高考数学模拟复习试卷试题模拟卷13313
2023年全国新高考数学仿真模拟卷(一)数学试题
一、单选题1. 袋中装有4个红球、3个白球,甲、乙按先后次序无放回地各摸取一球,在甲摸到了白球的条件下,乙摸到白球的概率是A.B.C.D.2. 若,且,则下列不等式一定成立的是( )A.B.C.D.3. 如图所示,在棱长为1的正方体中,下列结论正确的是()A.与平面所成角的正弦值是B.与平面所成角的正弦值是C.四棱锥的体积是D .三棱锥的体积是4.我国智慧港口的建设飞速发展,作为智能化搬运设备的自动化引导车作用越发凸显.自重吨.再加上集装箱的重量,全车最重可达吨,但其停启位置十分精确,停车误差不超过厘米.码头地面埋设了几万个磁钉,车辆的位置由它们记录下来,传给后台,再由软件精确计算行驶路径,防止碰撞和刮擦.经统计,某港口某次运输中,有台的停车误差为厘米,有台的停车误差为厘米,有台没有停车误差,则该港口本次运输中所有的平均停车误差约为( )A.厘米B .厘米C .厘米D .厘米5. 已知不等式在上恒成立,且函数在上单调递增,则实数的取值范围为( )A.B.C.D.6. 已知集合,,则( )A.B.C.D.7. 已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的是( )A.B.必为偶函数C.D .若,则8.函数的图像大致为( )2023年全国新高考数学仿真模拟卷(一)数学试题2023年全国新高考数学仿真模拟卷(一)数学试题二、多选题三、填空题A.B.C.D.9. 对于直线.以下说法正确的有( )A.的充要条件是B.当时,C.直线一定经过点D .点到直线的距离的最大值为510. 若、、是互不相同的空间直线,、是不重合的平面,则下列命题中为假命题的是A .若,,,则B .若,,则C .若,,则D .若,,则11. 圆与轴相切于点,与轴正半轴交于、两点,且,则( )A .圆的标准方程为B.圆关于直线对称C .经过点与圆相交弦长最短的直线方程为D .若是圆上一动点,则的最大值为12. 已知为抛物线上的三个点,焦点F 是的重心.记直线AB ,AC ,BC 的斜率分别为,则( )A .线段BC的中点坐标为B .直线BC的方程为C.D.13. 已知二项式的展开式中第项与第项的项式系数之比是,则的系数为____________.四、解答题14.已知双曲线:的左、右焦点分别为,,设为双曲线右支上的一点,满足,且,,依次成等差数列,则双曲线的离心率为______.15.若展开式中的常数项为,则实数__________.16. 已知函数.(1)求不等式的解集;(2)若方程有两个不相等的实数根,,证明:.17. 已知函数.(1)求时,在处的切线方程;(2)讨论在上的最值情况;(3)恒成立,求实数的取值范围.18. 如图,在四棱锥中,底面为菱形,平面平面,,为棱的中点.(1)证明:;(2)若,,求二面角的余弦值.19.长方体中,,分别是,的中点,,.(1)求证:平面;(2)求证:平面平面;(3)在线段上是否存在一点,使得二面角为,若存在,求的值;若不存在,说明理由.20. 已知正项等比数列{a n },满足a 2a 4=1,a 5是12a 1与5a 3的等差中项.(1)求数列{a n }的通项公式;(2)设,求数列{b n }的前n 项和S n .21. 民航招飞是指普通高校飞行技术专业(本科)通过高考招收飞行学生,报名的学生参加预选初检、体检鉴定、飞行职业心理学检测、背景调查、高考选拔等5项流程,其中前4项流程选拔均通过,则被确认为有效招飞申请,然后参加高考,由招飞院校择优录取.据统计,每位报名学生通过前4项流程的概率依次约为.假设学生能否通过这5项流程相互独立,现有某校高三学生甲、乙、丙三人报名民航招飞.(1)估计每位报名学生被确认为有效招飞申请的概率;(2)求甲、乙、丙三人中恰好有一人被确认为有效招飞申请的概率;(3)根据甲、乙、丙三人的平时学习成绩,预估高考成绩能被招飞院校录取的概率分别为,设甲、乙、丙三人能被招飞院校录取的人数为X,求X的分布列及数学期望.。
2023年全国新高考数学仿真模拟卷(一)数学试题
一、单选题二、多选题1. 已知函数在上单调递减,则实数a 的取值范围是( )A.B.C.D.2. 设,,则“”是“”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知集合,则A.B.C.D.4. 已知i是虚数单位,若,则( )A .1B.C .2D .45.设为坐标原点,为抛物线:的焦点,为上一点,若,则的面积为( )A .2B.C.D .46.已知实数满足,则的最大值为A .1B .2C .3D .47. 随着北京冬奥会的开幕,吉祥物“冰墩墩”火遍国内外,现有甲、乙、丙、丁4名运动员要与1个“冰墩墩”站成一排拍照留恋,已知“冰墩墩”在最中间,甲、乙、丙、丁4名运动员随机站于两侧,则甲、乙2名运动员站“冰墩墩”同一侧的概率为( )A.B.C.D.8. 已知 ,对任意的,都存在,使得成立,则下列选项中,θ可能的值为( )A.B.C.D.9.如图,已知长方形中,,,,则下列结论正确的是()A .当时,B.当时,C .对任意,不成立D.的最小值为410. 设定义在R 上的函数与的导数分别为与,已知,,且的图象关于直线对称,则下列结论一定成立的是( )A.函数的图象关于点对称B.函数的图象关于直线对称C.函数的一个周期为8D .函数为奇函数2023年全国新高考数学仿真模拟卷(一)数学试题2023年全国新高考数学仿真模拟卷(一)数学试题三、填空题四、解答题11.已知点在直线上移动,圆,直线,是圆的切线,切点为,.设,则( )A .存在点,使得B .存在点,使得C.当的坐标为时,的方程为D .点的轨迹长度是12. 已知的顶点在圆上,顶点在圆上.若,则( )A.的面积的最大值为B.直线被圆截得的弦长的最小值为C .有且仅有一个点,使得为等边三角形D.有且仅有一个点,使得直线,都是圆的切线13. 的展开式中,常数项为________.14. 如图,在中,,,,为内的一点,且,,则________.15. 的展开式中的系数为__________.(用数字作答)16. 已知为单调递增的等差数列,设其前项和为,,且,成等比数列.(1)求数列的通项公式;(2)求的最小值及取得最小值时的值.17. 已知,,函数的最小值为1.(1)求的值;(2)若恒成立,求实数的取值范围.18. 已知函数.(1)若有3个零点,求a 的取值范围;(2)若,,求a 的取值范围.19. 今年上海疫情牵动人心,大量医务人员驰援上海.现从这些医务人员中随机选取了年龄(单位:岁)在内的男、女医务人员各100人,以他们的年龄作为样本,得出女医务人员的年龄频率分布直方图和男医务人员的年龄频数分布表如下:年龄(单位:岁)频数2020301515(1)求频率分布直方图中a的值;(2)在上述样本中用分层抽样的方法从年龄在内的女医务人员中抽取4人,从年龄在内的男医务人员中抽取2人,再从这6人中随机抽取2人,求这2人中至少有1人的年龄在内的概率.20. 已知函数.(1)若,求在定义域上的极值;(2)若,求的单调区间.21. 已知中,角,,所对的边分别为,,,满足.(1)求的大小;(2)如图,,在直线的右侧取点,使得,求为何值时,四边形面积的最大,并求出该最大值.。
高考数学模拟复习试卷试题模拟卷21331
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案 (1)D (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →, 所以AB →=85AN →-45AM →, 所以λ+μ=45. (2)设BP →=kBN →,k ∈R. 因为AP →=AB →+BP →=AB →+kBN →=AB →+k(AN →-AB →)=AB →+k(14AC →-AB →)=(1-k)AB →+k 4AC →, 且AP →=mAB →+211AC →,所以1-k =m ,k 4=211, 解得k =811,m =311. 【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb +nc =(-6m +n ,-3m +8n),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M(0,20).又∵CN →=ON →-OC →=-2b , ∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N(9,2).∴MN →=(9,-18). 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________.题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________.(2)(·陕西)设0<θ<π2,向量a =(sin2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________.【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.答案 (1)(2,4) (2)60°解析 (1)∵在梯形ABCD 中,DC =2AB ,∴DC →=2AB →. 设点D 的坐标为(x ,y),则DC →=(4,2)-(x ,y)=(4-x,2-y), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y)=2(1,-1),即(4-x,2-y)=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). (2)因为p ∥q ,则(a +c)(c -a)-b(b -a)=0, 所以a2+b2-c2=ab , 所以a2+b2-c22ab =12, 结合余弦定理知, cosC =12,又0°<C<180°, 所以C =60°. 【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4) 【答案】A【解析】∵AB OB OA =-=(3,1),∴BC =AC AB -=(7,4),故选A.1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.152 【答案】C【解析】∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b)⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.2.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3) 【答案】B【解析】由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B.3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【解析】(1)由题意知,f(x)==msin 2x +ncos 2x.因为y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=msin π6+ncos π6,-2=msin 4π3+ncos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f(x)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知,g(x)=f(x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g(x)的图像上符合题意的最高点为(x0,2). 由题意知,x20+1=1,所以x0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g(x)得,sin ⎝⎛⎭⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g(x)=2sin ⎝⎛⎭⎫2x +π2=2cos 2x.由2kπ-π≤2x≤2kπ,k ∈Z 得kπ-π2≤x≤kπ,k ∈Z , 所以函数y =g(x)的单调递增区间为⎣⎡⎦⎤kπ-π2,kπ,k ∈Z.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 【答案】12【解析】因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12. 5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.(2)∵OP →=mAB →+nAC →, ∴(x ,y)=(m +2n ,2m +n),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B(2,3)时,t 取得最大值1,故m -n 的最大值为1. 6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 3 【答案】D【解析】由|OA →|=|OB →|=OA →·OB →=2,可得点A ,B 在圆x2+y2=4上且∠AOB =60°,在平面直角坐标系中,设A(2,0),B(1,3),设P(x ,y),则(x ,y)=λ(2,0)+μ(1,3),由此得x =2λ+μ,y =3μ,解得μ=y 3,λ=12x -12 3y ,由于|λ|+|μ|≤1, 所以12x -12 3y +13y≤1,即|3x -y|+|2y|≤2 3.①⎩⎨⎧3x -y≥0,y≥0,3x +y≤2 3或②⎩⎨⎧3x -y≥0,y<0,3x -3y≤2 3或 ③⎩⎨⎧3x -y<0,y≥0,-3x +3y≤23或④⎩⎨⎧3x -y<0,y<0,-3x -y≤2 3.上述四个不等式组在平面直角坐标系中表示的区域如图阴影部分所示,所以所求区域的面积是4 3.7.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+2 【答案】A【解析】由题可知a·b =0,则a ⊥b ,又|a|=|b|=1,且|c -a -b|=1,不妨令c =(x ,y),a =(1,0),b =(0,1),则(x -1)2+(y -1)2=1,又|c|=x2+y2,故根据几何关系可知|c|max =12+12+1=1+2,|c|min =12+12-1=2-1,故选A.8.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-3 【答案】4【解析】以向量a 和b 的交点为原点,水平方向和竖直方向分别为x 轴和y 轴建立直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),则⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧λ=-2,μ=-12,所以λμ=4.9.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35【答案】A【解析】∵AB →=(3,-4),∴与AB →方向相同的单位向量为AB →|AB →|=⎝⎛⎭⎫35,-45,故选A. 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.【答案】1211.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.【答案】2【解析】如图,建立直角坐标系,则AE →=(1,2),BD →=(-2,2),AE →·BD →=2.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-9【解析】(1)由题意知点A(-c ,2)在椭圆上,则(-c )2a2+22b2=1,从而e2+4b2=1. 由e =22得b2=41-e2=8,从而a2=b21-e2=16.故该椭圆的标准方程为x216+y28=1.13.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【答案】D【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 答案 A解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B →|A B →|=⎝⎛⎭⎫35,-45.2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21) 答案 B解析 BC →=3PC →=3(2PQ →-PA →) =6PQ →-3PA →=(6,30)-(12,9)=(-6,21).3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( ) A.14B.12C .1D .2 答案 B解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb)∥c ,∴1+λ3=24,∴λ=12,故选B.4.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .5 答案 B5.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14 答案 A解析 由题意知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x=23,y =13.6.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________. 答案 12解析 AB →=(a -2,-2),AC →=(-2,b -2), 依题意,有(a -2)(b -2)-4=0, 即ab -2a -2b =0,所以1a +1b =12.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.答案 k≠18.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.答案 1解析 由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°, ∴tan150°=3-3λ,即-33=-33λ,∴λ=1.9.已知A(1,1)、B(3,-1)、C(a ,b). (1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1). ∵A 、B 、C 三点共线,∴AB →∥AC →, ∴2(b -1)+2(a -1)=0,即a +b =2. (2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2),∴⎩⎪⎨⎪⎧ a -1=4b -1=-4,解得⎩⎪⎨⎪⎧a =5b =-3, ∴点C 的坐标为(5,-3).10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数. 【热点题型】题型一 由数列的前几项求数列的通项 例1、写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3333,….解 (1)各项减去1后为正偶数,所以an =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以an =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以an =(-1)n·2+-1nn. 也可写为an =⎩⎨⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以an =13(10n -1). 【提分秘籍】根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征,应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【举一反三】(1)数列-1,7,-13,19,…的一个通项公式是an =________.(2)数列{an}的前4项是32,1,710,917,则这个数列的一个通项公式是an =________. 答案 (1)(-1)n·(6n -5) (2)2n +1n2+1解析 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为后面的数的绝对值总比前面的数的绝对值大6,故通项公式为an =(-1)n(6n -5).(2)数列{an}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故an =2n +1n2+1.题型二由数列的前n 项和Sn 求数列的通项例2 已知下面数列{an}的前n 项和Sn ,求{an}的通项公式: (1)Sn =2n2-3n ; (2)Sn =3n +b.【提分秘籍】数列的通项an 与前n 项和Sn 的关系是an =⎩⎪⎨⎪⎧S1,n =1,Sn -Sn -1,n≥2.当n =1时,a1若适合Sn -Sn -1,则n =1的情况可并入n≥2时的通项an ;当n =1时,a1若不适合Sn -Sn -1,则用分段函数的形式表示.【举一反三】已知数列{an}的前n 项和Sn =3n2-2n +1,则其通项公式为________________.题型三 由数列的递推关系求数列的通项公式例3 (1)设数列{an}中,a1=2,an +1=an +n +1,则通项an =________. (2)数列{an}中,a1=1,an +1=3an +2,则它的一个通项公式为an =________. (3)在数列{an}中,a1=1,前n 项和Sn =n +23an ,则{an}的通项公式为________.(2)方法一 (累乘法)an +1=3an +2,即an +1+1=3(an +1), 即an +1+1an +1=3,所以a2+1a1+1=3,a3+1a2+1=3,a4+1a3+1=3,…,an +1+1an +1=3.将这些等式两边分别相乘得an +1+1a1+1=3n.因为a1=1,所以an +1+11+1=3n ,即an +1=2×3n -1(n≥1),所以an =2×3n -1-1(n≥2), 又a1=1也满足上式,故数列{an}的一个通项公式为an =2×3n -1-1.(3)由题设知,a1=1.当n>1时,an =Sn -Sn -1=n +23an -n +13an -1. ∴an an -1=n +1n -1. ∴an an -1=n +1n -1,…,a4a3=53, a3a2=42,a2a1=3.以上n -1个式子的等号两端分别相乘, 得到an a1=n n +12, 又∵a1=1,∴an =n n +12. 【提分秘籍】已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现an =an -1+m 时,构造等差数列;当出现an =xan -1+y 时,构造等比数列;当出现an =an -1+f(n)时,用累加法求解;当出现an an -1=f(n)时,用累乘法求解.【举一反三】(1)已知数列{an}满足a1=1,an =n -1n ·an -1(n≥2),则an =________. (2)已知数列{an}的前n 项和为Sn ,且Sn =2an -1(n ∈N*),则a5等于( ) A .-16B .16C .31D .32答案 (1)1n (2)B【高考风向标】【高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于.【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且 ∴{}1a a n 是以为首项,21为公差的等差数列 ∴2718921289199=+=⨯⨯+⨯=S 1.(·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.【解析】(1)因为anbn +1-an +1bn +2bn +1bn =0,bn≠0(n ∈N*),所以an +1bn +1-anbn =2,即cn +1-cn=2,所以数列{cn}是以c1=1为首项,d =2为公差的等差数列,故cn =2n -1.(2)由bn =3n -1,知an =(2n -1)3n -1,于是数列{an}的前n 项和Sn =1×30+3×31+5×32+…+(2n -1)×3n -1,3Sn =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2Sn =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以Sn =(n -1)3n +1.2.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.3.(·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式; (2)证明1a1+1a2+…+1an <32.【解析】(1)由an +1=3an +1得an +1+12=3⎝⎛⎭⎫an +12. 又a1+12=32,所以⎩⎨⎧⎭⎬⎫an +12是首项为32,公比为3的等比数列,所以an +12=3n 2,因此数列{an}的通项公式为an =3n -12.(2)证明:由(1)知1an =23n -1.因为当n≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1,即1an =23n -1≤13n -1. 于是1a1+1a2+…+1an ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a1+1a2+…+1an <32.4.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*).(1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论.【解析】(1)方法一:a2=2,a3=2+1.再由题设条件知(an +1-1)2=(an -1)2+1.从而{(an -1)2}是首项为0,公差为1的等差数列,故(an -1)2=n -1,即an =n -1+1(n ∈N*).方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想an =n -1+1.下面用数学归纳法证明上式.当n =1时,结论显然成立.假设n =k 时结论成立,即ak =k -1+1,则ak +1=(ak -1)2+1+1=(k -1)+1+1=(k +1)-1+1,这就是说,当n =k +1时结论成立.所以an =n -1+1(n ∈N*).(2)方法一:设f(x)=(x -1)2+1-1,则an +1=f(an).令c =f(c),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题a2n<c<a2n +1<1.当n =1时,a2=f(1)=0,a3=f(0)=2-1,所以a2<14<a3<1,结论成立.假设n =k 时结论成立,即a2k<c<a2k +1<1.易知f(x)在(-∞,1]上为减函数,从而c =f(c)>f(a2k +1)>f(1)=a2,即1>c>a2k +2>a2.再由f(x)在(-∞,1]上为减函数,得c =f(c)<f(a2k +2)<f(a2)=a3<1,故c<a2k +3<1,因此a2(k +1)<c<a2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a2n<C<a2a +1对所有n ∈N*成立.方法二:设f(x)=(x -1)2+1-1,则an +1=f(an).先证:0≤an≤1(n ∈N*). ①当n =1时,结论明显成立.假设n =k 时结论成立,即0≤ak≤1.易知f(x)在(-∞,1]上为减函数,从而0=f(1)≤f(ak)≤f(0)=2-1<1.即0≤ak +1≤1.这就是说,当n =k +1时结论成立.故①成立.再证:a 2n<a2n +1(n ∈N*). ②当n =1时,a2=f(1)=0,a3=f(a2)=f(0)=2-1,所以a2<a3,即n =1时②成立.假设n =k 时,结论成立,即a2k<a 2k +1.由①及f(x)在(-∞,1]上为减函数,得a2k +1=f(a2k)>f(a2k +1)=a2k +2,a2(k +1)=f(a2k +1)<f(a2k +2)=a2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N*成立.由②得a2n<a22n -2a2n +2-1,即(a2n +1)2<a22n -2a2n +2,因此a2n<14.③又由①②及f(x)在(-∞,1]上为减函数,得f(a2n)>f(a2n +1),即a2n +1>a2n +2.所以a2n +1>a22n +1-2a2n +1+2-1,解得a2n +1>14.④综上,由②③④知存在c =14使a2n<c<a2n +1对一切n ∈N*成立.5.(·安徽卷)如图1-3所示,互不相同的点A1,A2,…,An ,…和B1,B2,…,Bn ,…分别在角O 的两条边上,所有AnBn 相互平行,且所有梯形AnBnBn +1An +1的面积均相等,设OAn =an ,若a1=1,a2=2,则数列{an}的通项公式是________.图1-3【答案】an =3n -26.(·辽宁卷)下面是关于公差d>0的等差数列{}an 的四个命题:p1:数列{}an 是递增数列;p2:数列{}nan 是递增数列;p3:数列⎩⎨⎧⎭⎬⎫an n 是递增数列; p4:数列{}an +3nd 是递增数列.其中的真命题为( )A .p1,p2B .p3,p4C .p2,p3D .p1,p4【答案】D【解析】因为数列{an}中d>0,所以{an}是递增数列,则p1为真命题.而数列{an +3nd}也是递增数列,所以p4为真命题,故选D.7.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.【解析】设{an}的公差为d.由S3=a22,得3a2=a22,故a2=0或a2=3.由S1,S2,S4成等比数列得S22=S1S4.又S1=a2-d ,S2=2a2-d ,S4=4a2+2d ,故(2a2-d)2=(a2-d)(4a2+2d).若a2=0,则d2=-2d2,所以d =0,此时Sn =0,不合题意;若a2=3,则(6-d)2=(3-d)(12+2d),解得d =0或d =2.因此{an}的通项公式为an =3或an =2n -1.【高考押题】1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是an 等于( ) A.-1n +12B .cos nπ2C .cos n +12πD .cos n +22π答案 D解析 令n =1,2,3,…逐一验证四个选项,易得D 正确.2.已知数列{an}中,a1=1,若an =2an -1+1(n≥2),则a5的值是( )A .7B .5C .30D .31答案 D解析 由题意得a2=2a1+1=3,a3=2×3+1=7,a4=2×7+1=15,a5=2×15+1=31.3.若数列{an}的通项公式是an =(-1)n(3n -2),则a1+a2+…+a10等于( )A .15B .12C .-12D .-15答案 A解析 由题意知,a1+a2+…+a10=-1+4-7+10-…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15.4.若Sn 为数列{an}的前n 项和,且Sn =n n +1,则1a5等于( ) A.56B.65C.130D .30答案 D解析 当n≥2时,an =Sn -Sn -1=n n +1-n -1n =1n n +1,所以1a5=5×6=30. 5.已知数列{an}满足a1=1,an +1an =2n(n ∈N*),则a10等于( )A .64B .32C .16D .8答案 B6.若数列{an}满足关系:an +1=1+1an ,a8=3421,则a5=________.答案 85解析 借助递推关系,则a8递推依次得到a7=2113,a6=138,a5=85.7.数列{an}中,a1=1,对于所有的n≥2,n ∈N*,都有a1·a2·a3·…·an =n2,则a3+a5=________.答案 6116解析 由题意知:a1·a2·a3·…·an -1=(n -1)2,∴an =(n n -1)2(n≥2),∴a3+a5=(32)2+(54)2=6116. 8.已知{an}是递增数列,且对于任意的n ∈N*,an =n2+λn 恒成立,则实数λ的取值范围是________.答案 (-3,+∞)解析 因为{an}是递增数列,所以对任意的n ∈N*,都有an +1>an ,即(n +1)2+λ(n +1)>n2+λn ,整理,得2n+1+λ>0,即λ>-(2n+1).(*)因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3.9.已知数列{an}的前n项和Sn=2n+1-2.(1)求数列{an}的通项公式;(2)设bn=an+an+1,求数列{bn}的通项公式.解(1)当n=1时,a1=S1=22-2=2;当n≥2时,an=Sn-Sn-1=2n+1-2-(2n-2)=2n+1-2n=2n;因为a1也适合此等式,所以an=2n(n∈N*).(2)因为bn=an+an+1,且an=2n,an+1=2n+1,所以bn=2n+2n+1=3·2n.10.数列{an}的通项公式是an=n2-7n+6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三)(1)
一、单选题二、多选题1. 已知为虚数单位,复数是纯虚数,则( ).A.B .4C .3D .22.已知是空间三个不重合的平面,是空间两条不重合的直线,则下列命题为的是( )A .若,,则B .若,,则C .若,,则D .若,,则真命题3.已知函数的最小正周期为,若将的图象上所有的点向右平移个单位,所得图象对应的函数为奇函数,则( )A.B.C.D.4.已知数列的前项和为,且,,则( )A .255B .63C .128D .1275.各项均为正数的等比数列的前项和为,若,,则A.B .40C .40或D .40或6. 已知定义在上的函数满足,若,则( )A.B.C .3D .27. 设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,,,则的值一定等于( ).A .以,为两边的三角形面积B.以,为邻边的平行四边形的面积C .以,为两边的三角形面积D .以,为邻边的平行四边形的面积8. 如图,在四棱锥中,底面为矩形,是等边三角形,平面底面,,四棱锥的体积为,E 为PC 的中点.平面与平面所成二面角的正切值是()A .2B.C.D .19. 已知函数的部分图象如图所示,则下列说法正确的是()A.2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三)(1)2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三)(1)三、填空题四、解答题B.的单调减区间为C.图象的一条对称轴方程为D .点是图象的一个对称中心10. 已知球O 的半径为R ,正四棱台ABCD -A 1B 1C 1D 1的两底面边长分别为2和4,高为h ,则( )A .对任意h >0,都存在R >0,使点O 到该棱台所有面的距离都等于RB .对任意h >0,都存在R >0,使该棱台的所有顶点都在球O 的球面上C .若点O 到该棱台所有面的距离都等于R,则D .若该棱台所有顶点都在球O 的球面上,且,则11. 在平面直角坐标系中,已知直线:,椭圆:,则下列说法正确的有( )A .恒过点B .若恒过的焦点,则C.对任意实数,与总有两个互异公共点,则D.若,则一定存在实数,使得与有且只有一个公共点12. 已知实数a ,b 满足,,,且,则下列结论正确的是( )A .当时,B .当时,C.D.13. 的值为___________.14.设等比数列的前n项和为,若,且,则λ=________.15. 如图,在矩形ABCD 中,,E 为AB 的中点.将沿DE 翻折,得到四棱锥.设的中点为M ,在翻折过程中,有下列三个命题:①总有平面;②线段BM 的长为定值;③存在某个位置,使DE 与所成的角为90°.其中正确的命题是_______.(写出所有正确命题的序号)16. 已知函数.(1)讨论的单调性;(2)证明:方程在上有且只有一个解;(3)设点,,,若对任意,,都有经过,的直线斜率大于,求实数的取值范围.17. 一个圆锥的底面半径为2cm ,高为6cm ,在其内部有一个高为x cm 的内接圆柱.(1)求圆锥的侧面积;(2)当x 为何值时,圆柱的侧面积最大?并求出侧面积的最大值.18. 如图(1)所示,已知四边形SBCD是由和直角梯形ABCD拼接而成的,其中.且点A为线段SD的中点,,.现将沿AB进行翻折,使得二面角的大小为,得到图形如图(2)所示,连接SC,点E,F分别在线段SB,SC上.(1)证明:;(2)若三棱锥的体积为四棱锥体积的,求点E到平面ABCD的距离.19.已知为坐标原点,点,分别是椭圆的左顶点和上顶点,已知椭圆的离心率为,的面积为.(1)求椭圆的标准方程;(2)设点为椭圆上的一动点,且不与椭圆顶点重合,点为直线与轴的交点,线段的中垂线与轴交于点,若直线斜率为,直线的斜率为,且,求直线的方程.20.如图,四棱台中,底面ABCD是菱形,点M,N分别为棱BC,CD的中点,,,,.(1)证明:平面平面ABCD;(2)当时,求多面体的体积.21. 设数列的前n项和为,已知.(1)求的通项公式;(2)设且,求数列的前n项和为.。
云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(2)
一、单选题二、多选题1.已知函数的最小正周期为,若在上的最大值为,则的最小值为( )A.B.C.D.2.设集合,则A.B.C.D.3.函数和图象的部分,如图所示.的图象由的图象平移而来,,分别在、图象上,是矩形,,,则的表达式是()A.B.C.D.4. 已知向量,,,若,,三点共线,则( )A .2B.C.D.5. 下面函数中为偶函数的是( )A.B.C.D.6. “”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知直线经过点,那么直线的斜率是( )A.B.C .1D .28.函数的大致图象为( )A. B. C. D.9.已知函数的最小正周期为2,则( )A .B .曲线关于直线对称C.的最大值为2D.在区间上单调递增10. 已知定义在上的函数,满足,且,,当时,(为常数),关于的方程(且)有且只有3个不同的根,则( )A .函数的周期B .在单调递减C.的图象关于直线对称D .实数的取值范围是云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(2)云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(2)三、填空题四、解答题11. 在长方体中,,,动点在体对角线上(含端点),则下列结论正确的有()A.当为中点时,为锐角B .存在点,使得平面C.的最小值D .顶点到平面的最大距离为12. 复数,其中,设在复平面内对应点为,则下列说法正确的是( )A .点在第一象限B.点在第二象限C.点在直线上D .的最大值为13. 已知三棱锥中,,,,底面,且,则该三棱锥的外接球的表面积为_____________.14.若数列与满足,且,设数列的前项和为,则___________.15. 一个容量为100的样本,其数据的分组与各组的频数如下表:组别[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数1213241516137则样本数据落在[10,40)上的频率为________.16. 某赛季甲乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:30,27,9,14,33,25,21,12,36,23,乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39(1)根据两组数据完成甲乙运动员得分的茎叶图,并通过茎叶图比较两名运动员成绩的平均值及稳定程度;(不要求计算出具体数值,给出结论即可)(2)若从甲运动员的十次比赛的得分中选出2个得分,记选出的得分超过23分的个数为,求的分布列和数学期望.17. 已知函数.(1)判断在其定义域上的单调性,并用函数单调性的定义加以证明;(2)讨论函数的奇偶性,并说明理由.18. 设函数.(1)当时,求不等式的解集;(2)若的最大值为3,求的值.19. 已知函数,.(1)若,求实数a的取值范围;(2)证明:对,恒成立.20. 如图①,在等腰直角三角形中,分别是上的点,且满足.将沿折起,得到如图②所示的四棱锥.(1)设平面平面,证明:⊥平面;(2)若,求直线与平面所成角的正弦值.21. 在中,内角的对边分别为,已知 .(1)证明:;(2)若,求边上的高.。
2023年新高考全国I卷数学仿真模拟试卷(2)
一、单选题二、多选题1. 下列函数中为偶函数的是( )A.B.C.D.2. 设集合,,则( )A.B.C.D.3. 我们把函数图象上任一点的横坐标与纵坐标之积称为该点的“积值”.设函数图象上存在不同的三点A ,B ,C ,其横坐标从左到右依次为,,,且其纵坐标均相等,则A ,B ,C 三点“积值”之和的最大值为( )A.B.C.D.4. 中国古代数学著作《九章算术》是人类科学史上应用数学的最早巅峰.书里记载了这样一个问题“今有女子善织,日自倍,五日织五尺.问日织几何?”译文是“今有一女子很会织布,每日加倍增长,5天共织5尺,问每日各织布多少尺?”,则该女子第二天织布( )A.尺B .尺C .尺D .尺5.已知椭圆的两个焦点为、,且,弦过点,则的周长为A .10B .20C.D.6. 若双曲线的焦点与椭圆的焦点重合,则的值为( )A .2B .3C .6D .77. 在中,是的中点,已知,,,则的面积为( )A.B.C.D.8. 若点在双曲线的渐近线上,则该双曲线的离心率为( )A.B.C.D.9. 在长方体中,AB =3,,P 是线段上的一动点,则下列说法正确的是( )A .平面B .与平面所成角的正切值的最大值是C.的最小值为D .以A 为球心,5为半径的球面与侧面的交线长是10. 已知函数,,( )A .存在实数使得在单调递减B .若的图象关于点成中心对称,则的最小值为2C .若,将的图象向右平移个单位可以得到的图象D .若,的最大值为11.(多选题)已知等比数列的公比,等差数列的首项,若且,则以下结论正确的有( )A.B.C.D.12. 已知函数,函数的图象在点和点处的两条切线互相垂直,且分别交y 轴于M ,N 两点,若,则( )2023年新高考全国I卷数学仿真模拟试卷(2)2023年新高考全国I卷数学仿真模拟试卷(2)三、填空题四、解答题A.B .的取值范围是C .直线AM 与BN 的交点的横坐标恒为1D .的取值范围是13. 函数,若直线是曲线的一条对称轴,则________.14.已知,下列四个结论正确的序号是______.①函数在区间上是减函数;②点是函数图象的一个对称中心;③函数的图象可以由函数的图象向左平移个单位长度得到;④若,则的值域为.15.在等比数列中,,则的公比______.16.已知数列满足,(),且().(1)求数列的通项公式;(2)若(),求数列的前n 项和.17. 设定义在(0,+∞)上的函数f (x )=ax ++b (a >0).(1)求f (x )的最小值;(2)若曲线y =f (x )在点(1,f (1))处的切线方程为y =x ,求a ,b 的值.18. 如图,在三棱锥中,为正三角形,点,分别为,的中点,其中,.(1)证明:平面平面;(2)若点是线段上异于点的一点,直线与平面所成角的正弦值为,求的值.19. 已知直四棱柱中,底面为梯形,分别是上的点,且为上的点.(1)证明:;(2)当时,求平面与平面的夹角的正弦值.20. 已知椭圆的左、右焦点分别为,,过点作直线交椭圆于,两点(与轴不重合),,的周长分别为12和8.(1)求椭圆的方程;(2)在轴上是否存在一点,使得直线与的斜率之积为定值?若存在,请求出所有满足条件的点的坐标;若不存在,请说明理由.21. 已知椭圆C的焦点坐标为和,且椭圆经过点.(1)求椭圆C的方程;(2)若,椭圆C上四点M,N,P,Q满足,,求直线MN的斜率.。
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD )-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A )B (C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(一)
一、单选题1. 已知双曲线C:(a >0,b >0)的右焦点为F ,点A ,B 分别为双曲线的左,右顶点,以AB 为直径的圆与双曲线C 的两条渐近线在第一,二象限分别交于P ,Q 两点,若OQ ∥PF (O 为坐标原点),则该双曲线的离心率为( )A.B .2C.D.2. 已知、是双曲线的左、右焦点,关于其渐近线的对称点为,并使得(为坐标原点),则双曲线的离心率( )A.B.C.D.3. 在计算机尚未普及的年代,人们在计算三角函数时常常需要查表得到正弦和余弦值,三角函数表的制作最早可追溯到古希腊数学家托勒密.下面给出了正弦表的一部分,例如,通过查表可知的正弦值为0.0384,的正弦值为0.5135,等等,则根据该表,的余弦值为()0.000001750349001701920366003502090384005202270401007002440419008702620436010502790454012202970471014003140488015703320506017503490523……0.5000515052995446559250155165531454615606503051805329547656215045519553445490563550605210535855055650507552255373551956645090524053885534567851055255540255485693512052705417556357075135528454325577572151505299544655925736……A .0.5461B .0.5519C .0.5505D .0.57364. 在复平面内,复数和对应的点分别为,则()A.B.C.D.5.已知函数,关于函数有下列四个命题:①;②的图象关于点对称;③是周期为的奇函数;④的图象关于直线对称.其中正确的是( )A .①④B .②③C .①③D .②④6.已知复数,若,则的虚部为( )A .2B .1C.D .-17. 已知菱形沿对角线向上折起,得到三棱锥分别是棱的中点.设三棱锥的外接球为球2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(一)2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(一)二、多选题三、填空题,则下列结论正确的个数为()①;②上存在点,使得平面;③当二面角为时,球的表面积为.④三棱锥的体积最大值为1.A .1B .2C .3D .48. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了A .6里B .12里C .24里D .96里9.已知是函数(且)的三个零点,则的可能取值有( )A .0B .1C .2D .310. 设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.:过空间中任意三点有且仅有一个平面.:若空间两条直线不相交,则这两条直线平行.:若直线平面,直线平面,则.则下述命题中是真命题的有( )A.B.C.D.11.若,且,,则( )A.B.C.D.12. 已知直线交抛物线于两点,且抛物线的焦点为,则( )A.的最小值为B .若,则C.可能是直角D .为定值13.已知正四面体的棱长为2,若球O 与正四面体的每一条棱都相切,点P 为球面上的动点,且点P 在正四面体面ACD 的外部(含正四面体面ACD表面)运动,则的取值范围为______.14. 若函数的反函数为,则不等式的解集为______.15. 有一批同规格的产品,由甲、乙、丙三家工厂生产,其中甲、乙、丙工厂分别生产3000件、3000件、4000件,而且甲、乙、丙工厂的次品率依次为6%、5%、5%,现从这批产品中任取一件,则四、解答题(1)取到次品的概率为____________;(2)若取到的是次品,则其来自甲厂的概率为____________.16. 筒车(chinese noria )亦称“水转筒车”.一种以水流作动力,取水灌田的工具.据史料记载,筒车发明于隋而盛于唐,距今已有1000多年的历史.这种靠水力自动的古老筒车,在家乡郁郁葱葱的山间、溪流间构成了一幅幅远古的田园春色图.水转筒车是利用水力转动的筒车,必须架设在水流湍急的岸边.水激轮转,浸在水中的小筒装满了水带到高处,筒口向下,水即自筒中倾泻入轮旁的水槽而汇流入田.某乡间有一筒车,其最高点到水面的距离为,筒车直径为,设置有8个盛水筒,均匀分布在筒车转轮上,筒车上的每一个盛水筒都做逆时针匀速圆周运动,筒车转一周需要,如图,盛水筒A (视为质点)的初始位置距水面的距离为.(1)盛水筒A经过后距离水面的高度为h (单位:m ),求筒车转动一周的过程中,h 关于t 的函数的解析式;(2)盛水筒B (视为质点)与盛水筒A 相邻,设盛水筒B 在盛水筒A 的顺时针方向相邻处,求盛水筒B 与盛水筒A 的高度差的最大值(结果用含的代数式表示),及此时对应的t .(参考公式:,)17.已知数列满足,且.(1)证明:为等比数列,并求的通项公式;(2)求的前n 项和.18. 已知圆,点圆上一动点,,点在直线上,且,记点的轨迹为曲线.(1)求曲线的方程;(2)已知,过点作直线(不与轴重合)与曲线交于不同两点,线段的中垂线为,线段的中点为点,记与轴的交点为,求的取值范围.19. 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.假设两人射击是否击中目标,互不影响;每次射击是否击中目标,互不影响.(1)记甲击中目标的次数为X ,求X 的分布列;(2)在①甲恰好比乙多击中目标2次,②乙击中目标的次数不超过2次,③甲击中目标3次且乙击中目标2次这三个条件中任取一个,补充在横线中,并解答问题.求___________事件的概率.(注:如果选择多个条件分别解答,按第一个解答计分)20. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知,∠B =45°.(1)求边BC 的长以及三角形ABC 的面积;(2)在边BC 上取一点D,使得,求tan ∠DAC 的值.21.设数列的前项和为,且满足,.(1)求(用表示);(2)求证:当时,不等式成立.。
云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题
一、单选题二、多选题1. 已知集合,若,则实数的取值范围是( )A.B.C.D.2. 已知,则a ,b ,c 的大小关系为( )A.B.C.D.3. 已知集合,,则A.B.C.D.4. 已知,两点都在以PC 为直径的球O 的球面上,,,若球O 的体积为,则异面直线PB 与AC 所成角的余弦值为( )A.B.C.D.5.已知,若,则( )A .992B .-32C .-33D .4966. 4月26日,2023北京大兴半程马拉松暨第七届“花绘北京悦跑大兴”半程马拉松赛新闻发布会举行.此次赛事由北京市大兴区人民政府主办,大兴区体育局、大兴区魏善庄镇人民政府共同承办,将于5月21日鸣枪开跑.据了解,本届赛事赛道起、终点设在魏庄村,赛道途经北京市半壁店村,穿过北京月季文化产业园、中国古老月季园、宜德源田野文化园等多个月季主题园区和森林氧吧,选手可在奔跑过程中,感受月季为小镇带来的变化.小张为参加“花绘北京·悦跑大兴”半程马拉松赛,每天坚持健身运动.依据小张2022年1月至2022年11月期间每月跑步的里程(单位:十公里)数据,整理并绘制成折线图,根据该折线图,下列结论正确的是()A .月跑步里程逐月增加B .月跑步里程的极差小于18C.月跑步里程的分位数为7月份对应的里程数D .1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更大7. 已知集合,则A.B.C.D.8. 已知:,则复数z 在复平面内对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限9. 设有一组圆,,下列四个命题正确的是( )A .存在,使得圆与轴相切B .存在,使得圆与圆有公共点C .存在一条直线与所有的圆均相交D .存在,使得圆经过原点10.已知点在棱长为的正方体的表面上运动,且四面体的体积恒为,则下列结论正确的为( )A.的轨迹长度为B.四面体的体积最大值为云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题三、填空题四、解答题C .二面角的取值范围为D.当的周长最小时,11. 《九章算术》中,将上、下底面为直角三角形的直三棱柱叫做堑堵,在如图所示的堑堵中,,则().A.B.C .向量在向量上的投影向量为D .向量在向量上的投影向量为12.等差数列的前项和为,,,则( )A.B.C .当时,的最小值为D.13. 如图,DE是边长为的正三角形ABC 的一条中位线,将△ADE 沿DE翻折至,当三棱锥的体积最大时,四棱锥外接球O 的表面积为__________;过EC 的中点M 作球O 的截面,则所得截面圆面积的最小值是__________.14.已知函数,则________;满足的的取值范围为________.15.关于函数,有下列命题:①由可得必是的整数倍;②的表达式可改写为;③的图象关于点对称;④的图象关于直线对称.其中正确的命题的序号是_____________.(注:把你认为正确的命题的序号都填上)16. 已知双曲线:的一条渐近线方程为,焦点到渐近线的距离为1.(1)求双曲线的标准方程.(2)已知斜率为的直线与双曲线交于轴上方的A ,两点,为坐标原点,直线,的斜率之积为,求的面积.17. 设函数.(1)画出的图象;(2)若,求的最小值.18.已知的内角、、的对边分别为、、,已知.(1)求;(2)若,,求的面积.19. 已知函数在时取到极大值.(1)求实数a、b的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数t的取值范围.20. 如图,在平行四边形中,,分别过点作直线,垂直平面,且,.(1)求证:平面;(2)求二面角的平面角的正弦值.21. 某中学对高一年级学生进行体质测试(简称体测),随机抽取了120名学生的体测结果等级(“良好以下”或“良好及以上”)进行统计,并制成如图所示的列联表.良好以下良好及以上合计男40女10合计90120(1)将列联表补充完整;计算并判断是否有95%的把握认为本次体测结果等级与性别有关系;(2)事先在本次体测等级为“良好及以上”的学生中按照性别采用分层抽样的方式随机抽取了6人.若从这6人中随机抽取2人对其体测指标进行进一步研究,求抽到的2人中至少有1名女生的概率.附表及公式:0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.82 8其中,.。
高考数学模拟复习试卷试题模拟卷12313
高考模拟复习试卷试题模拟卷【考情解读】1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义. 【重点知识梳理】 1.向量的有关概念名称 定义备注向量 既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量 长度为零的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a|a|平行向量 方向相同或相反的非零向量 0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量 长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定 义 法则(或几何意义) 运算律加法求两个向量和的运算(1)交换律:a +b =b +a. (2)结合律: (a +b)+c =a +(b +c)减法 求a 与b 的相反向量 -b 的和的a -b =a +(-b)运算叫做a与b的差数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.【高频考点突破】考点一平面向量的有关概念【例1】给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB→=DC→是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③ B.②④ C.③④ D.②③④【答案】A【规律方法】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【变式探究】给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4【答案】C考点二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与B D 交于点O ,AB →+AD →=λAO →,则λ=________.【答案】(1)D(2)2规律方法 (1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【变式探究】 (1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0【答案】(1)D(2)A考点三 共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【规律方法】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【变式探究】 (1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.【答案】(1)C(2)3考点五 方程思想在平面向量的线性运算中的应用数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.【例4】如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b.试用a 和b 表示向量OM →.【真题感悟】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4( 。
2023年普通高等学校招生全国统一考试高三数学仿真模拟卷+答案解析(附后)
2023年普通高等学校招生全国统一考试高三数学仿真模拟卷✽一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则的子集共有( )A. 2个B. 3个C. 4个D. 8个2.已知复数,i 为虚数单位,则( )A. 1B.C.D.3.在中,记,,则( )A. B. C. D.4.已知函数,则的单调递增区间为( )A. B. C. D.5.如图,已知正四棱锥的底面边长和高分别为2和1,若点E是棱PD的中点,则异面直线PA 与CE所成角的余弦值为( )A. B. C. D.6.某芯片制造厂有甲、乙、丙三条生产线均生产5 nm规格的芯片,现有25块该规格的芯片,其中甲、乙、丙生产的芯片分别为5块,10块,10块,若甲、乙、丙生产该芯片的次品率分别为,,,则从这25块芯片中任取一块芯片,是正品的概率为( )A. B. C. D.7.已知若存在,使不等式有解,则实数m的取值范围为( )A. B.C. D.8.已知a ,b ,,且,,,其中e 是自然对数的底数,则( )A.B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.空气质量指数大小分为五级,指数越大说明污染的情况越严重,对人体危害越大,指数范围分别对应“优”“良”“轻度污染”“中度污染”“重污染”五个等级.如图是某市连续14天的空气质量指数趋势图,下面说法正确的是( )A. 这14天中有5天空气质量指数为“轻度污染”B. 从2日到5日空气质量越来越好C. 这14天中空气质量的中位数是D. 连续三天中空气质量指数方差最小是5日到7日10.密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“”,478密位写成“”.若,则角可取的值用密位制表示可能是( )A.B.C.D.11.已知点A ,B 分别是双曲线C :的左,右顶点,点P 是双曲线C 的右支上位于第一象限的动点,记PA 、PB 的斜率分别为、,则下列说法正确的是( )A. 双曲线C 的离心率为B. 双曲线C 的焦点到其渐近线的距离为1C.为定值D. 存在点P ,使得12.已知,,若关于x的方程有四个不同的实数根,则满足上述条件的a值可以为( )A. B. C. D. 1三、填空题:本题共4小题,每小题5分,共20分。
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三) (2)
一、单选题二、多选题1. 在四边形中,若,且,则四边形是A .矩形B .菱形C .正方形D .梯形2. 已知函数及其导函数的定义域均为,且为奇函数,,,则( )A.B.C.D.3.设,随机变量的分布列是1则当在内增大时,( )A .增大B.减小C.先减小后增D .先增大后减小4. 抛物线,焦点为,抛物线上一点,以为圆心,以为半径的圆与准线相切,与抛物线的相交弦长为6,则为( )A .5B .7C .6D .35. 已知,,则下列说法中,正确的是( )A .,B .,C .,D .,6. 国庆阅兵式上举行升旗仪式,在坡度为的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,某同学在该列的第一排和最后一排测得旗杆顶端的仰角分别为和,第一排和最后一排的距离为米,则旗杆的高度约为()A .米B .22米C .30米D .35米7. 已知为奇函数,为偶函数,若当时,,则( )A.B .0C .1D .28.已知函数,则( ).A.B.C.D.9.定义为数列的“优值”.已知某数列的“优值”,前n 项和为,下列关于数列的描述正确的有( )A .数列为等差数列B .数列为递增数列2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三) (2)2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三) (2)三、填空题四、解答题C.D.,,成等差数列10. 已知函数的部分图象如图所示,下列说法正确的是()A .函数的最小正周期为B.函数的图象关于直线对称C .函数在单调递减D .该图象向右平移个单位可得的图象11. 下列命题中正确的是( ).A .已知随机变量,且满足,则B .已知一组数据:7,8,4,7,2,4,5,8,6,4,则这组数据的第60百分位数是6C .已知随机变量,则D .某学校有A ,B 两家餐厅,某同学第1天午餐时间随机地选择一家餐厅用餐,如果第1天去A 餐厅,那么第2天去A 餐厅的概率为0.8,如果第一天去B 餐厅,那么第2天去B 餐厅的概率为0.4,则该同学第2天去B 餐厅的概率为0.312. 关于函数,,下列说法正确的是( )A .当时,在处的切线方程为B .当时,存在唯一极小值点且C .对任意,在上均存在零点D .存在,在上有且只有一个零点13. 已知单位向量,的夹角为,则________.14.已知数列满足,.记,则数列的前项和_______.15. 设,分别为双曲线的左、右焦点,过的直线交双曲线的左支于,两点,且,,,则的面积为____________.16. 如图,正方体的棱长为2.(1)证明:平面;(2)求直线与平面所成角的正弦值.17. 已知数列前项和为,且.(1)求;(2)设,求数列的前项和.18. 在三棱锥中,平面平面,,.设D,E分别为PA,AC中点.(Ⅰ)求证:平面PBC;(Ⅱ)求证:平面PAB;(Ⅲ)试问在线段AB上是否存在点F,使得过三点D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.19. 已知函,.(1)讨论在的单调性;(2)是否存在,且,使得曲线在和处有相同的切线?证明你的结论.20. 厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为从中任意取出 3件进行检验,求至少有件是合格品的概率;(2)若厂家发给商家件产品,其中有不合格,按合同规定商家从这件产品中任取件,都进行检验,只有件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.21. 记为数列的前项和,已知是公差为2的等差数列.(1)求的通项公式;(2)证明:.。
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)试题
2023年普通高等学校招生全国统一考试·仿真模拟卷数数学(一)注意事项:1.本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2,选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区城均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区城均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}24x A x =<,{}1B =≤,则A B = ()A.()0,2 B.[)1,2 C.[]1,2 D.()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为()A.1B.1-C.15D.15-3.()()51223x x -+的展开式中,x 的系数为()A.154B.162C.176D.1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-()A.83-B.83 C.38-D.385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)()A.312750cmB.312800cm C .312850cm D.312900cm 6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =()A.2B.1C.1- D.07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==,平面PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为()A .4πB.8πC.136π9D.68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为()A.B.24C.924 D.922二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知函数()()1cos 02f x x x ωωω=+>的图像关于直线6x π=对称,则ω的取值可以为()A.2B.4C.6D.810.在菱形ABCD 中,2AB =,60DAB ∠= ,点E 为线段CD 的中点,AC 和BD 交于点O ,则()A.0AC BD ⋅=B.2AB AD ⋅=C.14OE BA ⋅=-D.52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是()A.事件A 发生的概率为15B.事件B 发生的概率为310C.事件C 发生的概率为335D.1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是()A.若0d =,则函数()f x 为奇函数B.函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D.若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题:本题共4小题,每小题5分,共20分.13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______.14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x>的实数x 的取值范围是______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-.(1)判断ABC 的形状;(2)若a =,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C -中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1A CD ;(2)若1BC =,求四棱锥1C A DBE -的体积;(3)求直线1BC 与平面1A CE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x y a b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=.(1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a x ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.。
2023年高考数学模拟试题(三)参考答案
2023年高考数学模拟试题(三)参考答案 一㊁选择题1.C 提示:因为1-iz =2+i ,所以z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=12+32i ,所以z =12-32i㊂2.D 提示:因为A =x |-2<x <5 ,B =1,3,5, ,所以A ɘB =1,3 ㊂3.D 提示:因为a =l o g 20.4<l o g 21=0,b =20.6>20=1,0<c =0.82<1,所以a <c <b ㊂4.B 提示:抛物线y 2=2p x p >0 的焦点为p 2,0,在双曲线x 2-y 2=p 中,c 2=2p ,c =2p ,焦点为(2p ,0),(-2p ,),所以p 2=2p ,解得p =0(舍)或p =8㊂5.C 提示:基本事件总数为C 24㊃A 33=36, 甲,乙没有被分配到同一个会议中心 的对立事件是 甲,乙被分配到同一个会议中心 ,因为 甲,乙被分配到同一个会议中心包含的基本事件数为C 22㊃A 33=6,所以 甲,乙没有被分配到同一个会议中心 的概率为1-636=56㊂6.B 提示:因为øA C B =120ʎ,A B =3,所以әA B C 的外接圆的半径r =32s i n 120ʎ=1,所以三棱锥O A B C 的高h =32-r 2=22㊂在әAB C 中,由余弦定理得A B 2=A C 2+B C 2-2A C ㊃B C c o s 120ʎ,即3=(A C +B C )2-A C ㊃B C ,所以A C ㊃B C=A C +B C2-3=1,所以S әA B C =12A C ㊃BC s i n 120ʎ=34,所以V 三棱锥O -A B C =13S әA B C ㊃h =66㊂7.B 提示:过滤第1次污染物的含量减少20%,则为1.2(1-0.2);过滤第2次污染物的含量减少20%,则为1.2(1-0.2)2;过滤第3次污染物的含量减少20%,则为1.2(1-0.2)3; ;过滤第n 次污染物的含量减少20%,则为1.2(1-0.2)n㊂要求废气中该污染物的含量不能超过0.2m g/c m 3,则1.2(1-0.2)nɤ0.2,即54nȡ6,所以l g 54 nȡl g 6,即n l g 108 ȡlg 2+l g 3,即n (1-3l g 2)ȡl g 3+l g 2,即n ȡl g 3+l g 21-3l g 2,因为l g 2ʈ0.3,l g 3ʈ0.477,所以n ȡ7.77,因为n ɪN *,所以过滤次数n 至少为8㊂8.B 提示:因为øC =90ʎ,A B =6,所以C A ң㊃C B ң=0,|C A ң+C B ң|=|C A ң-C B ң|=|B A ң|=6,所以P A ң㊃P B ң=P C ң+C Aң㊃P C ң+C Bң =P C ң2+P C ң(C A ң+C B ң)+C A ң㊃C B ң=4+P C ң(C A ң+C B ң),所以当P C ң与C A ң+C B ң的方向相同时,P C ң(C A ң+C B ң)取得最大值2ˑ6=12,所以P A ң㊃P B ң的最大值为16㊂9.C 提示:用收入减去支出,求得每月收益(万元),如表1所示:表1月份123456789101112收益203020103030604030305030所以7月收益最高,A 选项说法正确;4月收益最低,B 选项说法正确;后6个月收益比前6个月收益增长240-140=100(万元),C 选项说法错误;1~6月总收益140万元,7~12月总收益240万元,所以前6个月收益低于后6个月收益,D 选项说法正确㊂10.A 提示:已知函数f x=s i n x ㊃s i n x +π3-14=s i nx㊃12s i n x +32c o s x-14=12si n 2x -π6,因为x ɪm ,n ,所以2x -π6ɪ2m -π6,2n -π6,又因为值域为-12,14 ,即-12ɤ12s i n 2x -π6 ɤ14,所以-1ɤs i n 2x -π6 ɤ12㊂所以2n -π6-2m -π6 m a x=2n -2m m a x=π6--7π6 =4π3,所以n -m m a x=2π3;2n -π6-2m -π6 m i n=2n -2m m i n=π6--π2 =2π3,所以n -m m i n=π3㊂所以n -m ɪπ3,2π3 ,所以n -m 的值不可能为3π4㊁5π6和11π12㊂11.B 提示:由双曲线x 2a 2-y2b2=1(a >0,b >0)的右顶点A (a ,0),双曲线的渐近线方程为y =ʃb a x ,不妨取y =bax ,若存在过N (3a ,0)的直线与双曲线的渐近线交于一点M ,使得әA MN 是以M 为直角顶点的直角三角形,即以A N 为直径的圆与渐近线相交或相切,即b ㊃2aa 2+b2ɤa ,即a 2ȡ3b 2,即a 2ȡ3(c 2-a 2),解得1<e ɤ233,所以离心率存在最大值233㊂图112.D 提示:如图1,在正方体A B C D A 1B 1C 1D 1中,连接A 1B ,C D 1,因为N ,P 分别是C C 1,C 1D 1的中点,所以C D 1ʊP N ,又因为C D 1ʊA 1B ,所以A 1B ʊP N ,所以A 1,B ,N ,P 四点共面,即当Q 与A 1重合时,B ,N ,P ,Q 四点共面,故选项A 正确;连接P Q ,A 1C 1,当Q 是D 1A 1的中点时,P Q ʊA 1C 1,因为A 1C 1ʊMN ,所以P Q ʊMN ,因为P Q ⊄平面B MN ,MN ⊂平面B MN ,所以P Q ʊ平面M B N ,故选项B 正确;连接D 1M ,D 1N ,D 1B ,因为D 1M ʊB N ,所以V 三棱锥P M B N =V 三棱锥M P B N =V 三棱锥D P B N =V 三棱锥B D P N =13ˑ12ˑ1ˑ1ˑ2=13,故选项C 正确;分别取B B 1,D D 1的中点为E ,F ,构造长方体M A D F E B C N ,则经过C ,M ,B ,N 四点的球即为长方体M A D F E B C N 的外接球,设所求外接球的直径为2R ,则长方体M A D F E B C N 的体对角线即为所求球的直径,即2R2=A B 2+B C 2+C N 2=4+4+1=9所以经过C ,M ,B ,N 四点的球的表面积为4πR 2=9π,故选项D 错误㊂二、填空题13.45 提示:因为展开式中只有第6项的二项式系数最大,所以共有11项,则n =10,则x -1x2n 的通项公式为T r +1=C r10㊃x10-r-1x 2r=C r 10x10-r2-2r -1r㊂由10-r 2-2r =0,得r =2,即常数项为C 210ˑ(-1)2=45㊂14.8,+ɕ 提示:因为x +2y =2x+1y +7,所以x +2y -7=2x +1y,所以(x +2y -7)㊃(x +2y )=2x +1y㊃(x +2y )=4+4y x +x y ȡ4+24=8,当且仅当x =2y =4,即x =4,y =2时,等号成立,设t =x +2y ,则t (t -7)ȡ8,即t 2-7t -8ȡ0,解得t ȡ8,或t ɤ-1(舍),所以x +2y 的取值范围为8,+ɕ ㊂15.-79提示:由正弦定理得3c o s C ㊃(s i n A c o s C +s i n C c o s A )+s i n B =0,即3c o s C s i n (A +C )+s i n B =0,即3c o s C ㊃s i n B +s i n B =0,因为s i n B ʂ0,所以c o s C =-13,所以s i n π2-2C=c o s 2C =2c o s 2C -1=-79㊂16.e ,+ɕ 提示:令F x =f (x )+f (-x ),则F -x =F x ,所以F x 为偶函数㊂由题意可知,当x >0时,F (x )有两个零点㊂当x >0时,-x <0,f (-x )=e x-2k x +k ,F (x )=e x (x -1)+e x-2k x +k =x e x -2k x +k ㊂由F (x )=0得x e x =2k x -k ,即y =x e x与y =2k x -k 在(0,+ɕ)内有两个交点,直线y =2k x -k 恒过点12,0,函数y =x e x 的导数y '=(x +1)e x>0在(0,+ɕ)上恒成立,所以函数y =x e x在0,+ɕ 上单调递增,作出函数y =x e x与图2直线的大致图像,如图2所示,若y =xe x与直线y =2k x -k 相切,设切点为t ,e t,则切线斜率为t +1 e t ,切线方程为y -t e t=(t +1)e t(x -t ),因为切线过点12,0,所以-t e t=(t +1)e t12-t ,解得t =1,或t =-12(舍),故切线的斜率为2k =2e,即k =e ,所以当k >e 时,直线与曲线有两个交点㊂综上所述,实数k 的取值范围为(e ,+ɕ)㊂三、解答题17.(1)由题知b 1+b 2+b 3=7b 1,则1+q +q 2=7,因为q >0,所以q =2,因为等差数列a n的前三项和为12,所以3a 2=12,所以b 2=a 2=4,所以2b 1=4,则b 1=2,所以a 1=2,d =2,所以a n =2n ,b n =2n㊂(2)由题知c n的前20项和S 20=(a 1+a 3+ +a 19)+(b 2+b 4+ +b 20)=(2+6+ +38)+(2+4+ +210)=10(2+38)2+2(1-210)1-2=2246㊂18.(1)在әB A D 中,A B =2,A D =1,øB A D =60ʎ,由余弦定理得B D 2=A B 2+A D 2-2A B ㊃A D ㊃c o s øB A D =3,所以B D=3,所以A B 2=A D 2+B D 2,所以A D ʅB D ,所以B D ʅBC ㊂又B B 1ʅ面A B CD ,所以B B 1ʅB D ㊂因为B B 1ɘB C =B ,所以B Dʅ面B B 1C 1C ㊂又B E ⊂面B B 1C 1C ,所以B D ʅB 1E ㊂(2)因为D D 1ʅ面A B C D ,A D ʅB D ,所以以D 为坐标原点,D A ,D B ,D D 1所在直线分别为x 轴,y 轴,z 轴,建立如图3所示的图3空间直角坐标系D x y z ,则D (0,0,0),B 1(0,3,2),E (-1,3,1),F12,32,0,所以D B 1ң=(0,3,2),D E ң=(-1,3,1),D F ң=12,32,0㊂设平面B 1D E 的一个法向量为n 1=(x 1,y 1,z 1),则n 1㊃D B 1ң=3y 1+2z 1=0,n 1㊃D E ң=-x 1+3y 1+z 1=0,令z 1=3,得n 1=-3,-2,3㊂设平面F D E 的一个法向量为n 2=(x 2,y 2,z 2),则n 2㊃D F ң=12x 2+32y 2=0,n 2㊃D E ң=-x 2+3y 2+z 2=0,令y 2=1,得n 2=-3,1,-23㊂所以c o s <n 1,n 2>=n 1㊃n 2|n 1||n 2|=-5410=-108㊂所以二面角B 1-D E -F 的正弦值为1--1082=368㊂19.(1)由题意可得x =1+2+3+4+55=3,y=9+11+14+26+205=16,所以ðni =1(x i-x )(y i -y )=(-2)ˑ(-7)+(-1)ˑ(-5)+0ˑ(-2)+1ˑ10+2ˑ4=37,ðni =1(x i-x )2ðni =1(y i -y )2=[(-2)2+(-1)2+0+1+22]ˑ[(-7)2+(-5)2+(-2)2+102+42]=1940,所以r =371940ʈ0.84,故科技创新和市场开发后的收益y 与科技创新和市场开发的总投入x 具有较强的相关性㊂(2)由题中表格及参考公式可得K 2=10045ˑ20-25ˑ10255ˑ45ˑ70ˑ30ʈ8.129>6.635,故有99%的把握认为消费者满意程度与性别有关㊂(3)易知9人中满意的有5人,不满意的有4人,由题意可知,X 的所有可能取值为0,1,2,3,4㊂P (x =0)=C 44C 49=1126;P (x =1)=C 15C 34C 49=1063;P (x =2)=C 25C 24C 49=1021;P (x =3)=C 35C 14C 49=2063;P (x =4)=C 45C 49=5126㊂所以X 的分布列为表2:表2X 01234P11261063102120635126故E X =0ˑ1126+1ˑ1063+2ˑ1021+3ˑ2063+4ˑ5126=209㊂20.(1)由题意知c =2㊂设A x 1,y 1 ,B x 2,y 2,则x 21a 2+y 21b 2=1,x 22a2+y 22b 2=1,两式相减得x 21-x 22a 2+y 21-y22b2=0,即(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0,即(y 1+y 2)(y 1-y 2)(x 1+x 2)(x 1-x 2)=-b 2a 2,所以-b2a2=-13,即a 2=3b 2,而a 2-b 2=4,所以a 2=6,b 2=2㊂所以椭圆C 的方程为x 26+y22=1㊂(2)当直线m 的斜率存在时,设直线m :y =k (x +2),设M x 3,y 3 ,N x 4,y 4,联立y =k (x +2),x 26+y 22=1,消去y 整理得3k 2+1x 2+12k 2x +12k 2-6=0,则x 3+x 4=-12k 23k 2+1,x 3x 4=12k 2-63k 2+1㊂所以MN =1+k2x 3-x 4=1+k2(x 3+x 4)2-4x 3x 4=26(1+k 2)3k 2+1㊂点O 到直线m 的距离为d =2k1+k2㊂由O M ң㊃O N ң=463t a n øM O N,得|O M ң|㊃|O N ң|c o s øM O N =46c o s øM O N 3s i n øM O N㊂所以|O M ң|㊃|O N ң|s i n øM O N =463,所以S әM O N =263㊂因为S әM O N =12MN d =6(1+k 2)3k 2+1㊃2k1+k 2,所以6(1+k 2)3k 2+1㊃2k 1+k2=263,解得k =ʃ33,所以直线m :y =ʃ33(x +2)㊂当直线m 的斜率不存在时,直线m 的方程为x =-2,此时S әM O N =263,满足题意㊂综上可得,直线m 的方程为x ʃ3y +2=0,或x =-2㊂21.(1)由题知函数f x的定义域为0,+ɕ ,令f 'x =e -1x =0,得x =1e㊂当x ɪ0,1e时,f'x <0;当x ɪ1e ,+ɕ 时,f'x >0㊂所以f x 在0,1e 上单调递减,在1e,+ɕ 上单调递增㊂①当0<t <1e 时,显然t +1>1e,所以f (x )在t ,1e上单调递减,在1e ,t +1 上单调递增,此时f x m i n=f 1e =2;②当t ȡ1e时,f x 在t ,t +1 上单调递增,故f x m i n =f (t )=e t -l n t ㊂综上可得,当0<t <1e时,f x m i n =2;当t ȡ1e时,f x m i n =e t -l n t ㊂(2)先证当x >0时,e xȡe x ㊂令h x =e x -e x ,则h 'x=e x-e ,由h '(x )=0,得x =1㊂当x ɪ(0,1)时,h 'x <0;当x ɪ(1,+ɕ)时,h 'x >0㊂故h x 在(0,1)上单调递减,在1,+ɕ 上单调递增㊂所以h (x )m i n =h (1)=0,所以e xȡe x ㊂当x >0时,要证x f x <g (x ),即证e x 2-x l n x <x e x+1e,结合e x ȡe x ,若e x 2-x l n x ɤe x 2+1e成立,则原不等式成立㊂由e x 2-x l n x ɤe x 2+1e ⇒-x l n x ɤ1e⇒x l n x ȡ-1e㊂令m (x )=x l n x ,则m 'x =l n x +1,由m '(x )=0,得x =1e ㊂当x ɪ0,1e时,m 'x <0;当x ɪ1e ,+ɕ时,m 'x >0㊂故m x在0,1e上单调递减,在1e,+ɕ 上单调递增㊂所以m x m i n =m 1e =-1e ,即x l n x ȡ-1e㊂因为e xȡe x 与x l n x ȡ-1e取等号的条件不一致,故当x >0时,e x 2-x l n x <x e x+1e恒成立,即当x >0时,x f x <g (x )㊂22.(1)将曲线C 1,C 2的极坐标方程ρ=2s i n θ,ρc o s θ-π4=2化为直角坐标方程分别为x 2+y -1 2=1,x +y -2=0,得交点坐标为(0,2),(1,1),所以曲线C 1,C 2的交点的极坐标为2,π2 ,2,π4㊂(2)把直线l的参数方程x =-2+32t ,y =12t ,代入x 2+y -1 2=1,化简整理得t 2-(23+1)t +4=0,则t 1t 2=4,所以P A ㊃P B =4㊂23.(1)若a =1,则f x =x +1+x -1>2㊂当x ȡ1时,x +1+x -1>2,即x >1,可得x >1;当-1ɤx <1时,x +1+1-x >2,无解;当x <-1时,-x -1-x +1>2,即x <-1,可得x <-1㊂综上可得,不等式f (x )>2的解集为-ɕ,-1 ɣ1,+ɕ ㊂(2)对任意实数x ɪ2,3 ,都有f x ȡ2x -3成立,即a x +1+(x -1)ȡ2x -3成立,即a x +1ȡx -2成立,即a x +1ȡx -2,或a x +1ɤ2-x 成立,即a ȡ1-3x ,或a ɤ1x -1成立,所以a ȡ1-3xm a x,或a ɤ1x-1m i n㊂因为函数y =1-3x在2,3 上单调递增,y =1x-1在[2,3]上单调递减,所以y =1-3x 在2,3 上的最大值为0,y =1x-1在2,3 上的最小值为-23㊂故a ȡ0,或a ɤ-23,即实数a 的取值范围为-ɕ,-23ɣ0,+ɕ ㊂(责任编辑 王福华)。
2023年全国新高考数学仿真模拟卷(一)数学试题(1)
一、单选题1. 已知α,β是两个不同的平面,m ,n 是两条不同的直线,则以下命题一定正确的序号是( )①如果m ⊥n ,m ⊥α,n ⊥β,那么α⊥β②如果,,那么③如果,,那么④如果m ⊥n ,m ⊥α,,那么α⊥βA .①②B .①②③C .②③④D .③④2.设为抛物线:的焦点,为抛物线上的一点,为原点,使为等腰三角形的点的个数为( )A.B.C.D.3. 如图所示,是定义在区间()上的奇函数,令,并有关于函数的四个论断:①对于内的任意实数(),恒成立;②若,则函数是奇函数;③若,,则方程必有3个实数根;④若,则与有相同的单调性.其中正确的是A .②③B .①④C .①③D .②④4. 为了解“双减”政策实施后学生每天的体育活动时间,研究人员随机调查了该地区10000名学生每天进行体育运动的时间,将所得数据统计如下图所示,则可以估计该地区学生每天体育活动时间的平均数约为()A .55分钟B .56.5分钟C .57.5分钟D .58.5分钟5. 偶函数在上是增函数,若,则不等式的解集为A.B.C .RD.6. 已知双曲线(,)与直线有交点,则双曲线的离心率的范围是A.B.C.D.7. 在复平面内,复数,则的虚部是( )A.B .1C .2D.8.若圆锥曲线的焦点在圆上,则常数( )2023年全国新高考数学仿真模拟卷(一)数学试题(1)2023年全国新高考数学仿真模拟卷(一)数学试题(1)二、多选题三、填空题四、解答题A .4B .-6C .4或-6D.或9. 已知函数,,直线分别与曲线和曲线相切于点,,且直线也与曲线,都相切,则( )A.B.C.D.10.已知函数图象上的点都满足,则下列说法中正确的有( )A.B .若直线与函数的图象有三个交点,且满足,则直线的斜率为.C .若函数在处取极小值,则.D .存在四个顶点都在函数的图象上的正方形,且这样的正方形有两个.11. 在三棱锥中,,,,分别是,,,的重心.则下列命题中正确的有( )A .平面B.C .四条直线,,,相交于一点D.12. 已知向量,,则下列结论正确的是( )A .若,则B .若,则C .若,则D .若,则与的夹角为锐角13. 在几何学中,截角立方体是一种十四面体,由八个正三角形与六个正八边形组成,共有个面,个顶点以及条边,是一种阿基米德立体,属于半正多面体.下图是一个所有棱长均为的截角立方体,则该截角立方体的外接球的表面积为_____.14. 袋中有6个大小相同的球,其中1个红球,m 个白球,n 个黑球,现依次取球,每次取出一个,取出不放回,直到取出的球中有两种不同颜色的球时结束,已知取到1个红球1个白球的概率为,则__________,用表示终止时取球的次数,则随机变量的数学期望__________.15.在中,E 为边BC 中点,若,的外接圆半径为3,则的最大值为________.16. 在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现,例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,和一样不加区分为开粉色花,为开白色花,生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父本的遗传因子和一个母本的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的,可以把第代的遗传设想为第次试验的结果,每一次试验就如同抛一枚均匀的硬币,比如对具有性状的父本来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母本也一样,父本、母本各自随机选择得到的遗传因子再配对形成子代的遗传性状,假设三种遗传性状,(或),在父本和母本中以同样的比例出现,则在随机杂交试验中,遗传因子被选中的概率是,遗传因子被选中的概率是,称、分别为父本和母本中遗传因子和的频率,实际上是父本和母本中两个遗传因子的个数之比,基于以上常识回答以下问题:(1)如果植物的上代父本、母本的遗传性状都是,后代遗传性状为,(或),的概率分别是多少?(2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父本和母本中仅有遗传性状为,(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为,被选中的概率为,其中、为定值且,求杂交所得子代的三种遗传性状,(或),所占的比例,,;(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除的个体.假设得到的第代总体中3种遗传性状,(或),所占的比例分别为:,,,设第代遗传因子和的频率分别为和,已知有以下公式,,(ⅰ)证明是等差数列;(ⅱ)求,,的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?17. 设圆的方程为(1)求该圆的圆心坐标及半径.(2)若此圆的一条弦AB的中点为,求直线AB的方程.18. 如图①,在直角梯形ABCD中,,四边形ABEF是正方形:现将正方形ABEF沿AB折起到四边形的位置,使平面平面ABCD,M为的中点,如图②.(1)证明:直线DC与直线相交;(2)求直线BM与平面所成角的正弦值.19. 如图,在四棱锥中,底面是平行四边形,,侧面底面,,,,分别为,的中点,点在线段上.(Ⅰ)求证:平面.(Ⅱ)若为的中点,求证:平面.(Ⅲ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.20. 已知椭圆的左焦点,点在上,过的直线与交于,两点.(1)求的标准方程;(2)当时,求直线的方程;(3)已知点,证明:以点为圆心且与直线相切的圆必与直线相切.21. 北京时间2021年11月7日凌晨1点,来自中国赛区的EDG战队,捧起了英雄联盟S11全球总决赛的冠军奖杯.据统计,仅在bilibili平台,S11总决赛的直播就有3.5亿人观看.电子竞技作为正式体育竞赛项目已经引起越来越多的年轻人关注.已知该项赛事的季后赛后半段有四支战队参加,采取“双败淘汰赛制”,对阵表如图,赛程如下:第一轮:四支队伍分别两两对阵(即比赛1和2),两支获胜队伍进入胜者组,两支失败队伍落入败者组.第二轮:胜者组两支队伍对阵(即比赛3),获胜队伍成为胜者组第一名,失败队伍落入败者组;第一轮落入败者组两支队伍对阵(即比赛4),失败队伍(已两败)被淘汰(获得殿军),获胜队伍留在败者组.第三轮:败者组两支队伍对阵(即比赛5),失败队伍被淘汰(获得季军);获胜队伍成为败者组第一名.第四轮:败者组第一名和胜者组第一名决赛(即比赛6),争夺冠军.假设每场比赛双方获胜的概率均为0.5,每场比赛之间相互独立.问:(1)若第一轮队伍A和队伍D对阵,则他们仍能在决赛中对阵的概率是多少?(2)已知队伍B在上述季后赛后半段所参加的所有比赛中,败了两场,求在该条件下队伍B获得亚军的概率.。
精品解析:2023年全国新高考数学仿真模拟卷(十三)数学试题(原卷版)
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}2.=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.454.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种 D.36种5.设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.36.设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.57.正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3 B.C.1 D.8.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN=45°,则x 0的取值范围是( )A .[﹣1,1]B .[﹣,]C .[﹣,]D .[﹣,]二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列命题中,是真命题的是( )A .函数()()22231mm f x m m x--=--是幂函数的充分必要条件是2m =B .若:(0,),1ln p x x x ∀∈+∞->,则000:(0,),1ln p x x x ⌝∃∈+∞-≤C .若()()()()62601263222x a a x a x a x +=+++++++,则315a =D .若随机变量ξ服从正态分布()21,N σ,(4)0.79P ξ≤=,则(2)0.21P ξ≤-=10.已知点()()()1,2,5,2,,4A B C k ,若ABC 为直角三角形,则k 的可能取值为( ) A .1 B .2 C .3 D .511.已知直线l :20kx y k -+=和圆O :222x y r +=,则( ) A .存在k 使得直线l 与直线0l :220x y 垂直 B .直线l 恒过定点()2,0 C .若4r >,则直线l 与圆O 相交D .若4r =,则直线l 被圆O 截得的弦长的取值范围为(23,8⎤⎦12.已知圆22:(5)(5)16C x y -+-=与直线:240l mx y +-=,下列选项正确的是( ) A .直线l 与圆C 不一定相交 B .当1615m ≥时,圆C 上至少有两个不同的点到直线l 的距离为1 C .当2m =-时,圆C 关于直线l 对称的圆的方程是22(3)(3)16x y +++=D .当1m =时,若直线l 与x 轴,y 轴分别交于A ,B 两点,P 为圆C 上任意一点,当||32PB =PBA∠最大或最小二、填空题:本题共4小题,每小题5分,共20分.13.(x+a )10的展开式中,x 7的系数为15,则a=14.(5分)函数f (x )=sin (x+φ)﹣2sin φcosx 的最大值为 .15.(5分)偶函数y=f (x )的图象关于直线x=2对称,f (3)=3,则f (﹣1)= . 16.(5分)数列{a n }满足a n+1=,a 8=2,则a 1= .四、解答题(本题共6小题,共70分,其中第16题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤。
高考数学模拟复习试卷试题模拟卷2331 13
高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案(1)B(2)6 16a2解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系x′O′y′,作出△OAB 的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D 为OA 的中点),∴S △O′A′B′=12×22S △OAB =24×34a2=616a2.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm ,O′C′=2cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形答案 (1)B (2)C解析 (1)如图,几何体为三棱柱.题型二 空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.答案 (1)C (2)A (3)1∶2∶3解析 (1)由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4cm ,底面半径为2cm ,右面圆柱的高为2cm ,底面半径为3cm ,则组合体的体积V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯体积V2=π×32×6=54π(cm3),则所求比值为54π-34π54π=1027.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.(3)设正方体的棱长为a ,①正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图①所示,有2r1=a ,∴r1=a 2,S1=4πr 21=πa2.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22 C.14 D.24答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)因为C 在平面ABD 上的射影为BD 的中点O ,在边长为1的正方形ABCD 中,AO =CO =12AC =22,所以侧视图的面积等于S △AOC =12CO·AO =12×22×22=14,故选C.题型三 空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A图1 图2【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B【解析】由题意知,该等腰直角三角形的斜边长为22,斜边上的高为2,所得旋转体为同底等高的全等圆锥,所以,其体积为2142(2)223ππ⨯⨯=,故选B.7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22 【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知:2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中,1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C. 8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π3【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.【答案】12410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .7【答案】A 【解析】如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4 【答案】B【解析】由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2. 12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π 【答案】C【解析】由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π. 13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4 【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【解析】解:(1)由该四面体的三视图可知, BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1, ∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH∩平面BDC =FG ,平面EFGH∩ 平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH. 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形. 【高考押题】1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线 答案 D解析 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10答案 D解析 如图,在五棱柱ABCDE -A1B1C1D1E1中,从顶点A 出发的对角线有两条:AC1,AD1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π3 答案 D解析 正四棱柱的外接球的球心为上下底面的中心连线的中点, 所以球的半径r =222+222=1,球的体积V =4π3r3=4π3.故选D.4.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .72cm3B .90cm3C .108cm3D .138cm3 答案 B解析 该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示. V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm3).5.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()答案B解析由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故A不正确.6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.答案2π2π+17.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.答案 8π解析 由三视图知该几何体是半径为2的球被截去四分之一后剩下的几何体,则该几何体的体积V =43×π×23×34=8π.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A1B1C1中,O 、O1分别为两底面中心,D 、D1分别为BC 和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB =30, 则OD =53,O1D1=1033,由S 侧=S 上+S 下,得12×(20+30)×3DD1=34×(202+302), 解得DD1=1333, 在直角梯形O1ODD1中, O1O =DD21-OD -O1D12=43,所以棱台的高为43cm.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷13013
高考模拟复习试卷试题模拟卷【考情解读】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数. 【重点知识梳理】 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限 按项与项间 的大小关系分类 递增数列 an +1>an 其中 n ∈N*递减数列 an +1<an 常数列 an +1=an按其他 标准分类有界数列 存在正数M ,使|an|≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{an}的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{an}的前n 项和Sn ,则an =⎩⎪⎨⎪⎧S1 (n =1),Sn -Sn -1(n≥2).【高频考点突破】考点一 由数列的前几项求数列的通项【例1】根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…;(4)5,55,555,5 555,….规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【变式探究】 (1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式an =________. (2)数列{an}的前4项是32,1,710,917,则这个数列的一个通项公式是an =________. 考点二 利用Sn 与an 的关系求通项【例2】设数列{an}的前n 项和为Sn ,数列{Sn}的前n 项和为Tn ,满足Tn =2Sn -n2,n ∈N*. (1)求a1的值;(2)求数列{an}的通项公式.规律方法 数列的通项an 与前n 项和Sn 的关系是an =⎩⎪⎨⎪⎧S1,n =1,Sn -Sn -1,n≥2.当n =1时,a1若适合Sn -Sn -1,则n =1的情况可并入n≥2时的通项an ;当n =1时,a1若不适合Sn -Sn -1,则用分段函数的形式表示.【变式探究】 (1)已知数列{an}的前n 项和为Sn ,a1=1,Sn =2an +1,则Sn =()A .2n -1 B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1 D.12n -1(2)已知数列{an}的前n 项和Sn =3n2-2n +1,则其通项公式为________. 考点三 由递推关系求通项 【例3】在数列{an}中,(1)若a1=2,an +1=an +n +1,则通项an =________; (2)若a1=1,Sn =n +23an ,则通项an =________.规律方法 已知递推关系式求通项,一般用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.【变式探究】 (1)在数列{an}中,a1=1,an +1=3an +2,则它的一个通项公式为an =________. (2)设{an}是首项为1的正项数列,且(n +1)a2n +1-na2n +an +1·an =0(n =1,2,3,…),则它的通项公式an =________.考点四 数列问题中的函数思想数列的单调性问题作为高考考查的一个难点,掌握其处理的方法非常关键,由于数列可看作关于n 的函数,所以可借助函数单调性的处理方法来解决.常见的处理方法如下:一是利用作差法比较an +1与an 的大小;二是借助常见函数的图象判断数列单调性;三是利用导函数.【例4】数列{an}的通项公式是an =n2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,an 有最小值?并求出最小值. (2)对于n ∈N*,都有an +1>an.求实数k 的取值范围. 【真题感悟】【高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于.1.(·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.2.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.3.(·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式; (2)证明1a1+1a2+…+1an <32.4.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论. 5.(·安徽卷)如图1-3所示,互不相同的点A1,A2,…,An ,…和B1,B2,…,Bn ,…分别在角O 的两条边上,所有AnBn 相互平行,且所有梯形AnBnBn +1An +1的面积均相等,设OAn =an ,若a1=1,a2=2,则数列{an}的通项公式是________.图1-36.(·辽宁卷)下面是关于公差d>0的等差数列{}an 的四个命题: p1:数列{}an 是递增数列; p2:数列{}nan 是递增数列;p3:数列⎩⎨⎧⎭⎬⎫an n 是递增数列;p4:数列{}an +3nd 是递增数列. 其中的真命题为( )A .p1,p2B .p3,p4C .p2,p3D .p1,p47.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.【押题专练】1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是an 等于 ()A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π2.数列{an}满足an +1+an =2n -3,若a1=2,则a8-a4= () A .7B .6C .5D .43.数列{an}的前n 项和为Sn ,若a1=1,an +1=3Sn(n≥1),则a6等于 () A .3×44B .3×44+1C .45D .45+14.设an =-3n2+15n -18,则数列{an}中的最大项的值是 () A.163B.133C .4D .05.已知数列{an}的通项公式为an =n2-2λn(n ∈N*),则“λ<1”是“数列{an}为递增数列”的 ()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.数列{an}的通项an=nn2+90,则数列{an}中的最大项是()A.310 B.19C.119 D.10 607.已知数列{an}满足an+1=an-an-1(n≥2),a1=1,a2=3,记Sn=a1+a2+…+an,则下列结论正确的是()A.a2 014=-1,S2 014=2 B.a2 014=-3,S2 014=5C.a2 014=-3,S2 014=2 D.a2 014=-1,S2 014=58.已知数列{an}的前n项和为Sn,Sn=2an-n,则an=________.9.已知数列{an}的前n项和Sn=n2+2n+1(n∈N*),则an=________.10.数列{an}中,a1=1,对于所有的n≥2,n∈N*,都有a1·a2·a3·…·an=n2,则a3+a5=________.11.数列{an}中,已知a1=1,a2=2,an+1=an+an+2(n∈N*),则a7=________.12.已知数列{an}中,an=1+1a+2(n-1)(n∈N*,a∈R,且a≠0).(1)若a=-7,求数列{an}的最大项和最小项的值;(2)若对任意的n∈N*,都有an≤a6成立,求实数a的取值范围.13.设数列{an}的前n项和为Sn,且Sn=4an-p,其中p是不为零的常数.(1)证明:数列{an}是等比数列;(2)当p=3时,数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的通项公式.14.设数列{an}的前n项和为Sn.已知a1=a(a≠3),an+1=Sn+3n,n∈N*.(1)设bn=Sn-3n,求数列{bn}的通项公式;(2)若an+1≥an,n∈N*,求a的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷13213
高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d(n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为md 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d <0,则Sn 存在最大值;若a1<0,d >0,则Sn 存在最小值. 【高频考点突破】考点一 等差数列的性质及基本量的求解【例1】 (1)设Sn 为等差数列{an}的前n 项和,S8=4a3,a7=-2,则a9=() A .-6 B .-4 C .-2 D .2(2)(·浙江卷)已知等差数列{an}的公差d >0.设{an}的前n 项和为Sn ,a1=1,S2·S3=36. ①求d 及Sn ;②求m ,k(m ,k ∈N*)的值,使得am +am +1+am +2+…+am +k =65.规律方法 (1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】 (1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A .0B .37C .100D .-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________. 考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an -an -1=d(n≥2,d 为常数);二是等差中项法,证明2an +1=an +an +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n 项和为Sn ,且满足a3·a4=117,a2+a5=22. (1)求数列{an}的通项公式;(2)若数列{bn}满足bn =Snn +c ,是否存在非零实数c 使得{bn}为等差数列?若存在,求出c 的值;若不存在,请说明理由.考点三 等差数列前n 项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n 项和为Sn ,且S5=S12,则当n 为何值时,Sn 有最大值?规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和Sn =An2+Bn(A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】 (1)等差数列{an}的前n 项和为Sn ,已知a5+a7=4,a6+a8=-2,则当Sn 取最大值时,n 的值是()A .5B .6C .7D .8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________. 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .144.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( ) A .d<0 B .d>0 C .a1d<0 D .a1d>07.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.10.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.12.(·重庆卷)设a1=1,an+1=a2n-2an+2+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8π B.8+8πC.16+16π D.8+16π14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.615.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n 项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{an}前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d = ()A.12 B .2 C .3D .42.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=()A .2B .-2C.12D .-123.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .524.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .125.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或96.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.1167.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8B .Sn 的最小值是S8C .Sn 的最大值是S7D .Sn 的最小值是S78.在等差数列{an}中,a15=33,a25=66,则a35=________.9.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________. 10.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________. 11.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0. (1)求Sn 的最小值及此时n 的值; (2)求n 的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且S k =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(3)
一、单选题二、多选题1. 已知椭圆的左、右焦点分别为,,直线与椭圆C 交于A ,B 两点,若,则的面积等于( )A .18B .10C .9D .62.已知 与为单位向量,且⊥,向量满足,则||的可能取值有( )A .6B .5C .4D .33.圆与圆的公共点的个数是( )A .0B .1C .2D .34. 设向量,.若,则( )A .4B .3C .2D .15. 已知,向量,若,则实数( )A.B.C .-2D .26. 已知抛物线()的焦点为,点为抛物线上一点,以为圆心的圆经过原点,且与抛物线的准线相切,切点为,线段交抛物线于点,则( )A.B.C.D.7. 已知函数的单调递增区间是,则实数a 的值是( )A.B .3C.D .18.已知椭圆的右焦点为,离心率,过点的直线交椭圆于两点,若中点为,则直线的斜率为( )A .2B.C.D.9. 已知函数在上的值域为,则实数的值可能取( )A .1B.C.D .210.定义:在区间上,若函数是减函数,且是增函数,则称在区间上是“弱减函数”.根据定义可得( )A .在上是“弱减函数”B.在上是“弱减函数”C .若在上是“弱减函数”,则D .若在上是“弱减函数”,则11. 一副三角板由一块有一个内角为的直角三角形和一块等腰直角三角形组成,如图所示,,现将两块三角形板拼接在一起,得三棱锥,取中点与中点,则下列判断中正确的是( )云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(3)云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(3)三、填空题四、解答题A .直线面B.与面所成的角为定值C .设面面,则有∥D .三棱锥体积为定值.12. 已知一组不全相等的数据的平均数为,若在这组数据中添加一个数据,得到一组新数据,则( )A .这两组数据的平均数相同B .这两组数据的中位数相同C .这两组数据的极差相同D .这两组数据的标准差相同13. 如果的展开式中各项系数之和为128,则展开式中的系数是______ .14. 已知各项都不为0的数列的前项和满足,其中,设数列的前项和为,若对一切,恒有成立,则能取到的最大整数是__________.15. 公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它表现了恰到好处的和谐,其比值为,这一比值也可以表示为.若,则______.16. 已知数列是公差为的等差数列,且满足.(1)求的通项公式;(2)设,求数列的前10项和.17.如图,在三棱柱中,平面,,,,是棱的中点,在棱上,且.(1)在棱上是否存在点,满足平面,若存在,求出的值;(2)在(1)的条件下,求平面与平面所成锐二面角的余弦值.18. 电子商务在我国发展迅猛,网上购物成为很多人的选择.某购物网站组织了一次促销活动,在网页的界面上打出广告:高级口香糖,10元钱三瓶,有8种口味供你选择(其中有一种为草莓口味).小王点击进入网页一看,只见有很多包装完全相同的瓶装口香糖排在一起,看不见具体口味,由购买者随机点击进行选择(各种口味的高级口香糖均超过3瓶,且各种口味的瓶数相同,每点击选择一瓶后,网页自动补充相应的口香糖).(1)小王花10元钱买三瓶,请问小王共有多少种不同组合选择方式?(2)小王花10元钱买三瓶,由小王随机点击三瓶,请列出有小王喜欢的草莓味口香糖瓶数的分布列,并计算其数学期望和方差.19. 已知函数.(1)当时,求的极值;(2)若恒成立,求实数的取值范围;(3)证明:.20. 设数列满足,为的前项和.证明:对任意,(1)当时,;(2)当时,;(3)当时,.21. 已知,函数F(x)=min{2|x−1|,x2−2ax+4a−2},其中min{p,q}=(Ⅰ)求使得等式F(x)=x2−2ax+4a−2成立的x的取值范围;(Ⅱ)(ⅰ)求F(x)的最小值m(a);(ⅱ)求F(x)在区间[0,6]上的最大值M(a).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d (n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为m d 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.【高频考点突破】考点一等差数列的性质及基本量的求解【例1】 (1)设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=()A.-6 B.-4 C.-2 D.2【答案】A(2)(·浙江卷)已知等差数列{an}的公差d>0.设{an}的前n项和为Sn,a1=1,S2·S3=36.①求d及Sn;②求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.规律方法(1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】(1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A.0 B.37 C.100 D.-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________.【答案】(1)C(2)A(3)60考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an-an-1=d(n≥2,d为常数);二是等差中项法,证明2an+1=an+an+2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3·a4=117,a2+a5=22.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=Snn+c,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由.考点三等差数列前n项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n项和为Sn,且S5=S12,则当n为何值时,Sn有最大值?规律方法求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n项和Sn=A n2+Bn(A,B为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】(1)等差数列{an}的前n项和为Sn,已知a5+a7=4,a6+a8=-2,则当Sn取最大值时,n的值是()A.5 B.6 C.7 D.8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________.【答案】(1)B(2)C(3)110 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【答案】B【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【答案】5【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【答案】9【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.【答案】2,13-1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.【答案】12.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.【答案】83.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .14 【答案】C4.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则() A.d<0 B.d>0 C.a1d<0 D.a1d>0【答案】C7.(·全国卷)等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(1)证明:an+2-an=λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-14nanan+1,求数列{bn}的前n项和Tn.10.(·陕西卷)△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);(2)若a,b,c成等比数列,求cos B的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.【答案】-1212.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8π B.8+8πC.16+16π D.8+16π【答案】A14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.6【答案】C15.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.【答案】2016.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{a n}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1. (1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.【答案】-4921.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【答案】64【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d =()A.12 B .2 C .3D .4【答案】B2.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=() A .2B .-2C.12D .-12【答案】D3.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .52【答案】D4.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .12【答案】A5.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或9【答案】C6.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.116【答案】A7.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8 B .Sn 的最小值是S8 C .Sn 的最大值是S7D .Sn 的最小值是S7【答案】D8.在等差数列{an}中,a15=33,a25=66,则a35=________.【答案】999.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________.【答案】-110.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________.【答案】4511.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0. (1)求Sn 的最小值及此时n 的值; (2)求n 的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且Sk =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。