焊接性能试验

合集下载

焊接产品试验合格报告

焊接产品试验合格报告

焊接产品试验合格报告1. 引言焊接产品是现代制造业中不可或缺的一环,它们广泛应用于汽车、航空航天、建筑等领域。

为确保焊接产品的质量和安全性,进行试验是必要的。

本报告旨在总结焊接产品试验的过程和结果,并验证是否合格。

2. 试验目的本次试验的目的是评估焊接产品的焊缝强度、密封性以及其他重要性能。

通过试验结果的合格与否,判断产品是否满足设计要求和相关标准。

3. 试验方法3.1 焊缝强度试验使用万能试验机对焊接产品中焊缝进行拉伸试验。

试验时,将样品夹紧在试验机上,逐渐施加拉力并记录其对应的变形量。

根据试验曲线上的最大拉力值来评估焊缝强度。

3.2 密封性试验将焊接产品置于深水中进行密封性试验。

观察一定时间后,检查焊接部位是否出现漏水现象,以判断产品的密封性能。

3.3 其他重要性能试验根据设计要求和相关标准,选择适当的试验方法,对焊接产品的其他重要性能进行评估,例如耐腐蚀性、耐磨损性等。

4. 试验结果及分析经过以上试验方法的应用,对焊接产品进行全面评估,得到如下试验结果及分析:4.1 焊缝强度试验结果:合格根据试验结果,焊接产品的焊缝强度高于设计要求,并达到相关标准的要求。

4.2 密封性试验结果:合格焊接产品在水中静置一定时间后,未检测到焊接部位漏水情况,证明其密封性能良好,符合设计要求和相关标准。

4.3 其他重要性能试验结果:合格针对焊接产品的其他重要性能试验,产品均符合设计要求和相关标准。

5. 结论根据以上试验结果及分析,我们得出以下结论:焊接产品在焊缝强度、密封性以及其他重要性能方面均通过了试验,并符合设计要求和相关标准。

产品被认定为合格产品。

6. 建议根据本次试验的结果,建议进一步优化焊接过程和工艺,以提高焊接产品的整体品质和性能。

同时,加强质量管理体系的建设,确保产品在生产过程中的每个环节都能达到质量要求,并持续改进和优化。

7. 参考文献[1] 相关标准编号及名称,出版日期。

附录附录一:试验记录表格试验项目结果焊缝强度合格密封性合格其他性能合格... ...附录二:试验过程中的图片或图表(here could be the images or charts related to the welding product testing)以上为焊接产品试验合格报告完整内容。

焊接检验方法

焊接检验方法

焊接检验方法
焊接作为一种重要的连接方式,广泛应用于各种工业生产中。

为了确保焊接质量,必须进行焊接检验。

本文将介绍几种常见的焊接检验方法,旨在为读者提供指导参考。

一、外观检验
外观检验是最基本的焊接检验方法。

通过肉眼观察焊缝,可以初步判断焊缝的质量和是否存在缺陷。

外表平整、色泽均匀、无气孔、裂纹、夹杂物或缺损等,是焊缝外观可接受的标准。

需要注意的是,在外观检验中,应特别对焊口的大小和形状进行检查。

二、尺寸检验
对焊缝进行尺寸检验可以判断焊缝的几何形状是否符合设计要求。

这包括焊口的形状、宽度、深度、角度等尺寸特征。

因此,在焊接检验中,应该及时地测量、记录,并进行比较。

这样可以确保焊缝的尺寸特征符合要求。

三、焊接力学性能检测
焊接力学性能检测可以评估焊接材料的可靠性和耐久性。

通常,使用拉伸试验、冲击试验、弯曲试验、硬度试验等方法进行检测。

其中拉伸试验是最常用的一种检测方法,它可以检测焊缝的抗拉强度、延伸率、断裂韧性等力学性能。

四、非破坏检验
非破坏检验是指通过直接观察、声波、磁粉检测、涡流检测、超声波检测等技术,对焊缝进行缺陷检测而不改变焊缝的形态。

其中超声波检测是最为常用的方法之一,可以对各种缺陷如气孔、夹杂、裂缝等进行检测,不会给工件造成任何损伤,可以保证焊接质量和机器设备的安全性。

总之,焊接质量的检验是焊接工艺的重要组成部分,对于各种焊接工艺都非常重要。

通过外观检验、尺寸检验、焊接力学性能检测以及非破坏检验,我们可以全面地了解焊接的质量和缺陷,及时排除高质量的焊缝问题,保证工业生产的可靠性和安全性。

焊接强度测试方法

焊接强度测试方法

焊接强度测试方法在评估焊接件的强度时,我们通常采用以下测试方法:拉伸试验、弯曲试验、冲击试验、硬度测试、无损检测、疲劳测试和抗腐蚀试验。

这些测试方法的应用有助于我们全面了解焊接件的性能和质量。

1. 拉伸试验拉伸试验是评估焊接件强度最常用的方法之一。

它通过在垂直于焊缝的方向上逐渐增加焊接件的拉伸载荷,以确定焊接件的强度和延展性。

通过拉伸试验,我们可以了解焊接件在承受拉伸载荷时的强度和变形情况,以及焊缝的抗拉强度和母材的强度匹配情况。

2. 弯曲试验弯曲试验主要用来测试焊接件的弯曲强度和弯曲性能。

在试验中,我们将焊接件放在弯曲机上,逐渐增大弯曲角度,直到发生断裂或达到预定弯曲角度。

通过弯曲试验,我们可以了解焊接件在承受弯曲载荷时的强度和变形能力,同时也可以检测出焊接缺陷。

3. 冲击试验冲击试验是测试焊接件在冲击载荷下的强度和韧性的方法。

在试验中,我们使用摆锤冲击焊接件,测量其冲击吸收功和冲击韧性。

通过冲击试验,我们可以了解焊接件在承受冲击载荷时的性能,以及焊缝的韧性和脆性转变温度。

4. 硬度测试硬度测试是评估焊接件表面硬度和材料韧性的方法。

在试验中,我们使用硬度计对焊接件表面进行压痕测试,测量其硬度值。

通过硬度测试,我们可以了解材料的硬化程度和焊缝金属与母材的硬度差异。

5. 无损检测无损检测是通过非破坏性方法检测焊接件中是否存在缺陷的方法。

最常用的无损检测方法有射线检测、超声波检测、磁粉检测和涡流检测等。

通过无损检测,我们可以发现焊接件中的裂纹、气孔、夹杂物等缺陷,以便及时采取措施进行修复和改进。

6. 疲劳测试疲劳测试是评估焊接件在交变载荷作用下的疲劳性能的方法。

在试验中,我们在一定的循环次数和载荷条件下对焊接件进行疲劳测试,以确定其疲劳寿命和疲劳强度。

通过疲劳测试,我们可以了解焊接件在交变载荷作用下的疲劳性能和寿命,预测其在工作条件下的可靠性。

7. 抗腐蚀试验抗腐蚀试验是测试焊接件在腐蚀环境中的耐腐蚀性能的方法。

电渣压力焊中焊接接头的力学性能测试

电渣压力焊中焊接接头的力学性能测试

电渣压力焊中焊接接头的力学性能测试电渣压力焊是一种常用的焊接方法,适用于焊接金属材料。

焊接接头的力学性能测试对于确保焊接质量和工程安全至关重要。

本文将介绍电渣压力焊中焊接接头的力学性能测试方法与步骤。

一、引言电渣压力焊是一种高效、高质量的焊接方法,广泛应用于船舶建造、桥梁制造、石油化工等领域。

焊接接头的力学性能测试是评估焊接质量的重要手段之一。

通过力学性能测试,可以判断焊接接头的强度、韧性、疲劳寿命等关键指标,为工程设计和使用提供依据。

二、焊接接头力学性能测试的方法1. 抗拉试验抗拉试验是常用的焊接接头力学性能测试方法之一。

通过在试验机上对焊接接头进行拉伸,可以测得焊接接头的抗拉强度、屈服强度、断裂延伸率等参数。

该方法适用于评估焊接接头在拉伸应力下的表现。

2. 弯曲试验弯曲试验是测试焊接接头在弯曲应力下的性能的方法。

通过在试验机上对焊接接头进行弯曲,可以测得其抗弯强度、弯曲刚度等参数。

该方法适用于评估焊接接头在弯曲载荷作用下的性能。

3. 冲击韧性试验冲击韧性试验是评估焊接接头在冲击载荷下的性能的方法。

常用的冲击试验方法有冲击试验机法、夏比基裂纹落锤冲击试验法等。

通过该试验可以获得焊接接头的冲击韧性、断裂模式等信息,对于评估焊接接头的抗冲击性能提供重要依据。

4. 金属log性测试金属log性测试是一种非破坏性测试方法,通过对焊接接头进行超声波检测,可以检测焊接接头中的缺陷、夹杂物、裂纹等情况,评估焊接接头的质量。

该方法适用于评估焊接接头的内部缺陷情况。

三、焊接接头力学性能测试步骤1. 准备样品根据需要进行焊接接头力学性能测试的焊接接头样品。

样品要求焊接质量良好,尺寸符合标准要求。

2. 选择测试方法根据待测试的力学性能指标,选择适当的测试方法进行。

可以综合考虑抗拉试验、弯曲试验、冲击韧性试验和金属log性测试等。

3. 进行测试按照所选择的测试方法,开始进行焊接接头的力学性能测试。

确保测试设备正常,样品夹持牢固,保证测试的准确性和可靠性。

焊接质量的检验方法有哪些

焊接质量的检验方法有哪些

引言:焊接质量的检验对于确保焊接结构的安全性和可靠性至关重要。

合格的焊接质量可以提高焊接结构的抗压能力、耐用性和耐腐蚀性。

本文将介绍焊接质量的检验方法,以便于及时发现和纠正焊接质量问题,确保焊接结构的质量。

概述:焊接质量的检验方法包括多个方面,如焊缝外观检验、焊接接头机械性能测试、无损检测、化学成分分析等。

在进行焊接质量的检验时,应综合采用多种方法,以确保焊接质量的综合评价和问题的全面发现。

接下来,本文将详细介绍焊接质量的检验方法。

正文内容:一、焊缝外观检验1.焊缝形貌检查:焊缝形貌检查是观察焊缝的形状、凹陷、错边等是否符合标准要求。

2.焊缝焊道检查:焊缝焊道检查是通过放大镜或显微镜观察焊缝焊道的尺寸和形态,判断焊接质量。

3.焊缝偏离度检查:焊缝偏离度检查是通过量测焊缝与参考线的距离,判断焊接的偏离度是否在规定范围内。

二、焊接接头机械性能测试1.拉伸试验:拉伸试验是将焊接接头制成试样,通过施加拉力来测试焊接接头的抗拉强度和延伸性能。

2.冲击试验:冲击试验是测试焊接接头在受冲击负载时的抗冲击能力。

3.硬度测试:硬度测试是通过在焊接接头的表面上进行压痕试验,来检测接头的硬度和金属结构的组织状态。

三、无损检测1.超声波检测:超声波检测是通过反射和散射来检测焊接接头中的缺陷,如气孔、裂纹等。

2.射线检测:射线检测是利用射线通过物体减弱的原理来检测焊接接头中的缺陷,如虚焊、夹渣等。

3.磁粉检测:磁粉检测是通过涂覆磁粉在焊接接头的表面,以观察磁粉颜色变化来检测焊接接头的缺陷。

四、化学成分分析1.化学成分分析是通过取样,进行金属元素的含量测试,用来确定焊接材料的质量是否符合要求。

2.化学成分分析可以通过光谱分析、X射线荧光分析等多种分析方法来实施,以确定焊接材料的化学成分是否合格。

五、其他检验方法1.焊缝断面组织观察:通过对焊接接头切割并腐蚀后,在显微镜下观察焊缝断面的组织结构,以评估焊缝质量。

2.焊接应力测试:焊接应力测试是通过放大畸变形成焊接结构应力,来测试焊接结构的强度和稳定性。

焊接试件物理实验报告

焊接试件物理实验报告

实验名称:焊接试件物理性能测试实验日期:2023年4月15日实验地点:材料力学实验室一、实验目的1. 了解焊接接头的物理性能,包括强度、硬度、韧性等。

2. 通过实验掌握焊接试件制备和测试方法。

3. 分析焊接工艺对焊接接头性能的影响。

二、实验原理焊接接头是焊接过程中形成的一种特殊结合形式,其物理性能直接影响到构件的使用性能和寿命。

本实验通过测试焊接接头的强度、硬度、韧性等物理性能,分析焊接工艺对焊接接头性能的影响。

三、实验材料及设备1. 实验材料:低碳钢(Q235)板,焊接材料:E4303焊条。

2. 实验设备:焊接机、万能材料试验机、硬度计、万能试验机、拉伸试验机、冲击试验机等。

四、实验步骤1. 焊接试件制备:根据实验要求,将低碳钢板切割成所需尺寸,焊接试件长度为100mm,宽度为10mm,厚度为5mm。

焊接过程中,选用E4303焊条,焊接电流为150A,焊接速度为50mm/min。

2. 焊接试件检测:将焊接试件进行外观检查,确保焊接质量。

3. 强度测试:将焊接试件固定在万能材料试验机上,按照GB/T 228.1-2010标准进行拉伸试验,测试焊接接头的抗拉强度。

4. 硬度测试:将焊接试件表面打磨平整,采用硬度计进行洛氏硬度测试,测试焊接接头的硬度。

5. 韧性测试:将焊接试件进行冲击试验,测试焊接接头的冲击韧性。

五、实验结果与分析1. 强度测试结果:焊接接头的抗拉强度为390MPa,略低于母材的强度。

2. 硬度测试结果:焊接接头的洛氏硬度为HRC30,略高于母材的硬度。

3. 韧性测试结果:焊接接头的冲击韧性为80J/cm²,略低于母材的韧性。

分析:焊接过程中,焊接材料与母材发生化学反应,形成新的金属组织,导致焊接接头的强度、硬度、韧性等物理性能发生变化。

在本实验中,焊接接头的抗拉强度、硬度、韧性均略低于母材,这可能是由于焊接过程中产生的热影响区、焊接残余应力和焊接缺陷等因素导致的。

六、实验结论1. 焊接工艺对焊接接头的物理性能有显著影响,焊接接头的强度、硬度、韧性等物理性能均略低于母材。

焊接质量的五种检验方法

焊接质量的五种检验方法

焊接质量的五种检验方法焊接质量是指焊接接头在满足特定要求下的物理性能和力学性能。

为确保焊接质量的合格,需要进行相应的检验。

本文将介绍五种常见的焊接质量检验方法,包括目视检验、尺寸检验、无损检测、力学性能检验和金相检验。

一、目视检验目视检验是最常用的一种检验方法,通过肉眼观察焊接接头的外观,判断其是否存在缺陷。

目视检验主要包括焊缝的形状、焊缝的几何尺寸、焊缝的表面质量以及焊接过程中是否存在飞溅、气孔等缺陷。

目视检验简单直观,但对于微小缺陷的检测有一定局限性。

二、尺寸检验尺寸检验是通过对焊接接头的尺寸进行测量,判断其是否符合设计要求。

尺寸检验主要包括焊缝的宽度、高度、深度等尺寸参数的测量。

通过尺寸检验,可以验证焊接接头的几何形状是否满足设计要求,确保焊接接头的尺寸精度。

三、无损检测无损检测是一种通过对焊接接头进行检测,不破坏焊接接头的方法。

常用的无损检测方法包括超声波检测、射线检测和涡流检测等。

通过无损检测,可以检测焊接接头内部的缺陷,如裂纹、夹杂物等,并对其进行评估和分类。

无损检测可以发现隐蔽的缺陷,提高焊接接头的质量。

四、力学性能检验力学性能检验是通过对焊接接头进行拉伸、弯曲、冲击等试验,评估焊接接头的力学性能。

力学性能检验可以验证焊接接头的强度、韧性和冲击性能是否满足要求。

常用的力学性能检验方法包括拉伸试验、冲击试验和硬度试验等。

五、金相检验金相检验是通过对焊接接头进行金相组织观察和分析,评估焊接接头的组织性能。

金相检验可以检测焊接接头的晶粒尺寸、晶体结构、相含量和相组成等。

金相检验可以发现焊接接头的晶粒异常、相变和相分离等缺陷,对焊接接头的质量评估具有重要意义。

焊接质量的检验方法包括目视检验、尺寸检验、无损检测、力学性能检验和金相检验。

这些检验方法各具特点,可以对焊接接头的质量进行全面评估,确保焊接接头的质量合格。

在实际焊接过程中,应根据具体情况选择合适的检验方法,以保证焊接质量的可靠性和稳定性。

焊接质量的检验方法

焊接质量的检验方法

焊接质量的检验方法引言:焊接是将金属材料通过加热或压力使其熔化并连接在一起的常用工艺,广泛应用于制造业。

焊接质量的好坏直接影响到焊接件的性能和安全可靠性。

因此,对焊接质量进行有效的检验是非常重要的。

本文将介绍一些常用的焊接质量检验方法,以帮助确保焊接件的质量符合标准要求。

一、外观检验法外观检验法是通过肉眼观察焊接件的表面特征来评估焊缝的质量。

该方法适用于简单的焊接结构,如焊缝表面是否平整、无明显裂纹、气孔、夹杂物等。

二、无损检测法无损检测法是通过使用无损检测设备,如超声波、射线、液体渗透等技术对焊接件进行检测。

这些技术可以检测到焊接件内部的缺陷,如焊缝中的气孔、夹杂物、裂纹等。

无损检测法适用于对焊接质量要求较高的关键部位。

三、拉伸试验法拉伸试验法是通过在焊接件上施加拉力来评估其强度和韧性。

焊接件通常以拉伸试样的形式制备,并在拉伸试验机上进行拉伸。

根据断裂模式和拉伸值,可以评估焊接件的强度和延展性。

拉伸试验法适用于对焊接件机械性能要求较高的情况。

四、硬度测试法硬度测试法是通过在焊接件表面进行硬度测试来评估其力学性能。

硬度测试法可以检测焊缝区域的硬度变化,根据硬度值可以判断焊接区域的强度和韧性。

硬度测试法适用于对焊接部位的材料性能要求较高的情况。

五、金相检验法金相检验法是通过制备焊接件的金属切片,并在显微镜下观察和分析焊缝的金属组织结构。

金相检验法可以评估焊接件的晶粒尺寸、晶界结构、相变等特征,从而评估焊接质量的好坏。

金相检验法适用于对焊接质量较高的精细结构。

六、破坏性检测法破坏性检测法是通过对焊接件进行破坏性试验,并观察试验后的断裂面来评估焊接质量。

常用的破坏性试验方法有冲击试验、弯曲试验等。

通过观察断口的形态和裂纹的分布,可以评估焊接件的韧性和抗冲击性能。

结论:焊接质量的检验是确保焊接件性能和安全的重要环节。

本文介绍的外观检验法、无损检测法、拉伸试验法、硬度测试法、金相检验法和破坏性检测法是常用的焊接质量检验方法。

金属材料焊接接头机械性能试验记录

金属材料焊接接头机械性能试验记录

金属材料焊接接头机械性能试验记录试验名称:金属材料焊接接头的机械性能试验试验目的:评估焊接接头的机械性能,包括强度、韧性和硬度等指标。

试验设备:拉力试验机、冲击试验机、硬度计等。

试验对象:金属材料焊接接头。

试验方法:1.强度试验a.将焊接接头样品固定在拉力试验机上。

b. 设置拉力试验机的拉力速度为每分钟20mm。

c.开始测试,记录下每个时间点的载荷和位移。

d.在试验过程中,观察接头的裂纹发展情况。

e.当试验样品断裂时,记录下最大承载力。

2.韧性试验a.将焊接接头样品固定在冲击试验机上。

b.将冲击试验机的冲击锤规定的高度自由落下,冲击接头。

c.观察接头的断裂形态和裂纹扩展情况。

d.根据试验结果,评估接头的韧性性能。

3.硬度试验a.使用硬度计对焊接接头进行硬度测试。

b.对焊接接头进行多次测量,保证结果的准确性。

c.选取合适的硬度测试方法,如布氏硬度或洛氏硬度等。

d.根据试验结果,评估接头的硬度性能。

试验结果:1.强度试验结果根据强度试验数据,计算焊接接头的抗拉强度和屈服强度。

抗拉强度:XXXMPa屈服强度:XXXMPa2.韧性试验结果根据韧性试验数据,评估焊接接头的韧性性能。

韧性评估:良好/合格/不合格3.硬度试验结果根据硬度试验数据,评估焊接接头的硬度性能。

硬度评估:合格/不合格试验结论:根据以上试验结果,我们对焊接接头的机械性能进行评估如下:1.抗拉强度和屈服强度均达到设计要求,焊接接头的强度满足使用要求。

2.韧性试验结果表明焊接接头的韧性良好,具有较好的抗冲击能力。

3.硬度试验结果符合标准要求,焊接接头的硬度符合设计需求。

综上所述,焊接接头具有良好的机械性能,达到了预期的要求。

但仍需注意焊接接头的裂纹扩展问题,以确保接头的长期使用安全性。

焊接工艺的焊接接头的力学性能测试方法

焊接工艺的焊接接头的力学性能测试方法

焊接工艺的焊接接头的力学性能测试方法引言:焊接接头是焊接工艺中非常重要的组成部分,它直接关系到焊接结构件的质量和性能。

为了确保焊接接头的可靠性和安全性,需要对其力学性能进行测试。

本文将介绍焊接工艺的焊接接头的力学性能测试方法。

一、拉伸试验拉伸试验是一种常用的测试焊接接头强度的方法。

通过在拉伸机上施加拉力,对接头进行拉伸,从而得到其材料的屈服强度、抗拉强度和断裂强度等性能指标。

在进行拉伸试验前,需要根据标准要求选择合适的试样尺寸,并确保试样的制备工艺正确。

试样的制备通常包括剪切、打孔和折弯等操作。

在拉伸试验中,需要记录下拉伸过程中的变形和载荷情况,并测量试样断裂前的长度和宽度等参数。

二、剪切试验剪切试验是评价焊接接头剪切强度的常用方法。

在剪切试验中,将试样放置在专用的剪切机上,施加一定的力量使接头发生剪切变形,并通过测量试样破坏前后的长度来计算其剪切强度。

剪切试验前需要制备合适的试样,并确保试样的纵向和横向间隙均匀。

试样的制备常常需要使用专用的切割工具,以确保试样的几何形状和尺寸符合要求。

在剪切试验中需要注意记录试样破坏前的载荷和位移等参数。

三、弯曲试验弯曲试验是评价焊接接头弯曲强度的一种方法。

在弯曲试验中,将试样放置在专用的弯曲机上,施加一定的力矩使其产生弯曲变形,并通过测量试样破坏前后的长度来计算其弯曲强度。

弯曲试验前需要制备合适的试样,并确保试样的几何形状和尺寸符合标准要求。

试样的制备一般需要考虑到焊缝的位置和弯曲方向等因素。

在弯曲试验中,需要记录试样的载荷和位移等参数,并观察试样破坏的形态。

结论:通过拉伸试验、剪切试验和弯曲试验等方法,可以对焊接接头的力学性能进行全面的测试。

在进行测试前,需要选择合适的试样尺寸和制备工艺,并注意记录相关参数。

这些测试可以为焊接工艺的优化和焊接接头的设计提供参考依据,从而提高焊接结构件的质量和性能。

注:本文以通用文章的格式来介绍焊接工艺的焊接接头的力学性能测试方法,内容准确且逻辑清晰。

焊接性试验怎么操作方法

焊接性试验怎么操作方法

焊接性试验怎么操作方法焊接性试验是对焊接材料、焊接接头和焊接工艺性能进行评定的重要方式之一。

它主要是通过一系列实验来检验焊接材料的性能,如果焊接材料的性能符合要求,那么这样的焊接就是合格的。

焊接性试验的操作方法需严格遵守相关标准要求,在实验过程中严格按照规程操作,才能保证结果的准确性和可靠性。

二、焊接性试验的常用方法1. 弯曲试验弯曲试验是焊接性试验中常用的一种方法。

其原理是通过给定的试样在两个支点之间施加力,使其产生弯曲变形,来测试焊接接头的韧性和延展性。

操作方法如下:1)根据相关标准要求制备好试样;2)将试样放在弯曲试验机上,设置合适的试验参数;3)施加力使试样产生弯曲,记录弯曲过程中的力和位移;4)根据记录的数据计算试样的弯曲应力和应变,评定焊接接头的性能。

2. 冲击试验冲击试验主要用于评定焊接接头的韧性和抗冲击性能,常用的方法是冲击试验机法。

其操作方法如下:1)制备好试样,并安装在冲击试验机的支撑上;2)设置合适的试验参数,包括试验温度、冲击能量等;3)释放冲击试验机的重锤,使其自由跌落,冲击试样;4)记录试样的冲击过程,包括试样的断裂形态和冲击能量;5)根据记录的数据评定试样的冲击性能,包括吸能值和断裂模式。

3. 弹性模量测定弹性模量是描述焊接材料弹性变形特性的重要参数,测定其弹性模量可以评定焊接接头的弹性性能。

其操作方法如下:1)制备好试样,并在测试设备上安装;2)施加不同的拉伸载荷,记录试样的应力和应变;3)根据记录的数据,绘制应力-应变曲线,计算试样的弹性模量;4)根据计算的弹性模量评定焊接接头的性能。

4. 硬度测试焊接接头的硬度是评定其抗弯曲、抗磨损等性能的重要指标,硬度测试是一种简单且有效的测定方法。

其操作方法如下:1)制备好试样,并在硬度测试机上安装;2)通过载荷和压头将硬度测试机放在合适的位置,开始测定;3)根据测定结果评定试样的硬度值和硬度分布。

5. 金相分析金相分析是通过对试样进行金相观察和分析来评定焊接接头的组织结构和性能。

焊接接头的机械性能测试

焊接接头的机械性能测试

焊接接头的机械性能测试焊接接头是连接两个或多个金属部件的一种重要方法。

为确保安全生产和产品质量,对焊接接头进行机械性能测试是必要的。

本文将介绍焊接接头机械性能测试的方法和注意事项。

一、焊接接头机械性能测试的方法1.拉伸试验拉伸试验是最常用的焊接接头机械性能测试方法之一。

该试验通过施加拉力来测试焊接接头在张力下的承载能力。

在拉伸试验中,需要使用万能试验机,根据标准化要求,使用指定类型的夹具和夹具间距来进行试验。

2.弯曲试验弯曲试验也是一种常用的焊接接头机械性能测试方法。

该试验通过施加弯曲力来测试焊接接头在弯曲下的承载能力。

在弯曲试验中,需要使用弯曲试验机,根据标准化要求,使用指定类型的夹具和夹具间距来进行试验。

3.冲击试验冲击试验是测试焊接接头在冲击下的韧性和耐受能力的方法。

在冲击试验中,需要使用冲击试验机,通过使用标准化样品和冲击工具,在规定的条件下对焊接接头进行试验。

二、注意事项1.选择合适的样品在进行焊接接头机械性能测试之前,需要选择合适的样品。

样品应符合相关标准,同时应满足试验要求,以确保试验结果的准确性和可靠性。

2.选择合适的试验方法在进行焊接接头机械性能测试之前,需要选择合适的试验方法。

根据不同的条件和要求,选择相应的试验方法可以节省试验时间和成本,并且提高测试结果的准确性。

3.注意试验过程在进行焊接接头机械性能测试之前,需要仔细准备所有测试设备和工具,并确保它们的可靠性和有效性。

在测试过程中,需要严格遵守标准化要求,注意安全,确保试验过程的顺利进行。

4.分析试验结果在进行焊接接头机械性能测试之后,需要仔细分析试验结果。

对试验结果的分析可以帮助评估焊接接头的质量,发现可能存在的问题,并采取相应的纠正措施,确保产品的质量和安全性。

三、总结焊接接头机械性能测试是一项非常重要的工作,对于确保焊接接头的质量和安全性起着至关重要的作用。

在进行焊接接头机械性能测试时,需要选择合适的试验方法和样品,并严格遵守标准化要求和注意事项,以确保试验结果的准确性和可靠性。

高温合金钢的焊接性能测试与评价

高温合金钢的焊接性能测试与评价

高温合金钢的焊接性能测试与评价1. 引言高温合金钢由于其在高温环境下具有优异的耐热、耐腐蚀和高强度等特性,被广泛应用于航空航天、能源等领域。

然而,高温合金钢的焊接性能对于组装和维修工艺至关重要。

本文将介绍高温合金钢的焊接性能测试与评价方法,为高温合金钢的焊接工艺提供可靠的依据。

2. 焊接性能测试方法2.1 焊接接头制备选择与高温合金钢相兼容的焊接材料,将试样材料切割成合适的尺寸,并按照标准焊接工艺制备焊接接头。

确保接头的质量符合焊接工艺要求。

2.2 扭转试验扭转试验是评估高温合金钢焊接接头强度和韧性的常用方法之一。

将试样夹紧在测试机上,施加扭矩并测量所需的扭转角。

根据扭转角和施加的力矩,计算焊接接头的扭转刚度和扭转强度。

通过对不同焊接接头进行扭转试验,评估焊接性能的差异。

2.3 拉伸试验拉伸试验用于评估焊接接头的强度和延伸性能。

将试样放入拉伸试验机中,施加逐渐增加的拉力,并记录所需的力和伸长。

根据力与伸长的关系绘制应力-应变曲线,计算焊接接头的屈服强度、抗拉强度和延伸率。

通过对不同焊接接头进行拉伸试验,比较焊接接头的机械性能。

2.4 冲击试验冲击试验评估焊接接头的抗冲击性能。

将试样放置在冲击试验机中,以一定速率施加冲击负荷。

通过测量断口的冲击吸收能力和延伸性能,评估焊接接头的抗冲击性能。

2.5 金相显微镜观察利用金相显微镜观察焊缝的显微结构和组织情况。

首先,将试样经过表面研磨和腐蚀处理,然后在显微镜下观察焊缝的晶粒形貌、晶粒大小和晶界分布等特征。

金相显微镜观察可以提供有关焊接接头质量、焊缝结构和热影响区的信息。

3. 焊接性能评价方法3.1 强度评价通过扭转试验和拉伸试验获得的力学性能数据,计算焊接接头的屈服强度、抗拉强度和延伸率等参数。

将实测结果与标准要求进行对比,评估焊接接头的强度。

3.2 韧性评价通过扭转试验和拉伸试验获得的力-位移数据,绘制应力-应变曲线。

从这些曲线中计算焊接接头的屈服点、峰值点和断裂点应力、塑性区大小和延伸性能等参数。

焊接接头的力学性能试验包括哪些内容

焊接接头的力学性能试验包括哪些内容

焊接接头的力学性能试验包括哪些内容?
(1)焊接接头的拉伸试验(包括全焊缝拉伸试验)试验的目的是测定焊接接头(焊缝)的强度(抗拉强度σb,屈服点σs)和塑性(伸长度δ,断面收缩率φ),并且可以发现断口上的某些缺陷(如白点)。

试验可按GB2651-89《焊接接头拉伸试验方法》进行。

(2)焊接接头的弯曲试验试验的目的是检验焊接接头的塑性,并同时可反映出各区域的塑性差别、暴露焊接缺陷和考核熔合线的质量。

弯曲试验分面弯、背弯和侧弯三种,试验可按GB2653-89《焊接接头弯曲及压扁试验方法》进行。

(3)焊接接头的冲击试验试验的目的是测定焊接接头的冲击韧度和缺口敏感性,作为评定材料断裂韧性和冷作时效敏感性的一个指标。

试验可按GB2650-89《焊接接头冲击试验方法》进行。

(4)焊接接头的硬度试验试验的目的是测量焊缝热影响区金属材料的硬度,并可间接判断材料的焊接性。

试验可按GB2654-89《焊接接头及堆焊金属硬度试验方法》进行。

(5)焊接接头(管子对接)的压扁试验试验的目的是测定管子焊接对接接头的塑性。

试验可按GB2653-89《焊接接头弯曲及压扁试验方法》进行。

(6)焊接接头(焊缝金属)的疲劳试验试验的目的是测量焊接接头(焊缝金属)的疲劳极限(σ-1)。

试验可按GB2656-81《焊缝金属和焊接接头的疲劳试验法》进行。

焊接接头的力学性能试验

焊接接头的力学性能试验

钢种
碳素钢、奥氏体钢 单面焊 其他低合金钢、合金钢 碳素钢、奥氏体钢 双面焊 其他低合金钢、合金钢
弯心直径 /mm
支座间距 /mm
5.2a
弯曲角度 α(°)
180 100
3a
5.2a 3a
90 50
复合板或堆焊层
4a
6.2a
180
三、焊接接头的金热影响区的宏观和微观组织观察,分析 焊接接头的组织状态及微小缺陷、夹杂物、氢白点 的数量及分布情况,进而分析焊接接头的性能,为 选择调整焊接或热处理规范提供依据。
四、保证力学性能试验可靠的条件 在进行力学性能试验时,应特别注意以下几个问题: 1)试板和试样的取样部位必须符合规定 2)被检验的实物及委托单上必须有标记 3)必须保证试样加工符合规定的精度和形位公差 4)试验所使用的仪器设备必须状态良好,计量刻度 数据显示准确可靠,误差符合规定
渗透探伤
渗透探伤是在被检焊件上浸涂可以渗透的带有 荧光的或红色的染料,利用渗透剂的渗透作用,显
加工去除
焊态硬度试样 回火态硬度试样 硬 度 焊缝中心线 试 样 试 样 试 样 试 样 试 样 试 样 试 样 硬 度 冲 击 冲 击 冲 击 冲 击 冲 击


加工去除
(二)材料的冲击试验 以测定材料冲击韧度的试验方法称为冲击试验。
1.冲击试验的试样
(1)试样的切取方向
(2)试样的缺口形式
2.焊接接头的冲击试验
三、乳化处理 这一操作步骤是仅对采用后乳化型渗透剂时才必要。 因为渗透剂中大多以不溶于水的有机物作为着色剂的溶剂, 所以无法直接用水进行清洗,如果用水清洗,则必须先作 乳化处理。 时间:2~5min。 其余同渗透。
第二节 渗透探伤操作的基本过程

焊接质量检验标准

焊接质量检验标准

焊接质量检验标准引言:焊接是一项常见的金属连接技术,广泛应用于制造业和建筑工程等领域。

为了确保焊接接头的质量,必须进行质量检验。

本文将介绍焊接质量检验的标准和方法,以确保焊接接头的力学性能、外观质量和耐久性等方面符合要求。

一、力学性能检测标准焊接接头的力学性能对于其使用寿命和安全性至关重要。

下面是常见的力学性能检测标准:1. 抗拉强度测试抗拉强度是指焊接接头在拉伸负载下的抗拉能力。

根据不同的应用领域和要求,可采用不同的标准进行测试,例如ISO、ASTM 和GB等。

2. 弯曲试验弯曲试验是评估焊接接头在弯曲负荷下的性能。

根据要求,可以采用不同的试验方法,如三点弯曲试验和四点弯曲试验。

3. 冲击韧性测试冲击韧性测试用于评估焊接接头在冲击负荷下的能力。

常见的冲击试验方法有冲击弯曲试验和冲击拉伸试验。

二、外观质量检测标准焊接接头的外观质量直接影响其美观度和使用寿命。

以下是常见的外观质量检测标准:1. 焊缝的几何尺寸检测焊缝的几何尺寸是评估焊接接头外观质量的重要指标,常见的检测方法有测量焊缝的宽度、高度和角度等。

2. 表面质量检测焊接接头的表面质量对于其光洁度和耐腐蚀性能等起重要作用。

常用的表面质量检测方法有肉眼观察、清洁度检测和光学显微镜观察等。

3. 氣孔檢測气孔是焊接接头中常见的缺陷之一,会影响接头的强度和密封性能。

常用的气孔检测方法有超声波检测、X射线检测和磁粉检测等。

三、耐久性检测标准焊接接头的耐久性与其使用寿命密切相关。

以下是常见的焊接接头耐久性检测标准:1. 耐蚀性测试焊接接头常处于恶劣环境中,耐腐蚀能力对其耐久性至关重要。

耐蚀性测试可采用盐雾实验、酸碱腐蚀试验等方法。

2. 疲劳试验疲劳试验用于评估焊接接头在反复加载下的耐久性能。

常用的疲劳试验方法有旋转弯曲疲劳试验和拉伸-压缩疲劳试验等。

结论:焊接质量检验标准对于确保焊接接头的力学性能、外观质量和耐久性至关重要。

通过执行适当的检测标准和方法,能够提高焊接接头的质量,确保其符合要求并能够安全可靠地使用。

P355GH钢焊接性能试验

P355GH钢焊接性能试验

Ti

≤0 6 .0
O 2 . 2 l7 0
≤ O 0I . O
≤0. 3 0
≤00 0 .3
P ≤0 0 5 . 2
C r ≤0 3 .0
Ni ≤0 3 .0
Cu ≤0. 0 3
Mo ≤O 0 l
V ≤O. 2 O
表 2 力 学 性 能
2 9 3 0 2 8 2 8 2 8 2 8
30 6

30 5 30 5 30 5 30 5 30 5
直 流 反 接 2 0 3 直 流 反 接 2 0 4
40 直 流反 接 5 o . 0
填充 2— 4 O 直 流 反 接 5 o 2 . o 填 充 3 4 O 直 流 反 接 5o —1 . o 填 充 3 2 4 O 直 流 反 接 5o — . o
两 端 刚 性 固定 ,并 用 焊 条 从 侧 面 焊 接 牢 固 。
图4 P5 G 35 H热处理工艺曲线
( )试件 力学 性 能 8
试 验 一 ,焊 条 电 弧焊 弯 曲
试 验 选 择 4个 侧 弯 ,试 验 结 果 四个 试 样 全 部 完 好 ; 拉 伸试验结 果 如表 6 、7所示 ,冲击试 验 结 果如 表 8
28 2
筒 ,并 已交付 用 户 使 用 。投 入使 用 运行 至 今两 年 多
来状 况 良好 ,未 出现 任何 质量 问题 。MW
( 0 1 7 5) 2 10 1
※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※
2一l 2— 2 2—3
热 影 响 区 热 影 响 区 热 影 响 区
一一 毒 辫

焊接质量试验及检验标准

焊接质量试验及检验标准

焊接质量试验及检验标准摘要:焊接是一种常用的金属连接方法,在各种行业中广泛应用。

焊接质量的好坏直接关系到连接件的强度和使用安全性。

本文将对焊接质量试验和检验标准进行详细介绍,以帮助读者了解焊接质量的重要性以及如何进行有效的质量控制。

一、引言焊接是将两个或多个金属部件通过加热或压力的作用使其产生连续的金属结合。

焊接质量的好坏对产品的质量和安全性都有直接影响,因此,在焊接过程中进行质量试验和检验是必不可少的。

二、焊接质量试验焊接质量试验是通过一系列试验项目来评估焊接质量的好坏。

以下是常见的焊接质量试验项目:1.外观检验:通过目视检查焊缝的表面质量,检查是否存在焊缝缺陷,如气孔、裂纹、夹渣等。

2.尺寸检验:测量焊缝的尺寸和形状,确保焊接符合设计要求。

3.力学性能测试:对焊接试样进行拉伸、弯曲、冲击等力学性能测试,评估焊接材料的强度和韧性。

4.金相组织分析:通过金相显微镜观察和分析焊缝的组织结构,了解焊接过程中发生的相变和组织演变,评估焊接质量。

5.硬度测试:测量焊缝的硬度,评估焊接材料的硬度分布情况。

三、焊接质量检验标准焊接质量检验标准是规定焊接质量接受与否的参考依据。

以下是常见的焊接质量检验标准:1.国家标准:根据国家标准进行焊接质量的检验。

例如,对于钢结构,可使用国家标准《钢结构焊接》(GB/T 12470)进行检验。

2.行业标准:不同行业有相应的焊接质量检验标准,根据行业需求进行选择和执行。

例如,对于航空航天行业的焊接,可使用行业标准《航空航天焊接技术规范》进行检验。

3.国际标准:根据国际标准进行焊接质量的检验。

例如,对于焊接材料的硬度测试,可使用国际标准《焊接材料硬度测试方法》(ISO 6507)进行检验。

四、焊接质量控制有效的焊接质量控制可以确保焊接质量符合要求,并且减少焊接缺陷的发生。

以下是一些常用的焊接质量控制方法:1.焊接操作规程:制定详细的焊接操作规程,包括焊接参数、焊接顺序、焊接工艺和焊接工装等,以确保焊接过程的标准化和一致性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三部分高级焊接人员知识要求第一章焊接接头试验方法第一节焊接性试验方法一、焊接冷裂纹试验方法1、间接评定方法根据焊件材料的化学成分或焊接接头热影响区的最高硬度,进行材料冷裂纹的评定方法,叫间接评定法。

1)碳当量法将钢中合金元素(包括碳)的含量按其作用换算成碳的相当含量,叫该种材料的碳当量,常以符号C E表示。

国际焊接学会推荐的碳当量计算公式为:C E=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5 (%)碳当量C E值愈高,钢材淬硬倾向愈大,冷裂敏感性也愈大。

经验指出,当C E>0.45%~0.55%时,就容易产生冷裂纹。

利用碳当量只能在一定范围内,对钢材概括地、相对地评价其冷裂敏感性,因为:①碳当量公式是在某种试验情况下得到的,所以对钢材的适用范围有限。

②碳当量计算值只表达了化学成分对冷裂倾向的影响。

实际上,除了化学成分以外,对冷裂的影响相当大,不同的冷却速度,可以得到不同的组织,因而抗裂性也不一样。

确切地说,在刚性和扩散氢含量相同的情况下,应当主要是钢材的组织而不是碳当量确定冷裂敏感性。

③影响金属组织从而影响冷裂敏感性的因素,除了化学成分和冷却速度外,还有焊接热循环中的最高加热温度和高温停留时间等参数。

此外,钢材规定成分中没有表明微量合金元素和杂质元素的影响,也没有在碳当量计算公式中表示出来。

因此说,碳当量公式不能作为准确的评定指标。

(2)根部裂纹敏感性评定法这是专门评定根部裂纹的碳当量法,根据裂纹敏感指数P cM进行评定,计算公式为P Cm=C+Si/30+Mn/20+Cu/20+Cr/20+Ni/60+Mo/15+V/10+5B (%)钢的P cM值越低,热影响区的冷裂纹敏感性越低。

为了克服单纯用碳当量评定冷裂倾向的缺点,可以进一步把氢和板厚(代表应力)作为延迟裂纹的三因素综合一起考虑,得到冷裂纹敏感性指数P w,其计算公式为P w= P Cm+δ/600+H/60 (%)式中δ——板厚,mm;H一焊缝金属中扩散氢含量,mL/100g。

(3)热影响区最高硬度法(GB4675.5-84)试件的形状和尺寸,分别见图26—1和表26—1。

(P266)试件的标准厚度为20mm。

1号试件在室温下,2号试件在预热温度下进行焊接。

焊后经12h,加工成如图26—2(P266)试样,在切点O及其两侧各7个以上的点作为硬度的测定点。

把点中维氏硬度最大值与该钢材规定的热影响区最大允许值作比较,若超过允许值,则材料冷裂敏感倾向大。

这种方法比较简便,对于判断热影响区冷裂倾向有一定价值。

但它只考虑了组织因素,没有涉及氢和应力,所以不能借以判断实际焊接产品的冷裂倾向,仅适用于相同试验条件下不同母材冷裂倾向的相对比较。

1、直接试验方法可分为两大类。

一类是自拘束试验,即试件焊接时,由试件本身的刚性而产生的拘束应力,试验时不必另外施加外载;另一类是外拘束试验,试验时外加巨大的拘束应力,来模拟焊接接头施焊时的应力状态、应变状态,甚至氢和组织状态。

(1)冷裂纹的自拘束试验l)斜y形坡口焊接裂纹试验方法(GB4675.1-84)又称小铁研法适用于板厚≥12mm的冷裂纹及再热裂纹抗裂性能试验。

试件的形状及尺寸,见图26—3(P267)。

试验条件及步骤:先将两端的固定焊缝焊好,再焊试验焊缝;单焊道,焊条直径Φ4,焊接规范为I=170A,U=26V,v=150mm/min。

焊后室温放置24h后,用肉眼或磁粉检查表面裂纹,然后沿垂直焊缝方向取五个横截面,检查内部裂纹。

评定方法:表面裂纹率=Σι/L×100%断面裂纹率=Σh/H×100%L为焊缝长度,Σι为裂纹总长度,H为焊肉厚度,Σh为裂纹总深度,见图26—4(P267)。

试验时需采用低氢型焊条,焊接试验焊缝时引弧、熄弧位置见图26—5、图26—6(P267)。

2)搭接接头(CTS)焊接裂纹试验方法(GB4675.2-84)本试验适用于低合金钢焊接热影响区,由于马氏体转变而引起的裂纹试验。

此方法未能推广使用。

3)T型接头焊接裂纹试验方法(GB4675.3—84)本试验适用于碳钢T形接头角焊缝的裂纹试验。

(2)冷裂纹的外拘束试验。

1)插销式试验本方法主要用来评价氢致延迟裂纹中的焊根裂纹。

插销试验施焊时焊缝位置见图26—9(P268)。

施焊完毕待焊件冷却到150℃时插销加载并保证插销在熔合线附近的粗晶区即插销的缺口尖端断裂,记录加载至断裂的时间。

若插销刚好永不断裂,这个应力值就称为临界应力。

这是一个衡量氢致裂纹敏感性的定量指标。

临界应力愈大,氢致裂纹敏感性愈小。

一般认为,恒应力之下48h,甚至24h不断裂,这时的应力就定为临界应力。

插销试验包括了氢致延迟裂纹的三大要素:组织、氢和应力。

2)拉伸拘束裂纹试验(TRC)本试验方法主要用来研究焊缝根部的冷裂纹,如图26—10(P269)所示。

试验时,对接试板在不加拉力的自由状态下焊接,焊后立即在焊缝横向施加一个选定的拉伸载荷,保持此载荷恒定不变,直到发生裂纹和断裂拉伸。

应力越小,裂纹开始发生所需时间越长。

当拉伸应力达到某一数值时,不再产生裂纹,此时的拉伸应力为临界应力。

临界应力值越大,氢致裂纹敏感性愈小。

3)刚性拘束裂纹试验(RRC)本试验用来研究高强度钢的延迟裂纹。

试验时将试样一端固定在夹头上,另一端固定在移动夹头上,焊接过程中要保持两固定端之间的距离L不变(即刚性拘束)。

L越大时,焊缝拘束应力降低,产生裂纹所需的时间也越长;当L为某一数值时,就不再出现裂纹,此时的拘束应力值为临界拘束应力。

RRC与TRC不同之处在于固定条件不同,所以RRC试验不仅可以用来研究延迟裂纹,还可以研究焊接接头冷却过程中产生的各种裂纹现象。

二、焊接热裂纹试验方法1、压板对接(FISCO)焊接裂纹试验方法(GB4675.484)本试验方法适用于低碳钢和低合金高强度钢焊条、不锈钢焊条的焊接热裂纹试验。

试件由两块200mm×120mm的钢板组成,坡口形状为I型,将试件安装在如图26—11(P269)的装置内,固定F1、F2。

在试件上顺次焊接四条长约40mm的试验焊缝,焊缝间距为10mm,焊接弧坑不填满。

焊后立即从装置中取出试件,待冷却后对焊缝进行轴向弯断,观察断面有无裂纹及测量裂纹长度。

2、环形镶块裂纹试验方法试板尺寸及加工固定方式见图26—12(P270)。

在圆孔中央镶入另一块圆板,此圆板与圆孔间保持准确地3.2mm的间隙,可用不加填充焊丝的钨极氩弧焊熔焊一圈而形成对接环缝。

待试件冷却后,根据未产生明显裂纹的圆周角θ1来评定热裂纹敏感性。

θ1值愈大,抗裂性越好。

3、可变拘束试验方法试验装置示意图见图26—13(P270)。

当电弧经过图中A点时,利用一强有力的气压压头在试板左端施加压力F,使试板急剧地向下弯。

B是具有圆弧形表面的模块,试板被压弯后贴在模块表面,形成一定的弯曲半径,电弧继续前进至C处熄弧。

试板弯曲后,上表面产生纵向应变值ε,更换不同曲率半径的模块,可改变试板表面的拘束程度。

卸下试板后,检查焊缝表面和热影响区的裂纹。

试验中,如果是测定母材的热裂纹敏感性,可用不加填充焊丝的钨极氩弧焊熔敷焊道,如果是测定焊缝的热裂纹敏感性,则可用全熔质金属做成试件,再用不加填充焊丝的钨极氩弧焊熔敷焊道。

如果是测定焊接材料与母材配合性能,则可用需要测定的焊接材料和母材,以及打算采用的焊接方法进行试验。

4、鱼骨状可变拘束裂纹试验方法本试验方法适用于检测铝合金薄板的热裂纹敏感性,以及选用焊丝材料。

试件形状和尺寸见图26—14(P270)。

从A端到B端切口长度依次递增,拘束度逐渐减小。

焊接从A点开始,沿中心线向B点前进。

一般说来,焊炬到达某一位置以后裂纹就开始产生,随着焊件拘束度的逐渐减小,裂纹逐渐停止扩展,测量整个焊缝中裂纹长度作为裂纹敏感性的评定指标。

三、焊接再热裂纹试验方法l、间接评定方法钢中的合金元素对钢材的再热裂纹敏感性有很大影响,尤其是铬、钼、钒、铌、钛等,都具有增加钢材再热裂纹倾向的作用。

根据合金元素的影响作用,可以用类似碳当量的公式,间接的评定材料对再热裂纹的敏感性。

(1)日本中村关系式ΔG=Cr+3.3Mo+8.1V—1.39(%)式中ΔG一再裂纹敏感性指数。

ΔG>0时,再热裂纹敏感性较强。

通常,对于HT50级(日本钢号,相当于500MPa级)的合金结构钢:ΔG=-1.4~-1.0。

对于HT60级(日本钢号,相当于600MPa级)的高强度结构钢:ΔG=-1.4~0.6。

(2)日本伊藤关系式Ps R=Cr+Cu+2Mo+7Nb十5Ti-2(%)式中Ps R一再热裂纹敏感系数。

Ps R≤0时,再热裂纹敏感性不强。

此式适用于低合金结构钢,采用重量百分比计算,但不适用于含Cr量大于1.5%的钢。

上述两公式只能对钢材的再热裂纹作一个粗略的预测。

一些主要合金元素的影响作用仅是一个方面,还有许多其它的影响因素。

因此,单凭Ps R或ΔG就断定钢种对再热裂纹是否敏感是不充分的。

例如:合金元素铬的影响就有特殊之处:当Cr<1%时,随着Cr含量增加,再热裂纹敏感性也增加;而当Cr>l%时,则随着Cr含量的增加,却导致再热裂纹敏感性下降。

2、直接试验方法(1)斜y形坡口焊接裂纹试验方法试件尺寸及焊接工艺参数与冷裂敏感性测定方法相同。

不过,试验时必须有足够的预热温度,以保证不产生冷裂纹。

焊后还须进行消除应力热处理。

试件消除应力以后冷却至室温,再横跨焊缝把试件切成6个试片,检查裂纹情况。

(2)平板对接刚性板拘束法试件的坡口形式及尺寸见图26—15(P271)。

本试验方法通过变化拉紧焊缝的尺寸,按裂纹的严重程度,可对不同钢种的再热裂纹敏感性作定性的比较。

通过改变消除应力热处理的参数及焊接材料、焊接工艺,可以得出影响产生再热裂纹的因素,从而探索防止产生再热裂纹的可能性。

(3)反面拘束焊条再热裂纹试验试件的形状和尺寸见图26—16(P271)。

按照试验焊道处坡口形式的不同,可分为T形试板和Y形试板两种。

在如图所指示的位置先焊试验焊缝,随后再焊接拘束焊缝。

在保证没有冷裂纹的前提下,进行消除应力处理。

然后观察是否产生再热裂纹。

这样可以在不同母材、不同焊接材料、不同焊接条件,以及不同应力释放时的加热速度、温度和保温时间等情况下,确定在多少拘束焊道数目时引发再热裂纹。

拘束焊缝能够达到的数目愈多,拘束程度愈严重,则表示再热裂纹敏感性愈小。

这样,可以以“拘束焊道数”作为定量指标确定不同材料及其它情况的再热裂纹倾向。

四、层状撕裂试验方法1、Z向窗口试验这是一种模拟实际焊接结构的层状撕裂试验方法,试件的外形和尺寸,见图26—17(P272)。

然后按图中顺序焊四条角焊缝,其中1和2为拘束焊缝,3和4为试验焊缝。

焊后在室温放置24h,切取试片,检查裂纹。

相关文档
最新文档