的定义域,列出不等式组,即可求得答案. 【详解】(Ⅰ)函数log ay x =过定点(),m n ,∴定点为()1,0,()21xf x x ∴=+,定义域为[]1,1-, ()()21xf x f x x -∴-==-+. ∴函数()f x 为奇函数.(Ⅱ)()f x 在[]1,1-上单调递增. 证明:任取[]12,1,1x x ∈-,且12x x <,则()()()()()()()()()()22122112121212222222121212*********x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++. []12,1,1x x ∈-,12x x <,120x x ∴-<,1210x x ->,∴()()120f x f x -<,即()()12f x f x <, ∴函数()f x 在区间[]1,1-上是增函数.(Ⅲ)()()210f x f x -+<,即()()21f x f x -<-, 函数()f x 为奇函数()()21f x f x ∴-<-()f x 在[]1,1-上为单调递增函数,12111121x x x x -≤-≤⎧⎪∴-≤-≤⎨⎪-<-⎩, 011113x x x ⎧⎪≤≤⎪∴-≤≤⎨⎪⎪<⎩,解得:103x ≤<.故不等式的解集为:1|03x x ⎧⎫≤<⎨⎬⎩⎭【点睛】解题的关键是熟练掌握函数奇偶性、单调性的定义,并灵活应用,在处理单调性、奇偶性综合问题时,需要注意函数所有的自变量都要在定义域内,方可求得正确答案. 19. 已知函数()2231f x x x =-+.(Ⅰ)函数()h x 是奇函数,当0x >时,()()h x f x =,求()h x 在x ∈R 上的解析式; (Ⅱ)若()()1g x f x mx =-++,当[]1,2x ∈时,若()g x 的最大值为2,求m 的值.【答案】(Ⅰ)()222310002310x x x h x x x x x ⎧---<⎪==⎨⎪-+>⎩;(Ⅱ)1.【解析】 【分析】(Ⅰ)首先设0x <,利用函数是奇函数,求函数的解析式;(Ⅱ)由(Ⅰ)可知()()223g x x m x =-++,讨论对称轴和定义域的关系,讨论函数的最大值,列式求m 的值.【详解】(Ⅰ)设0x <则0x -> 函数()h x 是奇函数,()()2231h x h x x x ∴=--=---()222310002310x x x h x x x x x ⎧---<⎪∴==⎨⎪-+>⎩(Ⅱ)()()1g x f x mx =-++,()()223g x x m x ∴=-++.()g x 二次函数开口向下,对称轴34mx +=, 在[]1,2x ∈时,()g x 的最大值为2, ①当314m+≤,即1m 时,()()max 1232g x g m ==-++=,解得1m =; ②当3124m +<<,即15m <<时,()2max 369248m m m g x g +++⎛⎫=== ⎪⎝⎭,解得1m =(舍)或7m =-(舍);③当324m+≥,即5m ≥时,()()max 28262g x g m ==-++=,解得2m =(舍); 综上所述,m 的值为1,即1m =.【点睛】关键点点睛:本题第一问的关键是:因为重点求0x <的解析式,所以设0x <,而不要设0x >;第二问的关键是讨论对称轴和定义域的关系,由函数在区间[]1,2的单调性,求函数的最大值.20. 已知函数()4cos cos 3f x x x a π⎛⎫=⋅-+ ⎪⎝⎭. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间; (Ⅲ)若23π是函数()f x 的一个零点,求实数a 的值及函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的值域. 【答案】(Ⅰ)T π=;(Ⅱ)06,π⎡⎤⎢⎥⎣⎦;(Ⅲ)[]1,4.【解析】 【分析】利用三角恒等变换公式化简函数解析式,(1)利用周期公式2T πω=求解;(2)利用换元法或整体代换法求函数单调递增区间;(3)利用换元法求判断函数单调性,并求值域.【详解】解:(Ⅰ)()4cos cos 4cos cos cos sin sin 333f x x x a x x x a πππ⎛⎫⎛⎫=-+=++ ⎪ ⎪⎝⎭⎝⎭22cos cos cos 2122sin 216x x x a x x a x a π⎛⎫=++=++=+++ ⎪⎝⎭,22T ππ==; (Ⅱ)法一: 令26z x π=+;0,2x π⎡⎤∈⎢⎥⎣⎦则7,66z ππ⎡⎤∈⎢⎥⎣⎦. sin y z =,7,66z ππ⎡⎤∈⎢⎥⎣⎦的单调增区间为,62ππ⎡⎤⎢⎥⎣⎦. 2662x πππ∴≤+≤,解得06x π∴≤≤.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦.法二:222262k x k πππππ-≤+≤+,k Z ∈36k x k ππππ-≤≤+,k Z ∈0,2x π⎡⎤∈⎢⎥⎣⎦画数轴与所有区间取交集可知:06x π∴≤≤.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦;(Ⅲ)23π是函数()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭的一个零点 242sin 10336f a πππ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭. 32sin102a π∴++= 解得:1a =.()2sin 226f x x π⎛⎫=++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,sin y z ∴=,当7,66z ππ⎡⎤∈⎢⎥⎣⎦单调递减区间为7,26ππ⎡⎤⎢⎥⎣⎦.72266x πππ∴≤+≤,解得62x ππ∴≤≤ f x 在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦,单调递减区间,62ππ⎛⎤⎥⎝⎦()02sin236f π=+=,2sin 2462f ππ⎛⎫=+= ⎪⎝⎭,72sin 2126f ππ⎛⎫=+= ⎪⎝⎭.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的值域为[]1,4.【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx 的形式.。
完整word版,高中数学(必修1)全套教材含答案(超好),推荐文档
特别说明:《高中数学教材》是根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章或节分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]目录:数学1(必修)数学1(必修)第一章:(上)集合 [训练A、B、C]数学1(必修)第一章:(中)函数及其表 [训练A、B、C]数学1(必修)第一章:(下)函数的基本性质[训练A、B、C] 数学1(必修)第二章:基本初等函数(I) [基础训练A组] 数学1(必修)第二章:基本初等函数(I) [综合训练B组]数学1(必修)第二章:基本初等函数(I) [提高训练C组]数学1(必修)第三章:函数的应用 [基础训练A组]数学1(必修)第三章:函数的应用 [综合训练B组]数学1(必修)第三章:函数的应用 [提高训练C组](数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC U I UB .()()A B AC U I U C .()()A B B C U I UD .()A B C U I4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =+∈∈A B C2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =I ,则C 的非空子集的个数为 。
新课标人教版高一数学上学期期末试卷及答案
上学期期末考试卷年级:高一科目:英语注意事项: 1.答第I卷前,考生务必将自己的姓名、考生号填写在答题卡上。
2.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在本试卷上,否则无效。
(试卷总分:150分;考试时间:120分钟)第I卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
听力结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10称钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.15.C. £9.18.答案是B。
1. What would the man like?A. A cold drink.B. Sleeping pills.C. A cup of coffee.2. Where is the bus station?A. Opposite a stadium.B. Next to a car park.C. On the left of a bridge.3. What does the man dislike about the sweater?A. The price.B. The material.C. The color.4. What does the man think of the course?A. Easy.B. Interesting.C. Difficult.5. What are the speakers mainly talking about?A. A sports game.B. An animal.C. An actor.第二节 (共15小题; 每小题1.5分, 满分22.5分)听下面5段对话或独白。
2020-2021学年高一下学期数学期末复习卷(一)统计与概率(word版,含答案)
2020-2021学年度高一数学期末复习卷(一)——统计与概率一、单选题1.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差 D .极差【答案】A 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤,中位数仍为5x ,∴A 正确. ①原始平均数1234891()9x x x x x x x =+++++,后来平均数234817x x x x x '=+++()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确 ①()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由①易知,C 不正确.①原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.2.某单位青年、中年、老年职员的人数之比为10①8①7,从中随机抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为( ) A .280 B .320C .400D .1000【答案】C 【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果 【详解】由题意知这是一个分层抽样问题,青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本, ∴要从该单位青年职员中抽取的人数为:10200801087⨯=++每人被抽取的概率为0.2,∴该单位青年职员共有804000.2= 故选C 【点睛】本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题. 3.有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( ) A .至多有1次中靶 B .2次都中靶 C .2次都不中靶D .只有1次中靶【答案】C 【分析】根据对立事件的定义可得事件“至少有1次中靶”的对立事件. 【详解】由于两个事件互为对立事件时,这两件事不能同时发生,且这两件事的和事件是一个必然事件.再由于一个人在打靶中,连续射击2次,事件“至少有1次中靶”的反面为“2次都不中靶”.故事件“至少有1次中靶”的对立事件是“2次都不中靶”, 故选:C .4.掷一枚骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是A .互斥但不相互独立B .相互独立但不互斥C .互斥且相互独立D .既不相互独立也不互斥【答案】B 【详解】事件{2,4,6}A =,事件{3,6}B =,事件{6}AB =,基本事件空间{1,2,3,4,5,6}Ω=,所以()3162P A ==,()2163P B ==,()111623P AB ==⨯,即()()()P AB P A P B =,因此,事件A 与B 相互独立.当“出现6点”时,事件A ,B 同时发生,所以A ,B 不是互斥事件.故选B .5.齐王有上等、中等、下等马各一匹,田忌也有上等、中等、下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现在从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜得概率为 A .49B .59C .23D .79【答案】C 【分析】现从双方的马匹中随机各选一匹进行一场比赛 ,列出样本空间,有9个样本点,“齐王的马获胜”包含的样本点有6个,利用古典概型概率公式可求出齐王的马获胜的概率. 【详解】设齐王上等、中等、下等马分別为,,A B C ,田忌上等、中等、下等马分别为,,a b c , 现从双方的马匹中随机各选一匹进行一场比赛,Ω={()()()()()()()()(),,,,,,,,,,,,,,,,,A a A b A c B a B b B c C a C b C c },9)(=Ωn ,因为每个样本点等可能,所以这是一个古典概型。
湖北省武汉外国语学校2016-2017学年高一上学期期末数学试卷 Word版含解析
2015-2016学年湖北省武汉外国语学校高一(上)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={x|x>x2},N={y|y=,x∈M},则M∩N=()A.{x|0<x<}B.{x|<x<1}C.{x|0<x<1}D.{x|1<x<2}2.要得到y=cos2x的图象,只需要将函数y=sin(2x﹣)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位3.在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)4.已知α∈(0,),β∈(﹣,0),cos()=,cos()=,则cos()=()A.B.﹣C.D.﹣5.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为(A,C为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是()A.75,25 B.75,16 C.60,25 D.60,166.函数f(x)=落在区间(﹣3,5)的所有零点之和为()A.2 B.3 C.4 D.57.函数y=的单调增区间是()A.[k,k],k∈Z B.[k,k],k∈ZC.[k,k],k∈Z D.[k,k],k∈Z8.如图,A、B分别是射线OM、ON上的点,给出下列以O为起点的向量:①;②;③;④ +;⑤.其中终点落在阴影区域内的向量的序号有()A.①②④B.①③C.②③⑤D.①③⑤9.定义在区间(0,)上的函数y=6cosx与y=5tanx的图象交点为P,过点P 作x轴的垂线,垂足为P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长度为()A.B.C.D.10.函数f(x)=Asin(ωx+φ)的部分图象如图所示,则函数的解析式可以是()A.f(x)=2cos(3x+)B.f(x)=2sin()C.f(x)=2sin(3x﹣)D.f(x)=2sin(3x﹣)或f(x)=2sin()11.关于x的方程asinx+bcosx+c=0在[0,π]上有两个相异实根α,β,则sin(α+β)=()A.B.﹣C.D.﹣12.函数f(x)=sin2x+2cos2x﹣,g(x)=mcos(2x﹣)﹣2m+3(m>0),若对任意x1∈[0,],存在x2∈[0,],使得g(x1)=f(x2)成立,则实数m的取值范围是()A.(1,)B.(,1]C.[,1]D.[1,]二、填空题13.扇形AOB周长为8,圆心角为2弧度,则其面积为.14.已知log23=t,则log4854=(用t表示)15.已知函数y=sin()(ω>0)是区间[,π]上的增函数,则ω的取值范围是.16.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x ∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.三、解答题(共6题,共70分)17.(10分)已知向量=(sinα,),=(cosα,﹣1),且∥(1)若α为第二象限角,求的值;(2)求cos2α﹣sin2α的值.18.(10分)如图,M、N、P分别是三角形ABC三边BC、CA、AB上的点,且满足,设=,=.(1)用,表示;(2)若点G是三角形MNP的重心,用,表示.19.(12分)已知定义在R上的函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤)的最小值为﹣2,其相邻两条对称轴距离为,函数图象向左平移单位后所得图象对应的函数为偶函数.(1)求函数f(x)的解析式;(2)若f()=﹣,且x0∈[],求cos(x0+)的值.20.(12分)已知定义在R上的函数f(x)=2cosωxsin()﹣(ω>0)的周期为π.(1)求ω的值及f(x)的单调增区间;(2)记g(x)=f(x)+sin(x﹣),求g(x)的值域.21.(13分)如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC 外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花.若BC=a,∠ABC=θ,设△ABC的面积为S1,正方形PQRS的面积为S2.(1)用a,θ表示S1和S2;(2)当a为定值,θ变化时,求的最小值,及此时的θ值.22.(13分)已知函数y=x+有如下性质:当a>0时,函数在(0,]单调递减,在[,+∞)单调递增.定义在(0,+∞)上的函数f(x)=|t(x+)﹣5|,其中t>0.(1)若函数f(x)分别在区间(0,2)和(2,+∞)上单调,求t的取值范围(2)当t=1时,若方程f(x)﹣k=0有四个不相等的实数根x1,x2,x3,x4,求x1+x2+x3+x4的取值范围(3)当t=1时,是否存在实数a,b且0<a<b≤2,使得f(x)在区间[a,b]上的取值范围是[ma,mb],若存在,求出实数m的取值范围;若不存在,请说明理由.2015-2016学年湖北省武汉外国语学校高一(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={x|x>x2},N={y|y=,x∈M},则M∩N=()A.{x|0<x<}B.{x|<x<1}C.{x|0<x<1}D.{x|1<x<2}【考点】一元二次不等式的解法;交集及其运算;指数函数的定义、解析式、定义域和值域.【分析】利用一元二次不等式的解法和指数函数的性质可化简集合M,N.再利用交集的运算即可得出.【解答】解:对于集合:M:由x>x2,解得0<x<1,∴M={x|0<x<1}.∵0<x<1,∴1<4x<4∴..∴N={y|}.∴M∩N={x|}.故选B.【点评】熟练掌握一元二次不等式的解法和指数函数的性质、交集的运算等是解题的关键.2.要得到y=cos2x的图象,只需要将函数y=sin(2x﹣)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据诱导公式将函数y=cos2x化为正弦形式的.然后假设平移φ个单位得到,根据sin[2(x+φ)﹣]=sin(2x+)解出φ即可.【解答】解:∵y=cos2x=sin(2x+)假设只需将函数y=sin(2x﹣)的图象平移φ个单位得到,则:sin[2(x+φ)﹣]=sin(2x+),∴2(x+φ)﹣=2x+,φ=,故应向左平移个单位.故选:D.【点评】本题主要考查三角函数的诱导公式和平移变换.三角函数的平移变换第一步先将函数化为同名函数,然后根据左加右减上加下减的原则平移.3.在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【考点】平面向量的基本定理及其意义.【分析】根据向量的坐标运算,,计算判别即可.【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能.选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.【点评】本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题.4.已知α∈(0,),β∈(﹣,0),cos()=,cos()=,则cos()=()A.B.﹣C.D.﹣【考点】两角和与差的余弦函数.【分析】利用同角三角函数的基本关系求得sin()和sin()的值,再利用两角差的正切公式的应用,求得要求式子的值.【解答】解:∵α∈(0,),β∈(﹣,0),cos()=,cos()=,∴sin()==,sin()=﹣=﹣,∴cos()=cos[()+(﹣)]=cos()•cos()﹣sin()•sin()=﹣•(﹣)=,故选:A.【点评】本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.5.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为(A,C为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是()A.75,25 B.75,16 C.60,25 D.60,16【考点】函数解析式的求解及常用方法.【分析】首先,x=A的函数值可由表达式直接得出,再根据x=4与x=A的函数值不相等,说明求f(4)要用x<A对应的表达式,将方程组联解,可以求出C、A 的值.【解答】解:由题意可得:f(A)==15,所以c=15而f(4)==30,可得出=30故=4,可得A=16从而c=15=60故答案为D【点评】分段函数是函数的一种常见类型,解决的关键是寻找不同自变量所对应的范围,在相应区间内运用表达式加以解决.6.函数f(x)=落在区间(﹣3,5)的所有零点之和为()A.2 B.3 C.4 D.5【考点】函数零点的判定定理.【分析】由题意别作出函数y=与y=的图象,由图得交点的个数和函数图象的对称性,并利用对称性求出函数f(x)的所有零点之和.【解答】解:由f(x)==0得,,分别作出函数y=与y=的图象如图:则函数y=与y=的图象关于(1,0)点成中心对称,由图象可知两个函数在区间(﹣3,5)上共有4个交点,它们关于(1,0)点成中心对称,不妨设关于点(1,0)对称的两个点A、B的横坐标是a、b,则=1,即a+b=2,所以所有交点横坐标之和为2(a+b)=4,即所有零点之和为4,故选:C.【点评】本题考查了函数的零点与函数图象交点的转化,掌握数形结合的思想方法和函数的对称性是解题的关键.7.函数y=的单调增区间是( )A .[k ,k ],k ∈ZB .[k ,k],k ∈ZC .[k,k],k ∈ZD .[k,k],k ∈Z【考点】正弦函数的图象.【分析】先求出函数y 的定义域,再求函数y 的单调递增区间是什么.【解答】解:∵函数y=,∴sin (﹣2x )≥0,即sin (2x ﹣)≤0,解得﹣π+2kπ≤2x ﹣≤2kπ,k ∈Z ,即﹣+2kπ≤2x ≤+2kπ,k ∈Z ,∴﹣+kπ≤x ≤+kπ,k ∈Z ,即y 的定义域是[﹣+kπ, +kπ],k ∈Z ;又令+2kπ≤2x ﹣≤+2kπ,k ∈Z ,即+2kπ≤2x ≤+2kπ,k ∈Z ,解得+kπ≤x ≤+kπ,k ∈Z ,即﹣+kπ≤x ≤﹣+kπ,k ∈Z ;综上,函数y的单调递增区间是[﹣+kπ,﹣ +kπ],k∈Z.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了复合函数的单调性问题,是基础题目.8.如图,A、B分别是射线OM、ON上的点,给出下列以O为起点的向量:①;②;③;④ +;⑤.其中终点落在阴影区域内的向量的序号有()A.①②④B.①③C.②③⑤D.①③⑤【考点】向量加减混合运算及其几何意义.【分析】作平面向量的线性运算,结合当x≥0,y≥0,x+y=1时,若=x+y,则点C在线段AB上;从而解得.【解答】解:由题意作平面向量的线性运算如下,又∵当x≥0,y≥0,x+y=1时,若=x+y,则点C在线段AB上;∴的向量的终点在阴影内;∵=+﹣;∴的向量的终点不在阴影内;∵=++;∴的向量的终点在阴影内;∵=﹣,∴的向量的终点不在阴影内;故选B.【点评】本题考查了平面向量的线性运算的应用及数形结合的思想方法应用.9.定义在区间(0,)上的函数y=6cosx与y=5tanx的图象交点为P,过点P 作x轴的垂线,垂足为P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长度为()A.B.C.D.【考点】余弦函数的图象;正切函数的图象.【分析】先将求P1P2的长转化为求sinx的值,再由x满足6cosx=5tanx可求出sinx 的值,从而得到答案.【解答】解:作出对应的图象如图,则线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,即6cosx=,化为6sin2x+5sinx﹣6=0,解得sinx=.即线段P1P2的长为故选:A【点评】本题主要考查三角函数的图象和性质,利用数形结合是解决本题的关键.10.函数f(x)=Asin(ωx+φ)的部分图象如图所示,则函数的解析式可以是()A.f(x)=2cos(3x+)B.f(x)=2sin()C.f(x)=2sin(3x﹣)D.f(x)=2sin(3x﹣)或f(x)=2sin()【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由图形可以求出A,根据图象过(0,﹣1),(,0),把点的坐标代入求出ω,φ,从而可得函数解析式.【解答】解:由图象知A=2,点(0,﹣1),(,0)在函数图象上,∵2sinφ=﹣1,∴可得sinφ=﹣,可得:φ=2kπ+,或φ=2kπ+,k∈Z∵2sin(ω+2kπ+)=0,或2sin(ω+2kπ+)=0,∴ω+=kπ,k∈Z,或ω+=kπ,k∈Z,解得:ω=﹣3,或ω=﹣,k∈Z,∴当k=2,ω=,φ=4π+,可得函数的解析式可以是f(x)=2sin(x+4π+)=2sin().当k=3,ω=3,φ=6π+,可得函数的解析式可以是f(x)=2sin(3x﹣).故选:D.【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查分析问题解决问题的能力,解题的关键是初相的求法要注意,属于中档题.11.关于x的方程asinx+bcosx+c=0在[0,π]上有两个相异实根α,β,则sin(α+β)=()A.B.﹣C.D.﹣【考点】两角和与差的正弦函数.【分析】将α、β代入方程后相减,然后根据和差化积公式求出tan的值,再由万能公式可得答案.【解答】解:∵方程asinx+bcosx+c=0在[0,π]内有两个相异的实根α、β,∴asinα+bcosα+c=0 ①asinβ+bcosβ+c=0 ②∴方程①﹣②得a(sinα﹣sinβ)+b(cosα﹣cosβ)=0,即a×(2sin cos)﹣b(2sin sin)=0,∴2sin(acos﹣bsin)=0,∵α≠β,∴sin≠0,∴acos﹣bsin=0,则tan=,∴sin(α+β)==.故选:C.【点评】本题主要考查和差化积公式和万能公式的应用.三角函数部分公式比较多,要强化记忆,是中档题.12.函数f(x)=sin2x+2cos2x﹣,g(x)=mcos(2x﹣)﹣2m+3(m>0),若对任意x1∈[0,],存在x2∈[0,],使得g(x1)=f(x2)成立,则实数m的取值范围是()A.(1,)B.(,1]C.[,1]D.[1,]【考点】三角函数中的恒等变换应用.【分析】分别由三角函数求各自函数的值域,由集合的包含关系解不等式组可得.【解答】解:∵f (x )=sin2x +2cos 2x ﹣=sin2x +(2cos 2x ﹣1)=sin2x +cos2x=2(sin2x +cos2x )=2sin (2x +)当x ∈[0,]时,2x +∈[,],∴f (x )min =2sin =1,∴f (x )∈[1,2],对于g (x )=mcos (2x ﹣)﹣2m +3(m >0),2x ﹣∈[﹣,],mcos (2x ﹣)∈[,m ],∴g (x )∈[﹣m +3,3﹣m ],∵对任意x 1∈[0,],存在x 2∈[0,],使得g (x 1)=f (x 2)成立,∴,解得实数m 的取值范围是[1,].故选:D .【点评】本题考查三角函数恒等变换,问题转化为求三角函数的值域并利用集合关系是解决问题的关键,属中档题.二、填空题13.扇形AOB 周长为8,圆心角为2弧度,则其面积为 4 . 【考点】扇形面积公式.【分析】直接利用扇形的面积公式进行求解即可. 【解答】解:设扇形的半径为r ,弧长为l ,则 扇形的周长为l +2r=8, ∴弧长为:αr=2r , ∴r=2,根据扇形的面积公式,得S=αr 2=4, 故答案为:4.【点评】本题重点考查了扇形的面积公式,属于基础题.14.已知log23=t,则log4854=(用t表示)【考点】换底公式的应用;对数的运算性质.【分析】利用对数的换底公式化简求解即可.【解答】解:log23=t,则log4854===.故答案为:.【点评】本题考查换底公式的应用,对数运算法则的应用,考查计算能力.15.已知函数y=sin()(ω>0)是区间[,π]上的增函数,则ω的取值范围是(0,] .【考点】正弦函数的图象.【分析】可以通过角的范围[,π],得到(ωx+)的取值范围,直接推导ω的范围即可.【解答】解:由于x∈[π,π],故(ωx+)∈[ω+,πω+],∵函数f(x)=sin(ωx+)(ω>0)在[,π]上是增函数,∴,∴0<ω≤,故答案为:(0,].【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.16.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.【考点】函数恒成立问题;函数奇偶性的性质.【分析】由当x≥0时,f(x)=x2,函数是奇函数,可得当x<0时,f(x)=﹣x2,从而f(x)在R上是单调递增函数,且满足2f(x)=f(x),再根据不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,可得x+t≥x在[t,t+2]恒成立,即可得出答案.【解答】解:当x≥0时,f(x)=x2∵函数是奇函数∴当x<0时,f(x)=﹣x2∴f(x)=,∴f(x)在R上是单调递增函数,且满足2f(x)=f(x),∵不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,∴x+t≥x在[t,t+2]恒成立,即:x≤(1+)t在[t,t+2]恒成立,∴t+2≤(1+)t解得:t≥,故答案为:[,+∞).【点评】本题考查了函数恒成立问题及函数的奇偶性,难度适中,关键是掌握函数的单调性与奇偶性.三、解答题(共6题,共70分)17.(10分)(2015秋•武汉校级期末)已知向量=(sinα,),=(cosα,﹣1),且∥(1)若α为第二象限角,求的值;(2)求cos2α﹣sin2α的值.【考点】三角函数的化简求值;平面向量共线(平行)的坐标表示;同角三角函数基本关系的运用.【分析】(1)通过向量的共线求出正切函数值,利用诱导公式化简已知条件然后求解即可.(2)化简表达式为正切函数的形式,然后求解即可.【解答】解:向量=(sinα,),=(cosα,﹣1),且∥,可得﹣sinα=cosα,可得tanα=﹣,(1)==cosα=﹣=﹣=﹣.(2)cos2α﹣sin2α====.【点评】本题考查诱导公式以及向量的共线,三角函数的化简求值,考查计算能力.18.(10分)(2015秋•武汉校级期末)如图,M、N、P分别是三角形ABC三边BC、CA、AB上的点,且满足,设=,=.(1)用,表示;(2)若点G是三角形MNP的重心,用,表示.【考点】向量的线性运算性质及几何意义;平面向量的基本定理及其意义.【分析】(1)根据向量加法、减法及数乘的几何意义便可由条件及图形便可用表示出;(2)先得出,然后画出图形,并连接AG,MG,根据G为三角形MNP的重心便可得到,从而根据便可用表示出.【解答】解:(1)根据条件,====;(2)=,如图,连接AG,MG;G为三角形MNP的重心,则:==;∴==.【点评】考查向量加法、减法及数乘的几何意义,向量的数乘运算,以及三角形重心的概念和性质,向量加法的平行四边形法则.19.(12分)(2015秋•武汉校级期末)已知定义在R上的函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤)的最小值为﹣2,其相邻两条对称轴距离为,函数图象向左平移单位后所得图象对应的函数为偶函数.(1)求函数f(x)的解析式;(2)若f()=﹣,且x0∈[],求cos(x0+)的值.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】(1)由最值求得A,由周期性求得ω,再根据函数y=Asin(ωx+φ)的图象变换规律,三角函数的奇偶性,求得φ,可得函数的解析式.(2)由条件求得sin(x0+)和cos(x0+)的值,再利用两角差的余弦公式,求得cos(x0+)=cos(x0+﹣)的值.【解答】解:(1)根据函数的最小值为﹣2,可得A=2,再根据其相邻两条对称轴距离为,可得=,∴ω=2,故函数f(x)=2sin(2x+φ).结合函数图象向左平移单位后,所得图象对应的函数y=2sin[2(x+)+φ]=2sin(2x++φ)为偶函数,∴+φ=kπ+,即φ=kπ+,k∈Z.结合,|φ|≤,可得φ=,f(x)=2sin(2x+).(2)若f()=2sin(x0+)=﹣,∴sin(x0+)=﹣.∵x0∈[],∴(x0+)∈(π,],∴cos(x0+)=﹣=﹣.∴cos(x0+)=cos(x0+﹣)=cos(x0+)•cos+sin(x0+)•sin=﹣﹣.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin (ωx+φ)的图象变换规律,三角函数的奇偶性,两角和差的余弦公式的应用,属于中档题.20.(12分)(2015秋•武汉校级期末)已知定义在R上的函数f(x)=2cosωxsin()﹣(ω>0)的周期为π.(1)求ω的值及f(x)的单调增区间;(2)记g(x)=f(x)+sin(x﹣),求g(x)的值域.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用两角和差化积公式,将f(x)转换为sin(2ω+π/6)的形式,在利用T=2π/2ω,求出ω的值,求g(x)主要根据诱导公式转换为sin(x﹣π/6)的形式,在构造二次函数,求出二次函数的定义域,根据函数的对称性求出函数的最值.【解答】解:由函数==,由函数的周期T=π,∴ω=1,函数的单调递减时,,(k∈Z),∴函数的单调递减区间(2)由===设则:g(x)=1﹣2t2+t,﹣1≤t≤1由二次函数图象可知:函数在x=取最大值为,当x=﹣1时取最小值为﹣2;∴函数的取值范围为[﹣2,]【点评】本题考查了积化和差公式,求三角函数的周期,利用诱导公式转换成相同函数的不同次幂的形式,再构造二次函数,求二次函数的值域,构造二次函数时要注意,函数的定义域的取值范围.属于中档题.21.(13分)(2015秋•武汉校级期末)如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花.若BC=a,∠ABC=θ,设△ABC的面积为S1,正方形PQRS的面积为S2.(1)用a,θ表示S1和S2;(2)当a为定值,θ变化时,求的最小值,及此时的θ值.【考点】在实际问题中建立三角函数模型.【分析】(1)据题三角形ABC为直角三角形,利用三角函数分别求出AC和AB,得出三角形ABC的面积S1;设正方形PQRS的边长为x,利用三角函数分别表示出BQ和RC,由BQ+QR+RC=a 列出方程求出x,算出S2;(2)化简比值,设t=sin2θ来化简求出S1与S2的比值,利用三角函数的增减性求出比值的最小值以及对应此时的θ.【解答】解:(1)在Rt△ABC中,AB=acosθ,AC=asinθ,所以S1=AB•AC=a2sinθcosθ;设正方形的边长为x则BP=,AP=xcosθ,由BP+AP=AB,得+xcosθ=acosθ,解得x=;所以S2=x2=;(6分)(2)===+sin2θ+1,(8分)令t=sin2θ,因为0<θ<,所以0<2θ<π,则t=sin2θ∈(0,1],(10分)所以=+t+1;设g(t)=+t+1,则g′(t)=﹣+,t∈(0,1];所以函数g(t)在(0,1]上递减,(11分)因此当t=1时g(t)有最小值g(t)min=g(1)+×1+1=,此时sin2θ=1,解得θ=;所以当θ=时,的值最小,最小值为.【点评】本题考查了根据实际问题选择合适的函数关系的能力,以及在实际问题中建立三角函数模型的能力,是综合性题目.22.(13分)(2015秋•武汉校级期末)已知函数y=x+有如下性质:当a>0时,函数在(0,]单调递减,在[,+∞)单调递增.定义在(0,+∞)上的函数f(x)=|t(x+)﹣5|,其中t>0.(1)若函数f(x)分别在区间(0,2)和(2,+∞)上单调,求t的取值范围(2)当t=1时,若方程f(x)﹣k=0有四个不相等的实数根x1,x2,x3,x4,求x1+x2+x3+x4的取值范围(3)当t=1时,是否存在实数a,b且0<a<b≤2,使得f(x)在区间[a,b]上的取值范围是[ma,mb],若存在,求出实数m的取值范围;若不存在,请说明理由.【考点】函数单调性的判断与证明.【分析】(1)由题意得4t﹣5≥0,由此能求出t的取值范围.(2)设x1<x2<x3<x4,则x1,x4是方程(x﹣)﹣5﹣k=0的两个根,x2,x3是方程﹣(x+)+5﹣k=0的两根,由此能求出x1+x2+x3+x4的范围.(3)令f(x)=0,得x=1或x=4,推导出0<a<b<1或1<a<b≤2.由此利用分类讨论思想和构造法能求出存在满足条件的a,b,此时m的取值范围是[,).【解答】解:(1)由题意得y=t(x+)﹣5在(0,2]递减,取值范围是[4t﹣5,+∞),在[2,+∞)递增,取值范围是[4t﹣5,+∞),∴4t﹣5≥0,解得t≥,∴t的取值范围是[,+∞).(2)t=1时,方程有四个不等实数根x1,x2,x3,x4,设x1<x2<x3<x4,则x1,x4是方程(x﹣)﹣5﹣k=0的两个根,整理,得x2﹣(5+k)x+4=0,∴x1+x4=5+k,同理,x2,x3是方程﹣(x+)+5﹣k=0的两根,整理,得x2﹣(5﹣k)x+4=0,∴x3+x4=5﹣k,∴x1+x2+x3+x4=10.(3)令f(x)=0,得x=1或x=4,由a<b,ma<mb,得m>0,若1∈[a,b],则ma=0,矛盾.故0<a<b<1或1<a<b≤2.当0<a<b<1时,f(a)=mb,f(b)=ma,,消m,得a+b=5,矛盾.当1<a<b≤2时,f(a)=ma,f(b)=mb,,即a,b是方程(m+1)x2﹣5x+4=0在(1,2]上两个不等根,记g(x)=(m+1)x2﹣5x+4,则,解得,综上所述,存在满足条件的a,b,此时m的取值范围是[,).【点评】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意分类讨论思想、构造法、函数性质的合理运用.。
上海市徐汇区2019年高三第一学期期末(一模)学科质量检测数学试题及答案(word版)
徐汇区2018-2019学年第一学期高三年级质量调研考试 数学试卷 2018.12考生注意:1.本场考试时间120分钟.试卷共4页,满分150分.2.作答前,在试卷与答题纸正面填写学校、班级、考生号、姓名等.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为___________.2.已知全集U =R ,集合{}2,,0A y y x x x -==∈≠R ,则U A =ð___________. 3.若实数,x y 满足1xy =,则222x y +的最小值为___________.4.若数列{}n a 的通项公式为*2()111n na n N n n=∈+,则lim n n a →∞=___________. 5.已知双曲线22221x y a b-=(0,0a b >>)的一条渐近线方程是2y x =,它的一个焦点与抛物线220y x =的焦点相同,则此双曲线的方程是___________.6.在平面直角坐标系xOy 中,直线l 经过坐标原点,()3,1n =r是l 的一个法向量.已知数列{}n a 满足:对任意的正整数n ,点()1,n n a a +均在l 上.若26a =,则3a 的值为 .7.已知()212nx n N x *⎛⎫-∈ ⎪⎝⎭的展开式中各项的二项式系数之和为128,则其展开式中含1x 项的系数是 .(结果用数值表示)8.上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如下表所示:其他人的成绩至少是B 级及以上,平均分是64分.这个班级选考物理学业水平等级考的人数至少为___________人.9.已知函数()f x 是以2为周期的偶函数,当01x ≤≤时,()lg(1)f x x =+,令函数[]()()(1,2)g x f x x =∈,则()g x 的反函数为______________________.10.已知函数sin y x =的定义域是[],a b ,值域是12⎡⎤⎢⎥⎣⎦-1,,则b a -的最大值是___________.11.已知R λ∈,函数24,()43,x x f x x x x λλ-≥⎧⎪=⎨-+<⎪⎩.若函数()f x 恰有2个零点,则λ的取值范围是___________.12.已知圆M :1)1(22=-+y x ,圆N :1)1(22=++y x .直线1l 、2l 分别过圆心M 、N ,且1l 与圆M 相交于,A B 两点,2l 与圆N 相交于,C D 两点.点P 是椭圆22194x y +=上任意一点,则PA PB PC PD ⋅+⋅u u u r u u u r u u u r u u u r的最小值为___________.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.设R θ∈,则“=6πθ”是“1sin =2θ”的( ) (A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件14.魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”.刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为:4π.若正方体的棱长为2,则“牟合方盖”的体积为( )(A )16 (B ) (C )163 (D )128315.对于函数()y f x =,如果其图像上的任意一点都在平面区域{}(,)|()()0x y y x y x +-≤内,则称函数()f x 为“蝶型函数”.已知函数:①sin y x =;②y ,下列结论正确的是( )(A )①、②均不是“蝶型函数” (B )①、②均是“蝶型函数”(C )①是“蝶型函数”;②不是“蝶型函数” (D )①不是“蝶型函数”;②是“蝶型函数”16.已知数列{}n a 是公差不为0的等差数列,前n 项和为n S .若对任意的*n N ∈,都有3n S S ≥,则65a a 的值不可能为( ) (A )2 (B )53 (C )32 (D )43三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 如图,已知正方体''''ABCD A B C D -的棱长为1.(1)正方体''''ABCD A B C D -中哪些棱所在的直线与直线'A B 是异面直线?(2)若,M N 分别是','A B BC 的中点,求异面直线MN 与BC 所成角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数2(),2ax f x x -=+其中.a R ∈ (1)解关于x 的不等式()1f x ≤-;(2)求a 的取值范围,使()f x 在区间(0,)+∞上是单调减函数.19.(本题满分14分,第1小题满分6分,第2小题满分8分)我国的“洋垃圾禁止入境”政策已实施一年多. 某沿海地区的海岸线为一段圆弧AB ,对应的圆心角3AOB π∠=. 该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证(如图:其中海域与陆地近似看作在同一平面内).在圆弧的两端点,A B 分别建有监测站,A 与B 之间的直线距离为100海里. (1)求海域ABCD 的面积;海(2) 现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B点. 判断这艘不明船只是否进入了海域ABCD ?请说明理由.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知椭圆2222:1(0)x y a b a bΓ+=>>的长轴长为1,直线:l y kx m =+与椭圆Γ交于,A B 两点.(1)求椭圆Γ的方程;(2)若A 为椭圆的上顶点,M 为AB 中点,O 为坐标原点,连接OM 并延长交椭圆Γ于N,ON =u u u r u u ur ,求k 的值; (3)若原点O 到直线l 的距离为1,OA OB λ⋅=u u u r u u u r ,当4556λ≤≤时,求OAB ∆的面积S 的范围.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知项数为0n 0(4)n ≥项的有穷数列{}n a ,若同时满足以下三个条件:①011,n a a m ==(m 为正整数);②10i i a a --=或1,其中02,3,,i n =…;③任取数列{}n a 中的两项,()p q a a p q ≠,剩下的02n -项中一定存在两项,()s t a a s t ≠,满足p q s t a a a a +=+. 则称数列{}n a 为Ω数列.(1)若数列{}n a 是首项为1,公差为1,项数为6项的等差数列,判断数列{}n a 是否是Ω数列,并说明理由;(2)当3m =时,设Ω数列{}n a 中1出现1d 次,2出现2d 次,3出现3d 次,其中*123,,d d d N ∈,求证:1234,2,4d d d ≥≥≥;(3)当2019m =时,求Ω数列{}n a 中项数0n 的最小值.徐汇区2018-2019学年第一学期高三年级质量调研考试数学试卷参考答案。
2021年人教A版高一数学必修1:第3章对数函数比较大小及复合函数的单调性 Word版含答案
对数函数比较大小及复合函数的单调性一、单选题(共10道,每道10分)1.设,则( )A.b<a<cB.c<a<bC.c<b<aD.a<c<b答案:B解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较2.设,则( )A.a>b>cB.b>a>cC.b>c>aD.c>a>b答案:B解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较3.已知,则( )A.a=b<cB.a<b<cC.a=c>bD.a>c>b答案:C解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较4.设,,,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数值大小的比较5.已知函数是定义在上的偶函数,当时,是减函数,若,则( )A.a>b>cB.c>b>aC.c>a>bD.a>c>b答案:B解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较6.已知函数在上是增函数,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:对数函数的单调性7.函数上为减函数,则a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数函数的单调性8.函数的单调递增区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:对数函数的单调性9.若函数有最小值,则a的取值范围是( )A.0<a<1B.0<a<2且a≠1C.1<a<2D.a≥2答案:C解题思路:试题难度:三颗星知识点:对数函数的单调性10.定义在上的偶函数在上递增,,则满足的x 的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:对数函数图象与性质的综合应用。
北京市西城区2022-2023学年高一上学期期末考试数学试卷(word版,含答案)
北京市西城区2022-2023学年高一上学期期末考试数学试卷数 学2023.1本试卷共6页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|51}A x x =-<≤,2{|9}B x x =≤,则A B =(A )[5,3]- (B )(3,1]-(C )[3,1)-(D )[3,3]-(2)已知命题:p 1x ∃<,21x ≤,则p ⌝为(A )1x ∀≥,21x > (B )1x ∃<,21x > (C )1x ∀<,21x >(D )1x ∃≥,21x >(3)如图,在平行四边形ABCD 中,AC AB -=(A )CB (B )AD (C )BD(D )CD(4)若a b >,则下列不等式一定成立的是(A )11a b< (B )22a b > (C )e e a b --< (D )ln ln a b >(5)不等式2112x x +-≤的解集为 (A )[3,2]- (B )(,3]-∞- (C )[3,2)-(D )(,3](2,)-∞-+∞(6)正方形ABCD 的边长为1,则|2|AB AD +=(A )1(B )3(C(D(7)某物流公司为了提高运输效率,计划在机场附近建造新的仓储中心. 已知仓储中心建造费用C (单位:万元)与仓储中心到机场的距离s (单位:km )之间满足的关系为80022000C s s=++,则当C 最小时,s 的值为(A )20(B ) (C )40(D )400(8)设2log 3a =,则122a +=(A )8 (B )11(C )12(D )18(9)已知a 为单位向量,则“||||1+-=a b b ”是“存在0λ>,使得λb =a ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)近年来,踩踏事件时有发生,给人们的生命财产安全造成了巨大损失. 在人员密集区域,人员疏散是控制事故的关键,而能见度x (单位:米)是影响疏散的重要因素. 在特定条件下,疏散的影响程度k 与能见度x 满足函数关系: 0.20.1,1.4,0.110,110,b x k ax x x ⎧<⎪⎪=+⎨⎪⎪>⎩≤≤,,(,a b 是常数). 如图记录了两次实验的数据,根据上述函数模型和实验数据,b 的值是 (参考数据:lg30.48≈) (A )0.24- (B )0.48-(C )0.24(D )0.48第二部分(非选择题共110 分)二、填空题共5小题,每小题5分,共25分。
北京市朝阳区2021-2022学年高三上学期期末考试数学试卷(word版,含答案)
北京市朝阳区2021-2022学年高三上学期期末考试数学试卷数 学2022.1(考试时间120分钟 满分150分)本试卷分为选择题40分和非选择题110分第一部分(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.2(1i)+= A.2-B.2C.2i -D.2i2.双曲线221169x y -=的渐近线方程为 A.34y x =±B. 43y x =±C. 35y x =±D. 916y x =±3. 在5道试题中有2道代数题和3道几何题,每次从中抽出1道题,抽出的题不再放回,则在第1次抽到代数题的条件下,第2次抽到几何题的概率为A .16B.310 C.12 D.344.已知抛物线24y x =上一点M 与焦点F 的距离为4,则点M 到x 轴的距离是 A.B.C.4D.125.设函数21,()l ,11()g ,2o .x x f x x x ⎧⎪=⎨⎪>⎩≤ 若()2f x ≤,则实数x 的取值范围是A .[)1,-+∞B .(0,4]C .[1,4]-D .(,4]-∞6. 在直角坐标平面xOy 内,O 为坐标原点,已知点A 1(,2-, 将向量OA 绕原点按逆时针方向旋转2π得到OA ',则OA '的坐标为A. 1()2B. 1)2-C. 1(,2D. 1(2-7. 某纯净水制造厂在净化水的过程中,每增加一次过滤可使水中杂质减少50%,若要使水中杂质减少到原来的10%以下,则至少需要过滤 (参考数据:lg20.3010≈) A.2次B.3次C.4次D.5次8.若函数x b x a x f cos sin )(+=的最大值为2,则下列结论不一定成立.....的是( )A.422=+b aB.2ab ≤C.2()8a b +≤D.()24a b -≤9.已知平面向量,a b 满足2,a a =与a b -的夹角为 120,记(1),()m a b t t t =+-∈R ,则m 的取值范围为_______ A.),3[+∞B.),2[+∞C.),1[+∞D.),21[+∞10.如图,将半径为1的球与棱长为1的正方体组合在一起,使正方体的一个顶点正好是球的球心,则这个组合体的体积为A.76π+1 B.7566π+ C.78π+1 D.1π+二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡上. 11.在51()x x+的展开式中,x 的系数为__________.12.已知圆222:C x y r +=()0r >,直线:2l y x =+,则使“圆C 上至少有3个点到直线l 距离都 是1”成立的一个充分条件是“r =_______”.13.如图,正方形ABCD 的边长为2,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH , 然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.则第4个正方形的面积是_______;从正方形ABCD 开始,连续8个正方形面积之和是_______.14.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,==2PA AB ,E 为线段PB 的中点,F 为线段BC 上的动点,平面AEF 与平面PBC_______ (填“垂直”或“不垂直”);AEF △的面积的最大值为_______.15. 已知函数)2π0,)(sin()(<>+=ϕωϕωx x f 的部分图象如图所示,设()(),g x f x =给出以下四个结论:① 函数()g x 的最小正周期是π3;② 函数()g x 在区间7π5π(,)189上单调递增; ③ 函数()g x 的图象过点3(0,); ④ 直线1318x π=为函数()g x 的图象的一条对称轴. 其中所有正确结论的序号是_______._______._______E DB PF三、解答题:本大题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分13分)记ABC △的内角C B A ,,的对边分别为c b a ,,,已知14,4,12+==-=t c t b t a (1t >). (Ⅰ)当3=t 时,求cos B ;(Ⅱ)是否存在正整数t ,使得角C 为钝角?如果存在,求出t 的值,并求此时ABC △的面积;如果不存在,说明理由.17.(本小题满分13分)“双减”政策实施以来,各地纷纷推行课后服务“5+2”模式,即学校每周周一至周五5天都要面向所有学生提供课后服务,每天至少2小时.某学校的课后服务有学业辅导、体育锻炼、实践能力创新培养三大类别,为了解该校学生上个月参加课后服务的情况,该校从全校学生中随机抽取了100人作为样本,发现样本中未参加任何课后服务的有14人,样本中仅参加某一类课后服务的学生分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月至少参加了两类课后服务活动的概率;(Ⅱ)从全校学生中随机抽取3人,以频率估计概率,以X 表示这3人中上个月仅参加学业辅导的人数,求X 的分布列和数学期望;(Ⅲ)若样本中上个月未参加任何课后服务的学生有(014)n n <≤人在本月选择仅参加学业辅导,样本中其他学生参加课后服务的情况在本月没有变化.从全校学生中随机抽取3人,以频率估计概率,以X 表示这3人中上个月仅参加学业辅导的人数,以Y 表示这3人中本月仅参加学业辅导的人数,试判断方差()D X ,()D Y 的大小关系(结论不要求证明).18.(本小题满分14分)刍甍(chú méng )是中国古代数学书中提到的一种几何体.《九章算术》中有记载“下有袤有广,而上有袤无广”,可翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.”如图,在刍甍ABCDEF 中,四边形ABCD 是正方形,平面BAE 和平面CDE 交于EF . (Ⅰ)求证:CD 平面BAE ;(Ⅱ)若4AB =,=2EF ,ED FC =,AF =ABCDEF 存在,并求平面ADE 和平面BAE 夹角的余弦值.条件①:BF FC ⊥,AF FC ⊥; 条件②:平面CDE ⊥平面ABCD ; 条件③:平面CBF ⊥平面ABCD .19.(本小题满分15分)已知曲线W :221(,3x y m m m+=∈-R 0,m ≠且3m ≠).(Ⅰ)若曲线W 是焦点在x 轴上的椭圆,求m 的取值范围;(Ⅱ)当1m =时,过点(1,0)E 作斜率为k ()0k ≠的直线l 交曲线W 于点,A B (,A B 异于顶点),交直线2x =于P .过点P 作y 轴的垂线,垂足为Q ,直线AQ 交x 轴于C ,直线BQ 交x 轴于D ,求线段CD 中点M 的坐标.20.(本小题满分15分)已知函数()2ln ln f x x x a =--,0a >.(Ⅰ)求曲线()y f x =在(1,(1))f 处切线的斜率; (Ⅱ)求函数()f x 的极大值;(Ⅲ)设2()=e x g x a x -,当(1,e)a ∈时,求函数()g x 的零点个数,并说明理由.A(21)(本小题满分15分)对任意正整数n ,记集合1212{(,,,)|,,,n n n A a a a a a a =均为非负整数,且12}n a a a n +++=,集合1212{(,,,)|,,,n n n B b b b b b b =均为非负整数,且122}n b b b n +++=.设12(,,,)n n a a a A α=∈,12(,,,)n n b b b B β=∈,若对任意{1,2,,}i n ∈都有i i a b ≤,则记αβ.(Ⅰ)写出集合2A 和2B ;(Ⅱ)证明:对任意n A α∈,存在n B β∈,使得αβ;(Ⅲ)设集合{(,)|,,}n n n S A B αβαβαβ=∈∈,求证:n S 中的元素个数是完全平方数.北京市朝阳区2021-2022学年高三上学期期末考试数学试卷参考答案一、选择题:(本题满分40分)16.(本小题满分13分) 解:(Ⅰ) 3=t 时,5,12,13,a b c ===此时ABC △为直角三角形, 所以5cos 13a B c ==.............6分 (Ⅱ)由题意可得,2221,(21)(4)(41)cos 0.2(21)4t t t t C t t >⎧⎪-+-+⎨=<⎪-⋅⎩即24120,1.t t t ⎧-<⎨>⎩所以13,t <<t *∈N .则 2.t = 此时三边为3,8,9.a b c ===所以2223891cos .2386C +-==-⨯⨯所以sin C 所以11sin 3822ABC S ab C ==⨯⨯△............13分17.(本小题满分13分)解:(Ⅰ)由题意知,样本中仅参加学业辅导的学生有25人,仅参加体育锻炼的学生有18人,仅参加实践能力创新培养的学生有16人,未参加任何课后服务的学生有14人.故样本中至少参加了两类课后服务的学生有1002518161427----=人. 所以从全校学生中随机抽取1人,该学生上个月至少参加了两类课后服务的概率估计值为270.27100=.............4分 (Ⅱ)X 的所有可能值为0,1,2,3.从样本中随机抽取1人,该学生上个月仅参加学业辅导的概率为251=1004, 由此估计从全校学生中随机抽取1人,该学生上个月仅参加学业辅导的概率为14.0331127(0)()(1)4464P X C ==⨯⨯-=, 1231127(1)(1)4464P X C ==⨯⨯-=, 2213119(2)()(1)4464P X C ==⨯⨯-=, 33311(3)()464P X C ==⨯=. 所以X 的分布列为故X 的数学期望为()0123646464644E X =⨯+⨯+⨯+⨯=.............10分 (Ⅲ)()()D X D Y <.............13分 18.(本小题满分14分)解:(Ⅰ)证明:正方形ABCD 中,CD AB ,CD ⊄平面BAE ,AB ⊂平面BAE ,所以CD ∥平面BAE .............5分 (Ⅱ)条件②符合题意.过点F 作FO DC ⊥于点O ,过点O 作OH DC ⊥且交AB 于点H ,连接AO . 因为平面CDE ⊥平面ABCD ,且平面CDE 平面ABCD CD =,FO DC ⊥,所以FO ⊥平面ABCD .所以FO OH ⊥.以O 为坐标原点,分别以,,OD OH OF 所在直线为,,x yz 轴建立空间直角坐标系O xyz -. 因为CD平面BAE ,CD ⊂平面CDE ,平面BAE 平面CDE EF =, 所以CDEF .在四边形CDEF 中,ED FC =,=2EF ,4CD =,所以=1OC ,=3OD . 在正方形ABCD 中,4AB =,所以5AO =. 因为AO FO ⊥,且AF =FO .所以(0,4,0)H ,(3,0,0)D ,(3,4,0)A ,E ,F . 所以(0,4,0)DA =,(DE =-,(1,AE =--,(2,0,0)FE =.设平面ADE 的一个法向量为111(,,)x y z =n .由0,0,DA DE ⎧⋅=⎪⎨⋅=⎪⎩n n 得11140,0.y x =⎧⎪⎨-+=⎪⎩ 令11z =,所以n =.设平面BAE 的一个法向量为222(,,)x y z =m .AC由0,0,AE FE ⎧⋅=⎪⎨⋅=⎪⎩m m得222240,20.x y x ⎧--=⎪⎨=⎪⎩令21y =,所以m =.设平面ADE 与平面BAE 夹角为θ,则cos =cos <=||||n m n m n m ,θ⋅>=所以平面ADE 和平面BAE.............14分 19.(本小题满分15分)解:(Ⅰ)由题意可知30,0,3.m m m m ->⎧⎪>⎨⎪->⎩解得302m <<,所以m 的取值范围为3(0,)2.............4分(Ⅱ)当1m =时,曲线W 为椭圆221,2x y +=由题意,设直线l 的方程为(1)y k x =-()0k ≠.2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩整理得2222(12)4220.k x k x k +-+-= 设直线l 交椭圆W 于点1122(,),(,)A x y B x y ,则 2122412k x x k +=+,21222212k x x k -=+. 由直线l 的方程(1)y k x =-,令2,x =解得y k =, 所以(2,)P k ,(0,)Q k . 所以直线AQ 的方程为11y ky x k x -=+,10x ≠. 令0,y =解得11kx x k y =-, 所以11(,0)kx C k y -. 直线BQ 的方程为22y ky x k x -=+,20x ≠. 令0,y =解得22kx x k y =-, 所以22(,0)kx D k y -. 11kx k y +-22kx k y -122112[()()]()()k x y k x y k y k y k --+-=--. 由于11(2)y k k x -=-,22(2)y k k x -=-.则11kx k y +-22kx k y - =]1221212[(2)(2)(2)(2)k x k x x k x k x x --+---1212122()2(2)(2)x x x x x x +-=--()121212122()224x x x x x x x x +-=-++=22222224222()1222841212k k k k k k k -++--+++ =2.所以线段CD 的中点M 的坐标为(1,0).............15分 20.(本小题满分15分) 解:(Ⅰ)()f x 定义域为(0,)+∞2()xf x x-'=, (1)1f '=,所以曲线()y f x =在()1,(1)f 处切线的斜率为1.............4分 (Ⅱ)()2ln ln f x x x a =--,则2()xf x x-'=. 令()0f x '=得2x =.当02x <<时,()0f x '>,()f x 单调递增;当2x >时,()0f x '<,()f x 单调递减.所以函数()f x 的极大值为(2)f =24lnea .............10分 (Ⅲ)()e 2(1e)x g x a x a '=-<<,当(],0x ∈-∞时,()0g x '>,所以函数()g x 在(],0x ∈-∞时单调递增.而(0)0g a =>,(1)10eag -=-<. 所以方程()0g x =在()1,0x ∈-时有且只有一个根,即方程()0g x =在(],0x ∈-∞时有且只有一个根. 当0x >时,讨论函数()g x 的零点个数即讨论方程2e x a x =根的个数,即研究方程ln 2ln a x x +=(1e >0)a x <<,的根的个数,即研究函数()f x =2ln ln x x a --(1e >0)a x <<,的零点个数. 当1e a <<时,22e e a >,2244(2)lnln 0e ef a =<<,则函数()f x 在(0,)+∞上无零点. 综上,当(1,e)a ∈时,函数()g x 有且仅有一个零点.............15分 21.(本小题满分15分)解:(Ⅰ)2{(0,2),(1,1),(2,0)}A =,2{(0,4),(1,3),(2,2),(3,1),(4,0)}B =......4分 (Ⅱ)对任意12(,,,)n n a a a A α=∈,设1(1,2,3,,)i i b a i n =+=,则12,,,n b b b 均为非负整数,且(1,2,3,,)i i a b i n =≤.令12(,,,)n b b b β=,则121212(1)(1)(1)()2,nn n b b b a a a a a a nn +++=++++++=++++=所以n B β∈,且αβ.............9分(Ⅲ)对任意12(,,,)n n a a a A α=∈,12(,,,)n n a a a A α''''=∈,记1122(,,,)n n a a a a a a αα'+=+'+'+',则1122,,,n n a a a a a a '''+++均为非负整数,且11221212(,)))(()(2()n n n n a a a a a a a a a a a n a n n +++++'''++'''=++=+++++=所以n B αα'+∈,且,αααααα'''++.设集合n A 中的元素个数为t ,设12{,,,}n t A ααα=.设集合{(,)|1,2,,,1,2,,}n i i j T i t j t ααα=+==.对任意i n A α∈(1,2,,i t =),都有12,,,i i i t n B αααααα+++∈,且,1,2,,ii j j t ααα+=.所以n n T S ⊆.若(,)n S αβ∈,其中12(,,,)n n a a a A α=∈,12(,,,)n n b b b B β=∈,设i i i c b a =-(1,2,,i n =),因为i i a b ≤,所以0i i i c b a =-≥,记12(,,,)n c c c α'=,则1211221212()()()()()2,nn n n n c c c b a b a b a b b b a a a n n n +++=-+-+-=+++-+++=-=所以n A α'∈,并且有βαα'=+,所以(,)n T αβ∈,所以n n S T ⊆. 所以n n S T =.因为集合n T 中的元素个数为2t ,所以n S 中的元素个数为2t ,是完全平方数.............15分。
(word完整版)高一数学必修一试题含答案,推荐文档
11. 下表显示出函数值 y 随自变量 x 变化的一组数据,判断它最可能的函数模型是( )
x
4
5
6
7
8
9
10
y
15
17
19
21
23
25
27
A. 一次函数模型
B.二次函数模型
C.指数函数模型
D.对数函数模型
12、下列所给 4 个图象中,与所给 3 件事吻合最好的顺序为 ( )
1 我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
D、(4)(1)(2)
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题 4 小题,每小题 5 分,共 20 分. 把正确答案填在题中横线上.
13.函数 y x 4 的定义域为
.
x 2
14. 若 f (x) 是一次函数, f [ f (x)] 4x 1且,则 f (x) =
.
15. 已知幂函数 y f (x) 的图象过点(2, 2),则f (9)
.
16. 若一次函数 f (x) ax b 有一个零点 2,那么函数 g(x) bx2 ax 的零点是
.
三、解答题:本大题共 5 小题,共 56 分,解答应写出文字说明,证明过程或演算步骤.
17.(本小题 10 分)
已知集合 A {x | a 1 x 2a 1} , B {x | 0 x 1},若 A B ,求实数 a 的取值范围。
A、1 个
B、2 个
C、3 个
D、4 个
4、如果函数 f (x) x2 2(a 1)x 2 在区间, 4上单调递减,那么实数a 的取值范围是
(
)
A、 a ≤ 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修 1 试题一、选择题。
(共 10 小题,每题 4 分)1、设集合A={x∈Q|x>-1},则()A、∅∉A B 、2 ∉A C 、2 ∈A D、{2}⊆A2、设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A、{1,2}B、{1,5}C、{2,5}D、{1,2,5}3、函数f (x)=x - 2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)4、设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是()5、三个数70。
3,0。
37,,㏑0.3,的大小顺序是()A、70。
3,0.37,,㏑0.3,B、70。
3,,㏑0.3, 0.37C、0.37, , 70。
3,,㏑0.3,D、㏑0.3, 70。
3,0.37,6、若函数 f(x)=x3+x2-2x-2 的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2 f(1.5)=0.625f(1.25)=-0.984 f(1.375)=-0.260f(1.438)=0.165 f(1.4065)=-0.052那么方程x3+x2-2x-2=0 的一个近似根(精确到0.1)为()A、1.2B、1.3C、1.4D、1.5x -1⎩⎪2x , x ≥ 0 7、函数y = ⎪⎨2- x , x < 0的图像为( )8、设 f (x ) = log a x (a>0,a≠1),对于任意的正实数 x ,y ,都有( )A 、f(xy)=f(x)f(y)B 、f(xy)=f(x)+f(y)C 、f(x+y)=f(x)f(y)D 、f(x+y)=f(x)+f(y)9、函数 y=ax 2+bx+3 在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则()A 、b>0 且 a<0B 、b=2a<0C 、b=2a>0D 、a ,b 的符号不定10、某企业近几年的年产值如图,则年增长率最高的是 ()(年增长率=年增长值/年产值) A 、97 年 B 、98 年 C 、99 年D 、00 年二、填空题(共 4 题,每题 4 分)11、f(x)的图像如下图,则 f(x)的值域为;12、计算机成本不断降低,若每隔 3 年计算机价格降 低 1/3,现在价格为 8100 元的计算机,则 9 年后价格可降为 ;13、若 f(x)为偶函数,当 x>0 时,f(x)=x,则当 x<0 时, f(x)=;(万元)1000 800 600 400 200 9697989900(年)14、老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数; ②定义域为{x ∈ R | x ≠ 0};③在(0, +∞) 上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
请你写出一个(或几个)这样的4 8 函数二、填空题(本大题共 4 小题,每小题 4 分,满分 16 分。
)11、12、13、14、三、解答题(本大题共 6 小题,满分 44 分,解答题写出必要的文字说明、推演步骤。
) 15、(本题 6 分)设全集为 R , A = {x | 3 ≤ x < 7}, B = {x | 2 < x < 10},求C R ( A B ) 及(C R A ) B16、(每题 3 分,共 6 分)不用计算器求下列各式的值⎛ 1 ⎫21 0⎛ 3 ⎫- 32 -2⑴ 2 ⎪ -(-9.6) - 3 ⎪+ (1.5)⎝ ⎭⎝⎭学校班级 姓名试场号座位号。
装。
订。
⎨ ⎩⑵ log 3+ lg 25 + lg 4 + 7 3log 7 2⎧ x + 2(x ≤ -1) 17、(本题 8 分)设 f (x ) = ⎪x 2 (-1 < x < 2) ,⎪ 2x (x ≥ 2)(1) 在下列直角坐标系中画出 f (x ) 的图象;(2) 若 g (t ) = 3 ,求t 值;(3) 用单调性定义证明在[2, +∞)时单调递增。
4 272 x- 1 18、(本题 8 分)某工厂今年 1 月、2 月、3 月生产某种产品分别为 1 万件、1.2 万件、1.3 万件, 为了估测以后各月的产量,以这三个月产品数为依据,用一个函数模拟此产品的月产量 y (万件) 与月份数 x 的关系,模拟函数可以选取二次函数 y=px 2+qx+r 或函数 y=ab x+c (其中p 、q 、r 、a 、b 、c 均为常数),已知 4 月份该新产品的产量为 1.37 万件,请问用以上哪个函数作为模拟函数较好?求出此函数。
19、(本题 8 分)已知函数 f(x)=㏒a , (a > 0, 且 a ≠ 1),(1)求 f(x)函数的定义域。
(2)求使 f(x)>0 的 x 的取值范围。
20、(本题 8 分)已知函数 f(x)= 2x(1)写出函数 f(x)的反函数g(x) 及定义域;(2)借助计算器用二分法求g(x) =4-x 的近似解(精确度0.1)3 3 = ( ) ( ) 2 2一、 填空题(共 4 题,每题 4 分) 11、[-4,3]12、30013、-x14、 y = x 2 1- x , x ≥ 0 或 y = {1 + x ,x < 0 或 y = - 2x二、 解答题(共 44 分)15、解: C R (A ⋃ B ) = {x | x ≤ 2或x ≥ 10}(C R ) ⋂ B = {x | 2 < x < 3或7 ≤ x < 10}1 2 16、解(1)原式= 4- 1 - ( 27 )- 3 8 + ( )-2 2 3 ( ) = 22⨯ 1 2 - 1 - ( 3 -3⨯ 2 2 ) 3 + ( )-22 3 - 1 - 3 -2 + 3 -22 2 21 = 2334(2)原式= log 3 3+ lg(25 ⨯ 4) + 2= log 3 3- 4 + lg10 + 2 1-1 +2 + 2 = 154 417、略18、 解:若 y = f ( x ) = ax2 + bx + c则由题设⎧⎪ f (1) = p + q + r =1⎧⎪p = -0.05 f (2) = 4 p + 2q + r = 1.2 ⇒ ⎨ ⎨ q = 0.35 ⎪ f (3) = 9 p + 3q + r = 1.3 ⎪r = 0.7 ⎩⎩∴ f (4) = -0.05⨯ 42 + 0.35⨯ 4 + 0.7 = 1.3(万件)( 9 ) =2 x - 1 2 x - 1 2 x - 1 2 x - 1 若 y = g ( x ) = abx+ c 则⎧g (1) = ab + c = 1 g (2) = ab 2 + c = 1.2 ⇒ ⎨ ⎪g (3) = ab 3 + c = 1.3⎪⎧a = -0.8 = 0.5 ⎨b ⎪c = 1.4⎩⎩ ∴ g (4) = -0.8 ⨯ 0.54 + 1.4 = 1.35(万件)∴选用函数 y = ab x + c 作为模拟函数较好19、解:(1) >0 且 2x -1 ≥ 0 ⇒ x > 0 ⇒ 这个函数的定义域是(0,+ ∞)(2)㏒a >0,当 a>1 时, >1 ⇒ x > 1; 当0<a<1 时, <1 且 x>0⇒ 0 < x < 1一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的 4 个选项中,只有一项是符合题目要求的)1 已知集合 M={0,2,4,6},集合 Q={0,1,3,5},则 M∪Q 等于().A.{0}B.{0,1,2,3,4,5,6}C.{1,2,3,4,5,6}D.{0,3,4,5,6} 答案:B2(2011·北京东城期末)设全集 U=R,集合 A={x|x≥1},B={x|0≤x<5},则集合(∁U A)∩B=( ).A.{x|0<x<1}B.{x|0≤x<1}C.{x|0<x≤1}D.{x|0≤x≤1}解析:∁U A={x|x<1},则(∁U A)∩B={x|0≤x<1}. 答案:B3(2010·湖北卷)已知函数 f(x)=则 f=( ).A.4B.C.-4D.-解析:f=log 3=-2,f=f(-2)=2-2=. 答案:B4 设 f:x→x 2是集合 A 到集合 B 的映射,如果 B={1,2},则 A∩B 一定是().⎪A.1B.⌀或{1}C.{1}D.⌀解析:由题意,当 y=1 时,即 x2=1,则x=±1;当 y=2 时,即 x2=2,则x=±,则±1中至少有一个属于集合A,±中至少有一个属于集合 A,则A∩B=⌀或{1}.答案:B5 已知log23=a,log25=b,则log2等于( ).A.a2-bB.2a-bC. D.解析:log2=log29-log25=2log23-log25=2a-b.答案:B6 已知方程lg x=2-x 的解为x0,则下列说法正确的是( ).A.x0∈(0,1)B.x0∈(1,2)C.x0∈(2,3)D.x0∈[0,1]解析:设函数 f(x)=lg x+x-2,则 f(1)=lg 1+1-2=-1<0,f(2)=lg 2+2-2=lg 2>lg 1=0,则 f(1)f(2) <0,则方程 lg x=2-x 的解为 x0∈(1,2).答案:B7 已知集合M={x|x<1},N={x|2x>1},则M∩N等于( ).A.⌀B.{x|x<0}C.{x|x<1}D.{x|0<x<1}解析:2x>1⇔2x>20,由于函数 y=2x是R 上的增函数,所以 x>0.所以 N={x|x>0}.所以M∩N={x|0<x<1}.答案:D8(2010·山东卷)设 f(x)为定义在 R 上的奇函数.当x≥0时,f(x)=2x+2x+b(b 为常数),则 f(-1)等于( ).A.-3B.-1C.1D.3解析:因为 f(x)为定义在 R 上的奇函数,所以有 f(0)=20+2×0+b=0,解得 b=-1,所以当x≥0时,f(x)=2x+2x-1,所以 f(-1)=-f(1)=-(21+2×1-1)=-3.答案:A9 下列函数f(x)中,满足“对任意x1,x2∈(-∞,0),当x1<x2时,都有f(x1)<f(x2)”的函数是( ).A.f(x)=-x+1B.f(x)=x2-1C.f(x)=2xD.f(x)=ln(-x)解析:满足“对任意 x1,x2∈(-∞,0),当x1<x2时,都有f(x1)<f(x2)”的函数在(-∞,0)上是增函数,函数 f(x)=-x+1、f(x)=x2-1、f(x)=ln(-x)在(-∞,0)上均是减函数,函数 f(x)=2x在(-∞,0)上是增函数.答案:C10 已知定义在R 上的函数f(x)=m+为奇函数,则m 的值是( ).A.0B.-C.D.2解析:f(-x)=m+=m+,-f(x)=-m-.由于函数 f(x)是奇函数,所以对任意x∈R,都有 m+=-m-, 即 2m++=0,所以 2m+1=0,即 m=-.答案:B11 已知函数f(x)=(x2-3x+2)ln x+2 009x-2 010,则方程f(x)=0 在下面哪个区间内必有实根( ).A.(0,1)B.(1,2)C.(2,3)D.(2,4)解析:f(1)=-1<0,f(2)=2 008>0,f(3)=2ln 3+4 017>0,f(4)=6ln 4+6 022>0,所以 f(1)f(2)<0,则方程 f(x)=0 在区间(1,2)内必有实根.答案:B12 若函数 f(x)=a-x(a>0,且a≠1)是定义域为 R 的增函数,则函数 f(x)=log a(x+1)的图象大致是( ).解析:因为 f(x)=(a>0,且a≠1),则>1,所以 0<a<1.所以函数 f(x)=log a(x+1)是减函数,其图象是下降的,排除选项 A,C;又当 log a(x+1)=0 时,x=0,则函数 f(x)=log a(x+1)的图象过原点(0,0),排除选项 B.答案:D第Ⅱ卷(非选择题共90 分)二、填空题(本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中的横线上)13 已知函数 f(x)的图象是连续不断的,x,f(x)的对应值如下表:用二分法求函数f(x)的唯一零点的近似解时,初始区间最好选为.解析:由于f(0)f(2)<0,f(0)f(3)<0,f(1)f(2)<0,f(1)f(3)<0,…,则f(x)的零点属于区间(0,2)或(0,3)或(1,2)或(1,3)或….但是区间(1,2)较小,则选区间(1,2).答案:(1,2)14 已知a=,函数f(x)=a x,若实数m,n 满足f(m)>f(n),则m,n 的大小关系为.解析:由于a=∈(0,1),则函数 f(x)=a x在 R 上是减函数.由 f(m)>f(n),得 m<n.答案:m<n15 幂函数y=f(x)的图象过点,则f(x)的解析式是y= .解析:设 y=xα,则=2α,则 2α=,则α=-,则 y=.答案:16 已知函数f(x)=且f(a)<,则实数a 的取值范围是.(用区间的形式表示)解析:当 a>0 时,log2a<,即 log2a<log2,又函数 y=log2x 在(0,+∞)上是增函数,则有 0<a<;当 a<0 时,2a<,即 2a<2-1,又函数 y=2x在 R 上是增函数,则有 a<-1.综上可得实数 a 的取值范围是 0<a<或 a<-1,即(-∞,-1)∪(0,).答案:(-∞,-1)∪(0,)三、解答题(本大题共 6 小题,共 74 分.解答时应写出文字说明、证明过程或演算步骤)17(12 分)证明函数 f(x)=在[-2,+∞)上是增函数.证明:任取 x1,x2∈[-2,+∞),且 x1<x2,则 f(x1)-f(x2)=-==,由于 x1<x2,则 x1-x2<0,又 x1≥-2,x2>-2,则 x1+2≥0,x2+2>0.则+>0,所以 f(x1)<f(x2),故函数 f(x)=在[-2,+∞)上是增函数.18(12 分)设 A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数 a的取值范围.解:A={-4,0}.∵A∩B=B,∴B⊆A.关于 x 的一元二次方程 x2+2(a+1)x+a2-1=0 的根的判别式Δ=4(a+1)2-4(a2-1)=8a+8,当Δ=8a+8<0,即a<-1 时,B=⌀,符合 B⊆A;当Δ=8a+8=0,即 a=-1 时,B={0},符合 B⊆A;当Δ=8a+8>0,即 a>-1 时,B 中有两个元素,而 B⊆A={-4,0},∴B={-4,0}.由根与系数的关系,得解得 a=1.∴a=1 或a≤-1.19(12 分)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每投入 x 万元,可获得利润 P=-(x-40)2+100 万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划前后对该项目每年都投入 60 万元的销售投资,在未来 10 年的前 5 年中,每年都从 60 万元中拨出 30 万元用于修建一条公路,5 年修成,通车前该特产只能在当地销售;公路通车后的 5 年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入 x 万元,可获利润 Q=-(60-x)2+(60-x)万元.问从 10 年的累积利润看,该规划方案是否可行?解:在实施规划前,由题设 P=-(x-40)2+100(万元),知每年只需投入 40 万元,即可获得最大利润为100 万元.则 10 年的总利润为 W1=100×10=1 000(万元).实施规划后的前 5 年中,由题设 P=-(x-40)2+100(万元),知每年投入 30 万元时,有最大利润P max=(万元).前 5 年的利润和为×5=(万元).设在公路通车的后 5 年中,每年用 x 万元投资于本地的销售,而用剩下的(60-x)万元于外地的销售投资,则其总利润为W2=×5+×5=-5(x-30)2+4 950.当 x=30 万元时,(W2)max=4 950(万元).从而 10 年的总利润为万元.∵+4 950>1 000,故该规划方案有极大的实施价值.20(12 分)化简:(1)-(π-1)0-+;(2)lg 2lg 50+lg 25-lg 5lg 20.解:(1)原式=-1-[+(4-3=-1-+16=16.(2)原式=lg 2(1+lg 5)+2lg 5-lg 5(1+lg 2)=lg 2+lg 5=1.21(12 分)求函数 f(x)=x2-5 的负零点(精确度为 0.1).解:由于 f(-2)=-1<0,f(-3)=4>0,故取区间(-3,-2)作为计算的初始区间,用二分法逐次计算,列表如下:(-2.25,-2.125) -2.187 5 -0.214 843 75∵1-2.187 5+2.251=0.062 5<0.1,∴f(x)的负零点为-2.187 5.22(14 分)(2010·辽宁锦州期末)某民营企业生产 A,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图 1;B 产品的利润与投资的算术平方根成正比,其关系如图 2(注:利润与投资单位是万元)(1)分别将 A,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式;(2)该企业已筹集到 10 万元资金,并全部投入 A,B 两种产品的生产,问:怎样分配这 10 万元投资,才能使企业获得最大利润?其最大利润约为多少万元?(精确到 1 万元)图1图2解:(1)设投资为 x 万元,A 产品的利润为 f(x)万元,B 产品的利润为 g(x)万元,由题设 f(x)=k1x,g(x)=k2,由图知f(1)=,∴k1=.又 g(4)=,∴k2=,∴f(x)=x,x≥0,g(x)=,x≥0.(2)设 A 产品投入 x 万元,则 B 产品投入(10-x)万元,此时企业的总利润为 y 万元,则 y=f(x) +g(10-x)=+,0≤x≤10,令=t,则 x=10-t2,则 y=+t=-+,0≤t≤,当 t=时,y max=≈4,此时 x=10-=3.75.即当 A 产品投入 3.75 万元,B 产品投入 6.25 万元时,企业获得最大利润约为 4 万元.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。