假设检验t检验和Z检验PPT精选文档
合集下载
《假设检验》课件
方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。
第六章假设检验基础PPT课件
❖假设检验的原理: 假设检验的基本思想是反证法和小
概率的思想
❖反证法思想:首先提出假设(由于未经检验是否成立,
所以称为无效假设),用适当的统计方法确定假设
成立的可能性大小,如果可能性小,则认为假设不
成立,拒绝它;如果可能性大,还不能认为它不成立
❖小概率思想:是指小概率事件在一次随机试验中认为
基本上不会发生
一、一组样本资料的t 检验(one sample/group t-test)
现有取自正态总体N(μ,σ2)的、容量为n 的一份 完全随机样本。 目的:推断该样本所代表的未知总体均数µ与已知总体 均数µ0是否相等已知总体均数µ0是指标准值,理论值 或经大量观察所得的稳定值。
n136135
3. 确定P值
指从H0规定的总体中随机抽得等于及 大于(或等于及小于)现有样本获得
的检验统计量值的概率。
4. P值的意义:如果总体状况和H0一致,统计量获 得现有数值以及更不利于H0的数值的可能性(概率) 有多大。
5.
t0 .2 (3 5 ) 50 .68 t 2 t0 .2 (3 5 ) 5得 P 0 .25
H0一般设为某两个或多个总体参数 相等,即认为他们之间的差别是由 于抽样误差引起的。H1的假设和H0 的假设相互对立,即认为他们之间 存在着本质的差异。H1的内容反映 出检验的单双侧。
单双侧的确定: 一是根据专业知识,已知东北某县囱
门月龄闭合值不会低于一般值; 二是研究者只关心东北某县值是否高
于一般人群值,应当用单侧检验。 一般认为双侧检验较为稳妥,故较为
目的要求选用不同的检验方法。
4、确定P值: P值是指由H0所规定的总体中做随机抽
样,获得等于及大于(或等于及小于)现 有统计量的概率。当求得检验统计量的值 后,一般可通过特制的统计用表直接查出P 值。
《假设检验检验》课件
《假设检验检验》PPT课 件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
假设检验与t检验-卫生统计学_PPT幻灯片
S/ n 5.08/ 36
n136135
第二节 t检验
• 单样本设计的t检验 • 配对设计的t检验 • 完全随机设计(成组设计)的t检验
第二节 t检验
每种不同设计类型的t检验均主要从以下四个方面介绍:
1. 设计类型 2. 可解决的问题 3. 假设检验步骤 4. 适用条件
一.单样本设计t检验(one-sample t-test)
2.080 2.074 2.069 2.064 2.060
2.518 2.508 2.500 2.492 2.485
2.831 2.819 2.807 2.797 2.787
3.135 3.119 3.104 3.091 3.078
3.527 3.505 3.485 3.467 3.450
3.819 3.792 3.768 3.745 3.725
– P> α,不能拒绝H0 (在H0成立的前提下,一次随机抽样没有发生小概率事件,没有
充足的理由拒绝H0 )
第一节 假设检验的原理与步骤
二、假设检验的基本步骤
1. 建立假设(H0和H1) ,确定检验水准α 2. 选择检验方法,计算检验统计量 3. 确定 P 值,作出推断结论
第一节 假设检验的原理与步骤
6
0.718
7
0.711
8
0.706
9
0.703
10
0.700
21
0.686
22
0.686
23
0.685
24
0.685
25
0.684
0.20 0.40
1.376 1.061 0.978 0.941 0.920
0.906 0.896 0.889 0.883 0.879
n136135
第二节 t检验
• 单样本设计的t检验 • 配对设计的t检验 • 完全随机设计(成组设计)的t检验
第二节 t检验
每种不同设计类型的t检验均主要从以下四个方面介绍:
1. 设计类型 2. 可解决的问题 3. 假设检验步骤 4. 适用条件
一.单样本设计t检验(one-sample t-test)
2.080 2.074 2.069 2.064 2.060
2.518 2.508 2.500 2.492 2.485
2.831 2.819 2.807 2.797 2.787
3.135 3.119 3.104 3.091 3.078
3.527 3.505 3.485 3.467 3.450
3.819 3.792 3.768 3.745 3.725
– P> α,不能拒绝H0 (在H0成立的前提下,一次随机抽样没有发生小概率事件,没有
充足的理由拒绝H0 )
第一节 假设检验的原理与步骤
二、假设检验的基本步骤
1. 建立假设(H0和H1) ,确定检验水准α 2. 选择检验方法,计算检验统计量 3. 确定 P 值,作出推断结论
第一节 假设检验的原理与步骤
6
0.718
7
0.711
8
0.706
9
0.703
10
0.700
21
0.686
22
0.686
23
0.685
24
0.685
25
0.684
0.20 0.40
1.376 1.061 0.978 0.941 0.920
0.906 0.896 0.889 0.883 0.879
4第四章 假设检验、t检验和Z检验
编号
1 2 3
干预前
12 9 10
干预后
15 12 16
差值(d)
3 3 6
d2
9 9 36
4
5 6
6
5 8
10
12 9
4
7 1
16
49 1
7
8 9 10
13
11 10 9
19
18 15 11
67 5 2Fra bibliotek3649 25 4
第三节 配对设计t检验
1.建立检验假设,确定检验水准 H 0 : d 0
两独立样本t检验
1.建立假设,确定检验水准
H 0 : 1 2 H 1 : 1 2
2.选定检验方法,计算检验统计量
t 3012 .5 2611 .3 (30 1) 280.1 (32 1) 302.5 1 1 ( ) 30 32 2 30 32
第二节 单样本t检验和Z检验
1.建立检验假设,确定检验水准
H 0 : 0 H1 : 0
0.05
2.选定检验方法,计算检验统计量Z值
Z x 0 s/ n 142.6 130 31.25 / 210 5.843
3.确定P值,作出推断结论
P<0.01。按α=0.05水准,拒绝H0,接受H1,差异有高
度统计学意义。
第三节 配对设计t检验
配对t检验的基本思路是:首先求出各对 子的差值的均数,若两种处理结果无差 别或某种处理前后不起作用,理论上差 值的总体均数应该为0。
d d d 0 d t Sd sd / n sd / n v n 1
第三节 配对设计t检验
表4-3 10名抑郁症患者干预前后心理指标LSIB测试结果
t检验和Z检验
药物治疗
1
? =
药物治疗合 并饮食疗法
2
推断
甲组
n1=12
XX1 =15.21
乙组 n2=13 X 2=10.85
t 检验——问题提出
▪ 根据研究设计,t检验有三种形式:
➢单个样本的t检验 ➢配对样本均数t检验(非独立两样本均数t
检验)
➢两个独立样本均数t检验
第一节 单个样本t检验
▪ 又称单样本均数t检验(one sample t test),适 用于样本均数与已知总体均数μ0的比较,目的是 检验样本均数所代表的总体均数μ是否与已知总 体均数μ0有差别。
▪ 配对设计主要有三种情况:
(1)将受试对象按某些混杂因素(如性别、年龄、窝别 等)配成对子,每对中的两个个体随机分配给两种处理 (如处理组与对照组); (2)同一受试对象或同一标本的两个部分,随机分别进 行不同处理(或测量)。 (3)同一受试对象自身前后对照。
配对t检验原理
▪ 配对设计的资料具有对子内数据一一对应的特征, 研究者应关心是对子的效应差值而不是各自的效 应值。
表 5-1 12 名儿童分别用两种结核菌素的皮肤浸润反应结果(mm)
编号
标准品 新制品 差值 d
d2
1
12.0
10.0
2.0
4.00
2
14.5
10.0
4.5
20.25
3
15.5
12.5
3.0
9.00
4
12.0
13.0
-1.0
1.00
5
13.0
10.0
3.0
9.00
6
12.0
5.5
6.5
42.25
t检验与z检验.PPT
因为Z = 6.97 > Z 0.01, 所以P <0.01,
差异有统计学意义(P<0.01),
故拒绝H0,认为该地男、女间红细胞数
有显著差别,男高于女。
.
24
t 检验的应用条件
1、正态性 2、方差齐性
.
25
方差齐性检验
两独立样本均数比较的t 检验,
要求相应的两总体方差相等,即方 差具有齐性。为此,我们要对两样 本的方差作统计学检验
140
27
2
150
138
-12
3
150
140
-10
4
135
135
0
5
128
135
7
6
100
120
20
7
110
147
37
8
120
114
-6
9
130
138
8
10
123
120
-3
使用配对t检验
解:1.建立检验假设,确定检验水准
H0:μd=0,假设该药不影响血红蛋白的变
化,即治疗前后总体差数为0。
H1:μd≠0 ,假设该药影响血红蛋白的变
.
21
1. H0 : μ1= μ2 ,即该地男、女红细胞数相
同,
H1 : μ1 ≠ μ2 ,该地男、女红细胞数不相
同。
α=0.05.
.
22
2. 计算Z 值
Z
X1 X2
S
2 1
S
2 2
n1 n 2
4.654.22
6.97
(0.55)2 (0.44)2
156 104
差异有统计学意义(P<0.01),
故拒绝H0,认为该地男、女间红细胞数
有显著差别,男高于女。
.
24
t 检验的应用条件
1、正态性 2、方差齐性
.
25
方差齐性检验
两独立样本均数比较的t 检验,
要求相应的两总体方差相等,即方 差具有齐性。为此,我们要对两样 本的方差作统计学检验
140
27
2
150
138
-12
3
150
140
-10
4
135
135
0
5
128
135
7
6
100
120
20
7
110
147
37
8
120
114
-6
9
130
138
8
10
123
120
-3
使用配对t检验
解:1.建立检验假设,确定检验水准
H0:μd=0,假设该药不影响血红蛋白的变
化,即治疗前后总体差数为0。
H1:μd≠0 ,假设该药影响血红蛋白的变
.
21
1. H0 : μ1= μ2 ,即该地男、女红细胞数相
同,
H1 : μ1 ≠ μ2 ,该地男、女红细胞数不相
同。
α=0.05.
.
22
2. 计算Z 值
Z
X1 X2
S
2 1
S
2 2
n1 n 2
4.654.22
6.97
(0.55)2 (0.44)2
156 104
第七章 t检验和z检验课件
t
X1 X2
( n1
1
)
S
2 1
(n2
1
)
S
2 2
(
1
1
)
n1பைடு நூலகம் n2 2
n1 n2
2.656 5.150
7.581
(9 1)0.475 2 (8 1)0.852 2 (1 1 )
982
98
n1 n2 2 1 5
3. 确定P值, 作出推断结论
查t界值表得, t0.05/2,15=2.131, t0.01/2,15=2.947,
资料所提供的信息: 1. 计量资料 2. 配对设计。
表7.1 贫血患儿治疗一个疗程前后血红蛋白(g/L)变化情况
对上面问题可以作如下考虑:
治疗前后血红蛋白 的变化(差值)
d
问题归纳: 样本疗效
样本
n10 Sd7.96d137.53
d 0?
药物作用 + 机遇
d33.5
μ 0? d
问题:| d 究0 |竟多大能够下“有效”的结论?
对资料进行分析: 1. 资料提供的信息: 小样本计量资料
已知总体均数0=72次/分, n=25,
x74.2次/分S = 6.0次/分。 2. 应进行样本均数与已知总体均数比
较的t 检验。 3. 目的: 推断样本所代表的未知总体均
数与已知的总体均数有无差别。
(1) 建立检验假设,确定检验水准
H0:=0, 山区成年男子脉搏均数与一般成年
S/ n 6 25
0.01<p<0.05
例7.2 以往通过大规模调查已知某地新 生儿出生体重为3.30kg, 从该地难产儿中 随机抽取35名新生儿作为研究样本,平均 出生体重为3.42kg, 标准差为0.40kg。问 该地难产儿出生体重是否与一般新生儿体 重不同?
统计学试验假设检验PPT(完整版)
统计学试验假设检验
一、单个样本的统计假设检验
• σ已知时单个平均数的显著性检验——u检验
2)。在改善栽培条件后,随机抽取9粒,得平 均籽粒重 379.2g。若粒重标准差s仍为3.3g, 问改善栽培条件后是否显著提高了豌豆籽粒 重?
建立工作表
添加数据
• σ未知时平均数的显著性检验——t检验
[例] 已知玉米单交种“群单105”的平均穗重m0= 300g。喷洒植物生长促进剂后,随机抽取9个果穗, 测得穗重为:308、305、311、298、315、300、 321、294、320g。问喷药后与喷药前的果穗重差 异是否显著?
若粒重标准差s仍为3. 问喷药后与喷药前的果穗重差异是否显著?
一、单个样本的统计假设检验 σ未知时平均数的显著性检验——t检验 3g,问改善栽培条件后是否显著提高了豌豆籽粒重? [例] 已知玉米单交种“群单105”的平均穗重m0=300g。 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 一、单个样本的统计假设检验
1(X2)
感谢观看
ห้องสมุดไป่ตู้
建立工作表
添加数据
二、两个样本的差异显著性检验 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。
喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 问喷药后与喷药前的果穗重差异是否显著?
问喷药后与喷药前的果穗重差异是否显著?
在改善栽培条件后,随机抽取9粒,得平均籽粒重 379. 标准差σ1和σ2未知,但σ1=σ2 —t 检验 若粒重标准差s仍为3.
一、单个样本的统计假设检验
• σ已知时单个平均数的显著性检验——u检验
2)。在改善栽培条件后,随机抽取9粒,得平 均籽粒重 379.2g。若粒重标准差s仍为3.3g, 问改善栽培条件后是否显著提高了豌豆籽粒 重?
建立工作表
添加数据
• σ未知时平均数的显著性检验——t检验
[例] 已知玉米单交种“群单105”的平均穗重m0= 300g。喷洒植物生长促进剂后,随机抽取9个果穗, 测得穗重为:308、305、311、298、315、300、 321、294、320g。问喷药后与喷药前的果穗重差 异是否显著?
若粒重标准差s仍为3. 问喷药后与喷药前的果穗重差异是否显著?
一、单个样本的统计假设检验 σ未知时平均数的显著性检验——t检验 3g,问改善栽培条件后是否显著提高了豌豆籽粒重? [例] 已知玉米单交种“群单105”的平均穗重m0=300g。 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 一、单个样本的统计假设检验
1(X2)
感谢观看
ห้องสมุดไป่ตู้
建立工作表
添加数据
二、两个样本的差异显著性检验 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。
喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 问喷药后与喷药前的果穗重差异是否显著?
问喷药后与喷药前的果穗重差异是否显著?
在改善栽培条件后,随机抽取9粒,得平均籽粒重 379. 标准差σ1和σ2未知,但σ1=σ2 —t 检验 若粒重标准差s仍为3.
假设检验的步骤与t检验的理论PPT课件( 16页)
例4:为比较两种狂犬疫苗的效果,将120名患者 随机分为两组,分别注射精致苗和PVRV, 测定45天两组的狂犬病毒抗体滴度,结果见 教材P94例8.4,问两种狂犬疫苗的效果有无 差别?
Independent-Samples T Test过程:
先求血清滴度的对数值:
Transform
Comput variable
•
9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,
人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。
•
10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。
患者: 0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87
2.07 2.11 健康人: 0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34
1.35 1.48 1.56 1.87
Independent-Samples T Test过程:
Numberic Expression框:x-y
再依次选择:
Analyze
Compare means
One-Sample T test
独立样本t检验(independent-samples t test)
例3:某克山病区测得11例克山病患者与13名健康人的血 磷值(mmol/L)如下,问该地急性克山病患者与健康 人的血磷值是否不同?
•
11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。
Independent-Samples T Test过程:
先求血清滴度的对数值:
Transform
Comput variable
•
9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,
人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。
•
10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。
患者: 0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87
2.07 2.11 健康人: 0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34
1.35 1.48 1.56 1.87
Independent-Samples T Test过程:
Numberic Expression框:x-y
再依次选择:
Analyze
Compare means
One-Sample T test
独立样本t检验(independent-samples t test)
例3:某克山病区测得11例克山病患者与13名健康人的血 磷值(mmol/L)如下,问该地急性克山病患者与健康 人的血磷值是否不同?
•
11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
第四节 两独立样本比较的t检验和Z检验
一、方差齐性检验
FS S( 2 1 2 2(较 较 小 大 ) ), 1= n11, 2= n21
二、两独立样本t检验
tx1x2 x1x2
x1x2
Sx1 x2
SC 2(n 1 1n 1 2)
(n 1 1 )s1 2(n2 1 )s2 2(11) n 1n22 n 1 n2
有高度统计学意义。
17
两独立样本Z 检验
例4-7 为评价交通污染对交通警察心理 健康状况的影响,某医生随机抽取某市 交警大队外勤警察212名(男性)作为 暴露组,进行SCL-90评定,测得均数为 152.51,标准差为35.27。已知全国(
男 性 , n=724 ) 常 模 的搏均数为72次/分,某医生在一山区随机 调查了25名健康成年男子,求得其脉搏均 数为75.0次/分,标准差为 5.0次/分。能 否据此认为该山区成年男子的脉搏均数不 同于一般成年男子的脉搏均数?
4
该山区25名健康成年男子脉搏均数为 75.0次/分有两种可能性:①抽样误差 引起;②来自于总体为山区的健康成年 男子(不同于一般健康成年男子),其差 异是本质上的。
。标准差为38.76。试问该市交警心理 状况SCL-90评分是否高于全国常模?
18
两独立样本Z 检验
1.建立假设,确定检验水准 H 0 : 1 2 H1 :1 2 0.05 (单侧 )
16
两独立样本t检验
1.建立假设,确定检验水准
H 0 :1 2
H1 :1 2 0 .05
2.选定检验方法,计算检验统计量
t
30.5 1 2 26.3 11
5.4086
(3 01)28 .120 (3 21)30 .522 (11)
3 03 22
3032
3.确定P值,作出推断结论
P<0.01。按α=0.05水准,拒绝H0,接受H1,差异
2.选定检验方法,计算检验统计量t值
dd/n44/104.4
sd
d2 (d)2/n n1
234(44)2 /102.12 101
t d 4.4 6.563 sd / n 2.12/ 10
v1019
3.确定P值,作出推断结论
P<0.01。按α=0.05水准,拒绝H0,接受H1,差异有高度统计学意义。
三、两独立样本t‘ 检验
t ' x1 x2
s
2 1
s
2 2
n1 n2
t'
sx21·t,1 s2
x1
sx22 ·t,2 sx22
四、两独立样本Z 检验
Zx1x2 x1x2 x1x2
S x1x1
S2 S2
x1
x2
s12 s12
n1 n2
15
两独立样本t检验
例4-5 某医生为探讨强迫症与超氧化物歧化酶 (SOD)的关系,随机抽得30例强迫症患者, 测 得 SOD 的 均 数 为 3012.5nu/ml , 标 准 差 为 280.1nu/ml;同时随机选取无强迫症的32名 健 康 者 作 为 对 照 组 , 测 得 SOD 的 均 数 为 2611.3nu/ml,标准差为302.5nu/ml。试问 两组的均数是否不同?(本例两总体方差齐)
度统计学意义。
11
第三节 配对设计t检验
配对t检验的基本思路是:首先求出各对
子的差值的均数,若两种处理结果无差 别或某种处理前后不起作用,理论上差 值的总体均数应该为0。
tddd0 d
Sd sd/ n sd/ n
vn 1
12
第三节 配对设计t检验
表4-3 10名抑郁症患者干预前后心理指标LSIB测试结果
3.确定P值,作出统计推论
7
第二节 单样本t检验和Z检验
一、t检验
tx0 x0,n1
S
x
s/ n
二、Z检验
Zx0 0/ n
(0已知 ) 时
Zx0
s/ n
(n较大 ) 时
8
第二节 单样本t检验和Z检验
1.建立假设,确定检验水准
H0 : 0
H1 : 0 0 .05
2.选定检验方法,计算检验统计量t值
编号
1 2 3 4 5 6 7 8 9 10
干预前
12 9
10 6 5 8
13 11 10
9
干预后
15 12 16 10 12
9 19 18 15 11
差值(d)
3 3 6 4 7 1 6 7 5 2
d2
9 9 36 16 49 1 36 49 25 4
13
第三节 配对设计t检验
1.建立检验假设,确定检验水准 H 0 :d 0 H1 :d 0 0 .05
10
第二节 单样本t检验和Z检验
1.建立检验假设,确定检验水准
H0 : 0 H1 : 0 0 .05
2.选定检验方法,计算检验统计量Z值
Zx0 14.62 13 05.843
s/ n 3.1 2/5210
3.确定P值,作出推断结论
P<0.01。按α=0.05水准,拒绝H0,接受H1,差异有高
第四章 假设检验、t检验和Z检验
1
主要内容
第一节假设检验的基本思想与步骤
第二节 单样本t检验和Z检验 第三节 配对设计t检验 第四节 两独立样本比较的t检验和Z检验
第五节 假设检验中的两类错误和注意事项
2
第一节假设检验的基本思想与步骤
一、假设检验的基本思想 二、假设检验的基本步骤
3
一、检验假设的基本思想
5
假设检验的基本思想是小概率和反证法 思想。小概率思想是在一次试验中认为 几乎不发生;反证法思想是首先提出一 个假设,用适当的统计方法确定当假设 成立时,获得现在样本的概率大小,如 果是小概率事件,则推断假设是假的, 因此拒绝它;如果不是小概率事件,则 不拒绝它。
6
二、假设检验的基本步骤
1.建立检验假设,确定检验水准 2.选定检验方法,计算检验统计量
tx0 7.0 5 7 2 3 .0,0v 2 5 1 24 s/ n 5 .0 / 25
3.确定P值,作出推断结论
P<0.05,按α=0.05水准,拒绝H0,接受
H1,差异有高度统计学意义。
9
第二节 单样本t检验和Z检验
例4-2 为了解护理学专业大学生的心理健康状 况,随机抽查某医科大学在校护理学专业学生 210名,用SCL-90症状自评量表进行测定, 得出因子总分的均数为142.6,标准差为 31.25。已知全国SCL-90因子总分的均数( 常模)为130。试问该医科大学在校护理学生 的SCL-90因子总分是否与全国水平不同?