数学建模 席位分配问题19页PPT

合集下载

数学建模阅卷分配问题

数学建模阅卷分配问题

SJ
k 1 nj
jk ijk
x zi A j (i 1,2, ,19; j 1,2, ,19)
4)每个评委评判某个学校的B题卷数目不能超过该校B题卷 数的总量,不评B题卷的评委评阅该校B题卷的数目为0,即:
(1 SJ
k 1
jk
) xijk (1 z i ) B j (i 1,2, ,19; j 1,2, ,19)
1707
B
1708
B
1709
B
1710
A
1801
B
1802
B
1803
B
1804
B
1805
A
1806
A
1807
B
1808
B
1901
A
1902
B
1903
A
-
-
-
-
-
-
-
-
-
-
数学建模竞赛评卷中的试卷分配问题
现有来自19所学校的19名评委(每校一名)评阅试卷,同 时要求: 1)每份试卷经四位评委评阅; 2)每位评委只能一道题,且来自01,04,06,12,16学校 的评委要求评A题,来自02,05,07,10学校的评委要求评B 题; 3)为了使每位评委的工作量尽可能的平均,要求每个评委 评阅的试卷数在40-45份; 4)每名评委尽可能回避本校答卷,并且每个评委评阅的答 卷尽可能广泛。 根据上述已知条件以及要求,寻找最佳的评卷分配方案。
19
7)来自01,04,06,12,16学校的评委评A题,来自02, 05,07,10学校的评委评B题,即 zi 1 (i 1,4,6,12,16); zi 0 (i 2,5,7,10)

数学建模 名额分配问题

数学建模 名额分配问题

名额公平分配问题问题的提出名额分配问题是西方所谓的民主政治问题,美国宪法在第一条第二条款指出:‘众议院议员名额……将根据各州的人口比例分配。

’美国宪法从1788年生效以来200多年间,关于公平和人力的实现宪法中所规定的分配原则,美国的政治家和科学家们展开了激烈的讨论。

并提出了多种方法,但没有一种方法能够得到普遍的认可。

下面就日常生活中的实际问题,考虑合理的分配方案问题。

设某高校有5个系共2500名学生,各系学生人数见表格。

现有25个学生代表名额,赢如何分配较为合理。

5个系的学生人数系别一二三四五总和人数11056483622481372500模型假设1、要将名额尽可能的公平的分配,首先考虑的是公平量化,所谓公平,就是学生代表的名额占有率都相等,这样,基于名额占有率相等的分配的方案就是最公平的,在名额占有率不相等时,应要求差距尽可能的小,才能使分配方案更加公平。

2、在计算各个系别的名额分配占有量,这样就确定了公平的分配方案。

3、通常计算的名额占有量是小数,而名额只能整数的分配,这就需要将小数变成整数,解决小数变整数的问题通常采用四舍五入法。

名额占有率=总名额数÷总人数名额占有量=名额占有率×学生数模型建立模型一名额占有率分配=1%,即每一百人才有一个名额。

根据名额占有率可以算出全校名额占有率=252500分配:系别一二三四五总和人数11056483622481372500名额数11.05 6.48 3.62 2.48 1.3725取整11642124显然看出,这种方法出现了缺陷,分的总名额数多出一个,而这一个又无法可分,无论是四舍五入法,还是直接取整,分给二,四其中一个必定对另一个不公平。

所以需要改进。

模型二Hamilton 方法1790年,美国乔治·华盛顿时代的财政部长亚历山大·哈密尔顿(Hamilton)提出了一种解决名额分配的办法,并于1792年被美国国会通过。

《离散模型——公平的席位分配》示范公开课教学PPT课件【高中数学人教版】

《离散模型——公平的席位分配》示范公开课教学PPT课件【高中数学人教版】

pi ni pi ni i=1 103 11 114 11 i=2 63 7 64 6 i=3 34 3 34 4 和 200 21 212 21
pi ni
pi
ni
103 10 114(+10.6%) 11
63 6 63
6
34 4 38(+11.8%) 3
200 20 215
20
“公平”分配方法 衡量公平分配的数量指标
模 已知: m方人数分别为 p1, p2,… pm, 记总人数 型 为 P= p1+p2+…+pm, 待分配的总席位为N.
记 qi=Npi /P, 称为第i方的份额(i =1,2, …m)
要 已知份额向量q=(q1, …, qm)>0, 找一个非负 求 整数分配向量n=(n1, …, nm), 使n与q最接近.
• 对于非负整数n定义一个非负单调增函数d(n) • 当总席位为s时第i方分配的席位记作fi(p, s), fi(p, 0)=0 • 让s每次1席地递增至N,按照以下准则分配:
记ni=fi(p, s),若
pk
/ d(nk )
Max
i 1, 2,, m
pi
/ d (ni )
则令fk(p, s+1)= nk+1, fi(p, s+1) = ni (i≠k)
公平的席位分配
8/10/2021
1
公平的席位分配
每十年,美国联邦政府进行一次全国人口普查(census)。 各州在联邦众议院的代表名额也据此重新确定。
2000年人口普查后,犹他州(Utah)向联邦政府提出 控诉,说分配给卡罗莱纳州的名额应该是他们的。
事实上,过去200年来,美国国会在名额分配上打过多 起法律官司,曾有过长期争论并用过四种分配方案。

数学建模席位分配

数学建模席位分配

情形2
说明当对A 不公平时,给A 单 位增加1席,对B 又不公平。
计算对B 的相对不公平值
情形3
说明当对A 不公平时,给B 单
位增加1席,对A 不公平。
计算对A 的相对不公平值
则这一席位给A 单位,否则给B 单位。
结论:当(*)成立时,增加的一个席位应分配给A 单位, 反之,应分配给 B 单位。
若A、B两方已占有席位数为
按Q值方法:
甲1 2 2 3 4 … 乙1 1 2 2 2 … 丙1 1 1 1 1 …
甲:11,乙:6,丙:4
练习 学校共1000学生,235人住在A楼,333人住 在B楼,432住在C楼。学生要组织一个10人 委员会,试用惯例分配方法, d’Hondt方法和 Q值方法分配各楼的委员数,并比较结果。

则增加的一个席位应分配给Q值 较大的一方。 这样的分配席位的方法称为Q值方法。 4 推广 有m 方分配席位的情况 设 方人数为 ,已占有 个席位, 当总席位增加1 席时,计算
则1 席应分给Q值最大的一方。从
开始,即每方
至少应得到以1 席,(如果有一方1 席也分不到,则把 它排除在外。)
5 举例
甲、乙、丙三系各有人数103,63,34,有21个 席位,如何分配?

40
4
40/4=10
系别 人数 席位数 每席位代表的人数 公平程度
甲 103 10
103/10=10.3

乙 63 6
63/6=10.5

丙 34 4
34/4=8.5

系别 人数 席位数 每席位代表的人数
甲 103 11 103/11=9.36
乙 63 7
63/7=9

数学建模论文:席位分配问题例题

数学建模论文:席位分配问题例题

席位分配问题例题:有一个学校要召开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。

如何分配最为恰当?问题:(1)问20席该如何分配,如果有三名学生转系该怎样分配?(2)若增加21席又如何分配?问题的分析:一、20席分配情况:系名甲乙丙总数学生数100 60 40 200学生人数比例100/200 60/200 40/200席位分配10 6 4 20如果有三名学生转系,分配情况:系名甲乙丙总数学生数103 63 34 200学生人数比例103/200 63/200 34/200按比例分配席位10.3 6.3 3.4 20按惯例席位分配10 6 4 20二、21席位分配情况:系名甲乙丙总数学生数103 63 34 200学生人数比例103/200 63/200 34/200按比例分配席位10.815 6.615 3.57 21按惯例席位分配11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。

要怎样才能公平呢?模型的建立:假设由两个单位公平分配席位的情况,设单位人数席位数单位A p1 n1单位B p2 n2要公平,应该有p1/n1 = p2/n2,但这一般不成立。

注意到等式不成立时有若p1/n1 >p2/n2 ,则说明单位A吃亏(即对单位A不公平)若p1/n1 <p2/n2 ,则说明单位B 吃亏(即对单位B不公平)因此可以考虑用算式p=|p1/n1-p2/n2|来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为n1 =n2 =10 ,p1 =120,p2=100,算得p=2另两个单位的人数和席位为n1 =n2 =10 ,p1 =1020,p2=1000, 算得p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。

数学建模 席位分配问题共21页文档

数学建模 席位分配问题共21页文档

数学建模 席位分配问题
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

数学建模---席位

数学建模---席位

第十八次全国人名代表大会人大代表席位分配方案分析修改专业:信息与计算科学学号:201014413姓名:张艺伟摘要2012年11月8日(星期四)上午9时,第十八次全国人民代表大会在人民大会堂正式召开。

人民代表大会制度是我国的根本政体,是我国立国利民之本,它的召开在全国人民心目中都具有举足轻重的地位。

在议政的同时,人大会议中各省人大代表名额的分配原则也是人们广泛关注的焦点。

根据查询数据和相关法律(省、自治区、直辖市根据人口总数计算名额数,即城乡居民每67万人中选取一名人大代表)的分析,我发现现实生活中的席位分配似乎有些不公平。

以河南,山东两省为例。

根据数据查询可知河南省目前人数1.0489万人,山东省现有人口9579.3065人,比河南总人口少0.091万人,但河南省只有人大代表席位159个,山东省拥有人带代表名额162个,比河南省多3个名额。

这个数据的差别让我对全国人民代表大会代表席位分配方法产生了兴趣,以下将对其进行更加全面的资料与数据分析,并给出自己的一点意见与建议。

问题重述探讨全国人民代表大会的席位分配问题。

根据《中华人民共和国宪法》和《中华人民共和国人民代表大会和地方各级人民代表大会选举法》的有关规定,第十届全国人民代表大会第五次会议关于全国人民代表大会代表名额和选举问题的相关规定有:一.全国人民代表大会名额不超过3000人。

二.省、自治区、直辖市根据人口总数计算名额数,即城乡居民每67万人中选取一名人大代表。

三.省、自治区、直辖市拥有基本名额数8名。

四.第十二届全国人民代表大会代表中,少数民族代表应占代表总名额的12%左右,人口特别少的少数民族至少应占有1名名额。

五.香港特别行政区应选全国人民代表大会代表36名。

澳门特别行政区应选全国人民代表大会代表12名。

台湾省暂时选举全国人民代表大会代表13名,由在各省、自治区、直辖市和中国人民解放军的台湾省级同胞中选出。

六.中国人民解放军应选全国人民代表大会代表256名。

席位分配

席位分配

1引言席位分配是一个非常有趣而重要的问题,它在政治学管理和对策论等领域具有广泛的应用价值。

处理的方法最早的有尾数最大法;然后是Q值法;1974年引入了席位分配问题的公理体系研究方法,并于1982年证明了同时满足五个所用的比例分配方法存在较大缺陷分配为11,7,3名额。

其结果是,单位增加一个先进名额后,丙部门反而减少了一个名额。

公理的席位分配方法是不存在的。

后又有一些新的算法,如:新值法,最大熵法,0-1规划法,法,值法最小极差法和最大概率法等。

但有时我们遇到大会上遇到少数情况,某个部门的人数较少,按上述方法分不到席位。

本文讨论的是“少数原则”下解决席位分配问题,在解决“少数原则”情况下较方便。

正文问题:2.1问题:在一次民族代表会中,有一个民族的人口在该国占有极少比例,但大会必须考虑政策给一个席位的分配资格。

如果我们遇到同样的问题该如何处理呢?下面我们给出少数分配的原则,并讨论在该特殊问题下的分配问题。

少数原则:在席位分配中,各部门都有分配资格,当席位数n大于单位(部门)数i时至少分配一个席位。

2.2问题的一般表述一个单位由m个部门组成,其中第i个部门的人数为ai (1)i m≤≤,学校总人数为a。

如果该单位需要召开一个由n个代表参加的代表大会,且每个部门尽可能分配一个名额,组织者必须把n个席位尽可能公平的分配到个部门中去。

记每个部门最后应分配到的席位数为ni ,试问ni是多少?模型假设要解决这样的问题首先必须舍弃原有的公平分配体系,让更多的部门拥有席位分配的资格,建立相对公平的指标。

建立数量指标首先我们必须讨论总席位数n和总部门数i之间的关系1)当n〈i时,由于不可能保证每个部门都可一分到席位,这时我们尽可能的让更多的部门分到席位,可以由D’Hondt法(备注2)中的ai/1来做比较,由值的大小来决定分配与否(由值的大小由大到小按顺序来排,依次给予一个席位直到分配完)2)当n=i时,由少数原则,每个部门必须分到,刚好每个部门分配一个3)当n〉i时,每个部门至少可以分到一个名额。

公平的席位分配模

公平的席位分配模

C宿舍已具备“分配资格” 3)下面每增加一个名额,则重复如下步骤,直至A宿舍具有“分配资格”止, 不失一般性,设 pc p B ,其中m,n分别为已分配给B、C的名额数.
m 1 n 1 pc p p B A a)如果 m 1 n 1 1 ,则A宿舍仍不具备“分配资格”;B、C运用Q值 法,确定这一名额给B还是给C. b)如果 p c p A p B ,则A宿舍仍不具备“分配资格”;且C宿舍的Q m 1 1 n 1
2013-9-22
3模型的优缺点
比例加惯例法存在较大缺陷,Q值法但这种方法缺 点是要求参与分配的各方至少已有一个名额, d’Hondt法尽可能将不公平降低到最低限度,将 d’Hondt和Q值法结合起来的d’Hondt+Q值法是基 于d’Hondt法和Q值法的,后面三种方法都是基于 比例加惯例法进一步得出的,则它们互相有关联, 在一定程度上会受到影响;其次上述四种模型考 虑的实际问题太少,不具有很大的推广性.但是对 于一些简单的分配问题,可以用d’Hondt法模型进 行席位分配.
5
8 11 14
93312.0
31104.0 15552.0 9331.2 6220.8 4443.4
4
6 9 10 13
10个席位的分配,分配名额是4,5,6.
获得名额
2013-9-22
4
5
6
观察结果可得:当席位增至15人时,除了d’Hondt法分
配是3,5,7,其他三种方法3个宿舍分配的人数都是4,5,6, 相比较当3个宿舍分配的人数为3,5,7时,各个宿舍分配 到的每个席位代表的人数更接近,则席位分配更合理.
2013-9-22
3
4.995
5544.5

公平分配席位数学建模

公平分配席位数学建模

公平分配席位数学建模
公平分配席位数学建模是指基于数学模型,通过分析选民分布、政党得票率等因素,确定选举中各政党应该获得的议席数,从而实现选举结果的公正和公平。

在公平分配席位数学建模中,主要运用了几种方法,包括杜哈美—贝勒多尼定理、圆整法、最大余数法、谢泼德方法等。

这些方法都能够根据选民分布和政党得票率等因素,计算出每个政党应该获得的议席数,并且保证在分配过程中不会出现偏差和不公平现象。

公平分配席位数学建模不仅在政治选举中有着广泛的应用,还可以用于企业、学校等组织内部的决策和分配问题。

通过数学建模,可以实现公正合理的决策和资源分配,提高组织的效率和公信力。

总之,公平分配席位数学建模是一种重要的数学工具,可以帮助我们实现公正公平的选举和决策,具有广泛的应用前景和社会价值。

- 1 -。

席位分配问题

席位分配问题

公平席位问题分析一、问题重述。

学校共有1000名同学,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。

学生们要组织一个十人的委员会,试用下列办法分配各宿舍的委员数。

(1) 完.按比例分配取整数的名额后,剩下的名额按惯例给小数部分较大者。

(2).Q 值法。

(3).d'Hondt 方法。

二、问题分析。

(1)对于第一问满足等比例分配模型。

使用等比例分配。

分配图标如下。

3、3、4。

二这样的分配显然对B.C 是不公平的。

所以我们引入Q 值法来分析这个问题。

(2)应用相对标准(Q 值法)来分析公平席位问题。

相对标准方法引入(Q 值法):现引入A 、B 两方做公平席位分析。

设两方人数分别为p1和p2,占有席位分别是n1和n2 ,则两方每个席位代表的人数分别为p1/n1和p2/n2 。

显然仅当p1/n1=p2/n2 时席位的分配才是公平的。

但是因为人数和席位数都是整数,所以通常p1/n1≠p2/n2 ,这时席位分配不公平,并且pi/ni(i=1,2) 数值较大的一方吃亏,或者说对这一方不公平。

现为了更准确地区分两种程度明显不同的不公平情况,借用误差分析中绝对误差和相对误差的概念,建立如下衡量分配不公平程度的数量指标: 若p1/n1>p2/n2 ,则对A 的相对不公平值为:若p1/n1>p2/n2 ,则对A 的相对不公平值为:22221121///),(n p n p n p n n r A -=11112221///),(n p n p n p n n r B -=建立了数量指标后,制定席位分配的原则是使它们尽可能小. 所以,如果()()1,,12121+<+n n r n n r A B (1)则这1席应分给A 方;反之应分给B 方。

(1)式等价于下面的(2)式:(2)于是结论是:当(2)式成立时增加的1席应分给A 方,反之则分给B 方。

若记 Qi = pi2 / ni ( ni+1 ),i=1,2.则增加的1席应分给Q 值较大的一方。

最新席位分配PPT课件

最新席位分配PPT课件

设第i方人数为pi,i=1,2…,m,总人数
m
P pi
,待
i 1
分配的席位为N, qi=N*(pi/P)为按比例的席位数,ni为理想
化的席位数。
n i 是N和pi的函数,记
ni ni(N ,p1, ,pm ),
q qi,qi 分别为 i 向左取整和向右取整。
原则一 按比例分配原则
q i n i q i , i 1 , 2 , , m , 即 n i 必 q i , q i 取 二者之一
同上.Q3最大,于是这一席应分给丙系. 这样,21个席位的分配结果是三系分别占有11,6,4席,丙 系保住了险些丧失的1席.你觉得这种分配方法公平吗?
席位分配表
前 系 学 学生 19 别 生 人数 席
人 的比 的 数 例(%) 分

甲 103 51.5 10
乙 63 31.5 6
丙 34 17.0 3
例:p1=11,n1=2,每5.5个人拥有一个席位。 p2=100, n2=20 ,每5个人拥有一个席位。 p1/n1>p2/n2
对A方不公平。试给A方加1席,因为 p1/(n1+1)<p2/n2 即11/3<5
所以,对B方不公平。相对不公平度为 rB =p2*(n1+1)/p1*n2 – 1=0.36=36/100
n11,0 n26,n33
然后再用Q值方法分配第20席和第21席. 第20席:计算
Q 1 1 1 1 0 2 0 1 9 3 .4 6 ,Q 2 6 6 2 7 3 9 .5 4 ,Q 3 3 3 2 4 4 9 .3 6 .
Q1最大
于是这一席应分给甲系.
第21席:计算 Q11110123280.4,Q2Q3

席位分配-PPT课件

席位分配-PPT课件

p / n p /( n 1 ) p 2 2 ( n 1 ) 1 1 2 1 r ( n 1 , n ) 1 (3) B 1 2 p /( n 1 ) p n 1 1 1 2
3 、尝试给B方,出现
p p n 1 ) 1n 1 2( 2
即给B方增加1席时,对A不公平。参照(1)式可计 算出对A的相对不公平度为
p / n p /( n 1 ) p 1 ( n 1 ) 1 2 2 1 2 r ( n , n 1 ) 1(4) A 1 2 p /( n 1 ) p n 2 2 2 1
p n 1 )的情况. 不可能出现 p 1n 1 2( 2
为两方分配席位的原则是选择不公平尽可能地小的方案
现在,重庆市政府已制定了符合公平原则的新规定。
公平、正义比太阳还要有光辉
二、设定目标:找到衡量公平分配席位的指标,并由此建立 新的分配方法. 讨论A,B两方公平分配席位的情况,并建立评价指标。 设两方人数分别p1和p2,占有席位分别是n1和n2,则两方 每个席位代表的人数分别为p1/n1和p2/n2.显然仅当 p1/n1=p2/n2 时席位的分配才是公平的.但是因为人数和席位都是整数,所以 通常 p1/n1<>p2/n2。其中 pi/ni i=1,2
参照惯例的结果
10 6
103 63

总和
34
200
17.0
100.0
3.4
20.0
4
20
惯例在特殊的情况下暴露了一个问题 因为有20个席位的代表会议,在表决提案时可能出现
10:10的局面,会议决定下一届增加1席。按照上述方法重新
分配席位,计算结果见表6、7列显然这个结果对丙系不 满意。因为席位增加1席,而丙系却由4席减为3席.

公平席位分配问题 数学建模

公平席位分配问题  数学建模

公平席位分配问题数学建模数学建模,公平席位问题所在系别:地球科学与资源系专业班级:10级土管6班姓名:刘强1一、摘要本文就是席位分配公平与否的问题。

需要联系生活想象。

它就是在达到所有系最公平的条件下寻求最好的方法,通过对各个合理的计算和研究,总结找出最佳方案。

首先用比例分配法求出本题的答案,然而考虑到实际的多重因素下,在假设一组数据进行检验,然后便发现了问题,即:很多时候根本没有公平的分配方法,我需要另寻其他方法。

找到了以下关于分配的方法:Hamilton (哈密顿)方法、d’Hondt 接着我(汉丁顿)方法、Q值方法、d’Hondt(汉丁顿)方法+Q值法。

将对这些方法进行逐一分析与检验,使得得出一套最佳的合理方案。

即:使得各系席位分配最公平。

关键词:公平分配、最佳方案、最公平二、问题的重述某校有200名学生,甲系100名,乙系60名,丙系40名,若学生代表会议设20个席位,问三系各有多少个席位,三、问题的提出与分析分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中。

它涉及的内容十分广泛。

此题一个自然的问题是如何分配席位名额才是公平的呢,反映公平分配的数量指标可用每席位代表的人数来衡量。

即:mi / xi当各系每席位代表的人数相等时,则就是最公平的分配方法。

此题公平的席位分配办法是按学生人数的比例分配,显然甲、乙、丙三系分别占有10、6、4个席位。

但是比例分配在实际生活中的应用并不广泛,原因是当所得结果并非整数时,就难以解决了。

此时就需要另寻其他方法了。

Hamilton (哈密顿)方法、d’Hondt(汉丁顿)方法、Q值方法均是求如何分配所总结的方法。

那么什么方法使得能够更大的获得公平呢,四、符号的约定• N 表示总席位数• s 表示系数• ni(i=1.2.3……s) 表示第i个系• mi(i=1.2.3……s) 表示各系中的人数• xi(i=1.2.3……s) 表示各系所获得的席位数?、采用比例分配法xi=(mi/N)*总席数20个席位的分配结果如下表人数系别ni 所占比例分配方案席位数xi mi甲 100 100/200 (50/100)*20=10 102乙 60 60/200 (30/100)*20=6 6丙 40 40/200 (20/100)*20=4 4• 但是我发现实际生活中结果是整数的情况少之又少,• 所以对此我们假设下面这种情况作为参考。

公平分配席位数学建模

公平分配席位数学建模

公平分配席位是一种数学建模问题,通常涉及到在一个组织或机构内,如何公平地分配有限的席位或资源给不同的成员或利益相关者。

该问题可通过以下步骤建立数学模型:
1.定义问题:明确参与者、资源和目标,确定席位数量和分配规则。

2.建立评价指标:根据目标和分配规则,建立评价指标来衡量分配方案的公平性和效
率性。

3.确定算法:选择合适的算法来进行席位分配,例如最大剩余法、顺序分配法、随机
分配法等。

4.模型求解:通过计算机程序或手工计算,进行模型求解,得出最优分配方案。

5.结果分析:对比各个方案的评价指标,选择最优方案并进行结果分析,验证模型的
可靠性和有效性。

公平分配席位模型可以应用于政治、教育、医疗、社会保障等领域,如选举、大学招生、医疗资源分配、社会福利等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档