元线性回归的经验公式与最小二乘法

合集下载

最小二乘法和线性回归的公式推导

最小二乘法和线性回归的公式推导

最⼩⼆乘法和线性回归的公式推导⼀、⼀维线性回归⼀维线性回归最好的解法是:最⼩⼆乘法问题描述:给定数据集D=x1,y1,x2,y2,⋯,x m,y m,⼀维线性回归希望能找到⼀个函数f x i,使得f x i=wx i+b能够与y i尽可能接近。

损失函数:L(w,b)=m∑i=1f x i−y i2⽬标:w∗,b∗=argminw,bm∑i=1f x i−y i2=argminw,bm∑i=1y i−wx i−b2求解损失函数的⽅法很直观,令损失函数的偏导数为零,即:∂L(w,b)∂w=2m∑i=1y i−wx i−b−x i=2m∑i=1wx2i−y i−b x i=2wm∑i=1x2i−m∑i=1y i−b x i=0∂L(w,b)∂b=2m∑i=1wx i+b−y i=2mb−m∑i=1y i−wx i=0解上⼆式得:b=1mm∑i=1y i−wx iwm∑i=1x2i−m∑i=1y i−b x i=0wm∑i=1x2i−m∑i=1y i x i+1mm∑i=1y i−wx im∑i=1x i=0wm∑i=1x2i−m∑i=1y i x i+m∑i=1y i¯x i−wmm∑i=1x i2=0wm∑i=1x2i−1mm∑i=1x i2=m∑i=1y i x i−¯x i w=∑mi=1y i x i−¯x i∑mi=1x2i−1m∑mi=1x i2其中¯x i=1m∑mi=1x i为x i的均值⼆、多元线性回归假设每个样例x i有d个属性,即x i=x(1)ix(2)i⋮x(d)i{()()()}()()[()]()[()]()()()[()](())()(())()()()()[()]()()[()] []()()Processing math: 95%试图学得回归函数f x i,f x i=w T x i+b损失函数仍采⽤军⽅误差的形式,同样可以采⽤最⼩⼆乘法对x和b进⾏估计。

一元线性回归模型参数的最小二乘法估计

一元线性回归模型参数的最小二乘法估计

8.2.1一元线性回归模型1.生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说,父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者之间的关系,有人调查了14名男大学生的身高及其父亲的身高,得到的数据如表1所示.编号1234567891011121314父亲身高/cm 174 170 173 169 182 172 180 172 168 166 182 173 164 180 儿子身高/cm 176 176 170 170 185 176 178 174 170 168 178 172 165 182从图上看,散点大致分布在一条直线附近根据我们学过的整理数据的方法:相关系数r =0.886.父亲身高/cm180 175 170 165 160160 165 170 175180 185 190 ·· ·· · · · 儿子身高/cm· · · · ·185 1).问题1:可以得到什么结论?由散点图的分布趋势表明儿子的身高与父亲的身高线性相关,通过相关系数可知儿子的身高与父亲的身高正线性相关,且相关程度较高.2).问题2:是否可以用函数模型来刻画?不能,因为不符合函数的定义.这其中还受其它因素的影响.3).问题3:那么影响儿子身高的其他因素是什么?影响儿子身高的因素除父亲的身外,还有母亲的身高、生活的环境、饮食习惯、营养水平、体育锻炼等随机的因素,儿子身高是父亲身高的函数的原因是存在这些随机的因素.4).问题4: 你能否考虑到这些随机因素的作用,用类似于函数的表达式,表示儿子身高与父亲身高的关系吗?用x表示父亲身高,Y表示儿子的身高,用e表示各种其它随机因素影响之和,称e为随机误差, 由于儿子身高与父亲身高线性相关,所以Y=bx+a.考虑随机误差后,儿子的身高可以表示为:Y=bx+a+e由于随机误差表示大量已知和未知的各种影响之和,它们会相互抵消,为使问题简洁,可假设随机误差e的均值为0,方差为与父亲身高无关的定值 . 2σ2即E e D eσ:()0,().==我们称①式为Y 关于x 的一元线性回归模型,其中,Y 称为因变量或响应变量,x 称为自变量或解释变量 . a 称为截距参数,b 称为斜率参数;e 是Y 与bx+a 之间的随机误差.2,()0,().Y bx a e E e D e σ=++⎧⎨==⎩① 2、一元线性回归模型如果用x 表示父亲身高,Y 表示儿子的身高,e 表示随机误差.假定随机误差e 的均值为0,方差为与父亲身高无关的定值 ,则它们之间的关系可以表示为2σ4.问题5:你能结合具体实例解释产生模型①中随机误差项的原因吗?产生随机误差e的原因有:(1)除父亲身高外,其他可能影响儿子身高的因素,比如母亲身高、生活环境、饮食习惯和锻炼时间等.(2)在测量儿子身高时,由于测量工具、测量精度所产生的测量误差.(3)实际问题中,我们不知道儿子身高和父亲身高的相关关系是什么,可以利用一元线性回归模型来近似这种关系,这种近似关系也是产生随机误差e的原因.8.2.2一元线性回归模型参数的最小二乘法估计二、自主探究问题1.为了研究两个变量之间的相关关系, 我们建立了一元线性回归模型表达式 刻画的是变量Y 与变量x 之间的线性相关关系,其中参数a 和b 未知,我们如何通过样本数据估计参数a 和b?2,()0,().Y bx a e E e D e σ=++⎧⎨==⎩问题2.我们怎样寻找一条“最好”的直线,使得表示成对样本数据的这些散点在整体上与这条直线最“接近”?从成对样本数据出发,用数学的方法刻画“从整体上看,各散点与蓝色直线最接近”利用点到直线y=bx+a 的“距离”来刻画散点与该直线的接近程度,然后用所有“距离”之和刻画所有样本观测数据与该直线的接近程度.父亲身高/cm180 175 170 165 160160 165 170 175180 185 190 ·· ·· · · · 儿子身高/cm· · · · ·185 父亲身高/cm180 175 170 165 160160 165 170 175 180 185 190·· ·· · · · 儿子身高/cm· · · · ·185设满足一元线性回归模型的两个变量的n 对样本数据为(x 1,y 1),(x 2,y 2),…,(x n ,y n )父亲身高/cm180 175170165 160160165 170 175 180 185 190·· · · · · · 儿子身高/cm· ·· · · 185()()(1,2,3,,-).i i i i i i i i i i i y bx a e i n y bx a e e x y x bx a =++=⋅⋅⋅+=+由),得(显然越小,表示点,与点,的距离越小,()0,.i i i x y =即样本数据点离直线y=bx+a 的竖直距离越小,如上图特别地,当e 时,表示点在这条直线上1-)ni i i y bx a =+∑因此可用(来刻画各样本观测数据与直线y=bx+a 的整体接近程度.()iix y ,y=bx+a()i i x bx a +,·[]21(,)()ni i i Q a b y bx a ==-+∑残差平方和: 即求a ,b 的值,使Q ( a ,b )最小残差:实际值与估计值之间的差值,即 使Q 取得最小值,当且仅当b 的取值为121()()()nii i nii xx y y b xx ==--=-∑∑b.,ˆ,ˆ的最小二乘估计叫做求得a b a b(,).x y 经验回顾直线必经过的符号相同与相关系数r b ˆ最小二乘法我们将 称为Y 关于x 的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,这种求经验回归方程的方法叫最小二乘法.ˆˆˆy bxa =+12111=i ni n22i ni n x x y y ˆb ,x x ˆˆa x y x y x xy b .i i i i i i ΣΣx )n ΣΣ(()()n ====⎧--⎪=⎪⎨-⎪⎪--=⎩-问题2:依据用最小二乘估计一元线性回归模型参数的公式,求出儿子身高Y 关于父亲身高x 的经验回归方程.儿子的身高不一定会是177cm ,这是因为还有其他影响儿子身高的因素,回归模型中的随机误差清楚地表达了这种影响,父亲的身高不能完全决定儿子的身高,不过,我们可以作出推测,当父亲的身高为176cm 时,儿子身高一般在177cm 左右.当x=176时, ,如果一位父亲身高为176cm,他儿子长大后身高一定能长到177cm 吗?为什么?177y ≈083928957ˆy .x .=+的意义?∧b残差的定义,e a bx Y ++=一元线性回归模型,,Y y 对于通过观测得响应到的数据称量为变观测值ˆ,y通过经验回归方程得到称为预报值的ˆ.ˆey y =-残观测值减去预报值称为即差判断模型拟合的效果:残差分析问题3:儿子身高与父亲身高的关系,运用残差分析所得的一元线性回归模型的有效性吗?残差图:作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据或体重估计值等,这样作出的图形称为残差图.从上面的残差图可以看出,残差有正有负,残差点比较均匀地分布在横轴的两边,可以判断样本数据基本满足一元线性回归模型对于随机误差的假设.所以,通过观察残差图可以直观判断样本数据是否满足一元线性回归模型的假设,从而判断回归模型拟合的有效性.所以,只有图(4)满足一元线性回归模型对随机误差的假设图(1)显示残差与观测时间有线性关系,应将时间变量纳入模型; 图(2)显示残差与观测时间有非线性关系,应在模型中加入时间的非线性函数部分; 图(3)说明残差的方差不是一个常数,随观测时间变大而变大图(4)的残差比较均匀地集中在以横轴为对称轴的水平带状区域内.根据一元线性回归模型中对随机误差的假定,残差应是均值为0,方差为 的随机变量的观测值.2σ观察以下四幅残差图,你认为哪一个残差满足一元线性回归模型中对随机误差的假定?1.残差等于观测值减预测值2.残差的平方和越小越好;3.原始数据中的可疑数据往往是残差绝对值过大的数据;4. 对数据刻画效果比较好的残差图特征:残差点比较均匀的集中在水平带状区域内.归纳小结(残差图中带状越窄,精度越高)1.关于残差图的描述错误的是( )A.残差图的横坐标可以是样本编号B.残差图的横坐标也可以是解释变量或预报变量C.残差点分布的带状区域的宽度越窄相关指数越小D.残差点分布的带状区域的宽度越窄残差平方和越小C 三、巩固提升2.根据如下样本数据:得到的经验回归方程为 ,则( ) A. >0, >0B. >0, <0C. <0, >0D. <0, <0 x 2 3 4 5 6 Y42.5-0.5-2-3a $a $a $a$$b $b$b$b $$ybx a =+$ B3.某种产品的广告支出费用x(单位:万元)与销售额Y(单位:万元)的数据如表:已知Y 关于x 的经验回归方程为 =6.5x+17.5,则当广告支 出费用为5万元时,残差为________. x 2 4 5 6 8Y 30 40 60 50 70$y当x=5时, =6.5×5+17.5=50,表格中对应y=60,于是残差为60-50=10.$y10一元线性回归模型的应用例1.经验表明,对于同一树种,一般树的胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.由于测量树高比测量胸径困难,因此研究人员希望由胸径预测树高.在研究树高与胸径之间的关系时,某林场收集了某种树的一些数据如下表所示,试根据这些数据建立树高关于胸径的经验回归方程.编号 1 2 3 4 5 6胸径/cm 18.1 20.1 22.2 24.4 26.0 28.3树高/m 18.8 19.2 21.0 21.0 22.1 22.1编号7 8 9 10 11 12胸径/cm 29.6 32.4 33.7 35.7 38.3 40.2树高/m 22.4 22.6 23.0 24.3 23.9 24.7dh· · ·· · · · · · · · · 解: 以胸径为横坐标,树高为纵坐标作散点图如下:散点大致分布在一条从左下角到右上角的直线附近,表明两个变量线性相关,并且是正相关,因此可以用一元线性回归模型刻画树高与胸径之间的关系.0.249314.84h d =+··· ·· · · · · · · · 用d 表示胸径,h 表示树高,根据据最小二乘法,计算可得经验回归方程为0.249314.84h d =+根据经验回归方程,由胸径的数据可以计算出树高的预测值(精确到0.1)以及相应的残差,如下表所示.编号胸径/cm 树高观测值/m 树高预测值/m 残差/m1 18.1 18.8 19.4 -0.62 20.1 19.2 19.9 -0.73 22.2 21.0 20.4 0.64 24.4 21.0 20.9 0.15 26.0 22.1 21.3 0.86 28.3 22.1 21.9 0.27 29.6 22.4 22.2 0.28 32.4 22.6 22.9 -0.39 33.7 23.0 23.2 -0.210 35.7 24.3 23.7 0.611 38.3 23.9 24.4 -0.512 40.2 24.7 24.9 -0.2以胸径为横坐标,残差为纵坐标,作残差图,得到下图.30252015-1.0-0.5 0.0 0.5 1.0· · · · · · · 残差/m· · · ·· 354045胸径/cm观察残差表和残差图,可以看到残差的绝对值最大是0.8,所有残差分布在以横轴为对称轴、宽度小于2的带状区域内 .可见经验回归方程较好地刻画了树高与胸径的关系,我们可以根据经验回归方程由胸径预测树高.编号1 2 3 4 5 6 7 8 年份 1896 1912 1921 1930 1936 1956 1960 1968 记录/s 11.8010.6010.4010.3010.2010.1010.009.95例2.人们常将男子短跑100m 的高水平运动员称为“百米飞人”.下表给出了1968年之前男子短跑100m 世界纪录产生的年份和世界纪录的数据.试依据这些成对数据,建立男子短跑100m 世界纪录关于纪录产生年份的经验回归方程以成对数据中的世界纪录产生年份为横坐标,世界纪录为纵坐标作散点图,得到下图在左图中,散点看上去大致分布在一条直线附近,似乎可用一元线性回归模型建立经验回归方程.将经验回归直线叠加到散点图,得到下图:76913031.4902033743.0ˆ1+-=t y用Y 表示男子短跑100m 的世界纪录,t 表示纪录产生的年份 ,利用一元线性回归模型来刻画世界纪录和世界纪录产生年份之间的关系 . 根据最小二乘法,由表中的数据得到经验回归方程为:从图中可以看到,经验回归方程较好地刻画了散点的变化趋势,请再仔细观察图形,你能看出其中存在的问题吗?你能对模型进行修改,以使其更好地反映散点的分布特征吗?仔细观察右图,可以发现散点更趋向于落在中间下凸且递减的某条曲线附近.回顾已有的函数知识,可以发现函数y=-lnx的图象具有类似的形状特征注意到100m短跑的第一个世界纪录产生于1896年, 因此可以认为散点是集中在曲线y=f(t)=c1+c2ln(t-1895)的周围,其中c1、c2为未知参数,且c2<0.y=f(t)=c1+c2ln(t-1895)这是一个非线性经验回归函数,如何利用成对数据估计参数c1、c2令x=ln(t-1895),则Y=c2x+c1对数据进行变化可得下表:编号 1 2 3 4 5 6 7 8 年份/t 1896 1912 1921 1930 1936 1956 1960 1968 x 0.00 2.83 3.26 3.56 3.71 4.11 4.17 4.29 记录/s 11.80 10.60 10.40 10.30 10.20 10.10 10.00 9.95将x=ln(t-1895)代入:得 8012653.114264398.0ˆ2+-=x y上图表明,经验回归方程对于成对数据具有非常好的拟合精度.将经验回归直线叠加到散点图,得到下图: 8012653.114264398.0ˆ2+-=x y8012653.11)1895ln(4264398.0ˆ2+--=t y经验回归方程为对于通过创纪录时间预报世界纪录的问题,我们建立了两个回归模型,得到了两个回归方程,你能判断哪个回归方程拟合的精度更好吗?8012653.114264398.0ˆ2+-=x y① 2ˆ0.4264398ln(1895)11.8012653y t =--+② 我们发现,散点图中各散点都非常靠近②的图象, 表明非线性经验回归方程②对于原始数据的拟合效果远远好于经验回归方程①.(1).直接观察法.在同一坐标系中画出成对数据散点图、非线性经验回归方程②的图象(蓝色)以及经验回归方程①的图象(红色).28212811ˆ,ˆQ Q (()0.004)0.669i i i i eu ===≈=≈∑∑8012653.114264398.0ˆ2+-=x y① 2ˆ0.4264398ln(1895)11.8012653yt =--+②(2).残差分析:残差平方和越小,模型拟合效果越好.Q 2明显小于Q 1,说明非线性回归方程的拟合效果 要优于线性回归方程.R 2越大,表示残差平方和越小,即模型的拟合效果越好 R 2越小,表示残差平方和越大,即模型的拟合效果越差. 21212ˆ()11()n i i nii i y y y y R ==-=-=--∑∑残差平方和。

最小二乘法数据拟合与回归

最小二乘法数据拟合与回归

最小二乘法数据拟合与回归简介:本文主要对PRML一书的第一章总结,结合moore关于回归的课件Predicting real-valued outputs: an introduction to regression。

什么是回归(regression)?1. 单一参数线性回归如上图考虑用一条过原点的直线去拟合采样点,y=wx,那么未知参数w取什么值可以使得拟合最好的,即整体拟合误差最小,这是一个最小二乘法拟合问题。

目标是使得(Xi-Yi)^2的总和最小。

2. 从概率的角度考虑上面的问题就是说我们假定模型是y=wx但是具体的(Xi,Yi)对应生成的时候按照高斯分布概率模型,以WXi为中心,方差未知。

具体每个采样点之间是独立的。

上面提到我们的目标是通过样本集合的实际观察值去预测参数W的值。

怎样预测W的值呢,有两个思路即上面提到的•MLE 最大似然法即参数W取什么样的值能够使得我们已经观察到的实际样本集合出现的概率最大。

ArgMax(P(Y1,Y2…Yn|X1,X2…Xn,W)),但是这样是不是有点奇怪,我们的目的其实是从观察的样本中估算最可能的W,ArgMax (W|x1,x2…xn,y1,y2…yn)可以看到优化的目标其实和最小二乘法是一样的。

•MAP 采用贝叶斯规则,后面再讲。

3.多项式曲线拟合贯穿PRML第一章的例子是多项式曲线拟合的问题(polynomial curve fitting)。

考虑order为M的多项式曲线,可以表述为下面的形式:曲线拟合的目标可以表述为优化是的下面的E(W)最小化(当然你可能会选取不同的error function这只是其中一种而已):对于取到最小值的我们表示为,最优的最小距离是。

如果我们选择不同的order值即M不同的多项式曲线去拟合,比如取M=0,1,3,9最小二乘法拟合的结果如下图:可以看到M=9的情况,曲线和采样观察点拟合的很好但是却偏离了整体,不能很好的反映,这就是传说中的over fitting过度拟合问题。

最小二乘法一元线性回归

最小二乘法一元线性回归
13
最小二乘法产生的历史
• 最小二乘法最早称为回归分析法。由著 名的英国生物学家、统计学家道尔顿 (F.Gallton)——达尔文的表弟所创。 • 早年,道尔顿致力于化学和遗传学领域 的研究。 • 他研究父亲们的身高与儿子们的身高之 间的关系时,建立了回归分析法。
14
最小二乘法的地位与作用
• 现在回归分析法已远非道尔顿的本意 • 已经成为探索变量之间关系最重要的方 法,用以找出变量之间关系的具体表现 形式。 • 后来,回归分析法从其方法的数学原 理——误差平方和最小(平方乃二乘也) 出发,改称为最小二乘法。
12
解决问题的思路——可能性
• 寻找变量之间直线关系的方法多多。于是,再接下 来则是从众多方法中,寻找一种优良的方法,运用 方法去求出线性模型——y=a+bx+u中的截距a=?; 直线的斜率b=?正是是本章介绍的最小二乘法。 • 根据该方法所得,即表现变量之间线性关系的直线 有些什么特性? • 所得直线可靠吗?怎样衡量所得直线的可靠性? • 最后才是如何运用所得规律——变量的线性关系?
• Y=f(X1,X2,…,Xk; ū)
2
• 三、随机误差和系统误差 • 1、随机误差:是由随机因素形成的误差。 所 谓随机因素,是指那些对被解释变量的作用不 显著,其作用方向不稳定(时正时负),在重 复试验中,正作用与负作用可以相互抵消的因 素。 • 2、系统误差:由系统因素形成的误差。所谓 系统因素,是指那些对被解释变量的作用较显 著,其作用方向稳定,重复试验也不可能相互 抵消的因素。
2 2 i 相同,即 ,并且随机干扰项彼此不相关,即对于 i≠j,
2 Y1 Y1 , Y2 Y2 , Y1 2 Y2 Var Y ... ... Yn , Y1 Yn , Y2

最小二乘估计原理

最小二乘估计原理

最小二乘估计原理最小二乘估计是一种常用的参数估计方法,它可以用来估计线性回归模型中的参数。

在实际应用中,最小二乘估计被广泛应用于数据拟合、信号处理、统计分析等领域。

本文将介绍最小二乘估计的原理及其应用。

最小二乘估计的原理是基于最小化观测值与模型预测值之间的误差平方和来进行参数估计。

在线性回归模型中,我们通常假设因变量Y与自变量X之间存在线性关系,即Y = β0 + β1X + ε,其中β0和β1是待估参数,ε是误差项。

最小二乘估计的目标是找到最优的β0和β1,使得观测值与模型预测值之间的误差平方和最小。

为了形式化地描述最小二乘估计的原理,我们可以定义损失函数为误差的平方和,即L(β0, β1) = Σ(Yi β0 β1Xi)²。

最小二乘估计的思想就是通过最小化损失函数来求解最优的参数估计值。

为了找到最小化损失函数的参数估计值,我们可以对损失函数分别对β0和β1求偏导数,并令偏导数等于0,从而得到最优的参数估计值。

在实际应用中,最小二乘估计可以通过求解正规方程来得到参数的闭式解,也可以通过梯度下降等迭代方法来进行数值优化。

无论采用何种方法,最小二乘估计都能够有效地估计出线性回归模型的参数,并且具有较好的数学性质和统计性质。

除了在线性回归模型中的应用,最小二乘估计还可以推广到非线性回归模型、广义线性模型等更加复杂的模型中。

在这些情况下,最小二乘估计仍然是一种有效的参数估计方法,并且可以通过一些变形来适应不同的模型结构和假设条件。

总之,最小二乘估计是一种重要的参数估计方法,它具有简单直观的原理和较好的数学性质,适用于各种统计模型的参数估计。

通过最小化观测值与模型预测值之间的误差平方和,最小二乘估计能够有效地估计出模型的参数,并且在实际应用中取得了广泛的成功。

希望本文对最小二乘估计的原理有所帮助,谢谢阅读!。

最小二乘法及其应用

最小二乘法及其应用

最小二乘法及其应用摘要最小二乘法是一种数学优化技术。

它通过最小化误差的平方与寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方与为最小。

最小二乘法还可用于曲线拟合。

其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

关键字最小二乘法经验公式近似计算1最小二乘法的简介及其定义1.1关于最小二乘法的简介1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。

经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。

随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。

时年24岁的高斯也计算了谷神星的轨道。

奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。

高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。

法国科学家勒让德于1806年独立发现“最小二乘法”,但因不为世人所知而默默无闻。

勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。

1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。

1.2最小二乘法的定义在科学研究与实际工作中,常常会遇到这样的问题:给定两个变量x, y的m组实验数据,如何从中找出这两个变量间的函数关系的近似解析表达式(也称为经验公式),使得能对x与y之间的除了实验数据外的对应情况作出某种判断. 这样的问题一般可以分为两类:一类是对要对x与y之间所存在的对应规律一无所知,这时要从实验数据中找出切合实际的近似解析表达式是相当困难的,俗称这类问题为黑箱问题;另一类是依据对问题所作的分析,通过数学建模或者通过整理归纳实验数据,能够判定出x与y之间满足或大体上满足某种类型的函数关系式,其中是n个待定的参数,这些参数的值可以通过m组实验数据来确定(一般要求),这类问题称为灰箱问题.解决灰箱问题的原则通常是使拟合函数在处的值与实验数值的偏差平方与最小,即取得最小值.这种在方差意义下对实验数据实现最佳拟合的方法称为"最小二乘法"。

回归直线方程公式与最小二乘法的原理

回归直线方程公式与最小二乘法的原理

回归直线方程公式与最小二乘法的原理
最小二乘法,英文全称Least Squares Method,是统计学和优化学领域中用来估计系数和参数最为常见的方法之一。

它旨在拟合观测数据,使误差平方和最小。

尤其在回归分析及灰色预测中,最小二乘法广泛应用,常用来搭建观测数据之间的线性模型,确定模型参数。

最小二乘法是以误差的平方和为最小的优化目标函数,并利用求解极值的数学方法进行参数的确定,常用的是利用函数的首阶导数为0来寻找此函数的极大值或极小值,最小二乘法的最小化理论假设误差满足正态分布,最小二乘估计的参数是使偏差平方和最小的参数组合。

通过最小二乘法,可求解出线性回归直线公式,即 y=ax+b,其中a和b为拟合直线上任何一点的横纵坐标之间的系数,从而使得直线接近所有离散点,拟合度最佳。

在这里,a为斜率,b为截距,斜率a表示两个变量间,即x和y变量之间的
关系;截距b则表示原点离y轴的距离,反映出原点到斜率a的距离。

总结一下,最小二乘法使用误差的平方和作为最小化的优化目标函数,且假设误差满足正态分布,从而估计参数,使得出线性回归直线方程,即映射出线性关系,使得拟合数据度最佳。

线性回归的经验公式与最小二乘法

线性回归的经验公式与最小二乘法

a,b的方法称为最小二乘法. LSE (Least Square Estimation)
10
n
a, b 的求解: Q(a, b) [ yi (a bxi )]2
i 1
Q
n
a
Q
b
2 2
i 1 n
i 1xi
)] )]xi
0 0
na nxb ny
nxa
(
i
n 1
xi2 )b
n i 1
——
xi yi
称为正规方程组
其中
x
1 n
n i 1
xi
,
y
1 n
n i 1
yi
11
na nxb ny
nxa
n
(
i 1
xi2 )b
n i 1
xi
yi
系数行列式
n D nx
nx
n
n
n
xi2
n(
x
2 i
nx
2
)
n
(xi x)2,
i 1
i 1
i 1 n
i1 n
.
xi2 nx 2
(xi x)2
i 1
i 1
n
n
记 lxx
(xi x)2
x
2 i
nx 2
,
i 1
i 1
n
n
l yy ( yi y)2 yi2 ny2 ,
i 1
i 1
n
n
lxy ( xi x)( yi y) xi yi nxy ,
i 1
i 1
• 皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时 伴有恶性肿瘤。它的1症状表现如 下:

最小二乘法OLS和线性回归

最小二乘法OLS和线性回归
第二章 最小二乘法(OLS) 和线性回归模型
1
本章要点
最小二乘法的基本原理和计算方法
经典线性回归模型的基本假定
BLUE统计量的性质 t检验和置信区间检验的原理及步骤 多变量模型的回归系数的F检验 预测的类型及评判预测的标准 好模型具有的特征
2
第一节
最小二乘法的基本属性
一、有关回归的基本介绍
金融、经济变量之间的关系,大体上可以分 为两种:
(1)函数关系:Y=f(X1,X2,….,XP),其中Y的 值是由Xi(i=1,2….p)所唯一确定的。 (2)相关关系: Y=f(X1,X2,….,XP) ,这里Y的 值不能由Xi(i=1,2….p)精确的唯一确定。
3
图2-1 货币供应量和GDP散点图
注意:SRF中没有误差项,根据这一方程得到 的是总体因变量的期望值
17
于是方程(2.7)可以写为:
ˆ ˆ ˆ yt xt ut
和残差项(
(2.9)
总体y值被分解为两部分:模型拟合值(
ˆ u t )。
ˆ y)
18
3.线性关系 对线性的第一种解释是指:y是x的线性函数, 比如,y= x。 对线性的第二种解释是指:y是参数的一个线 性函数,它可以不是变量x的线性函数。 2 比如,y= x 就是一个线性回归模型, 但 y x 则不是。
(一) 方法介绍
本章所介绍的是普通最小二乘法(ordinary least squares,简记OLS);
最小二乘法的基本原则是:最优拟合直线应该 使各点到直线的距离的和最小,也可表述为距 离的平方和最小。
假定根据这一原理得到的α、β估计值为 、 , ˆ yt 。 xt ˆ ˆ ˆ 则直线可表示为

05_最小二乘法与回归分析

05_最小二乘法与回归分析

y a1 x1 a2 x2 a3x3
这是三元一次方程组, 理论上讲只要测得三组数据(pH1,A1), (pH2,A2)和(pH3,A3), 就可以 解出三元一次方程组, 算出a1,a2和a3。但是在实验中,常常带有实验误差,只凭三组 测量值进行计算会使结果很不可靠,所以,通常要测量许多组实验数据pH1,A1pH2,A2; 跳转到第一页 pH3A3;…; pHn,An,得到n个方程, 因为n>>3, 该方程组为矛盾方程组, 可用最小二乘法求解。
Q 0 a1
Q 0 a2

Q 0 am
解此方程即得参数 aj(j=1,2,…,m) 近似函数 y=φ(x,a1,a2,…,am) 这就是曲线拟合的最小二乘法原理。
跳转到第一页
应用举例-1

问题: 改变某有色有机酸H2L的溶液的pH,测得溶液的吸光度A,计算该有机酸 的离解常数Ka1,Ka2。 解:根据吸光度的加和性可得: A=AH2L'+AHL'+AL' 将它们用[H+]及Ka1、Ka2表示,则有
由实验测得n组相互独立的实验数据

多元线性回归方程的检验
2 ˆ S y i y i yi y 2 i 1 i 1 n n
[ H ]2 AH 2 A K a1[ H ] AHL K a1K a 2 AL A [ H ]2 K a1[ H ] K a1K a 2
AH2L、AHL和AL为溶液全部以H2L、HL-或L2-形式存在时的吸光度。其中AH2L和AL 都可由实验直接测定,因为在足够高的酸度下,有机酸将全部以H2L形式存在, 这时溶液的吸光度即AH2L;同理, 在足够高的pH值时, 测得的吸光度为AL。所以 只剩下AHL不易测准。

【高中数学】一元线性回归模型参数的最小二乘估计的应用课件 高二人教A版(2019)选择性必修第三册

【高中数学】一元线性回归模型参数的最小二乘估计的应用课件 高二人教A版(2019)选择性必修第三册


在同一坐标系中画出成对数据散点图、非线性经验回归方程②的图象(蓝色) 以及经验回归方程①的图象(红色), 如图 8.2- 16 所示.
发现,散点图中各散点都非常靠近②的图象, 表明非线性经验回归方程② 对于原始数据的拟合效果远远好于经验回归方程①.
【残差分析】下面通过残差来比较这两个经验回归方程对数据刻画的好坏.
8
8
Q1 (ei )2 0.669, Q2 (ui )2 0. 004, 可知 Q2 Q1 ,
i 1
i 1
因此在残差平方和最小的标准下,非线性回归模型
Y E
c2 ln(t 1895) c1 (u) 0, D(u) 2
u
的拟合效果要优于一元线性回归模型的拟合效果.
也可以用决定系数 R2 来比较两个模型的拟合效果, R2 的计算公式为
间的线性相关程度越强,所以 B 是假命题;对于 C,用决定系数 R2 的值判断模型的拟合效果, R2 越
大,模型的拟合效果越好,所以 C 是假命题;由残差的统计学意义知,D 为真命题. 故选 ABC
2. 中国共产党第二十次全国代表大会上的报告中提到,新时代十年我国经济实力实现历史性跃升,国内生产 总值从 54 万亿元增长到 114 万亿元,我国经济总量稳居世界第二位.建立年份编号为解释变量,地区生产总 值为响应变量的一元线性回归模型,现就 2012-2016 某市的地区生产总值统计如下:
将图 8.2-15 与图 8.2-13 进行对比,可以发现 x 和Y 之间的线性相关程度
比原始样本数据的线性相关程度强得多.
将 x ln(t 1 895 ) 代人(*)式,得到由创纪录年份预报世界纪录的经验回归方程
y2 0.426 439 8 ln(t 1 895 ) 11.801 265 3

8.2一元线性回归模型及其参数的最小二乘估计

8.2一元线性回归模型及其参数的最小二乘估计

yi
n
Σ(
i 1
xi
x )2
y)
=
n
Σx
i 1
i
yi n x
n
Σ
i 1
xi 2
n
x
2
y
(2)
aˆ y bˆ x
我们将 ˆy bˆx aˆ 称为Y 关于x 的经验回归方程,也称经验回归
函数或经验回归公式,其图形称为经验回归直线,这种求经验回归
方程的方法叫最小二乘法,求得的 bˆ ,aˆ 叫做b,a的最小二乘估计.
易得:(1)经验回归直线必过样本中心 (x, y);
(2) bˆ 与相关系数r符号相同.
例1 某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
商店名称
A
B
C
D
E
销售额x/千万元
3
5
6
7
9
利润额y/百万元
2
3
3
4
5
(1) 画出销售额和利润额的散点图; (2) 计算利润额y对销售额x的经验回归直线方程.
解析 由题意得-x=3+4+4 5+6=4.5, -y=25+30+4 40+45=35. ∵回归直线方程^y=b^x+a^中b^=7,∴35=7×4.5+a^,解得a^=3.5, ∴^y=7x+3.5. ∴当 x=10 时,^y=7×10+3.5=73.5(万元). 答案 73.5
题型二 求经验回归方程
解:(1) 散点图如下:
商店名称
A
B
C
D
E
销售额x/千万元
3
5
6
7
9
利润额y/百万元
2
3
3
4

8.2一元线性回归模型及其应用(学生版) 讲义-2021-2022学年人教A版(2019)高中数学选

8.2一元线性回归模型及其应用(学生版) 讲义-2021-2022学年人教A版(2019)高中数学选

一元线性回归模型及其应用一、一元线性回归模型与函数模型一元线性回归模型:我们称⎩⎨⎧Y =bx +a +e ,E e =0,D e =σ2为Y 关于x 的一元线性回归模型,其中,Y 称为因变量或响应变量,x 称为自变量或解释变量;a 和b 为模型的未知参数,a 称为截距参数,b 称为斜率参数;e 是Y 与bx +a 之间的随机误差.二、最小二乘法和经验回归方程最小二乘法:我们将y ^=b ^x +a ^称为Y 关于x 的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘法,求得的b ^,a ^叫做b ,a 的最小二乘估计,其中b ^=∑i =1nx i -xy i -y∑i =1nx i -x2,a ^=y -b ^x .(1)经验回归方程y ^=b ^x +a ^必过点(x ,y ).(2)b ^的常用公式b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2.三、利用经验回归方程进行预测(1)判断两个变量是否线性相关:可以利用经验,也可以画散点图. (2)求经验回归方程,注意运算的正确性.(3)根据经验回归方程进行预测估计:估计值不是实际值,两者会有一定的误差. 四、残差及残差分析1.残差:对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的称为预测值,观测值减去预测值称为残差.2.残差分析:残差是随机误差的估计结果,通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.五、对数函数模型y =c 1+c 2ln x 对数函数模型y =c 1+c 2ln x 的求法 (1)确定变量,作出散点图.(2)根据散点图,做出y =c 1+c 2ln x 的函数选择.(3)变量置换,令z =ln x ,通过变量置换把问题转化为=1+2z 的经验回归问题,并求出经验回归方程=1+2z .(4)根据相应的变换,写出=1+2ln x 的经验回归方程. 六、残差平方和与决定系数R 2 1.残差平方和法残差平方和 i =1n(y i -i )2越小,模型的拟合效果越好.2.决定系数R 2可以用R 2=1-来比较两个模型的拟合效果,R 2越大,模型拟合效果越好,R 2越小,模型拟合效果越差.七、指数函数模型y=αeβx(α>0)指数函数型y=e bx+a回归问题的处理方法(1)函数y=e bx+a的图象,如图所示.(2)处理方法:两边取对数得ln y=ln e bx+a,即ln y=bx+a.令z=ln y,把原始数据(x,y)转化为(x,z),再根据线性回归模型的方法求出a,b.八、幂函数模型y=αxβ(α>0)考点一样本中心解小题【例1】(2021·江西赣州市)某产品在某零售摊位上的零售价x(元)与每天的销售量y(个)统计如下表:x16171819y50m3431据上表可得回归直线方程为 6.4151=-+,则上表中的m的值为( )y xA.38B.39C.40D.41【练1】(2021·广西钦州市)据统计,某产品的市场销售量y(万台)与广告费用投入x(万元)之间的对应数据的散点图如图所示,由图可知y与x之间有较强的线性相关关系,其线性同归方程是0.3=+,则a的值是( )y x aA.2.5B.3C.3.5D.4考点二一元线性方程【例2】(2021·兴义市第二高级中学)在2010年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:价格x99.51010.511销售量y 11 10 8 6 5通过分析,发现销售量y 对商品的价格x 具有线性相关关系,求 (1)销售量y 对商品的价格x 的回归直线方程; (2)若使销售量为12,则价格应定为多少.附:在回归直线ˆˆy bxa =+中1221ˆni ii nii x y nxyb xnx ==-=-∑∑,ˆˆay bx =-【练2】(2021·福建福州市·高二期末)为了研究某班男生身高和体重的关系,从该班男生中随机选取6名,得到他们的身高和体重的数据如下表所示: 编号 1 2 3 4 5 6 身高()cm x 165 171 167 173 179 171 体重()kg y62m64747466在收集数据时,2号男生的体重数值因字迹模糊看不清,故利用其余5位男生的数话得到身高与体重的线性回归方程为11y b x a =+.后来得到2号男生的体重精准数值m 后再次计算得到线性回归方程为22y b x a =+. (1)求回归方程11y b x a =+;(2)若分别按照11y b x a =+和22y b x a =+来预测身高为180cm 的男生的体重,得到的估计值分别为1w ,2w ,且212w w -=,求m 的值;(3)BMI 指数是目前国际上常用的衡量人体胖瘦程度以及是否健康的一个标准,其中BMI 指数在24到27.9之间的定义为超重.通过计算可知这6人的BMI 指数分别为:22.8,27.4,22.9,24.7,23.1,22.6,现从这6人中任选2人,求恰有1人体重为超重的概率.附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-.考点三 非一元线性方程【例3】(2020·全国高二课时练习)在一次抽样调查中测得5个样本点,得到下表及散点图.x0.250.512 4y1612 521(1)根据散点图判断y a bx =+与1y c k x -=+⋅哪一个适宜作为y 关于x 的回归方程;(给出判断即可,不必说明理由)(2)根据(1)的判断结果试建立y 与x 的回归方程;(计算结果保留整数) (3)在(2)的条件下,设=+z y x 且[)4,x ∈+∞,试求z 的最小值.参考公式:回归方程ˆˆˆybx a =+中,()()()1122211ˆn niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【练3】(2020·全国高三专题练习)某地级市共有200 000名中小学生,其中有7%的学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5∶3∶2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1 000元、1 500元、2 000元.经济学家调查发现,当地人均可支配收入较上一年每增加n %,一般困难的学生中有3n %会脱贫,脱贫后将不再享受“国家精准扶贫”政策,很困难的学生中有2n %转为一般困难,特别困难的学生中有n %转为很困难.现统计了该地级市2013年到2017年共5年的人均可支配收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x 取13时代表2013年,x 与y (万元)近似满足关系式y =212C xC ⋅,其中C 1,C 2为常数(2013年至2019年该市中学生人数大致保持不变).yk521()ii kk =-∑521()ii yy =-∑51()()iii x x y y =--∑ 51()()iii x x kk =--∑2.3 1.23.14.6 2 1其中5211log ,5===∑i i i i k y k k(1)估计该市2018年人均可支配收入;(2)求该市2018年的“专项教育基金”的财政预算大约为多少?附:①对于一组具有线性相关关系的数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线方程y a βμ=+的斜率和截距的最小二乘估计分别为121()()ˆ,()βαβ==--==--∑∑niii nii u u v v v u u ②2-0.7 2-0.3 20.1 21.7 21.8 21.9 0.6 0.81.1 3.2 3.5 3.73课后练习1.(2021高三上·天河月考)下列表述中,正确的个数是()①将一组数据中的每一个数据都加上同一个常数后,方差不变;②设有一个回归方程ŷ=3−5x,变量x增加1个单位时,y平均增加5个单位;③设具有相关关系的两个变量x,y的相关系数为r,那么|r|越接近于0,x,y之间的线性相关程度越高;④在一个2×2列联表中,根据表中数据计算得到K2的观测值k,若k 的值越大,则认为两个变量间有关的把握就越大.A. 0B. 1C. 2D. 32.(2021·菏泽模拟)下列说法错误的是()A. 用相关指数R2来刻画回归效果,R2越小说明拟合效果越好B. 已知随机变量X~N(5,σ2),若P(x<1)=0.1,则P(x≤9)=0.9C. 某人每次投篮的命中率为3,现投篮5次,设投中次数为随机变量5Y.则E(2Y+1)=7D. 对于独立性检验,随机变量K2的观测值k值越小,判定“两分类变量有关系”犯错误的概率越大3.(2021高三上·顺德月考)“绿水青山就是金山银山”,某城市发起了“减少碳排放行动”,通过增加植树面积,逐步实现碳中和,为调查民众对减碳行动的参与情况,在某社区随机调查了90位市民,每位市民对减碳行动给出认可或不认可的评价,得到如图所示的列联表、经计算K2的观测值k=9,则可以推断出()认可不认可40岁以下20 2040岁以上(含40岁) 40 10附:P(K2≥k0)0.010 0.005 0.001k0 6.635 7.879 10.828A. 该社区居民中约有99%的人认可“减碳行动”B. 该社区居民中约有99.5%的人认可“减碳行动C. 在犯错率不超过0.005的前提下,认为“减碳行动"的认可情况与年龄有关D. 在犯错率不超过0.001的前提下,认为“减碳行动"的认可情况与年龄有关精讲答案【例1】【答案】D 【解析】由题意1617181917.54x +++==,50343111544m m y ++++==, 所以115 6.417.51514m +=-⨯+,解得41m =.故选:D . 【练1】【答案】A 【解析】由题可知:24568344455,455x y ++++++++==== 将,x y 代入线性回归方程可得:40.35 2.5a a =⨯+⇒=故选:A【例2】【答案】(1) 3.240y x =-+ (2) 8.75【解析】(1)由题意知10x =,8y =, ∴99958063555108 3.28190.25100110.25121ˆ5100b ++++-⨯⨯==-++++-⨯,8( 3.2)1040a =--⨯=, ∴线性回归方程是 3.240y x =-+;(2)令 3.24012y x =-+=,可得8.75x =,∴预测销售量为12件时的售价是8.75元.【练2】【答案】(1)1413741515y x =-;(2)80m =;(3)815【解析】(1)()11651671731791711715x =⨯++++=, ()16264747466685y =⨯++++=, 所以()()1536161248112i ii x xy y =--=+++=∑,()2153616464120i i x x =-=+++=∑, 所以()()()1121551121412015i ii ii x x y y x x b ==--===-∑∑,11141374681711515a yb x =-=-⨯=-, 所以1413741515y x =-. (2)根据题意,将180x =代入方程1413741515y x =-得1114615w =, 所以2111461176221515w w =+=+=, 所以221176ˆˆ18015b a =⨯+, ① 另一方面,6名男生的身高的平均值为'171x =,体重的平均值为340'6m y +=, 所以22340ˆˆ1716m b a +=⨯+, ② ()()1636161248112i i i x x y y =--=+++=∑,()2163616464120ii x x =-=+++=∑, 所以()()()21626114ˆ15i i i i i x x y y b x x ===-=--∑∑, ③ 综合①②③即可得:21344ˆ15a =-,80m =. (3)设这6人分别记为,,,,,A B C D E F ,其中,B D 表示体重超标的两人,则从这6人中任选2人,所有的可能情况为:,,,,,,,,,,,,,,AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF ,共15种,其中恰有1人体重为超重有:,,,,,,,AB AD BC BE BF CD DE DF ,共8种, 所以恰有1人体重为超重的概率为:815P =. 【例3】【答案】(1)1y c k x -=+⋅;(2)41y x=+;(3)6. 【解析】(1)由题中散点图可以判断,1y c k x -=+⋅适宜作为y 关于x 的回归方程;(2)令1t x -=,则y c kt =+,原数据变为 t 42 1 0.5 0.25 y 16 12 5 2 1由表可知y 与t 近似具有线性相关关系,计算得4210.50.25 1.555t ++++==, 16125217.25y ++++==, 222222416212150.520.2515 1.557.238.4544210.50.255 1.559.3k ⨯+⨯+⨯+⨯+⨯-⨯⨯==≈++++-⨯, 所以,7.24 1.551c y kt =-=-⨯=,则41y t =+.所以y 关于x 的回归方程是41y x=+. (3)由(2)得41z y x x x=+=++,[)4,x ∈+∞, 任取1x 、24x ≥,且12x x >,即124x x >≥, 可得()()()21121212121212124444411x x z z x x x x x x x x x x x x -⎛⎫⎛⎫⎛⎫-=++-++=-+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()1212124x x x x x x --=,因为124x x >≥,则120x x ->,1216>x x ,所以,12z z >,所以,函数41z x x =++在区间[)4,+∞上单调递增,则min 44164z =++=. 【练3】 【答案】(1)2.8万元;(2)1 624万元.【解析】(1)因为x =15×(13+14+15+16+17)=15,所以521()i i x x =-∑=(-2)2+(-1)2+02+12+22=10.由k =2log y 得k =log 2C 1+C 2x , 所以1221()()1,10()n ii i nii x x k k C x x ==--==-∑∑ 2log C 1=k -C 2x =1.2-110×15=-0.3, 所以C 1=2-0.3=0.8,所以y =100.82x ⨯.当x =18时,y =0.8×21.8=0.8×3.5=2.8(万元).即该市2018年人均可支配收入为2.8万元.(2)由题意知2017年时该市享受“国家精准扶贫”政策的学生有200000×7%=14000人,一般困难、很困难、特别困难的中学生依次有7000人、4200人、2800人,2018年人均可支配收入比2017年增长1.8 1.71.70.820.820.82⨯-⨯⨯=20.1-1=0.1=10%, 所以2018年该市特别困难的中学生有2800×(1-10%)=2520人.很困难的学生有4200×(1-20%)+2800×10%=3640人,一般困难的学生有7000×(1 -30%)+4200×20%=5740人.所以2018年的“专项教育基金”的财政预算大约为5740×1000+3640×1500+2520×2000=16240000(元)=1624(万元).练习答案1.【答案】 C【考点】极差、方差与标准差,变量间的相关关系,独立性检验的基本思想,回归分析的初步应用,相关系数【解析】①将一组数据中的每一个数据都加上同一个常数C后D(X+C)= D(X),方差不变,正确;②设有一个回归方程ŷ=3−5x,变量x增加1个单位时,y平均减少5个单位,错误;③设具有相关关系的两个变量x,y的相关系数为r,那么|r|越接近于1,x,y之间的线性相关程度越高,错误;④在一个2×2列联表中,根据表中数据计算得到K2的观测值k,若k 的值越大,两个变量有关系的出错概率越小,则认为两个变量间有关的把握就越大,正确.故答案为:C【分析】利用已知条件结合方差的性质,得出将一组数据中的每一个数据都加上同一个常数C后D(X+C)=D(X),方差不变;再利用已知条件结合回归方程的应用得出一个回归方程ŷ=3−5x,变量x增加1个单位时,y平均减少5个单位;利用已知条件结合相关系数与x,y之间的线性相关程度判断的关系得出具有相关关系的两个变量x,y的相关系数为r,那么|r|越接近于1,x,y之间的线性相关程度越高;利用已知条件结合K2的观测值k的值越大,两个变量有关系的出错概率越小,则认为两个变量间有关的把握就越大,从而找出正确的个数。

第6章 多元线性回归的向量表述

第6章  多元线性回归的向量表述

ˆ 是所有无偏估计
总结:
高斯—马尔可夫定理(Gauss-Markov theorem) 在给定经典线性回归的假定下,最小二乘估计量是 具有最小方差的线性无偏估计量,即OLS估计量是BLUE估 计量。
《计量经济学》,高教出版社,王 少平、杨继生、欧阳志刚等编著。
13
二、OLS估计量的渐近性质
1.OLS估计量是一致估计量
则:
ˆ ) E[( ˆ )( ˆ )' ] var( E{[( X ' X )1 X 'u ][( X ' X ) 1 X 'u ] } ( X ' X )1 X ' E (uu ' ) X ( X ' X )1 2 ( X ' X )1
'
《计量经济学》,高教出版社,王 少平、杨继生、欧阳志刚等编著。
《计量经济学》,高教出版社,王 少平、杨继生、欧阳志刚等编著。
8
随机误差项的方差 的估计
2
由于残差的平方和是标量(Scalar),可以采用迹(Trace),即:
E(Q) E{tr[u ' ( I X ' ( X ' X )1 X )u]}
根据迹运算的性质tr(AB)=tr(BA),上式为:
把线性方程组写成矩阵的形式:
《计量经济学》,高教出版社,王 少平、杨继生、欧阳志刚等编著。
3
1 X 11 Y1 1 X 12 Y 2 Yn 1 X 1n
X 21 X 22 X 2n
X k1 0 1 1 Xk2 2 2 X kn n k

8.2.2一元线性回归模型参数的最小二乘估计(第二课时)高二数学(人教A版2019选择性必修第三册)

8.2.2一元线性回归模型参数的最小二乘估计(第二课时)高二数学(人教A版2019选择性必修第三册)
(3)变量置换:通过变量置换把非线性回归问题转化为线性回归问题;
(4)分析拟合效果:通过计算决定系数来判断拟合效果;
(5)写出非线性经验回归方程.
典例分析
练习 1.在回归分析中,R2 的值越大,说明残差平方和(
A.越大
B.越小
C.可能大也可能小
D.以上均错
^
B
)
练习 2.已知经验回归方程为y=2x+1,而试验得到的一组数据是(2,4.9),(3,7.1),(4,
3 150-3 025
^
^
所以z=0.28x-3.95,即y=e0.28x
-3.95
.
归纳小结
解决非线性回归问题的方法及步骤
(1)确定变量:确定解释变量为 x,响应变量为 y;
(2)画散点图:通过观察散点图并与学过的函数(幂函数、指数函数、对数函数、
二次函数、反比例函数等)作比较,选取拟合效果好的函数模型;
概念讲解
在使用经验回归方程进行预测时,需注意以下问题
1.回归方程只适用于我们所研究的样本的总体;
2.我们所建立的回归方程一般都有时间性;
3.样本采集的范围会影响回归方程的适用范围;
4.不能期望回归方程得到的预报值就是预报变量的精确值. 事实上, 它是预报变量
的可能取值的平均值.
PART.04
典例分析
6
7
8
年份/t
1896
1912
1921
1930
1936
1956
1960
1968
x
0.00
2.83
3.26
3.56
3.71
4.11
4.17
4.29
记录/s
11.80

多元线性回归与最小二乘估计

多元线性回归与最小二乘估计

多元线性回归与最小二乘估计1.假定条件、最小二乘估计量和高斯—马尔可夫定理多元线性回归模型:y t= β0 +β1x t1 +β2x t2 +…+βk- 1x t k -1 + u t(1.1)其中y t是被解释变量(因变量),x t j是解释变量(自变量),u t是随机误差项,βi,i = 0, 1, … , k - 1是回归参数(通常未知)。

对经济问题的实际意义:y t与x t j存在线性关系,x t j,j = 0, 1, … , k - 1, 是y t的重要解释变量。

u t代表众多影响y t变化的微小因素。

使y t的变化偏离了E( y t) =多元线性回归与最小二乘估计1.假定条件、最小二乘估计量和高斯—马尔可夫定理多元线性回归模型:y t= β0 +β1x t1 +β2x t2 +…+βk- 1x t k -1 + u t(1.1)其中y t是被解释变量(因变量),x t j是解释变量(自变量),u t是随机误差项,βi,i = 0, 1, … , k - 1是回归参数(通常未知)。

对经济问题的实际意义:y t与x t j存在线性关系,x t j,j = 0, 1, … , k - 1, 是y t的重要解释变量。

u t代表众多影响y t变化的微小因素。

使y t的变化偏离了E( y t) =β0 +β1x t1 +β2x t2 +…+βk- 1x t k -1决定的k维空间平面。

当给定一个样本(y t,x t1, x t2 ,…, x t k -1), t = 1, 2, …, T时, 上述模型表示为y1 =β0 +β1x11 +β2x12 +…+βk- 1x1 k -1 + u1, 经济意义:x t j是y t的重要解释变量。

y2 =β0 +β1x21 +β2x22 +…+βk- 1x2 k -1 + u2, 代数意义:y t与x t j存在线性关系。

………..几何意义:y t表示一个多维平面。

【高中数学】一元线性回归模型及其参数的最小二乘估计 课件 高二数学人教A版2019选择性必修第三册

【高中数学】一元线性回归模型及其参数的最小二乘估计 课件 高二数学人教A版2019选择性必修第三册

问题3:从成对样本数据的散点图和样本相关系数可以发现,散点大致分布在一条直 线附近表明儿子身高和父亲身高有较强的线性关系.我们可以这样理解,由于有其他因 素的存在,使儿子身高和父亲身高有关系但不是函数关系.那么影响儿子身高的其他因 素是什么?
影响儿子身高的因素除父亲的身外,还有母亲的身高、生活的环境、饮食习惯、营 养水平、体育锻炼等随机的因素,儿子身高是父亲身高的函数的原因是存在这些随 机的因素.
儿子身高 / cm
190
185
180
175
170
165
160 160
165
170
175
180
185父亲身高 / cm
方法二: 在图中选择这样的两点画直线,使得直线两侧的点的个数基 本相同,把这条直线作为所求直线,如图(2)所示.
儿子身高 / cm
190
185
180
175
170
165
160 160
你能结合父亲与儿子身高的实例,说明回归模型(1)的意义?
E(Y) E(bx a e) E(bx a) E(e)
(bx a) 0 bx a
对于父亲身高为xi的某一名男大学生,他的身高yi一定是bxi+a吗?
课堂练习(课本P107)
3. 将图8.2-1中的点按父亲身高的大小次序用折线连起来,所得到的图象是 一个折线图,可以用这条折线表示儿子身高和父亲身高之间的关系吗?
探究 利用散点图找出一条直线,使各散点在整体上与此直线尽可能接近.
儿子身高 / cm
190
185
180
175
170
165
160 160
165
170
175
180

最小二乘法线性详细说明

最小二乘法线性详细说明
在处理数据时,常要把实验获得的一系 列数据点描成曲线表反映物理量间的关系。 为了使曲线能代替数据点的分布规律,则 要求所描曲线是平滑的,既要尽可能使各 数据点对称且均匀分布在曲线两侧。由于 目测有误差,所以,同一组数据点不同的 实验者可能描成几条不同的曲线(或直线), 而且似乎都满足上述平滑的条件。那么, 究竟哪一条是最曲线呢?这一问题就是 “曲线拟合”问题。一般来说,“曲线拟 合”的任务有两个:
利用最小二乘法计算出b, a得出回归方程即两个变 量之间的关系式。
计算 s ,并利用肖维涅准则判断有无粗差。
如果有粗差,剔除后重复①,②,③步骤计算。
如无粗差,计算b , a ,给出最后的回归方程。
26
〔例题〕
用伏安法测电阻,测量数据如表。问能否拟 合成线性关系曲线?若可以,试判断有无粗
只有相关系数 R≥ R时0 ,才能用线性回归方程
y=a+bx来描述数据的的分布规律。否则毫无 意义。
24
回归方程的精密度
根据统计理论还可以求出a和b的标准偏差分别 为:
b s
sx x
a b
xi2 n
xi2
s
nsxx
25
回归分析法的运算步骤
首先计算R,判断是否能拟合成线性曲线。 R≥ R0
b2 s11 s2 y s12 s1y
s s s 11 22
2 12
a y b1x1 b2 x 2
32
公式中:
s11
x2 1i
(
x1i)2 n
s22
x2 2i
(
x2i)2 n
s12
b=0,a= y , 从而得到y= y 的错误结论。这说明数据点
的分布不是线性,不能拟合为线性关系曲线。

简述用加权最小二乘法消除多元线性回归中异方差性的思想与方法

简述用加权最小二乘法消除多元线性回归中异方差性的思想与方法

简述用加权最小二乘法消除多元线性回归中异方差性的思想与方法随着统计学研究的发展,对数学建模和统计推理技术的运用越来越广泛,统计学的应用领域也渐渐从单变量分析拓展到多元分析领域。

多元线性回归分析是研究变量之间相互关系的一种统计技术,它的基本假设之一是观察值是以正态分布出现的,因而多元线性回归分析的结果可能受到异方差性的影响。

因此,消除多元线性回归中异方差性成为统计学家们应对多元线性回归分析中异方差影响的重要步骤,加权最小二乘法就是一种常用的方法。

加权最小二乘法是一种用于解决多元回归中的异方差性的方法。

它的基本思想是根据观测值的方差来确定每个数据点的权重,并且对于每个数据点权重均不相等。

即,观测值ver1,ver2,ver3......vern 其中,可以分别给出权重w1,w2,w3......wn来描述这n个观测值的不同程度。

类似地,也可以定义每一个测量项被评估的权重ok1,ok2,ok3......okp,然后将这些权重和方差联系起来,形成一个加权最小二乘估计器。

具体来说,加权最小二乘估计器可以用以下公式表示:![](WLS.png)其中,w是观测值的方差,ok是每一个测量项被评估的权重,xi 是第i个变量的测量值,x1,x2,x3……是所有观测变量的测量值。

以上公式表示,加权最小二乘估计器是根据误差观测值的方差来调整估计系数,从而消除多元回归中异方差性的影响。

当加权最小二乘估计器用于多元线性回归分析时,它会根据每个观测值的方差来确定每个数据点的权重,并且对于每个数据点权重均不相等,从而消除异方差性的影响。

有了加权最小二乘法,统计学家们可以从两个角度进行多元线性回归分析:一是根据每个观测值的方差,来调整系数,从而较好地拟合数据;二是根据观测值的方差来确定每个数据点的权重,从而消除多元回归中异方差性的影响。

总之,加权最小二乘法是一种常用的消除多元线性回归中异方差性的思想与方法,它的基本思想是根据观测值的方差来确定每个数据点的权重,对于每个数据点权重均不相等,从而调整系数,从而较好地拟合数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
其他可能的相关关系见下图:
y
o
x
y
o
x
y
o
x
y
o
x
6
图 1的10个点虽然不在一直线上,但大致散布于 一条直线周围,我们把其表示为:
yabx ~N(0,2) 即对每一个x值, y~N(ab,x 2),其中 a,b及2都是
不依赖于x 的未知参数. 称上述方程为 y 关于 x 的一 线性回归方程. 通常记为 元
yi abix i
n
如 a, b 的值能使 | i |为最小,则该直线是较理想的选择.
n
i1 n
由于
| i |最小与
2 i
最小一致,故问题成为求
a,
b
,使
i 1
i 1
n
Q(a,b) [yi (abix)2]
i1
达到最小. 上述原则即称为最小二乘原则,由此估计
a,b的方法称为最小二乘法. LSE (Least Square Estimation)
yˆabx
由样 a,b本 进对 行 ,得 估 a ˆ及 到 b 计 ˆ,称 a为回,归 b为回归系数 .
7
求 a,b 估计值的方法:
(一) 作图法:简单方便,但精度差,局限性大; (二) 参数估计法:
最大似然估计法; 矩估计法; 最小二乘估计法(常用).
8
二、最小二乘法
根据上述假 i1,设 2, n, , 对
i1 n
.
x
2 i
nx
2
(xi x)2
i1
i1
11
aˆ ybˆx,
n
n
x i y i n x y
( xi x )( yi y)

i1 n
i1 n
.
x
2 i
nx
2
(xi x)2
i1
i1
n
n
记 lxx (xix)2 xi2nx2,
i1
i1
n
n
lyy (yiy)2 yi2ny2,
nxa(in1
xi2)b
n i1
xi
yi
系数行列式
n D nx
nx
n
n
n
x
2 i
n( xi2 nx2)n (xi x)2,
i1
i1
i1
由 于 xi 不 全 相 等 , n D0,
所, bˆ
xi yi nxy
i1 n
( xi x )( yi y)
i1
i1
10
10
lxy (xi x)2 xiyi 10xy135,0
i1
i1
bˆ lxy 6.4286, aˆybˆx1.428, 8 lxx
所以所求回归方程为
y ˆ1.42 86.8 42x8.6
14
练习:
P240 习题七
15
第七章
1
变量之间的关系大致有 两种,一是 函数 关系, 是确定性的,如 s = v t ; 另一种是相关关系,是不 确定的.
在社会经济领域,更多的是相关关系. 如投 入与产出、价格与需求的关系等等.
回归分析方法是处理变量间相互关系的有力 工具.
2
第一节
3
一、散点图与回归直线
将n对观察结果作为直角平面上的点,这样得 到的图形称为散点图.散点图可以帮助我们粗略地 看出 x 与 y 的相关关系的形式.
9
n
a,b的求解: Q(a,b) [yi (abix)2]
i1
Q
n
a
Q
b
2
i1
n
2
i1
[ [
yi yi
(a (a
bxi bxi
)] )]xi
0 0
nanxbny
nxa(in1
xi2)b
n i1
xi
yi
——
称为正规方程组
其中 xn 1i n1xi , yn 1i n1yi
10
nanxbny
求 y 对 x 的回归方程.

1 10
x 10i1
xi
8,
y 1 10 10i1
yi
50,
10
10
lxx (xi x)2 xi210x2 210,
i1
i1
10
10
lxy (xi x)2 xiyi 10xy135,0
i1
i1
13
10
10
lxx (xi x)2 xi210x2 210,
4
例1 价格与供给量的观察数据见下表:
x (元) 2 3 4 5 6 8 10 12 14 16 y (吨) 15 20 25 30 35 45 60 80 80 110
散点图
120 100
80
60
40 20
0
0
5
10
15
20
图1
由图1可以看出,x 与 y 之间存在一定的相关关系, 且这种关系是线性关系.
i1
i1
n
n
lx y (x ix)y (iy) x iyin x y,
i 1
i 1

bˆ lx y , lxx
aˆ ybˆx.
显然回归直线经过散点图
的几何中心 (x, y) . 12
例2 价格与供给量的观察数据见下表:
x (元) 2 3 4 5 6 8 10 12 14 16 y (吨) 15 20 25 30 35 45 60 80 80 110
相关文档
最新文档