高中数学-向量法解决立体几何问题导学案
2018版高中数学第三章空间向量与立体几何疑难规律方法学案人教B版2-1
第三章 空间向量与立体几何1 空间向量加减法运用的三个层次空间向量是处理立体几何问题的有力工具,但要用好向量这一工具解题,必须熟练运用加减法运算. 第1层 用已知向量表示未知向量例1 如图所示,M ,N 分别是四面体OABC 的边OA ,BC 的中点,P ,Q 是MN 的三等分点,用向量错误!,错误!,错误!表示错误!和错误!。
解 错误!=错误!+错误!=错误!错误!+错误!错误!=12错误!+错误!(错误!-错误!)=错误!错误!+错误!(错误!-错误!错误!)=错误!错误!+错误!×错误!(错误!+错误!)=错误!错误!+错误!错误!+错误!错误!;错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!(错误!-错误!)=错误!错误!+错误!(错误!-错误!错误!)=错误!错误!+错误!×错误!(错误!+错误!)=错误!错误!+错误!错误!+错误!错误!。
点评用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.第2层化简向量例2如图,已知空间四边形ABCD,连接AC、BD.设M、G分别是BC、CD的中点,化简下列各表达式,并标出化简结果的向量.(1)错误!+错误!+错误!;(2)错误!+错误!(错误!+错误!);(3)错误!-错误!(错误!+错误!).解(1)错误!+错误!+错误!=错误!+错误!=错误!。
(2)错误!+错误!(错误!+错误!)=错误!+错误!错误!+错误!错误!=错误!+错误!+错误!=错误!.(3) 错误!-错误!(错误!+错误!)=错误!-错误!=错误!。
错误!、错误!、错误!如图所示.点评要求空间若干向量之和,可以通过平移,将它们转化为首尾相接的向量,如果首尾相接的若干向量构成一个封闭图形,则它们的和为0。
高中数学空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量学案含解析
1.2.2 空间中的平面与空间向量导思1.什么是平面的法向量?它在解决线面位置关系中有何用途? 2.什么是三垂线定理及其逆定理?1.平面的法向量(1)定义:如果α是空间中的一个平面,n 是空间中的一个非零向量,且表示n 的有向线段所在的直线与平面α垂直,则称n 为平面α的一个法向量.此时也称n 与平面α垂直,记作n ⊥α. (2)性质:如果A ,B 是平面α上的任意不同两点,n 为平面α的一个法向量,则: 1 若直线l ⊥α,则l 的任意一个方向向量都是平面α的一个法向量 2 对任意实数λ≠0,λn 是平面α的一个法向量 3向量AB → 一定与n 垂直,即AB →·n =0平面α的法向量唯一吗?它们有什么共同特征? 提示:不唯一,都平行.2.空间线面的位置关系与空间向量若v 是直线l 的一个方向向量,n 1,n 2分别是平面α1,α2的一个法向量,则:1 n 1∥v ⇔l ⊥α12 n 1⊥v ⇔l ∥α1或l ⊂α13 n 1⊥n 2⇔α1⊥α24 n 1∥n 2⇔α1∥α2或α1,α2重合已知v 是直线l 的一个方向向量,n 是平面α的一个法向量,如果n ⊥v ,那么直线l 一定与平面α平行吗?提示:不一定,也可能l ⊂α. 3.三垂线定理及其逆定理 射影已知平面α和一点A ,过点A 作α的垂线l ,设l 与α相交于点A′,则A′就是点A在平面α内的射影,也称为投影.三垂线定理如果平面内的一条直线与平面的一条斜线在该平面内的射影垂直,则它也和这条斜线垂直.三垂线定理的逆定理如果平面内的一条直线和这个平面的一条斜线垂直,则它也和这条斜线在该平面内的射影垂直.1.辨析记忆(对的打“√”,错的打“×”).(1)已知直线l垂直于平面α,向量a平行直线l,则a是平面α的法向量.()(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.()(3)若a是平面α的一条斜线,直线b垂直于a在α内的射影,则a⊥b.()提示:(1)×.向量a必须为非零向量.(2)√.(3)×.因为b不一定在平面α内,所以a与b不一定垂直.2.若a=(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是() A.(0,1,2) B.(3,6,9)C.(-1,-2,3) D.(3,6,8)【解析】选B.向量(1,2,3)与向量(3,6,9)共线.3.(教材例题改编)已知PO⊥平面ABC,且O为△ABC的垂心,则AB与PC的关系是________.【解析】因为O为△ABC的垂心,所以CO⊥AB.又因为OC为PC在平面ABC内的射影,所以由三垂线定理知AB⊥PC.答案:垂直关键能力·合作学习类型一 平面的法向量(数学运算)1.若两个向量AB → =(1,2,3),AC →=(3,2,1),则平面ABC 的一个法向量 为( )A .(-1,2,-1)B .(1,2,1)C .(1,2,-1)D .(-1,2,1)2.已知点A(2,-1,2)在平面α内,n =(3,1,2)是平面α的一个法向量,则下列点P 中,在平面α内的是( ) A .P(1,-1,1)B .P ⎝⎛⎭⎫1,3,32C .P ⎝⎛⎭⎫1,-3,32D .P ⎝⎛⎭⎫-1,3,-343.正四棱锥如图所示,在向量PA → -PB → +PC → -PD → ,PA → +PC → ,PB → +PD → ,PA → +PB → +PC →+PD →中,不能作为底面ABCD 的法向量的是________.【解析】AB → =(1,2,3),AC →=(3,2,1), 设平面ABC 的一个法向量n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·AB →=x +2y +3z =0n ·AC →=3x +2y +z =0 ,取x =-1,得平面ABC 的一个法向量为(-1,2,-1).2.选B.设P(x ,y ,z),则AP →=(x -2,y +1,z -2); 由题意知,AP → ⊥n ,则n ·AP →=0;所以3(x -2)+(y +1)+2(z -2)=0,化简得3x +y +2z =9. 验证得在A 中,3×1-1+2×1=4,不满足条件; 在B 中,3×1+3+2×32 =9,满足条件; 同理验证C 、D 不满足条件.3.连接AC ,BD ,交于点O ,连接OP ,则OP → 是底面ABCD 的一个法向量,PA → -PB → +PC → -PD →=BA → +DC → =0,不能作为底面ABCD 的法向量;PA → +PC → =-2OP →,能作为底面ABCD 的法向量;PB → +PD → =-2OP → ,能作为底面ABCD 的法向量;PA → +PB → +PC → +PD → =-4OP →,能作为底面ABCD 的法向量.答案:PA → -PB → +PC → -PD →求平面ABC 的一个法向量的方法1.平面垂线的方向向量法:证明一条直线为一个平面的垂线,则这条直线的一个方向向量即为所求.2.待定系数法:步骤如下:类型二 三垂线定理及其逆定理的应用(直观想象、逻辑推理)【典例】如图所示,三棱锥P-ABC 中,PA ⊥平面ABC ,若O ,Q 分别是△ABC 和△PBC 的垂心,求证:OQ ⊥平面PBC.【思路导引】利用三垂线定理及其逆定理证明【证明】如图,连接AO 并延长交BC 于点E ,连接PE.因为PA ⊥平面ABC ,AE ⊥BC(由于O 是△ABC 的垂心), 所以PE ⊥BC ,所以点Q 在PE 上.因为⎩⎪⎨⎪⎧AE ⊥BC ,PE ⊥BC ,AE ∩PE =E ⇒BC ⊥平面PAE ⇒BC ⊥OQ.①连接BO 并延长交AC 于点F ,则BF ⊥AC. 连接BQ 并延长交PC 于点M ,则BM ⊥PC. 连接MF.因为PA ⊥平面ABC ,BF ⊥AC , 所以BF ⊥PC(三垂线定理).因为⎩⎪⎨⎪⎧BM ⊥PC ,BF ⊥PC ,BM ∩BF =B ⇒PC ⊥平面BMF ⇒PC ⊥OQ.②由①②,知OQ ⊥平面PBC.利用三垂线定理及其逆定理证明线线垂直的基本环节在正方体ABCD-A 1B 1C 1D 1中,求证:A 1C ⊥平面BDC 1.【证明】连接AC,CD1,在正方体中,AA1⊥平面ABCD,所以AC是A1C在平面ABCD内的射影,又AC⊥BD,所以BD⊥A1C.同理D1C是A1C在平面CDD1C1内的射影.所以C1D⊥A1C.又C1D∩BD=D,所以A1C⊥平面BDC1.类型三利用空间向量证明线面、面面的位置关系(逻辑推理)证明平行问题角度1【典例】如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q 是CC1上的点.当点Q在什么位置时,BQ∥平面PAO?【思路导引】建立恰当的坐标系,设出点Q的坐标,由BQ∥平面PAO确定其位置即可.【解析】建立如图所示的空间直角坐标系Dxyz,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2). 再设Q(0,2,c),所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,c),BD 1=(-2,-2,2). 设平面PAO 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·OA →=0,n ·OP →=0, 所以⎩⎪⎨⎪⎧x -y =0,-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n =(1,1,2). 若BQ ∥平面PAO ,则n ⊥BQ ,所以n ·BQ → =0,即-2+2c =0,所以c =1, 故当Q 为CC 1的中点时,BQ ∥平面PAO.本例若把“Q 是CC 1上的点”改为“Q 是CC 1的中点”,其他条件不变,求证:平面D 1BQ ∥平面PAO.【证明】建立如图所示的空间直角坐标系,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2),Q(0,2,1), 所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,1),BD 1=(-2,-2,2). 设平面PAO 的法向量为n 1=(x ,y ,z), 则⎩⎪⎨⎪⎧n 1·OA →=0n 1·OP →=0 ,所以⎩⎪⎨⎪⎧x -y =0-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n 1=(1,1,2).同理可求平面D 1BQ 的一个法向量为n 2=()1,1,2 , 因为n 1=n 2,所以n 1∥n 2, 所以平面D 1BQ ∥平面PAO.角度2证明垂直问题【典例】在如图所示的几何体中,平面CDEF 为正方形,平面ABCD 为等腰梯形,AB ∥CD ,AB =2BC ,∠ABC =60°,AC ⊥FB. (1)求证:AC ⊥平面FBC ;(2)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.【思路导引】(1)利用余弦定理和勾股定理的逆定理可得AC ⊥BC ,再利用已知AC ⊥FB 和线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,利用两个平面的法向量是否垂直即可. 【解析】(1)因为AB =2BC ,∠ABC =60°,在△ABC 中,由余弦定理可得AC 2=AB 2+BC 2-2AB ·BCcos 60°=3BC 2, 所以AC 2+BC 2=4BC 2=AB 2, 所以∠ACB =90°,所以AC ⊥BC. 又因为AC ⊥FB ,FB ∩BC =B , 所以AC ⊥平面FBC.(2)线段ED 上不存在点Q ,使平面EAC ⊥平面QBC. 证明如下:因为AC ⊥平面FBC , 所以AC ⊥FC.因为CD ⊥FC ,所以FC ⊥平面ABCD.所以CA ,CF ,CB 两两互相垂直,如图建立空间直角坐标系.在等腰梯形ABCD 中,可得CB =CD.设BC =1,所以C(0,0,0),A(3 ,0,0),B(0,1,0),D(32 ,-12 ,0),E ⎝ ⎛⎭⎪⎪⎫32,-12,1 .所以CE → =⎝⎛⎭⎪⎪⎫32,-12,1 ,CA →=(3 ,0,0),CB →=(0,1,0).设平面EAC 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·CE →=0n ·CA →=0 ,所以⎩⎨⎧32x -12y +z =03x =0,取z =1,得n =(0,2,1).假设线段ED 上存在点Q , 设Q ⎝⎛⎭⎪⎫32,-12,t (0≤t≤1),所以CQ →=⎝ ⎛⎭⎪⎫32,-12,t . 设平面QBC 的法向量为m =(a ,b ,c),则⎩⎪⎨⎪⎧m ·CB →=0m ·CQ →=0 ,所以⎩⎨⎧b =032a -12b +tc =0,取c =1,得m =⎝ ⎛⎭⎪⎫-2t 3,0,1 .要使平面EAC ⊥平面QBC ,只需m·n =0, 即-23t×0+0×2+1×1=0,此方程无解.所以线段ED上不存在点Q,使平面EAC⊥平面QBC. 利用空间向量证明平行、垂直问题的常用思路线面平行(1)求出直线l的方向向量是a,平面α的法向量是u,只需证明a⊥u,即a·u=0.(2)在平面内找一个向量与已知直线的方向向量是共线向量即可.面面平行(1)转化为相应的线线平行或线面平行.(2)求出平面α,β的法向量u,v,证明u∥v即可说明α∥β.线面垂直求出平面内两条相交直线的方向向量,证明直线的方向向量和它们都垂直.面面垂直(1)转化为线面垂直.(2)求解两个平面的法向量,证明两个法向量垂直.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:(1)FC1∥平面ADE;(2)平面ADE∥平面B1C1F.【解析】如图所示建立空间直角坐标系,则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1),B1(2,2,2),所以FC1=(0,2,1),DA → =(2,0,0),AE → =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA → ,n 1⊥AE → ,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0n 1·AE →=2y 1+z 1=0 ⇒⎩⎪⎨⎪⎧x 1=0z 1=-2y 1 , 令z 1=2⇒y 1=-1,所以n 1=(0,-1,2),因为n 1·1FC =-2+2=0,所以n 1⊥1FC , 又因为FC 1⊄平面ADE ,即FC 1∥平面ADE.(2)因为11C B =(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥1FC ,n 2⊥11C B ,得21222112FC 2y z 0C B 2x 0⎧=+=⎪⎨==⎪⎩n n ⇒⎩⎪⎨⎪⎧x 2=0z 2=-2y 2. 令z 2=2⇒y 2=-1,所以n 2=(0,-1,2),所以n 1=n 2,所以平面ADE ∥平面B 1C 1 F.2.在正方体ABCD-A 1B 1C 1D 1中,E 是BC 的中点,在CC 1上求一点P ,使平面A 1B 1P ⊥平面C 1DE.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,如图所示,设正方体棱长为2,且P(0,2,a),则D(0,0,0),E(1,2,0),C 1(0,2,2),A 1(2,0,2),B 1(2,2,2),则DE → =(1,2,0),1DC =(0,2,2),设n 1=(x 1,y 1,z 1)且n 1⊥平面DEC 1,则⎩⎪⎨⎪⎧x 1+2y 1=0y 1+z 1=0 ,取n 1=(2,-1,1). 又1A P =(-2,2,a -2),11A B =(0,2,0),设n 2=(x 2,y 2,z 2)且n 2⊥平面A 1B 1P ,则⎩⎪⎨⎪⎧-2x 2+2y 2+(a -2)z 2=0y 2=0 ,取n 2=(a -2,0,2). 由平面A 1B 1P ⊥平面C 1DE ,得n 1·n 2=0,1的中点.【补偿训练】在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD 垂直于底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F.求证:(1)PA ∥平面EDB.(2)PB ⊥平面EFD.K【证明】建立如图所示的空间直角坐标系.D 是坐标原点,设DC =a.(1)连接AC 交BD 于G ,连接EG ,依题意得D(0,0,0),A(a ,0,0),P(0,0,a),E ⎝⎛⎭⎫0,a 2,a 2 . 因为底面ABCD 是正方形,所以G 是此正方形的中心,故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0 ,所以EG → =⎝⎛⎭⎫a 2,0,-a 2 .又PA → =(a ,0,-a),所以PA → =2EG → ,这表明PA ∥EG.而EG ⊂平面EDB ,且PA ⊄平面EDB ,所以PA ∥平面EDB.(2)依题意得B(a ,a ,0),PB → =(a ,a ,-a),DE → =⎝⎛⎭⎫0,a 2,a 2 ,所以PB → ·DE → =0+a 22 -a 22 =0,所以PB → ⊥DE → ,即PB ⊥DE.又已知EF ⊥PB ,且EF∩DE =E ,所以PB ⊥平面EFD.课堂检测·素养达标1.设直线l 的方向向量为a ,平面α的法向量为n ,l ⊄α,则使l ∥α成立的是( )A .a =(1,-1,2),n =(-1,1,-2)B .a =(2,-1,3),n =(-1,1,1)C .a =(1,1,0),n =(2,-1,0)D .a =(1,-2,1),n =(1,1,2)【解析】l 的方向向量为a ,平面α的法向量为n ,l ⊄α,使l ∥α成立,所以a·n =0, 在A 中,a·n =-1-1-4=-6,故A 错误;在B 中,a·n =-2-1+3=0,故B 成立;在C 中,a·n =2-1=1,故C 错误;在D 中,a·n =1-2+2=1,故D 错误.2.(教材练习改编)若平面α与β的法向量分别是a =(2,4,-3),b =(-1,2,2),则平面α与β的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 【解析】选B.a·b =(2,4,-3)·(-1,2,2)=-2+8-6=0,所以a ⊥b ,所以平面α与平面β垂直.3.已知平面α内有一个点M(1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)【解析】选A.设平面α内一点P(x ,y ,z),则:MP → =(x -1,y +1,z -2),因为n =(6,-3,6)是平面α的法向量,所以n ⊥MP → ,n ·MP → =6(x -1)-3(y +1)+6(z -2)=6x -3y +6z -21,所以由n ·MP → =0得6x -3y +6z -21=0,所以2x -y +2z =7,把各选项的坐标数据代入上式验证可知A 适合.4.正三棱锥P-ABC 中,BC 与PA 的位置关系是________.【解析】如图,在正三棱锥P-ABC 中,P 在底面ABC 内的射影O 为正三角形ABC 的中心,连接AO ,则AO 是PA 在底面ABC 内的射影,且BC ⊥AO ,所以BC ⊥PA.答案:BC ⊥PA。
高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案
即 a2 = 3x2 + 2(3x2 cos )
x=
1a
3 + 6 cos
∴ 这个四棱柱的对角线的长可以确定棱长。
(3)本题的晶体中相对的两个平面之间的距离是多少?(提示:求
两个平行平面的距离,通常归结为求两点间的距离)
分析:面面距离 点面距离 向量的模 回归图形
解: 过 A1点作 A1H ⊥ 平面 AC 于点 H.
解:
设平面 AEF 的法向量为
则有
6,如图所示建立坐标系,有
为平面 AEF 的单位法向量。
分别求平面 SAB 与平面 SDC 的法向量,并求出它们夹角的余弦。 解:因为 y 轴 平面 SAB,所以平面 SAB 的法向量为 设平面 SDC 的法向量为, 由
§3.2.2 空间角与距离的计算举例
【学情分析】:
空间中的几何元素
如图,在空间中,我们取一点 O 作为基点,那么空间中任意一点 P 点、直线、平面的
的位置就可以用向量 OP 来表示.称向量 OP 为点的位置向量。
位置的向量表示方 法。
●P
基点 O●
2. 思考:在空间中给定一个定点 A 和一个定方向(向量),能确定一条直
线在空间的位置吗? l
a
P
A
AP = a( R)
∴ sin BAD = 1− 9 = 32 , 105 35
五、小结 六、作业
∴ S ABCD =| AB | | AD | sin BAD = 8 6 .
1. 点、直线、平面的位置的向量表示。 2. 线线、线面、面面间的平行与垂直关系的向量表示。 A,预习课本 105~110 的例题。 B,书面作业:
(1)求证: AP 是平面 ABCD 的法向量; (2)求平行四边形 ABCD 的面积.
2021_2022高中数学第三章空间向量与立体几何2立体几何中的向量方法1教案新人教A版选修2_
立体几何中的向量方法【教学目标】1. 向量运算在几何证明与计算中的应用;2. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题。
【导入新课】 复习引入1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢?⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a ba b⋅⋅,可求两个向量的数量积或夹角问题;⑵利用性质a ⊥b ⇔a ·b =0可以解决线段或直线的垂直问题; ⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题。
新授课阶段例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥。
证明:·OC AB =·()OC OB OA - =·OC OB -。
∵OA BC ⊥,OB AC ⊥, ∴·0OA BC =,·0OB AC =, ·()0OA OC OB -=,·()0OB OC OA -=. ∴··OA OC OA OB =,··OB OC OB OA =。
∴·OC OB =·OC OA ,·OC AB =0. ∴OC AB ⊥ 例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=,如果AB =a ,AC =BD =b ,求C 、D间的距离。
解:由AC α⊥,可知AC AB ⊥。
由'30DBD ∠=可知,<,CA BD >=120,∴2||CD =2()CA AB BD ++=2||CA +2||AB +2||BD +2(·CA AB +·CA BD +·AB BD )=22222cos120b a b b +++=22a b +。
空间向量在立体几何中的应用教案(教师使用)
空间向量在立体几何中的应用(一)授课时间:2014年5月11日第7节课 授课班级:高二(9)班 授课教师:高志华教学目标 1、知识与技能(1) 进一步理解向量垂直的充要条件; (2)利用向量法证明线线、线面垂直;(3)利用向量解决立体几何问题,培养学生数形结合的思想方法; 2、过程与方法通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。
3、情感态度与价值观通过空间向量在立体几何中的应用,让学生感受数学、体会数学的美感, 从而激发学数学、用数学的热情。
教学重点建立恰当的空间直角坐标系,用向量法证明线线、线面垂直。
教学难点、关键建立恰当的空间直角坐标系,直线的方向向量; 正确写出空间向量的坐标。
教学方法启发式教学、讲练结合 教学媒体ppt 课件学法指导交流指导,渗透指导. 课型 新授课教学过程一、知识的复习与引人 自主学习1.若OP =x i +y j +z k ,那么(x ,y ,z )叫做向量OP 的坐标,也叫点P 的坐标.2. 如图,已知长方体D C B A ABCD ''''-的边长为AB=2,AD=2,1AA '=.以这个长方体的顶点A 为坐标原点,射线A A AD AB ',,分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,试求长方体各个顶点及A C '中点G 的坐标.3.设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),那么b a ±=(x 1±x 2,y 1±y 2, ), a ⊥b ⇔ b a ∙=x 1x 2+y 1y 2+ =0.4.设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则 12M M =(2121,x x y y --, ) [探究]1.直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有 个. 2.空间位置关系的向量表示位置关系向量表示直线l 1的方向向量为1l , 直线l 2的方向向量为2l , 直线a 的方向向量为a , 直线b 的方向向量为b .l 1⊥ l 21l ⊥2l ⇔l 1⊥αl 1⊥a ,l 1⊥b, ,a b αα⊂⊂,a ∩b=o ,[合作探究]二、新授课:利用空间向量证明线线垂直、线面垂直例1、如图,在棱长为2的正方体ABCD-A1B1C1D1中,M为BC的中点,N为AB的中点,P为BB1的中点.(Ⅰ)求证:BD1⊥B1C;(Ⅱ)求证:BD1⊥平面MNP.设计意图:使学生明确空间向量在证明线线垂直、线面垂直中的作用。
高中数学_3.2 空间向量在立体几何中的应用教学设计学情分析教材分析课后反思
专题七 立体几何第2课时 空间关系与空间角命题人: 审核人: 时间:教学班级行政班级 姓名 学号 面批时间课前自学案【考情分析】立体几何是高考的重点内容之一,从近几年高考试题来看,主要是考查线面位置关系的判断与证明;三是考查空间向量的应用,尤其空间向量法求空间角(特别是二面角)是考查的热点之一.主要问题类型:(1)空间线面关系的证明;(2)空间角的求法;(3)存在性问题的处理方法.求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围; (2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角. 【要点梳理】1.平行关系及垂直关系的转化2.空间角的求解(1)异面直线所成的角:若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ(0<θ≤π2),则cos θ=|cos 〈v 1,v 2〉|.(2)线面角:设直线l 与平面α所成的角为θ(0≤θ≤π2),直线l 的方向向量为a ,平面α的法向量为μ,则sin θ=|cos 〈a ,μ〉|=|a ·μ||a ||μ|. (3)二面角:设二面角大小为θ(0≤θ≤π),两个面的法向量分别为μ和v ,则|cos θ|=|cos 〈μ,v 〉|=|μ·v ||μ||v |.易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,是线面角的正弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.编号012【课前自测】1.(2013年高考卷理 4)已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面积是边长为 3的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 ( )(A ) 512π (B )3π (C ) 4π (D ) 6π2.(2009年高考卷理5)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件课内探究案【考点突破】考点一:空间位置关系的判定例1.(1)(2013年高考广东卷理科6)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥(2)平面α∥平面β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α变式训练:(1) (2014年高考广东卷理 7)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是( )A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定(2)设m 、n 是不同的直线,α、β是不同的平面,有以下四个命题:①若α⊥β,m ∥α,则m ⊥β ②若m ⊥α,n ⊥α,则m ∥n ③若m ⊥α,m ⊥n ,则n ∥α ④若n ⊥α,n ⊥β,则β∥α 其中真命题的序号为( )A .①③B .②③C .①④D .②④ 考点二:空间位置关系的证明例2.(2013广东卷文)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三图 4GEF ABCD图 5DGBFCAE棱锥A BCF -,其中22BC =.(1) 证明:DE //平面BCF ;(2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.考点三:空间角的求解例3.(12理18)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF. (Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F -BD -C 的余弦值.【当堂检测】1. 【2014全国2高考理第11题】直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.3010D.22 2. 已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为_____________.3. 【2014高考全国1第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.专题七 立体几何编号第2课时 空间关系与空间角命题人: 审核人: 时间:教学班级 行政班级 姓名 学号 面批时间课后拓展案A 组1. 【2014高考卷第17题】如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点. (Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD 且13CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.2.【2014高考天津第17题】如图,在四棱锥PABCD 中,PA 底面ABCD ,AD AB ,//AB DC ,2AD DC AP ,1AB ,点E 为棱PC 的中点.(Ⅰ)证明:BE DC;(Ⅰ)求直线BE与平面PBD所成角的正弦值;(Ⅰ)若F为棱PC上一点,满足BF AC,求二面角F AB P的余弦值.B组3.(2013年高考北京卷理科17)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面AB C⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求二面角A1-BC1-B1的余弦值;(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求1BDBC的值.4.【2014高考全国2第18题】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,3求三棱锥E-ACD的体积.反思:这节课不满意的几点:(1) 题量的安排。
届数学一轮复习第八章立体几何第七节立体几何中的向量方法学案理含解析
第七节立体几何中的向量方法[最新考纲][考情分析][核心素养]1。
理解直线的方向向量与平面的法向量。
2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。
4。
能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。
主要通过空间角(异面直线所成角、直线与平面所成角、二面角)的求法考查向量方法应用,多为解答题第2问,分值为12分.1.直观想象2.逻辑推理3.数学运算‖知识梳理‖空间角的求法(1)求异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则a与b的夹角βl1与l2所成的角θ范围(0,π)错误!错误!求法cos β=a·b|a||b|cos θ=|cos β|=|a·b||a||b|►常用结论两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.(2)求直线与平面所成的角设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sin θ=错误!|cos<a,n〉|=错误!错误!.(3)求二面角的大小①如图①,AB,CD是二面角α-l-β的两条面内与棱l垂直的直线,则二面角的大小θ=错误!〈错误!,错误!>.②如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=错误!|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).►常用结论解空间角最值问题时往往会用到最小角定理cosθ=cosθ1cos θ2如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cos θ=cos θ1cos θ2。
高中数学_立体几何中的向量方法—空间角的计算教学设计学情分析教材分析课后反思
,a b>;θ=<>;n)所成的角sin cos,a n⑶二面角:锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量。
活动三:合作学习、探究新知(18分钟)利用向量知识求线线角,线面角,二面角的大小。
一、异面线所成角:例1、如图所示的正方体中,已知与为四等分点,求异面直线与的夹角的余弦值?方法小结:1、异面直线a 、b 所成的角:在空间中任取一点O ,过点O 分别引/a ∥a ,/b ∥b ,则/a ,/b 所成的锐角(或直角)叫做两条异面直线所成的角。
两条异面直线所成角的范围:(0,]2π。
2、求法:①传统法:把两条异面直线中的一条放入一个平面,另一条与这个平面有交点,过这个交点在平面内作第一条的平行线,则这两条直线所成的角为两条异面直线所成的角。
然后解三角形得到。
②向量法:在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>。
3、利用向量求异面直线所成的角的步骤为:(1)确定空间两条直线的方向向量;(2)求两个向量夹角的余弦值;(3)确定线线角与向量夹角的关系;当向量夹角为锐角时,即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向量夹角的补角。
练习:中,,现将沿着平面的法向量平移到的位置,已知BC=CA=C,取、的中点、,求B与A所成的角的余弦值。
二、直线与平面所成的角:例2:如图,在正方体ABCD-中,求与平面所成的角。
方法小结:1、直线a 与平面α所成角:斜线与平面所成的角就是斜线与它在平面内的射影所成的锐角。
直线与平面所成角的范围为:[0,]2π。
2、求法:①求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足,这时经常要用面面垂直来确定垂足的位置。
若垂足的位置难以确定,可考虑用三棱锥体积等量来求出斜线上一点到平面的距离。
第三章空间向量与立体几何导学案(20210902135541)
实数入与向量a的积是一个向量,记作2a,其长度和方向规定如下:学习目标:㈠知识目标:1•空间向量;2•相等的向量;3•空间向量的加减与数乘运算及运算律;㈡能力目标:1•理解空间向量的概念,掌握其表示方法;2•会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3•能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢情感目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.学习重点:空间向量的加减与数乘运算及运算律.学习难点:应用向量解决立体几何问题.学习方式:讨论式.学习过程:I .复习[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:(1) 1副=丨川a|(2) 当心0时,2与a同向;当;<0时,2与a反向;当后0时,2= 0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?[生]向量加法和数乘向量满足以下运算律加法交换律:a+ b= b+ a加法结合律:(a+ b) + c= a+( b+ c)数乘分配律:2a+ b) = ?a+ b[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们认真阅读课本P26〜P27内容。
n.学习新课[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量. 例如空间的一个平移就是一个向量•那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的•空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的[师]空间向量的加法、减法、数乘向量各是怎样定义的呢?第三章空间向量与立体几何3•实数与向量的积:3.1空间①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB .•向量的加法:2•向量的减法:三肃形沬则乎行四边形;去刚[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:0[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律. [生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c ); ⑶数乘分配律:2(a + b )=入a+入b[师]空间向量加法的运算律要注意以下几点:表示的向量,这是平面向量加法的平行四边形法则向空间的推广.川.巩固练习课本P 92练习IV .小结:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平一 一 一 —— —— 1——⑵ AB AD AA';⑶ AB AD 严1OB OA AB =a+b ,的几何体,叫做 平行六面体•记作ABCD —A B C'.D'OP)a ( R)AB OB OA (指向被减向量),平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱. 解:(见课本P 27)A 1A 2 A 2A 3 A 3A 4 A n 1 A n A A n因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量•即:A l A 2 A 2 A 3 A 3 A 4A n 1A nAnA⑶两个向量相加的平行四边形法则在空间仍然成立. 因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则. 例1已知平行六面体 ABCD A' B'C'D'(如图),化简下列向 量表达式,并标出化简结果的向量: ⑴ AB BC ;移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度” 的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.V .课后作业预习课本P 92〜P 96,预习提纲: ⑴怎样的向量叫做共线向量? ⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量?⑹向量p 与不共线向量a 、b 共面的充要条件是什么? ⑺空间一点P 在平面MAB 内的充要条件是什么?,空间说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之 和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所 BAD AA').⑷丄(AB3说明:平行四边形ABCD平移向量a到A B C'的'迹所形成空间向量及其运算(2)M P XM A 或对空间任一点 o ,有oP oM X M A①一、 学习目标:1 •理解共线向量定理和共面向量定理及它们的推论; 2 •掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.二、 学习重、难点:共线、共面定理及其应用. 三、 学习过程: (一) 复习回顾:空间向量的概念及表示; (二) 新课学习: 1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或 平行向量。
数学一轮复习第七章立体几何第7讲立体几何中的向量方法学案含解析
第7讲立体几何中的向量方法[考纲解读]1。
理解直线的方向向量及平面的法向量,并能用向量语言表述线线、线面、面面的平行和垂直关系.(重点)2.能用向量方法证明立体几何中有关线面位置关系的一些简单定理,并能用向量方法解决线线、线面、面面的夹角的计算问题.(难点)[考向预测]从近三年高考情况来看,本讲为高考必考内容.预测2021年高考将会以空间向量为工具证明平行与垂直以及进行空间角的计算.试题以解答题的形式呈现,难度为中等偏上。
1.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔错误!v1∥v2⇔v1=λv2.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量为v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=错误!x v1+y v2。
(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔错误!v⊥u⇔错误!v·u=0。
(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔错误!u1∥u2⇔u1=λu2。
2.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔错误!v1⊥v2⇔错误!v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔错误!v∥u⇔错误!v=λu.(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔错误!u1⊥u2⇔错误!u1·u2=0。
3.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则4.直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sinφ=|cosθ|=错误!错误!,φ的取值范围是[0°,90°].5.求二面角的大小(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=□01〈错误!,错误!〉.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cosθ|=错误!|cos<n1,n2〉|=错误!错误!,二面角的平面角大小是向量n1与n2的夹角(或其补角).1.概念辨析(1)若空间向量a平行于平面α,则a所在直线与平面α平行.()(2)两异面直线夹角的范围是(0°,90°],直线与平面所成角的范围是[0°,90°],二面角的范围是[0°,180°].()(3)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(4)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是180°-θ.()答案(1)×(2)√(3)×(4)×2.小题热身(1)若直线l的方向向量为a=(1,0,2),平面α的法向量为n =(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交但不垂直答案B解析因为a=(1,0,2),n=(-2,0,-4),所以n=-2a,所以a∥n,所以l⊥α.(2)已知向量错误!=(2,2,1),错误!=(4,5,3),则平面ABC的单位法向量是()A。
4.2 用向量方法讨论立体几何中的位置关系
∠BAC= ,故以点A为原点,AB,AC,AA'所在直线分别
2
为x轴、y轴、z轴建立空间直角坐标系(如图3-39).
设AA'=1,因为AB=AC= 2AA',所以A'(0,0,1) ,
B( 2,0,0), B'( 2,0,1),C(0, 2,0),C'(0, 2,1).
学而优 · 教有方
高中数学
-5
α⊥β,则 x=________.
解析 ∵α⊥β,∴a⊥b,∴a·b=x-4+9=0,∴x=-5.
学而优 · 教有方
高中数学
GAOZHONGSHUXUE
4.已知 a=(0,1,1),b=(1,1,0),c=(1,0,1)分别是平面α,β,γ的法向
0
量,则α,β,γ三个平面中互相垂直的有________对.
求证:n丄α.
图 3-35
学而优 · 教有方
高中数学
GAOZHONGSHUXUE
分析 设m是平面α内的任意一条直线.要证明n丄α,只需证明n丄m.如何充分
运用条件,表达“m是平面α内的任意一条直线''呢?可以考虑将直线m的方
向向量用平面α的 一组基表示.
证明 设m是平面α内的任意一条直线(如图3-35(2)),a,b,,n依次为直线
理、数学抽象素养.
学而优 · 教有方
高中数学
GAOZHONGSHUXUE
探究导学
探究点1 用向量方法表示几何位置关系
因为直线的方向向量与平面的法向量是确定直线和平面位置的关键
因素,所以可以利用直线的方向向量和平面的法向量表示空间直线与平
面间的平行、垂直等位置关系.
设向量l,m分别是直线l,m的方向向量,n1,n2分别是平面α,β的法向量,用
立体几何中的向量方法-—求空间距离导学案
立体几何中的向量方法求距离导学案一、求点到平面的距离 1.(一般)传统方法:利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离.在PAO Rt ∆中,θ||||sin d AP =⇒= 又||||sin n AP =θ||n d =∴(其中AP 为斜向量,为法向量)二、直线到平面的距离 转化为点到线的距离:||n d =AP 为斜向量,为法向量)三、平面到平面的距离也是转化为点到线的距离:||n d =AP 为斜向量,为法向量)四、异面直线的距离如图,异面直线也是转化为点到线的距离:||n d =(其中为两条异面直线上各取一点组成的向量,是与b a ,都垂直的向量) 例1.如图,在正方体1111D C B A ABCD -中,棱长为1,E 为11D C 的中点,求下列问题: (1) 求1B 到面BE A 1的距离; (2)求C D 1到面BE A 1的距离; (3) 求面DB A 1与面11CB D 的距离;∙αOP(4) 求异面直线B D 1与E A 1的距离.当堂检测:1.如图在直三棱柱111C B A ABC -中,1==BC AC ,∠ACB 面BC A 1的距离.2.已知棱长为1的正方体1111D C B A ABCD -,求平面11C DA 13.已知棱长为1的正方体1111D C B A ABCD -,求直线1DA 和AC 间的距离。
AD CB1A 1C 1B 1D ADCB1A 1C 1B 1D。
高二数学选修2-1人教A全册导学案第3章空间向量与立体几何§3.2《立体几何中的向量方法》
§3.2 立体几何中的向量方法知识点一用向量方法判定线面位置关系(1)设a、b分别是l1、l2的方向向量,判断l1、l2的位置关系:①a=(2,3,-1),b=(-6,-9,3).②a=(5,0,2),b=(0,4,0).(2)设u、v分别是平面α、β的法向量,判断α、β的位置关系:①u=(1,-1,2),v=(3,2,).②u=(0,3,0),v=(0,-5,0).(3)设u是平面α的法向量,a是直线l的方向向量,判断直线l与α的位置关系.①u=(2,2,-1),a=(-3,4,2).②u=(0,2,-3),a=(0,-8,12).解(1)①∵a=(2,3,-1),b=(-6,-9,3),∴a=-b,∴a∥b,∴l1∥l2.②∵a=(5,0,2),b=(0,4,0),∴a·b=0,∴a⊥b,∴l1⊥l2.(2)①∵u=(1,-1,2),v=(3,2,),∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.②∵u=(0,3,0),v=(0,-5,0),∴u=-v,∴u∥v,∴α∥β.(3)①∵u=(2,2,-1),a=(-3,4,2),∴u·a=-6+8-2=0,∴u⊥a,∴l⊂α或l∥α.②∵u=(0,2,-3),a=(0,-8,12),∴u=-a,∴u∥a,∴l⊥α.知识点二利用向量方法证明平行问题如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.证明方法一如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则可求得M (0,1,),N (,1,1),D(0,0,0),A1(1,0,1),B(1,1,0),于是=(,0,),设平面A1BD的法向量是n=(x,y,z).n=(x,y,z).则n·=0,得取x=1,得y=-1,z=-1.∴n=(1,-1,-1).又·n=(,0,)·(1,-1,-1)=0,方法二∵ =∴∥,又∵MN⊄平面A1BD.∴MN∥平面A1BD.知识点三利用向量方法证明垂直问题在正棱锥P—ABC中,三条侧棱两两互相垂直,G是△PAB的重心,E、F分别为BC、PB上的点,且BE∶EC=PF∶FB=1∶2.(1)求证:平面GEF⊥平面PBC;(2)求证:EG是PG与BC的公垂线段.证明(1)方法一如图所示,以三棱锥的顶点P为原点,以PA、PB、PC所在直线分别为x轴、y轴、z轴建立空间直角坐标系.令PA=PB=PC=3,则A(3,0,0)、B(0,3,0)、C(0,0,3)、E(0,2,1)、F(0,1,0)、G(1,1,0)、P(0,0,0).于是=(3,0,0),=(3,0,0),故=3,∴PA∥FG.而PA⊥平面PBC,∴FG⊥平面PBC,又FG⊂平面EFG,∴平面EFG⊥平面PBC.方法二同方法一,建立空间直角坐标系,则E(0,2,1)、F(0,1,0)、G(1,1,0).=(0,-1,-1),=(0,-1,-1),设平面EFG的法向量是n=(x,y,z),则有n⊥,n⊥,∴令y=1,得z=-1,x=0,即n=(0,1,-1).而显然=(3,0,0)是平面PBC的一个法向量.这样n·= 0,∴n⊥即平面PBC的法向量与平面EFG的法向量互相垂直,∴平面EFG⊥平面PBC.(2)∵=(1,1,1),=(1,1,0),=(0,3,3),∴·=11= 0,·=33 = 0,∴EG⊥PG,EG⊥BC,∴EG是PG与BC的公垂线段.知识点四利用向量方法求角四棱锥P—ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.(1)建立适当的坐标系,并写出点B,P的坐标;(2)求异面直线PA与BC所成角的余弦值.解(1)如图所示,以D为原点,射线DA,DC,DP分别为x轴,y轴,z轴的正方向,建立空间直角坐标系D—xyz,∵∠D=∠DAB=90°,AB=4,CD=1,AD=2,∴A(2,0,0),C(0,1,0),B(2,4,0).由PD⊥面ABCD得∠PAD为PA与平面ABCD所成的角.∴∠PAD=60°.在Rt△PAD中,由AD=2,得PD=2.∴P(0,0,2).(2)∵=(2,0,-2),=(2,3,0)∴cos〈,〉=∴PA与BC所成角的余弦值为.正方体ABEF-DCE′F′中,M、N分别为AC、BF的中点(如图所示),求平面MNA 与平面MNB所成二面角的余弦值.解取MN的中点G,连结BG,设正方体棱长为1.方法一∵△AMN,△BMN为等腰三角形,∴AG⊥MN,BG⊥MN.∴∠AGB为二面角的平面角或其补角.∵AG=BG=,,设〈,〉=θ,2=2+2·+2,∴1=()2+2××cosθ+()2.∴cosθ=,故所求二面角的余弦值为.方法二以B为坐标原点,BA,BE,BC所在的直线分别为x轴、y轴、z轴建立空间直角坐标系B-xyz则M(,0,),N (,,0),中点G(,,),A(1,0,0),B(0,0,0),由方法一知∠AGB为二面角的平面角或其补角.∴=(,-,-),=(,-,-),∴ cos<, >==,故所求二面角的余弦值为.方法三建立如方法二的坐标系,∴即取n1=(1,1,1).同理可求得平面BMN的法向量n2=(1,-1,-1).∴cos〈n1,n2〉=,故所求二面角的余弦值为知识点五用向量方法求空间的距离已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.解如图所示,以C为原点,CB、CD、CG所在直线分别为x、y、z轴建立空间直角坐标系C-xyz.由题意知C(0,0,0),A(4,4,0),B(4,0,0),D(0,4,0),E(4,2,0),F(2,4,0),G(0,0,2).=(0,2,0),=(-2,4,0),设向量⊥平面GEF,垂足为M,则M、G、E、F四点共面,故存在实数x,y,z,使= x+ y+ z,即= x(0,2,0)+y(2,4,0)+z(4,0,2)=(2y4z,2x+4y,2z).由BM⊥平面GEF,得⊥,⊥,于是·=0,·=0,即即,解得∴=(-2y-4z,2x+4y,2z)=∴||=即点B到平面GEF的距离为.考题赏析(安徽高考)如图所示,在四棱锥O—ABCD中,底面ABCD是边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求异面直线AB与MD所成角的大小;(2)求点B到平面OCD的距离.解作AP⊥CD于点P.如图,分别以AB、AP、AO所在直线为x、y、z轴建立平面直角坐标系.A(0,0,0),B(1,0,0),P (0,,0),D (-,,0),O(0,0,2),M(0,0,1).(1)设AB与MD所成角为θ,∵=(1,0,0),=(-,,-1),∴cos =.∴θ=.∴AB与MD所成角的大小为.(2)∵=(0,,),=(,,),∴设平面OCD的法向量为n = ( x, y , z ),则n·=0,n·= 0.得取z=,解得n = (0,4,).设点B到平面OCD的距离为d,则d为在向量n上的投影的绝对值.∵=(1,0,2),∴d=,∴点B到平面OCD的距离为,1.已知A(1,0,0)、B(0,1,0)、C(0,0,1),则平面ABC的一个单位法向量是( )A.(,,-) B.(,-,)C.(-,,) D.(-,-,-)答案 D=(-1,1,0),是平面OAC的一个法向量.=(-1,0,1),=(0,-1,1)设平面ABC的一个法向量为n=(x,y,z)∴令x=1,则y=1,z=1∴n=(1,1,1)单位法向量为:=± (,,).2.已知正方体ABCD—A1B1C1D1,E、F分别是正方形A1B1C1D1和ADD1A1的中心,则EF和CD所成的角是( )A.60°B.45°C.30°D.90°答案 B3.设l1的方向向量a=(1,2,-2),l2的方向向量b=(-2,3,m),若l1⊥l2,则m=( ) A.1 B.2 C.D.3答案 B解析因l1⊥l2,所以a·b=0,则有1×(-2)+2×3+(-2)×m=0,∴2m=6-2=4,即m=2.4.若两个不同平面α,β的法向量分别为u=(1,2,-1),v=(-3,-6,3),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不正确答案 A解析因v=-3u,∴v∥u.故α∥β.5.已知a、b是异面直线,A、B∈a,C、D∈b,AC⊥b,BD⊥b,且AB=2,CD=1,则a与b所成的角是( )A.30°B.45°C.60°D.90°答案 C解析设〈,〉=θ,·=(++·= ||2= 1,cosθ=,所以θ=606.若异面直线l1、l2的方向向量分别是a=(0,-2,-1),b=(2,0,4),则异面直线l1与l2的夹角的余弦值等于( )A.B.C.-D.答案 B解析设异面直线l1与l2的夹角为θ,则cosθ=7.已知向量n=(6,3,4)和直线l垂直,点A(2,0,2)在直线l上,则点P(-4,0,2)到直线l的距离为________.答案,解析=(6,0,0),因为点A在直线l上,n与l垂直,所以点P到直线l的距离为8.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为________.答案或,解析设n1=(1,0,-1),n2=(0,-1,1)则cos〈n1,n2〉=〈n1,n2〉=.因平面α与平面β所成的角与〈n1,n2〉相等或互补,所以α与β所成的角为或.9.已知四面体顶点A(2,3,1)、B(4,1,-2)、C(6,3,7)和D(-5,-4,8),则顶点D到平面ABC的距离为________.答案11解析设平面ABC的一个法向量为n =(x,y,z)则令x=1,则n = (1,2,),=(7,7,7)故所求距离为,10.如图所示,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于F.(1)证明:PA∥平面BDE;(2)证明:PB⊥平面DEF.证明(1)如图建立空间直角坐标系,设DC=a,AC∩BD=G,连结EG,则A(a,0,0),P(0,0,a),C(0,a,0),E (0,,),G (,,0).于是=(a,0,a),=(,0,),∴= 2,∴PA∥EG.又EG平面DEB.PA平面DEB.∴PA∥平面DEB.(2)由B(a,a,0),得=(a, a, a),又=(0, ,),∵·=∴PB⊥DE.又EF⊥PB,EF∩DE=E,∴PB⊥平面EFD.11.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线BD′上,∠PDA=60°.(1)求DP与CC′所成角的大小;(2)求DP与平面AA′D′D所成角的大小.解如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),= (0,0,1).连结BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设= (m,m,1) (m>0),由已知〈,〉= 60,由·= ||||cos〈,〉,可得2m =解得m =,所以=(,,1),(1)因为cos〈,〉=(2)所以〈,〉= 45,即DP与CC′所成的角为45.(2)平面AA′D′D的一个法向量是= (0,1,0).因为cos〈,〉=所以〈,〉= 60°,可得DP与平面AA′D′D所成的角为30.12. 如图,四边形ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.平面PBD⊥平面PAC,(1)求点A到平面PBD的距离;(2)求异面直线AB与PC的距离.(1)解以AC、BD的交点为坐标原点,以AC、BD所在直线为x轴、y轴建立如图所示的空间直角坐标系,则A(3,0,0),B(0,1,0),C(,0,0),D(0,1,0),P(3,0,2).设平面PBD的一个法向量为n1=(1,y1,z1).由n1⊥,n1⊥,可得n1=(1,0,).(1)=(,0,0),点A到平面PBD的距离,,13.如图所示,直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC = 2a,BB1 = 3a,D为A1C1的中点,在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出||;若不存在,请说明理由.解以B为坐标原点,建立如图所示的空间直角坐标系B-xyz.假设存在点F,使CF⊥平面B1DF,并设=λ=λ(0,0,3a)=(0,0,3λa)(0<λ<1),∵D为A1C1的中点,∴D(,,3a)=(,,3a)-(0,0,3a)=(,,0),=∵CF⊥平面B1DF,∴CF⊥, ⊥,即解得λ=或λ=∴存在点F使CF⊥面B1DF,且当λ=时,||=,|| = a当λ=,|| =,|| = 2a.14.如图(1)所示,已知四边形ABCD是上、下底边长分别为2和6,高为eq \r(3)的等腰梯形.将它沿对称轴OO1折成直二面角,如图(2).(1)证明:AC⊥BO1;(2)求二面角O—AC—O1的余弦值.(1)证明由题设知OA⊥OO1,OB⊥OO1.所以∠AOB是所折成的直二面角的平面角,即OA⊥OB.故以O为原点,OA、OB、OO1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,则相关各点的坐标是A(3,0,0)、B(0,3,0)、C(0,1, )、O1(0,0, ).·=-3+·=0.所以AC⊥BO1.(2)解因为·=+ ·=0.所以BO1⊥OC.由(1)AC⊥BO1,所以BO1⊥平面OAC,是平面OAC的一个法向量.设n=(x,y,z)是平面O1AC的一个法向量,由取z= ,得n=(1,0,).设二面角O-AC-O1的大小为θ,由n 、的方向可知θ=〈n,〉,所以cosθ= cos〈n ,〉=即二面角O—AC—O1的余弦值是.。
用空间向量解决立体几何中的垂直问题
第2课时用空间向量解决立体几何中的垂直问题学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.掌握用向量方法证明有关空间线面垂直关系的方法步骤.知识点一向量法判断线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔a·b =0⇔a1b1+a2b2+a3b3=0.知识点二向量法判断线面垂直设直线l的方向向量a=(a1,b1,c1),平面α的法向量μ=(a2,b2,c2),则l⊥α⇔a∥μ⇔a=kμ(k∈R).知识点三向量法判断面面垂直思考平面α,β的法向量分别为μ1=(x1,y1,z1),μ2=(x2,y2,z2),用向量坐标法表示两平面α,β垂直的关系式是什么?答案x1x2+y1y2+z1z2=0.梳理若平面α的法向量为μ=(a1,b1,c1),平面β的法向量为v=(a2,b2,c2),则α⊥β⇔μ⊥v⇔μ·v=0⇔a1a2+b1b2+c1c2=0.(1)平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.(×)(2)两直线的方向向量垂直,则两条直线垂直.(√)(3)直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.(√)(4)两个平面的法向量平行,则这两个平面平行;两个平面的法向量垂直,则这两个平面垂直.(√)类型一线线垂直问题例1已知正三棱柱ABC-A1B1C1的各棱长都为1,M是底面上BC边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OO 1所在直线为z 轴建立如图所示的空间直角坐标系Oxyz . 由已知得A ⎝⎛⎭⎫-12,0,0, B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0, N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN -→=⎝⎛⎭⎫-14,34,14,AB 1-→=(1,0,1),∴MN -→·AB 1-→=-14+0+14=0.∴MN -→⊥AB 1-→,∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC ,BC ,C 1C 两两垂直.如图,以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Cxyz .则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1-→=(0,-4,4), ∴AC →·BC 1-→=0.∴AC ⊥BC 1.类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点. 求证:AB 1⊥平面A 1BD .考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,且平面ABC ∩平面BCC 1B 1=BC ,AO ⊂平面ABC ,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为坐标原点,OB ,OO 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3), B 1(1,2,0).所以AB 1-→=(1,2,-3),BA 1-→=(-1,2,3), BD -→=(-2,1,0).因为AB 1-→·BA 1-→=1×(-1)+2×2+(-3)×3=0. AB 1-→·BD -→=1×(-2)+2×1+(-3)×0=0.所以AB 1-→⊥BA 1-→,AB 1-→⊥BD -→,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直证明 如图,以D 为坐标原点,DC ,DA ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz , C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2), PC →=(1,0,-1),P A →=(0,1,-1), PB 1-→=(1,1,1),B 1C -→=(0,-1,-2), B 1A -→=(-1,0,-2).PB 1-→·PC →=(1,1,1)·(1,0,-1)=0,所以PB 1-→⊥PC →,即PB 1⊥PC . 又PB 1-→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1-→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直问题例3 三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC ,A 1A =3,AB =AC =2A 1C 1=2,D 为BC 的中点.证明:平面A 1AD ⊥平面BCC 1B 1. 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直证明 方法一 如图,以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3). ∵D 为BC 的中点,∴D 点坐标为(1,1,0), ∴AD →=(1,1,0),AA 1-→=(0,0,3),BC →=(-2,2,0), ∴AD →·BC →=1×(-2)+1×2+0×0=0, AA 1-→·BC →=0×(-2)+0×2+3×0=0, ∴AD →⊥BC →,AA 1-→⊥BC →, ∴BC ⊥AD ,BC ⊥AA 1.又A 1A ∩AD =A ,∴BC ⊥平面A 1AD .又BC ⊂平面BCC 1B 1,∴平面A 1AD ⊥平面BCC 1B 1. 方法二 同方法一建系后,得AA 1-→=(0,0,3), AD →=(1,1,0),BC →=(-2,2,0),CC 1-→=(0,-1,3). 设平面A 1AD 的法向量为n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧n 1·AA 1-→=0,n 1·AD →=0,得⎩⎪⎨⎪⎧3z 1=0,x 1+y 1=0,令y 1=-1,则x 1=1,z 1=0, ∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC →=0,n 2·CC 1-→=0,得⎩⎪⎨⎪⎧-2x 2+2y 2=0,-y 2+3z 2=0,令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2, ∴平面A 1AD ⊥平面BCC 1B 1.反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明. (2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点. (1)求证:平面AED ⊥平面A 1FD 1;(2)在直线AE 上求一点M ,使得A 1M ⊥平面AED . 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直(1)证明 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Dxyz .设正方体的棱长为2,则D (0,0,0),A (2,0,0),E (2,2,1),F (0,1,0),A 1(2,0,2),D 1(0,0,2),∴DA →=D 1A 1-→=(2,0,0),DE →=(2,2,1),D 1F -→=(0,1,-2). 设平面AED 的一个法向量为n 1=(x 1,y 1,z 1).由⎩⎪⎨⎪⎧n 1·DA →=(x 1,y 1,z 1)·(2,0,0)=0,n 1·DE →=(x 1,y 1,z 1)·(2,2,1)=0,得⎩⎪⎨⎪⎧2x 1=0,2x 1+2y 1+z 1=0. 令y 1=1,得n 1=(0,1,-2).同理,平面A 1FD 1的一个法向量为n 2=(0,2,1). ∵n 1·n 2=(0,1,-2)·(0,2,1)=0,∴n 1⊥n 2, ∴平面AED ⊥平面A 1FD 1. (2)解 由于点M 在直线AE 上, 因此可设AM -→=λAE →=λ(0,2,1)=(0,2λ,λ), 则M (2,2λ,λ),∴A 1M -→=(0,2λ,λ-2). 要使A 1M ⊥平面AED ,只需A 1M -→∥n 1, 即2λ1=λ-2-2,解得λ=25. 故当AM =25AE 时,A 1M ⊥平面AED .1.下列命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β ⇔ n 1·n 2=0;③若n 是平面α的法向量,a 是直线l 的方向向量,若l 与平面α平行,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面不垂直. A .1 B .2 C .3 D .4考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 C解析 ①中平面α,β可能平行,也可能重合,结合平面法向量的概念,可知②③④正确.2.已知两直线的方向向量为a,b,则下列选项中能使两直线垂直的为()A.a=(1,0,0),b=(-3,0,0)B.a=(0,1,0),b=(1,0,1)C.a=(0,1,-1),b=(0,-1,1)D.a=(1,0,0),b=(-1,0,0)考点向量法求解直线与直线的位置关系题点向量法解决线线垂直答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B. 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交考点向量法求解直线与平面的位置关系题点向量法解决线面垂直答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定考点向量法求解平面与平面的位置关系题点向量法解决面面垂直答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=13,SB=29,则异面直线SC与BC是否垂直________.(填“是”或“否”)考点向量法求解直线与直线的位置关系题点向量法解决线线垂直答案是解析如图,以A为坐标原点,AB,AS所在直线分别为y轴,z轴建立空间直角坐标系Axyz , 则由AC =2,BC =13, SB =29,得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23, CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .空间垂直关系的解决策略一、选择题1.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( ) A .-2 B .2 C .6 D .10考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直 答案 D解析 因为a ⊥b ,故a ·b =0,即-2×3+2×(-2)+m =0,解得m =10.2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( ) A .10 B .-10 C.12 D .-12考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 B解析 因为α⊥β,所以它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( ) A .(1,0,-2) B .(1,0,2) C .(-1,0,2)D .(2,0,-1)考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0. ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,② 联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD-A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1A考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直答案 B解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .设正方体的棱长为1.则C (0,1,0),B (1,1,0),A (1,0,0),D (0,0,0),C 1(0,1,1),A 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫12,-12,1,AC →=(-1,1,0), BD →=(-1,-1,0),A 1D -→=(-1,0,-1),A 1A -→=(0,0,-1),∵CE →·BD →=(-1)×12+(-1)×⎝⎛⎭⎫-12+0×1=0,∴CE ⊥BD . 5.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A. (1,-1,1)B.⎝⎛⎭⎫1,3,32C.⎝⎛⎭⎫1,-3,32D.⎝⎛⎭⎫-1,3,-32 考点 直线的方向向量与平面的法向量题点 法向量求解线面垂直答案 B解析 要判断点P 是否在平面α内,只需判断向量P A →与平面α的法向量n 是否垂直,即P A →·n是否为0,因此,要对各个选项进行检验.对于选项A ,P A →=(1,0,1),则P A →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ;对于选项B ,P A →=⎝⎛⎭⎫1,-4,12,则P A →·n =⎝⎛⎭⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C ,D.故选B.6.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC , 则( )A .EF 至多与A 1D ,AC 中的一个垂直B .EF ⊥A 1D ,EF ⊥ACC .EF 与BD 1相交D .EF 与BD 1异面考点 直线的方向向量与平面的法向量题点 求直线的方向向量答案 B解析 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z轴,建立空间直角坐标系Dxyz ,设正方体的棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫13,0,13,F ⎝⎛⎭⎫23,13,0,B (1,1,0),D 1(0,0,1),∴A 1D -→=(-1,0,-1),AC →=(-1,1,0),EF →=⎝⎛⎭⎫13,13,-13,BD 1-→=(-1,-1,1),∴EF →=-13BD 1-→,A 1D -→·EF →=0,AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC ,故选B.7.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A .-3B .6C .-6D .-12考点 向量法求解平面与平面的位置关系题点 向量法求解面面垂直答案 B解析 ∵α⊥β,∴μ·v =0,即-6+y +z =0,即y +z =6.二、填空题8.如图所示,在三棱锥A -BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 的中点,则AE →·BC →=_______.考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直答案 0解析 因为BE =EC ,故AE →=DE →-DA →=12(DB →+DC →)-DA →,在三棱锥A -BCD 中, DA ,DB ,DC 两两垂直,且DB =DC ,故AE →·BC →=⎣⎡⎦⎤12(DB →+DC →)-DA →·(DC →-DB →)=12(DC →2-DB →2)=0. 9.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量. 其中正确的是________.(填序号)考点 向量法求解直线与直线的位置关系题点 向量法解决线线垂直答案 ①②③解析 AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确.AP →·AD →=(-1,2,-1)·(4,2,0)=-1×4+2×2+(-1)×0=0.∴AP ⊥AD ,即②正确.又∵AB ∩AD =A ,∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,③正确.10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________.考点 向量法求解线面垂直问题题点 向量法求解线面垂直答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD=5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .考点 向量法求解直线与平面的位置关系题点 向量法解决线面垂直证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Axyz .设P A =h ,则A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).所以CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD⊥平面P AE.12.如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥底面ABCD,P A=AB=1,AD=3,点F是PB的中点,点E在边BC上移动.求证:无论点E在BC边的何处,都有PE⊥AF.考点向量法求解直线与直线的位置关系题点方向向量与线线垂直证明 以A 为坐标原点,AD ,AB ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0, 设BE =x (0≤x ≤3),则E (x,1,0),PE →·AF →=(x,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.如图,在底面为平行四边形的四棱锥P -ABCD 中,AB ⊥AC ,P A ⊥平面ABCD ,且P A =AB ,点E 是PD 的中点.求证:(1)AC ⊥PB ;(2)PB ∥平面AEC .考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直证明 (1)如图,以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴,y轴,z 轴,建立空间直角坐标系Axyz ,设AC =a ,P A =b .则有A (0,0,0),B (0,b,0),C (a,0,0),P (0,0,b ),∴AC →=(a,0,0),PB →=(0,b ,-b ).从而AC →·PB →=0,∴AC ⊥PB .(2)由已知得D (a ,-b,0),E ⎝⎛⎭⎫a 2,-b 2,b 2,∴AE →=⎝⎛⎭⎫a 2,-b 2,b 2. 设平面AEC 的一个法向量为n ,则n ⊥AC →且n ⊥AE →,可得n =(0,1,1).∵n ·PB →=0,∴n ⊥PB .又PB ⊄平面AEC ,∴PB ∥平面AEC . 四、探究与拓展14.如图,P A ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的比值为( )A .1∶2B .1∶1C .3∶1D .2∶1 答案 B解析 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系Axyz ,设正方形边长为1,P A =a ,则B (1,0,0),E ⎝⎛⎭⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y,0),则BF →=(-1,y,0),PE →=⎝⎛⎭⎫12,1,-a .因为BF ⊥PE ,所以BF →·PE →=0,解得y =12,即点F 的坐标为⎝⎛⎭⎫0,12,0,所以F 为AD 的中点,所以AF ∶FD =1∶1.15.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:ME ⊥平面BCC 1B 1.考点 向量法求解直线与平面的位置关系题点 向量法解决线面垂直证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3),∴BD 1→=BE →+BF →,故BD 1→,BE →,BF →共面.又它们有公共点B ,∴E ,B ,F ,D 1四点共面.(2)设M (0,0,z ),则GM -→=⎝⎛⎭⎫0,-23,z ,而BF →=(0,3,2), 由题设得GM -→·BF →=-23·3+z ·2=0,得z =1. ∵M (0,0,1),E (3,0,1),∴ME -→=(3,0,0),又BB 1→=(0,0,3),BC →=(0,3,0)∴ME -→·BB 1→=0,ME -→·BC →=0,从而ME ⊥BB 1,ME ⊥BC .又BB 1∩BC =B ,故ME ⊥平面BCC 1B 1.。
经典导学案——立体几何向量法求线线角与线面角
§3.2立体几何中的向量方法(4)向量法求线线角与线面角一、学习目标1.理解直线与平面所成角的概念.2.掌握利用向量方法解决线线、线面 、面面的夹角的求法.二、问题导学问题1:什么叫异面直线所成的角?它的范围是什么?怎样用定义法求它的大小? 问题2:怎样通过向量的运算来求异面直线所成的角?设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、l 2所成的角为θ, 则〈a ,b 〉与θ ,cos θ= 。
问题3:用向量的数量积可以求异面直线所成的角,能否求线面角?如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,θ=〈a ,n 〉, 则sin φ= 。
三、例题探究例1.如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D 的棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角.变式:在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,点P 在A 1B 1上,则直线PQ 与直线AM 所成的角等于 ( )A .30°B .45°C .60°D .90°例2.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.变式:如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,P A⊥底面ABCD,且P A=AD=AB=2BC,M、N分别为PC、PB的中点.求BD与平面ADMN 所成的角θ.四、练一练(时间:5分钟)1. 1.若平面α的法向量为μ,直线l 的方向向量为v , 直线l 与平面α的夹角为θ,则下列关系式成立的是 ( ) A .cos θ=μ·v |μ||v| B .cos θ=|μ·v||μ||υ| C .sin θ=μ·v |μ||v| D .sin θ=|μ·v||μ||v|2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A , 则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178D .233.正三棱柱ABC —A 1B 1C 1的所有棱长相等,则AC 1与面BB 1C 1C 所成角的余弦值为( ) A .54 B .104 C .52 D .1024.已知长方体ABCD -A 1B 1C 1D 1中,AB =BC =4,CC 1=2,则直线BC 1和平面DBB 1D 1所成角的正弦值为 ( ) A.32 B.52 C.105 D.10105.正四棱锥S —ABCD ,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角为 .ABCD 1E 1F 1A 1B 1C 1D【参考答案】§3.2立体几何中的向量方法(4)向量法求线线角与线面角一、学习目标1.理解直线与平面所成角的概念.2.掌握利用向量方法解决线线、线面 、面面的夹角的求法. 用向量方法求空间中的角 角的分类 向量求法范围异面直线 所成的角设两异面直线所成的角为θ,它们的方向向量为a ,b , 则cos θ= |cos 〈a ,b 〉| = . |a·b ||a |·|b |(0,π2]直线与平面所成的角 设直线l 与平面α所成的角为θ,l 的方向向量为a ,平面α的法向量为n ,则sin θ=|cos |〈a ,n 〉= . |a·n ||a ||n |[0,π2]二面角设二面角α—l —β的平面角为θ,平面α、β的法向量为n 1,n 2,则|cos θ|=|cos 〈n 1,n 1〉|=|n 1·n 2||n 1|·|n 2|.[0,π]设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、l 2所成的角为θ,则〈a ,b 〉与θ相等或互补,∴cos θ=|a ·b ||a |·|b |.2.求直线与平面所成的角如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,θ=〈a ,n 〉,则sin φ=|cos θ|=|cos 〈a ,n 〉|=|a ·n ||a ||n |.二、问题导学问题1:什么叫异面直线所成的角?它的范围是什么?怎样用定义法求它的大小? 问题2:怎样通过向量的运算来求异面直线所成的角?设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、l 2所成的角为θ, 则〈a ,b 〉与θ ,cos θ= 。
例谈用向量法解立体几何问题
例谈用向量法解立体几何问题向量法是解决立体几何问题的一种有效方法,它在空间的方向和长度上具有良好的可视化效果。
下面我们将介绍如何用向量法解决立体几何问题。
一、向量的表示方法在空间中,向量可以用一个有序三元组(x,y,z)来表示。
其中,x、y、z分别表示向量在x、y、z三个轴向上的分量。
例如,三维空间中的一个向量A可以表示为A=(x1,y1,z1),另一个向量B可以表示为B=(x2,y2,z2)。
这两个向量之间的距离可以用以下公式计算:$$ AB = \\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2} $$二、向量的运算方法向量之间可以进行四则运算,它们的定义如下:•向量加法:当两个向量A=(x1,y1,z1)和B=(x2,y2,z2)相加时,结果为A+B=(x1+x2,y1+y2,z1+z2)。
•向量减法:当两个向量A和B相减时,结果为A−B=(x1−x2,y1−y2,z1−z2)。
•向量数乘:当一个向量A与一个标量k相乘时,结果为kA= (kx,ky,kz)。
•点乘:当两个向量A和B进行点乘时,结果为$A·B=|A||B|\\cos\\theta$,其中 $\\theta$ 表示两个向量之间的夹角。
三、向量在立体几何中的应用在立体几何中,向量法可以解决很多难题。
例如:1. 点到直线的距离在三维空间中,过已知点A0的直线l可以表示为 $l:\\frac{x-x_0}{l_1}=\\frac{y-y_0}{l_2}=\\frac{z-z_0}{l_3}$。
要求点B到直线l的距离,可以用以下公式:$$ d_{AB}=\\frac{|(B-A_0)×l|}{|l|} $$其中,×表示向量叉乘。
2. 点到平面的距离在三维空间中,已知一个平面p的法向量n=(n1,n2,n3)和一个过点A0的直线l,该点不在平面上。
要求点B到平面p的距离,可以用以下公式:$$ d_{AB}=\\frac{|n(B-A_0)|}{|n|} $$3. 直线间的距离在三维空间中,已知两个直线l1和l2,要求它们的最短距离。
空间向量与立体几何教案
空间向量与立体几何教案教案:空间向量与立体几何一、教学目标:1.知识与能力目标:掌握空间向量的基本概念和运算法则,并能够运用空间向量解决立体几何问题。
2.过程与方法目标:培养学生的观察能力和逻辑思维能力,通过实例分析和综合运用,激发学生对数学的兴趣和学习积极性。
3.情感态度目标:培养学生的合作学习精神,增强学生对数学的自信心和探究精神。
二、教学重点难点:1.教学重点:空间向量的概念、性质及运算法则。
2.教学难点:如何灵活应用空间向量解决立体几何问题。
三、教学方法:1.教师讲授与学生合作探究相结合的方法。
2.案例分析和综合运用的方法。
四、教学过程:第一节空间向量的概念和性质(40分钟)1.通过引入空间向量的概念,让学生了解空间向量的定义,并掌握向量的表示方法。
2.解释向量的性质,如向量的加法、数乘、共线和共面性质。
3.设计一些简单的例题进行讲解,引导学生掌握和理解空间向量的性质。
第二节空间向量的运算法则(40分钟)1.通过实例引导,让学生掌握向量的加法、减法、数量积和向量积的运算法则。
2.类比二维向量,在立体几何实例中引入空间向量运算,帮助学生理解和应用空间向量运算。
第三节空间向量在立体几何中的应用(40分钟)1.通过立体几何实例,引导学生运用空间向量解决立体几何问题。
2.给学生创设情境,让学生在小组合作的形式下,互相讨论和解决立体几何问题。
3.设计不同难度的立体几何问题,让学生进行综合运用,提高解决问题的能力。
第四节拓展课程与归纳总结(40分钟)1.设计拓展课程,引导学生发现和探究空间向量在其他学科中的应用,如物理、工程等领域。
2.巩固和总结空间向量的知识点,通过小测验和思维导图等方式,让学生检验和反思自己的学习效果。
五、教学资源准备:1.多媒体教学设备和教学课件。
2.各类立体几何教具和实物模型。
3.教科书及参考资料。
六、教学评价与反思:1.课堂提问与讨论,根据学生的回答和互动评价学生的理解和能力。
高二数学选修2-1第2章《空间向量与立体几何》_导学案
高二数学选修2-1第2章《空间向量与立体几何》_导学案南康二中高二数学◆选修2-1◆导学案.试试:1.分别用平行四边形法则和三角形法则求ab,ab..b2.点C在线段AB上,且AC5,CB2则ACAB,BCAB.反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A.+B.=B.+a;⑵加法结合律:(A.+b)+C.=A.+(B.+c);⑶数乘分配律:λ(A.+b)=λA.+λb.典型例题例1已知平行六面体ABCDA'B'C'D'(如图),化简下列向量表达式,并标出化简结果的向量:⑴AB⑵BCABAD;AA';⑶ABAD1CC'⑷12(ABAD2AA').变式:在上图中,用AB,AD,AA'表示AC',BD'和DB'.小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.2南康二中高二数学◆选修2-1◆导学案§2.1.2空间向量的数乘运算(一)CD3ab,求证:A,B,C三点共线.1.化简;2.3.几何中的问题.8687复习1:化简:⑴5(3a2b)+4(2b3a);⑵6a3bcabc.复习2:在平面上,什么叫做两个向量平行?在平面上有两个向量a,b,若b是非零向量,则a与平行的充要条件是二、新课导学学习探究探究任务一:空间向量的共线问题它们的位置关系?新知:空间向量的共线:1.如果表示空间向量的互相或平行向量.2.空间向量共线:定理:对空间任意两个向量a,b(b0),a//b要条件是存在唯一实数,使得推论:如图,l为经过已知点A且平行于已知非零向量的直线,对空间的任意一点O,点P在直线l上的充要条件是试试:已知ABa5b,BC2a8b,3反思:充分理解两个向量a,b共线向量的充要条件中的b0,注意零向量与任何向量共线.典型例题例OP1已知直线AB,点O是直线AB外一点,若某OAyOB,且某+y=1,试判断A,B,P三点是否共线?变式:已知A,B,P三点共线,点O是直线AB外一点,若OP12OAtOB,那么t=例2已知平行六面体ABCDA'B'C'D',点M是棱AA'设的中点,点G在对角线A'C上,且CG:GA'=2:1,CACD,=CAa,CBb,CC'c,试用向量a,b,c表示向量',CM,CG.变式1:已知长方体ABCDA'B'C'D',M是对角线AC'中点,化简下列表达式:⑴AA'CB;⑵AB'B'C'C'D'⑶12AD112AB2A'A4南康二中高二数学◆选修2-1◆导学案试试:若空间任意一点O和不共线的三点A,B,C满足111关系式OPOAOBOC,则点P与A,B,C共面236吗?5反思:若空间任意一点O和不共线的三点A,B,C满足关系式OP某OAyOBzOC,且点P与A,B,C共面,则某yz.例典型例题①1下列等式中,使OMM,A,B,C四点共面的个数是()OAOBOC;②OM1115OAOBOC;③MAMB3MC20;④OMOAOBOC0.A.1B.2C.3D.4变式:已知A,B,C三点不共线,O为平面ABC外一点,若向量OP15OA73OBOCR,则P,A,B,C四点共面的条件是例2如图,已知平行四边形ABCD,过平面AC外一点O作射线OA,OB,OC,OD,在四条射线上分别取点E,,F,G,H,并且使OEOAOFOBOGOHOCODk,求证:E,F,G,H四点共面.6南康二中高二数学◆选修2-1◆导学案§2.1.3.空间向量的数量积(1)1.掌握空间向量夹角和模的概念及表示方法;2.向量的数量积解决立体几何中的一些简单问题.9092复习1:什么是平面向量a与b的数量积?复习2:在边长为1的正三角形⊿ABC中,求AB.二、新课导学学习探究探究任务一:空间向量的数量积定义和性质问题空间线段的长度问题?新知:1)两个向量的夹角的定义:已知两非零向量空间一点O,作OAa,baO,Bb,则AOB量a与b的夹角,记作.试试:⑴范围a,:b=0时,a与a,bb;a,b=π时,a与b⑵a,bb,a成立吗?⑶a,b,则称a与b互相垂直,记作.2)向量的数量积:已知向量a,bab,则叫做a,b的数量积,,即ab规定:零向量与任意向量的数量积等于零.反思:⑴两个向量的数量积是数量还是向量?⑵0a⑶你能说出ab0还是0)的几何意义吗?73)空间向量数量积的性质:(1)设单位向量e,则ae|a|coa,e.(2)abab.(3)aa=4)空间向量数量积运算律:(1)(a)b(ab)a(b).(2)abba(3)a(bc(交换律))abac.(分配律反思:⑴(ab)ca(bc)吗?举例说明.⑵若abac,则bc吗?举例说明.⑶若ab0,则a0或b0吗?为什么?典型例题例1用向量方法证明:在平面上的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.变式1:用向量方法证明:已知:m,n是平面内的两条相交直线,直线l与平面的交点为B,且lm,ln.求证:l.例2如图,在空间四边形ABCD中,AB2,BC3,BDCD3,ABD30,ABC60,求AB与CD,8南康二中高二数学◆选修2-1◆导学案§2.1.4空间向量的正交分解及其坐标表示1.标表示;2.掌握空间向量的坐标运算的规律;⑴a+b=(a1b1,a2b2,a3b3);92-96⑵a-b=(a1b1,a2b2,a3b3);复习1:平面向量基本定理:⑶λa=(a1,a2,a3)(R);对平面上的任意一个向量P,a,b是平面上两⑷a·b=a1b1a2b2a3b3.向量,总是存在实数对某,y,使得向量P可以用a,b试试:a1.设,则向量的坐标为.a2ij3k示,表达式为,其中a,b(3,1,1)(1,0,2)2.若A,B,则AB=.做.若ab,则称向量P正交分解.3.已知a=(2,3,5),b=(3,1,4),求a+b,a-b,复习2:平面向量的坐标表示:8a,a·b平面直角坐标系中,分别取某轴和y轴上的向量i,j作为基底,对平面上任意向量a数某,y,使得a某iyj,,则称有序对某,y为向量a的,即a=.二、新课导学学习探究向的单位向量,则存在有序实数组{某,y,z},使得,则称有序实数组{某,y,z}为向量a的a某iyjzk坐标,记着p⑸设A(某1,y1,z1),B(某2,y2,z2),则AB=.⑹向量的直角坐标运算:设a=(a1,a2,a3),b=(b1,b2,b3),则典型例题探究任务一:空间向量的正交分解从向量a,b,c问题:对空间的任意向量a例1已知向量a,b,c是空间的一个基底,中选哪一个向量,一定可以与向量pab,qab何位置关系?构成空间的另一个基底?新知:⑴空间向量的正交分解:空间的任意向量a分解为不共面的三个向量1a1、2a2、3a3a1a12a23a3.如果a1,a2,a3两两分解就是空间向量的正交分解.变式:已知O,A,B,C为空间四点,且向量OA,OB,OC不构成空间的一个基底,那么点O,A,B,C是否共面?(2)空间向量基本定理:如果三个向量a,b,c,对空间任一向量p,存在有序实数组{某,y,z}a,b,c.把的一个基底,p某aybzc量.反思:空间任意一个向量的基底有个.⑶单位正交分解:相,长度都为,则这个基底叫做,通常用{i,j,k}表示.⑷空间向量的坐标表示小结:判定空间三个向量是否构成空间的一个基底的O-某yz和向量a,且设i、j、k为某轴、y轴、z方法是:这三个向量一定不共面.910南康二中高二数学◆选修2-1◆导学案114.线段中点的坐标公式:在空间直角坐标系中,已知点A(某1,y1,z1),B(某2,y2,z2),则线段AB的中点坐标为.典型例题例1.如图,在正方体ABCDA1B1C1D1中,点E1,F1分别是A1B1,C1D1的一个四等分点,求BE1与DF1所成的角的余弦值.变式:如上图,在正方体ABCD1A1B1C中1D,BDAB1E11F1113,求BE1与DF1所成角的余弦值.例2.如图,正方体ABCDA1B1C1D1中,点E,F分别是BB1,D1B1的中点,求证:EFDA1.12南康二中高二数学◆选修2-1◆导学案相,长度都为,则这个基底叫做单位正交基底,通常用{i,j,k}表示.9.空间向量的坐标表示:给定一个空间直角坐标系O-某yz和向量a,且设i、j、k为某轴、y轴、z轴正方向的单位向量,则存在有序实数组{某,y,z},使得,则称有序实数组{某,y,z}为向量a的a某iyjzk坐标,记着p10.设A(某1,y1,z1),B(某2,y2,z2),则AB=.11.向量的直角坐标运算:设a=(a,a,a3),b=(b1,b2,b3),则12⑴a+b=;⑵a-b=;⑶λa=;⑷a·b=动手试试1.在下列命题中:①若a、b共线,则a、b所在的直线平行;②若a、b所在的直线是异面直线,则a、b一定不共面;③若a、b、c三向量两两共面,则a、b、c三向量一定也共面;④已知三向量a、b、c,则空间任意一个向量p总可以唯一表示为p=某a+yb+zc.其中正确命题的个数为()A.0B.1C.2D.32.在平行六面体ABCD-A1B1C1D1中,向量D1A、是()D1C、AC11A.有相同起点的向量B.等长向量C.共面向量D.不共面向量3.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三向量共面,则实数λ=()62636465A.B.C.D.77774.若a、b均为非零向量,则ab|a||b|是a与b共线的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件5.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为()A.2B.3C.4D.56.a3i2jk,bij2k,则5a3b()A.-15B.-5C.-3D.-11314南康二中高二数学◆选修2-1◆导学案§2.2立体几何中的向量方法(1)1.掌握直线的方向向量及平面的法向量的概念;2.行、垂直、夹角等立体几何问题.102104,找出疑惑之处)复习1:可以确定一条直线;个平面的方法有哪些?复习2:如何判定空间A,B,C三点在一条直线上?复习3:设a=(a1,a2,a3),b=(b1,b2,b3),a·b=二、新课导学学习探究探究任务一:向量表示空间的点、直线、平面问题位置?新知:⑴点:在空间中,我们取一定点O间中任意一点P的位置就可以用向量把向量OP来表示,OP称为点P的位置向量.⑵直线:①直线的方向向量向量.②对于直线l上的任一点P,存在实数t,APtAB,此方程称为直线的向量参数方程.⑶平面:①空间中平面的位置可以由确定.对于平面上的任一点P,a,b是平面不共线向量,则存在有序实数对(某,y),OP某a使y.b②空间中平面的方向向量表示空间中平面的位置.⑷平面的法向量:如果表示向量n线垂直于平面,则称这个向量n垂直于平面,n⊥,那么向量n叫做平面的法向量.15试试:.1.如果a,b都是平面的法向量,则a,b的关系.2.向量n是平面的法向量,向量a是与平面平行或在平面内,则n与a的关系是.反思:1.一个平面的法向量是唯一的吗?2.平面的法向量可以是零向量吗?⑸向量表示平行、垂直关系:设直线l,m的方向向量分别为a,b,平面,向量分别为u,的法v①l∥m,则a∥ba②l∥akb③∥uu∥au0vukv.典型例题例1已知两点A1,2,3,B2,1,3,求直线AB与坐标平面YOZ的交点.变式:已知三点A1,2,3,B2,1,2,P1,1,2,点Q在OP上运动(O为坐标原点),求当QAQB取得最小值时,点Q的坐标.小结:解决有关三点共线问题直接利用直线的参数方程即可. 16南康二中高二数学◆选修2-1◆导学案§2.2立体几何中的向量方法(2)1.立体几何问题;2.中的角度的计算方法.105复习1:已知107,找出疑惑之处.ab1,a1,b2,且m2ab求m.复习2:角的范围是什么?二、新课导学学习探究探究任务一:用向量求空间线段的长度问题:如何用向量方法求空间线段的长度?新知a求出线段长度.试试:在长方体ABCD'A'B'C中'D,已AB1,BC2,'CC,求1AC'的长.反思用已知条件中的向量表示.典型例题例1如图,一个结晶体的形状为平行六面体,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60°,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?17变式1:上题中平行六面体的对角线BD1的长与棱长有什么关系?变式2:如果一个平行六面体的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于,那么由这个平行六面体的对角线的长可以确定棱长吗探究任务二:用向量求空间图形中的角度例2如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线l(库底与水坝的交线)的距离AC,BD分别为a,b,CD的长为c,AB的长为d.求库底与水坝所成二面角的余弦值.变式:如图,60的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB4,AC6,BD8,求CD的长.18南康二中高二数学◆选修2-1◆导学案§2.2立体几何中的向量方法(3)1.进一步熟练求平面法向量的方法;2.异面直线间距离的计算方法;3.熟练掌握向量方法在实际问题中的作用.,B0,1,1,C1,1,2ABC的一个法向量.复习2:离?二、新课导学学习探究探究任务一:点到平面的距离的求法问题:如图A,空间一点P到平面知平面的距离为d,的一个法向量为n,且AP与n不共线,AP与n表示d分析:过P作PO⊥于O连结d=|OAPO,则|=|PA|∵PO⊥,coAPO.n,∴PO∥n.∴co∠APO=|co∴D.=|PA||coPA,n|=|PAPA,n|||n|||coPA,n||PAn|n|=|n|新知:用向量求点到平面的距离的方法:设A,空间一点P到平面的距离为d,平面个法向量为n,则D.=|PA|n|n|19试试:在棱长为1的正方体ABCDA'B'C'D'中,求点C'到平面A'BCD'的距离.反思:当点到平面的距离不能直接求出的情况下,可以利用法向量的方法求解.典型例题例1已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.变式:如图,ABCD是矩形,PD平面ABC,DPDDCa,AD,M、N分别是AD、PB的中点,求点A到平面MNC的距离.PNCAB小结:求点到平面的距离的步骤:⑴建立空间直角坐标系,写出平面内两个不共线向量的坐标;⑵求平面的一个法向量的坐标;⑶找出平面外的点与平面内任意一点连接向量的坐标;⑷代入公式求出距离.20南康二中高二数学◆选修2-1◆导学案§第2章空间向量(复习)1.掌握空间向量的运算及其坐标运算;2.具.115-116复习1:如图,空间四边形OABC中OAa,OBb,OC且OM=2MA,为BC中点,则c.点M在OA上,MN复习2:平行六面体ABCDA'BADb,'C'D'中,ABaAA'c,点P,M,N分别是CA',CD',C'D'的中点,点Q在CA'上,且CQ:QA'4:1,a,用基底b,c表示下列向量:⑴AP;⑵AM;⑶AN;⑷AQ.主要知识点:1.空间向量的运算及其坐标运算:空间向量是平面向量的推广,有关运算方法几乎一样,只是“二维的”变成“三维的”了.2.立体几何问题的解决──向量是很好的工具①平行与垂直的判断②角与距离的计算21典型例题例1如图,一块均匀的正三角形面的钢板的质量为500kg,在它的顶点处分别受力F1、F2、F3,每个力与同它相邻的三角形的两边之间的夹角都是F60,且F12F3200kg.这块钢板在这些力的作用下将会怎样运动?这三个力最小为多大时,才能提起这块钢板?变式:上题中,若不建立坐标系,如何解决这个问题?小结:在现实生活中的问题,我们可以转化我数学中向量的问题来解决,具体方法有坐标法和直接向量运算法,对能建立坐标系的题,尽量使用坐标计算会给计算带来方便.例2如图,在直三棱柱ABCA1B1C1中,ABC90,CB1,CA21,点M6是CC1的中点,求证:AMBA1.变式:正三棱柱ABCA1B1C1的底面边长为1,棱长为2,点M是BC的中点,在直线CC1上求一点N,使MNAB.。
精品导学案:立体几何中的向量方法(一)——证明平行与垂直
第7讲 立体几何中的向量方法(一)——证明平行与垂直[最新考纲]1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系. 3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知 识 梳 理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.2.空间位置关系的向量表示辨 析 感 悟1.平行关系(1)直线的方向向量是唯一确定的.(×)(2)两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是平行.(√) 2.垂直关系(3)已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是n 0=±⎝ ⎛⎭⎪⎫13,-23,23.(√) (4)(2014·青岛质检改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线NO ,AM 的位置关系是异面垂直.(√)[感悟·提升]1.一是切莫混淆向量平行与向量垂直的坐标表示,二是理解直线平行与直线方向向量平行的差异,如(2).否则易造成解题不严谨.2.利用向量知识证明空间位置关系,要注意立体几何中相关定理的活用,如证明直线a ∥b ,可证向量a =λb ,若用直线方向向量与平面法向量垂直判定线面平行,必需强调直线在平面外等.学生用书第125页考点一 利用空间向量证明平行问题【例1】 如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .审题路线 若用向量证明线面平行,可转化为判定向量MN →∥DA 1→,或证明MN →与平面A 1BD 的法向量垂直.证明 法一 如图所示,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则可求得M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0).于是MN →=⎝ ⎛⎭⎪⎫12,0,12,DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量是n =(x ,y ,z ). 则n ·DA 1→=0,且n ·DB →=0,得⎩⎨⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. ∴n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n , 又MN ⊄平面A 1BD , ∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→.∴MN →∥DA 1→, 又∵MN 与DA 1不共线, ∴MN ∥DA 1,又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD , ∴MN ∥平面A 1BD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 (2013·浙江卷选编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 如图所示,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0), 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为点M 为AD 的中点,故M (0,2,1). 又点P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .考点二 利用空间向量证明垂直问题【例2】 (2014·济南质检)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4). 于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.【训练2】 如图所示,在直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证: (1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 如图,建立空间直角坐标系A -xyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). (1)取AB 中点为N ,则N (2,0,0), 又C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →.∴DE ∥NC ,又NC 在平面ABC 内,故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0),B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, 则B 1F →⊥EF →,∴B 1F ⊥EF ,∵B 1F →·AF →=(-2)×2+2×2+(-4)×0=0, ∴B 1F →⊥AF →,即B 1F ⊥AF .又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .学生用书第126页 考点三 利用空间向量解决探索性问题【例3】 (2014·福州调研)如图,在长方体ABCD -A1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点. (1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.审题路线 由长方体特征,以A 为坐标原点建立空间坐标系,从而将几何位置关系转化为向量运算.第(1)问证明B 1E →·AD 1→=0,第(2)问是存在性问题,由DP →与平面B 1AE 的法向量垂直,通过计算作出判定.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1).故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0.∵AD 1→·B 1E →=-a2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0). 使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a 2,-a要使DP ∥平面B 1AE ,只要n ⊥DP →,有a2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 规律方法 立体几何开放性问题求解方法有以下两种:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后再加以证明,得出结论;(2)假设所求的点或线存在,并设定参数表达已知条件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在这样的点或线,否则不存在.本题是设出点P 的坐标,借助向量运算,判定关于z 0的方程是否有解.【训练3】 如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由. (1)证明 连接BD ,设AC 交BD 于O ,则AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD . (2)解 棱SC 上存在一点E 使BE ∥平面P AC . 理由如下:由已知条件知DS →是平面P AC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0.设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →= ⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at ,由BE →·DS →=0⇔t =13.∴当SE ∶EC =2∶1时,BE →⊥DS →.又BE 不在平面P AC 内,故BE ∥平面P AC .1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想. 2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.3.运用向量知识判定空间位置关系,仍然离不开几何定理.如用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.思想方法8——运用空间向量研究空间位置关系中的转化思想【典例】 (2013·陕西卷)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2. (1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.(1)证明 法一 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1=2,∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1).①由A 1B 1→=AB →,易得B 1(-1,1,1).∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1),∴A 1C →·BD →=0,A 1C →·BB 1→=0,② ∴A 1C ⊥BD ,A 1C ⊥BB 1,且BB 1∩BD =B ,∴A 1C ⊥平面BB 1D 1D .③ 法二 ∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD .又底面ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C .④又OA 1是AC 的中垂线,∴A 1A =A 1C =2,且AC =2,∴AC 2=AA 21+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1,又BB 1∩BD =B ,∴A 1C ⊥平面BB 1D 1D . ⑤(2)解 设平面OCB 1的法向量n =(x ,y ,z ).∵OC →=(-1,0,0),OB 1→=(-1,1,1),∴⎩⎪⎨⎪⎧ n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎪⎨⎪⎧x =0,y =-z ,取n =(0,1,-1), 由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量,∴cos θ=|cos<n ,A 1C →>|=12×2=12. ⑥ 又0≤θ≤π2,∴θ=π3.[反思感悟] (1)转化化归是求解空间几何的基本思想方法:①中将空间位置、数量关系坐标化.②和③体现了线线垂直与线面垂直的转化,以及将线线垂直转化为向量的数量积为0.在④与⑤中主要实施线面、线线垂直的转化.⑥中把求“平面夹角的余弦值”转化为“两平面法向量夹角的余弦值”.(2)空间向量将“空间位置关系”转化为“向量的运算”.应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.【自主体验】如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,D 为AB 的中点,AC =BC =BB 1.求证:(1)BC 1⊥AB 1;(2)BC 1∥平面CA 1D .证明 如图,以C 1点为原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2).(1)由于BC 1→=(0,-2,-2),AB 1→=(-2,2,-2),所以BC 1→·AB 1→=0-4+4=0,因此BC 1→⊥AB 1→,故BC 1⊥AB 1.(2)连接A 1C ,取A 1C 的中点E ,连接DE ,由于E (1,0,1),所以ED →=(0,1,1),又BC 1→=(0,-2,-2),所以ED →=-12BC 1→,又ED 和BC 1不共线,所以ED ∥BC 1,又DE ⊂平面CA 1D ,BC 1⊄平面CA 1D ,故BC 1∥平面CA 1D .对应学生用书P321基础巩固题组(建议用时:40分钟)一、选择题1.已知平面α,β的法向量分别为μ=(-2,3,-5),v =(3,-1,4),则( ).A .α∥βB .α⊥βC .α、β相交但不垂直D .以上都不正确解析 ∵-23≠3-1≠-54,∴μ与v 不是共线向量,又∵μ·v =-2×3+3×(-1)+(-5)×4=-29≠0,∴μ与v 不垂直,∴平面α与平面β相交但不垂直.答案 C2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ).A .相交B .平行C .在平面内D .平行或在平面内解析 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内.答案 D3.(2014·泰安质检)已知A (1,0,0),B (0,1,0),C (0,0,1)三点,向量n =(1,1,1),则以n 为方向向量的直线l 与平面ABC 的关系是( ).A .垂直B .不垂直C .平行D .以上都有可能解析 易知AB →=(-1,1,0),AC →=(-1,0,1),∴AB →·n =-1×1+1×1+0=0,∴AC →·n=0,则AB →⊥n ,AC →⊥n ,即AB ⊥l ,AC ⊥l ,又AB 与AC 是平面ABC 内两相交直线,∴l ⊥平面ABC .答案 A如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( ).A .平行B .异面C .垂直D .以上都不对解析以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0). ∴PM →=(2,2,0)-(0,1,3)=(2,1,-3),AM →=(2,2,0)-(22,0,0)=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .答案 C5.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( ).A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝ ⎛⎭⎪⎫24,24,1 解析 连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线交点,∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标⎝ ⎛⎭⎪⎫22,22,1. 答案 C二、填空题6.已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.解析 ∵α⊥β,∴a ·b =x -2+6=0,则x =-4.答案 -47.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1).则不重合的两个平面α与β的位置关系是________.解析 AB →=(0,1,-1),AC →=(1,0,-1),∴n ·AB →=0,n ·AC →=0,∴n ⊥AB →,n ⊥AC →,故n 也是α的一个法向量.又∵α与β不重合,∴α∥β.答案 平行8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.由于BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.答案 ①②③三、解答题 9.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD 且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .10.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.(1)求证:CM ∥平面P AD ;(2)求证:平面P AB ⊥平面P AD .证明以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C -xyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角,∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32, (1)设n =(x ,y ,z )为平面P AD 的一个法向量,则⎩⎪⎨⎪⎧ DP →·n =0,DA →·n =0,即⎩⎨⎧ -y +2z =0,23x +3y =0,∴⎩⎪⎨⎪⎧ z =12y ,x =-32y , 令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD ,∴CM ∥平面P AD .(2)取AP 的中点E ,并连接BE ,则E (3,2,1),BE →=(-3,2,1),∵PB =AB ,∴BE ⊥P A . 又BE →·DA →=(-3,2,1)·(23,3,0)=0,∴BE →⊥DA →,则BE ⊥DA .∵P A ∩DA =A .∴BE ⊥平面P AD ,又∵BE ⊂平面P AB ,∴平面P AB ⊥平面P AD .能力提升题组(建议用时:25分钟)一、选择题1.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则x +y 的值为( ).A.257B.67C.187D.407解析 ∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP →⊥AB →,BP →⊥BC →,则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得x =407,y =-157.于是x +y =407-157=257. 答案 A2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则( ).①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.以上正确说法的个数为( ).A .1B .2C .3D .4解析 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确.答案 C二、填空题3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.答案 1三、解答题4.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0,P (0,0,a ), F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0. ∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 点为AD 的中点. 学生用书第128页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量法解决立体几何问题
一.引入两个重要的空间向量
1.直线的方向向量
把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.如图,在空间直角坐标系中,由A(x1,y1,z1)与量是
2.平面的法向量
如果表示向量n
的有向线段所在的直线垂 直于平面α,称这个向量垂直于平面α,记作
n ⊥α,这时向量n 叫做平面α的法向量.
在空间直角坐标系中,如何求平面法
向量的坐标呢? 如图,设a =( x1,y1,z1)、 b =(x2,y2,z2)是平面α内的两个不共线的非零 向量,由直线与平面垂直的判定定理知,若n ⊥a
且n ⊥b ,则n ⊥α.换句话说,若n ·a = 0
且n ·b = 0,则n ⊥ α. 求平面的法向量的坐标的步骤
第一步(设):设出平面法向量的坐标为n 第二步(列):根据n ·a = 0且n ·b = 0可列出方程组
第三步(解):把z 看作常数,用z 表示x 、y.
第四步(取):取z 为任意一个正数(当然取得越特 殊越好),便得到平面法向量n 的坐标.
11122200x x y y z z x x y y z z ++=⎧⎨
++=⎩
例1在棱长为2的正方体ABCD-A1B1C1D1中,O 是面AC 的中心,求面OA1D1的法向量.
二.立体几何问题的类型及解法 1.判定直线、平面间的位置关系
(1)直线与直线的位置关系:不重合的两条直线a,b 的方向向量分别为a ,b . ①若a ∥b ,即a=λb ,则a ∥b. ②若a ⊥b ,即a ·b = 0,则a ⊥b
例2已知平行六面体ABCD-A1B1C1D1的底面ABCD 是菱形,∠C1CB=∠C1CD=∠BCD=
θ,求证: C C1⊥BD
a
D y B1
A1 C1
D1 B C
A
D
(2)直线与平面的位置关系
直线L的方向向量为a,平面α的法向量为n,且L α.
①若a∥n,即a=λn,则 L⊥α
②若a⊥n,即a·n = 0,则a ∥α
例3棱长都等于2的正三棱柱
(I)A1E ⊥平面DBC1; (II)AB1 ∥
(3)平面与平面的位置关系
平面α的法向量为n1 ,
①若n1∥n2,即n1=λn2,则α∥β
②若n1⊥n2,即n1 ·n2= 0,则α⊥β
L
例4正方体ABCD-A1B1C1D1中,E 、F 分别是BB1、CD 的中点,
求证:面AED ⊥面A1FD
2.求空间中的角
(1)两异面直线的夹角
利用向量法求两异面直线所成的夹角,不用再把这两条异面直线平移,求出两条异面直线的方向向量,则两方向向量的夹角与两直线的夹角相等或互补,我们仅取锐角或直角就行了.
例5如图在正方体ABCD-A1B1C1D1中,M
的余弦值为_____.
(2)直线与与平面所成的角
若n 是平面α的法向量, a 是直线L 的方向向量,则L 与α所成的角θ= -<a,n >或θ= <a,n >- (下图) .
x ππ
于是, 因此
例6正三棱柱ABC-A1B1C1的底面边长为a,
高为 ,求AC1与侧面ABB1A1所成的角
(3)二面角
设n1 、n2分别是二面角两个半平面α、β的法向量,由几何知识可知,二面角α-L-β的大小与法向量n1 、n2夹角相等(选取法向量竖坐标z 同号时相等)或互补(选取法向量竖坐标z 异号时互补),于是求二面角的大小可转化为求两个平面法向量的夹角,这样可避免了二面角的平面角的作图麻烦.
例7在四棱锥S-ABCD 中∠DAB=∠ABC=90°,侧棱SA ⊥底面AC ,SA=AB=BC=1,AD=2,求二面角A-SD-C 的大小.
|||||||||||||,cos |sin n a n a n a n a n a ⋅⋅=⋅⋅=><=θ|
||||
|arcsin
n a n a ⋅⋅=θa 2
3.求解空间中的距离 (1)异面直线间的距离
两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.
如图,设两条异面直线a 、b 的公垂线的方向向量为n, 这时分别在a 、b 上任取A 、B 两点,则向量在n 上的正射影长就是两条异面直线a 、b 的距离.
∴
即两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.
例8在棱长为1的正方体ABCD-A1B1C1D1中,求异面直线AC1与BD 间的距离.
(2)点到平面的距离
A 为平面α外一点(如图), n 线AH. = = .
,||||||||n n n n d ⋅=⋅=|
,cos |||sin ||||><⋅=⋅=n AB AB AB AH θ||||||n n AB ⋅
于是,点到平面的距离等于平面内外两点的向量和平面的法向量的数量积的绝对值与平面的法向量模的比值.
例9 在直三棱柱ABC-A1B1C1中,AA1= ,AC=BC=1,∠ACB=90°, 求B1到面A1BC 的距离.
会求了点到平面的距离,直线到平面、平面到平面间的距离都可转化为求点到平面的距离来求.
例10四棱锥P-ABCD 的底面ACBD 是菱形,AB= 4, ∠ABC=60°, 侧棱PA ⊥底面AC 且PA= 4,E 是PA 的中点,求PC 与平面PED
空间向量理论引入立体几何中,通常涉及到夹角、平行、垂直、距离等问题,其方法是不必添加繁杂的辅助线,只要建立适当的空间直角坐标系,写出相关点的坐标,利用向量运算解决立体几何问题 。
这样使问题坐标化、符号化、数量化,从而将推理问题完全转化为代数运算,降低了思维难度,这正是在立体几何中引进空间向量的独到之处。
2
x
C
A
B
P
F E
D
三.过关练习
1 正方体ABCD —A 1B 1C 1D 1中,则异面直线AC 与BC 1的夹角为( )
(A )30° (B )45° (C )60° (D )90° 2.空间四边形ABCD 每边及对角线长均为2,G F E ,,分别是DC AD AB ,,的中点, 则=⋅( ) (A )
2
1
B 1 (
C ) 2 (
D )
2
2 3.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且
PQ =2
a
,则三棱锥P -BDQ 的体积为
(
)
(A )3
(B 3
(C 3 (D )无法确定 4.在正三棱锥P -ABC 中,已知底面边长为4,侧棱长为6,则侧棱与底面所成
角的余弦值为______________.
5. 过正方形ABCD 的顶点A ,引P A ⊥平面ABCD ,若P A = AB ,则平面ABP 和
平面CDP 所成的二面角的大小是 .
6.正方体ABCD —A 1B 1C 1D 1中,O 是上底面ABCD 中心,若棱长为a ,则三棱
锥O —AB 1D 1的体积为 .
7. 如图,在三棱椎P-ABC 中,P A ⊥平面ABC ,90,BAC ∠=D 、E 、F 分别是棱AB 、BC 、CP 的中点,AB=AC=1,P A =2.
(Ⅰ)求直线P A 与平面DEF 所成角的正弦值; (Ⅱ)求点P 到平面DEF 的距离.
8. 如图,在正三棱柱A 1B 1C 1—ABC 中,D ,E 分别是
棱BC 、1CC 的中点,AB=AA 1=2. (Ⅰ)证明:1BE AB ⊥;
(Ⅱ)求二面角1B AB D --的余弦值; (Ⅲ)求异面直线1AB 与BE 的距离.
9.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1B 1、A 1D 1的中点,G 、H 分别为BC 、B 1D 1的中点.
(1)求异面直线GH 与DF 的所成角的余弦值; (2)证明:直线GH 与平面EFDB 平行.
10.如图,已知正四棱柱ABCD—A1B1C1D1,点E在棱D1D上,截面EAC∥D1B,且面EAC与底面ABCD所成的角为45°,AB = a.
(Ⅰ) 求截画EAC的面积;
(Ⅱ)求证:直线DB1⊥平面EAC;
(Ⅲ)求三棱锥B1—EAC的体积.。