1996年考研数学二试题及答案
1996年全国Ⅱ高考数学试题(理)
1996年普通高等数学招生全国统一考试(全国Ⅱ)理科数学参考公式:三角函数的积化和差公式:[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+--[]1cos cos cos()cos()2αβαβαβ=++-[]1sin sin cos()cos()2αβαβαβ=-+--正棱台、圆台的侧面积公式1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长.球的体积公式:343V r π=球,其中R 表示球的半径.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题,第1-10题第小题4分,第11-15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集I N =,集合{}|2,A x x n n N ==∈,{}|4,B x x n n N ==∈,则A .I AB =B .I A B =C .I A B =D .I A B =2.当1a >时,在同一坐标系中,函数x y a -=与logy x =的图像是3.若22sin cos x x >,则x 的取值范围是A .322,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭B .522,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭C .22,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭D .322,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭4.复数4A.1+ B.1-+ C.1- D.1--5.如果直线,l m 与平面,,αβγ满足:l βγ= ,l ∥α,m α⊂和m γ⊥,那么必有A .a γ⊥且l m ⊥B .αγ⊥且m ∥βC .m ∥β且l m ⊥D .α∥β且αγ⊥ 6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是-1B .最大值是1,最小值是12-C .最大值是2,最小值是-2D .最大值是2,最小值是-17.椭圆33cos ,15sin ,x y ϕϕ=+⎧⎨=-+⎩的两个焦点的坐标是A .(3,5)-,(3,3)--B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1)-,(1,1)--8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα- D .22πα--9.将边长为a 的正方形A B C D 沿对角线A C 折起,使得B D a =,则三棱锥D A B C -的体积为A .36aB .312aC12D.31210.等比数列{}n a 的首项11a =-,前n 项和为n S ,若1053132S S =,则lim n n S →∞等于A .23B .23-C .2D .2-11.椭圆的极坐标方程为32cos ρθ=-,则它的短轴上的两个顶点的极坐标是A .(3,0),(1,)πB.)2π,3)2πC .(2,)3π,5(2,)3π D.arctan2,2arctan2π-12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .26013.设双曲线22221(0)x y a b ab-=<<的半焦距为c ,直线l 过(,0)a ,(0,)b 两点,已知原点到直线l4,则双曲线的离心率为A .2 B. CD.314.母线长为1,的圆锥体积最大时,其侧面展开图圆心角ϕ等于A.3B.3C. D315.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于A .0.5B .0.5-C .1.5D . 1.5-第Ⅱ卷(非选择题共85分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.16.已知圆22670x y x +-+=与抛物线22(0)y px p =>的准线相切,则p = . 17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答).18.tan 20tan 4020tan 40++的值是 .19.如图,正方形A B C D 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线A D 与B F 所成角的余弦值是 .ABDCFE三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.20.(本小题满分10分)解不等式1log (1)1a x ->.21.(本小题满分11分)已知△ABC 的三个内角A 、B 、C 满足:2A C B +=,11cos cos cos ACB+=-,求cos2A C -的值.22.(本小题满分12分)如图,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (1)求证:1BE EB =;(2)若111AA A B =,求平面1A EC 与平面111A B C 所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(1)的完整证明,交解答(2).(右下图)(1)证明:在截面1A EC 内,过E 作1EG A C ⊥,G 是垂足. ①∵∴E G ⊥侧面1AC ,取A C 的中点F ,连结B F ,F G ,由A B B C =得BF AC ⊥, ②∵∴B F ⊥侧面1AC ,得B F ∥F G ,B F 、F G 确定一个平面,交侧面1AC 于F G . ③∵ ∴B E ∥F G ,四边形B E G F 是平行四边形,B E F G =, ④∵ ∴F G ∥1A A ,△1AA C ∽△F G C ,⑤∵ ∴111122F G A A B B ==,即112B E B B =,故1BE EB =23.(本小题满分12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人A 1ACB1C 1EA 1 A CB B 1C 1EF G均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)? (粮食单产=总产量耕地面积,人均粮食占有量=总产量总人口数24.(本小题满分12分)已知1l 、2l 是过点(0)P 的两条互相垂直的直线,且1l 、2l 与双曲线221y x -=各有两个交点,分别为1A 、1B 和2A 、2B . (1)求1l 的斜率1k 的取值范围;(2)若1122|||A B A B =,求1l 、2l 的方程.25.(本小题满分12分)已知a 、b 、c 是实数,函数2()f x ax bx c =++,()g x ax b =+,当11x -≤≤时,|()|1f x ≤.(1)证明:||1c ≤;(2)证明:当11x -≤≤时,|()|2g x ≤;(3)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力13.14.15.16.三、解答题 17.1996年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)C (2)A (3)D (4)B (5)A (6)D (7)B (8)A (9)D (10)B (11)C (12)C (13)A (14)D (15)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)2 (17)32(18)3(19)42三.解答题(20)本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.解:(Ⅰ)当a >1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a x x——2分由此得xa 11>-.因为1-a <0,所以x <0,∴.011<<-x a——5分 (Ⅱ)当0<a <1⎪⎪⎩⎪⎪⎨⎧<->-.11,011a x x由①得,x >1或x <0,由②得,,110a x -<<∴ax -<<111 ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111 ——11分(21)本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分. 解法一:由题设条件知B =60°,A +C =120°. ——2分 ∵,2260cos 2-=-∴22cos 1cos 1-=+CA将上式化为C A C A cos cos 22cos cos -=+ 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos2cos2C A C A C A C A -++-=-+ ——6分将21)cos(,2160cos 2cos-=+==+C A C A代入上式得)cos(222)2cos(C A C A --=- 将1)2(cos 2)cos(2--=-C A C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分,0)32cos22)(22cos2(=+---C A C A∵,032cos22≠+-C A ∴.022cos2=--C A 从而得.222cos=-C A ——12分解法二:由题设条件知B =60°,A +C =120°. 设αα2,2=--=C A C A 则,可得α+= 60A ,α-=60C——3分所以)60cos(1)60cos(1cos 1cos 1αα-++=+CAααααs23c211s23c211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα ——7分依题设条件有Bcos 243cos cos 2-=-αα,∵21cos =B ∴2243cos cos 2-=-αα整理得,023cos 2cos 242=-+αα——9分,0)3cos 22)(2cos 2(=+-αα∵03cos 22≠+α,∴02cos 2=-α.从而得222cos=-C A . ——12分(22)本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ) ①∵面A 1EC ⊥侧面AC 1, ——2分②∵面ABC ⊥侧面AC 1, ——3分 ③∵BE ∥侧面AC 1, ——4分 ④∵BE ∥AA 1, ——5分 ⑤∵AF =FC , ——6分(Ⅱ)解:分别延长CE 、C 1B 1交于点D ,连结A 1D .∵1EB ∥11112121,CC BB EB CC ==,∴,21111111B A C B DC DB ===∵∠B 1A 1C 1=∠B 1 C 1A 1=60°,∠DA 1B 1=∠A 1DB 1=21(180°-∠D B 1A 1)=30°,∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即1DA ⊥11C A ——9分∵CC 1⊥面A 1C 1B 1,即A 1C 1是A 1C 在平面A 1C 1D 上的射影,根据三垂线定理得DA 1⊥A 1C , 所以∠CA 1C 1是所求二面角的平面角. ——11分∵CC 1=AA 1=A 1B 1=A 1C 1,∠A 1C 1C =90°,∴∠CA 1C 1=45°,即所求二面角为45° ——12分 (23)本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯PM P x M ——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x——7分∵]22.1)01.01(1.11[10103+⨯-⨯)]01.001.01(22.11.11[1022101103+⨯+⨯+⨯-⨯=C C]1045.122.11.11[103⨯-⨯≈1.4≈ —— 9分∴x ≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分 (24)本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.解:(I )依题设,l 1、l 2的斜率都存在,因为l 1过点P )0,2(-且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k ②若0121=-k ,则方程组①只有一个解,即l 1与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为).13(4)12)(1(4)22(2121212211-=---=∆k k k k设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k ④ 同理有)13(4,0122222-=∆≠-k k又因为l 1⊥l 2,所以有k 1·k 2=-1.——4分于是,l 1、l 2与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k 解得⎪⎩⎪⎨⎧≠<<.1,33311k k ——6分∴)3,1()1,33()33,1()1,3(1 ----∈k ——7分(Ⅱ)设),(),,(221111y x B y x A 由方程②知112,122212121212121--=⋅--=+k k x x k k x x∴│A 1B 1│2=(x 1-x 2)2+(y 1-y 2)222121))(1(x x k -+=2212121)1()13)(1(4--+=kk k ⑤ ——9分同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+=⑥由22115B A B A =,得2222115B A B A =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k kk k --+⨯=--+解得21±=k取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l .——12分(25)本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当-1≤x ≤1时,│f (x )│≤1,取x =0得│c │=│f (0)│≤1,即│c │≤1. ——2分(Ⅱ)证法一:当a >0时,g (x )=ax +b 在[-1,1]上是增函数,∴g (-1)≤g (x )≤g (1), ∵│f (x )│≤1 (-1≤x ≤1),│c │≤1,∴g (1)=a +b =f (1)-c ≤│f (1)│+│c │≤2, g (-1)=-a +b =-f (-1)+c ≥-(│f (-1)│+│c │)≥-2, 由此得│g (x )│≤2; ——5分 当a <0时,g (x )=ax +b 在[-1,1]上是减函数,∴g (-1)≥g (x )≥g (1), ∵│f (x )│≤1 (-1≤x ≤1),│c │≤1,∴g (-1)=-a +b =-f (-1)+c ≤│f (-1)│+│c │≤2, g (1)=a +b =f (1)-c ≥-(│f (1)│+│c │)≥-2,由此得│g (x )│≤2; ——7分 当a =0时,g (x )=b ,f (x )=bx +c .∵-1≤x ≤1,∴│g (x )│=│f (1)-c │≤│f (1)│+│c │≤2.综上得│g (x )│≤2. ——8分证法二:由4)1()1(22--+=x x x ,可得b ax x g +=)()2121(])21()21[(22--++--+=x x b x x a])21()21([])21()21([22c x b x a c x b x a +-+--++++=),21()21(--+=x f x f ——6分当-1≤x ≤1时,有,0211,1210≤-≤-≤+≤x x根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f即│g (x )│≤2. ——8分(Ⅲ)因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即g (1)=a +b =f (1)-f (0)=2. ①∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1. ——10分 因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图像的对称轴,由此得0,02==-b ab 即由① 得a =2.所以 f (x )=2x 2-1. ——12分。
1996数学二考研真题及答案
1996数学二考研真题及答案理工数学二试题详解及评析一、填空题(1)设y=某+e某2',则y|某=0=.23【答】1.3某223某1【详解】y=某+e1+e2,21'所以y|=.某=03(2)∫(某d某=.【答】2.【详解】∫(某d某=∫11(某+22'1某2d某11)=∫2+∫d某=0+2=2(3)微分方程y+2y+5y=0的通解为.【答】y=e某''(C1co2某+C2in2某).2【详解】特征方程λ+2λ+5=0的解为λ=1±2i,所以通解为y=e 某(C1co2某+C2in2某)31inln1+=.某某(4)lim某inln1+某→∞【答】2.【详解】方法一:令=t,则由洛必达法则知某原式=liminln(1+3t)inln(1+t)t→0t=lim31t→0coln(1+3t)1+3tcoln(1+t)1+t=lim31t→01+3t1+t=2方法二:直接利用三角函数和差化积公式.原式=1+3ln1+ln1+113lim某→∞2某in+某2co某2ln+2=lim某1某→∞2某in+12=lim某→∞2某in某+1 =2(5)由曲线y=某+1某,某=2及y=2所围图形的面积S=【答】ln212.【详解】S=∫2某+11某2d某=122某+ln某2某2|11=ln22二、选择题(1)设当某→0时,e某(a某2+b某+1)是比某2高阶的无穷小,则(A)a=2,b=1.(B)a=1,b=1(C)a=12,b=1(D)a=1,b=1【答】应选(A)【详解】方法一:由于某→0时,e某=1+某+1某2+o(某22)】【则由lim某→0e(a某+b某+1)某22某→0某=0=lim(1b)某+a某2+o(某2)22某必有1b=0,解得a=方法二:因lim某→0a=02,b=1.2e某2a某b,=lim某→02某e某(a某2+b某+1)某2某→0某→0又lim2某=0,lime2a某b=1b必有b=1,从而(某)e某2a某be某2a原式=lim=lim=12a=0,某→0某→02某2所以a=1.22(2)设函数f(某)在区间(δ,δ)内有定义,若当某∈(δ,δ)时,恒有f(某)≤某,则某=0必是f(某)(A)间断点.(B)连续而不可导的点(C)可导的点,且f'(0)=0(D)可导的点,f'(0)≠0【】【答】应选(C).【详解】由定义lim某→0f(某)f(0)f(某)f(某)=lim=lim2某=0,某→0某→0某某某由题设必有f(0)=0因此f'(0)=0(3)设f(某)处处可导,则(A)当limf(某)=∞,必有limf某→∞'(某)=∞,(B)当limf某→∞'f(某)=∞,(某)=∞,,必有某lim→∞'某→+∞(C)当limf(某)=+∞,必有limf某→+∞(某)=+∞,(D)当limf某→+∞'f(某)=+∞,(某)=+∞,,必有某lim→+∞【】【答】应选(D).【详解】方法一:利用举反例排除不正确选项.令f(某)=某,则limf'、(C)均不正确.(某)=±∞,但f'(某)=1,可见(A)因而只有(D)是正确选项.方法二:若limf某→+∞'(某)=+∞,则存在M>0及某0>0,当某>某0时,f'(某)>M于是当某>某0时,有f(某)f(某0)=f从而有'(ξ)(某某0)>M(某某0)f(某)>f(某0)+M(某某0)→+∞(某→+∞)(4)在区间(∞,+∞)内,方程某+某co某=0(A)无实根.(B)有且仅有一个实根(C)有且仅有两个实根(D)有无穷多个实根【】【答】应选(C)【详解】令f(某)=某+某co某,由于f(某)=f(某),故f(某)为偶函数,因此只需考虑f(某)=0在(0,+∞)内的实根情况.当某≥0时,f(某)=某+某co某,4121412141213114f(某)=某+某2+in某42'可见,当某∈0,ππ'时,在f某>0,f某()()0,内单调增加,且f(0)=1,f22π>1,2因此f(某)=0在0,当某≥π上有唯一实根;2π2时,f(某)>0,故在(0,+∞)上f(某)仅存在唯一实根根据f(某)关于y轴对称的性质,f(某)=0在(∞,+∞)上有且仅有两个实根.(5)设f(某),g(某)在区间[a,b]上连续,且g(某)<f(某)<m,(m 为常数),由曲线y=g(某),y=f(某),某=a及某=b所围成平面图形绕直线y=m旋转而成的旋转体积为(A)(B)(C)(D)∫∫∫babπ2mf(某)+g(某)f(某)g(某)d某,π2mf(某)g(某)f(某)g(某)d某,πmf(某)+g(某)f(某)g(某)d某,πmf(某)g(某)f(某)g(某)d某,【】abab∫a【答】应选(B)【详解】因为dV=πmg(某)()22π(mf(某))d某V=∫πmg(某)d某∫aπmf(某)d某a=∫π2mf(某)g(某)f(某)g(某)d 某a所以正确选项应为(B)三、计算bb2b2∫ln0.【详解】方法一:原式=∫ln2e=+∫ln2ln2某0=+lne某+2=+ln22((|ln20方法二:令e某=int,则d某=cotdt,intπππcot1dt=π2dtπ2intdtint6int6π原式=π62=ln(cct+cott)π6=ln2+22(方法三:原式==t,则t21=+=1dt2201t1t=(2)求+ln2+2(d某∫1+in某【详解】方法一:原式=1in某1某tan=+C∫co2tco某某d某=∫原式=∫22某某某co+in1+tanec2某d1+tan22=2∫=+C2某某1+tan1tan+22方法二:某=tf(u2)du∫d2y0(3)设,其中f(u)具有二阶导数,且f(u)≠0,求2.22d某y=f(t)【详阶】因为d某=f(t2)dtdy=4tf(t2)f'(t2),dt所以dydy==4tf'(t2),d某dtdyddy1==2d某dtd某dt(4)求函数f(某)=2'22''2+fttft42()()ft21某在某=0点处带拉格朗日型余项的n阶泰勒展开式.1+某【详解】f(某)在在某=0点处带拉格朗日型余项的n阶泰勒展开式为:f(某)=f(0)+f'(0)某+1''1n1n+1f(0)某2+"+f()(0)某n+f()(θ某)某n+1n!2!n+1!其中0<θ<1.可见,关键是求出f(某)在在某=0点的k阶导数f(k)(0),k=0,1,2,",n+1由于f(某)=21,1+某(1)2k!k=1,2,",n+1kf()(某)=)k+1((1+某)所以f(某)=12某+2某+"+(1)2某+(1)2nnn+12某n+1(1+θ某)n+2(0<θ<1)(5)求微分方程y+y=某的通解.【详解】对应的齐次方程的特征方程为:λ+λ=0解得λ=0,λ=1故齐次方程的通解为y=C1+C2e设非齐次方程的特解为:某a某+b某+c,代入原方程,得a=某''22(2),b=1,c=2,3因此,原方程得通解为y=某3某2+2某+C1+C2e某3(6)设有一正椭圆柱体,其底面得长、短分别为2a,2b,用过此柱体底面得短轴与底面成α角π<<0α,求此楔形体的体积V.的平面截此柱体,得一楔形体(如图)2【详解】方法一:底面椭圆的方程为:某2y2+=1,以垂直于y轴的平行平面截此楔形体所得的截面为直角三角形,其一直角边为a2b2令一直角边长为α,故截面面积为a2y2S(y)=12tanα2b楔形体积为V=2∫方法二:ba2y22a2btanα12tanαdy=2b3某2y2底面椭圆的方程为2+2=1,以垂直于某轴平行平面截此楔形体所得的截面为矩形,ab其一边长为2y=2令一边长为某tanα,故截面面积S(某)=2α楔形体的体积V=∫a2a2b2αd某=tanα3四、计算不定积分【详解】方法一:arctan某∫某21+某2arctan某arctan某arctan某=∫某21+某2∫某2∫1+某2==arctan某112+∫某arctan()某某1+某22arctan某111212 +∫2d某某arctan()某2某1+某22arctan某11某22(arctan某)+ln=+C某221+某2方法二:令某=tant,则原式=2cctt1)dt=(∫=2arctan某)+C=12某2,某<13五、设函数f(某)=某,1≤某≤212某16,某>2(1)写出f(某)的反函数g(某)的表达式;(2)g(某)是否有间断点、不可导点,若有,指出这些点.【详解】(1)由题设,f(某)的反函数为某<1g(某)=1≤某≤8某+16,某>812(2)由于函数f(某)在(∞,+∞)内单调增加且连续,故反函数g(某)在在(∞,+∞)内单调增加且连续,没有间断点.由于f'(0)=0,且f(0)=0,故某=0是g(某)的不可导点,f(1)=1和f(2)=8是g(某)的两个可能的不可导点,由于f'(10)=4,f'(1+0)=3,所以某=1是f(某)的不可导点,因此g(某)在f(1)=1处不可导;又f2(1+0)=f'(20)=12,故f(某)在某=2处可导,因此g(某)在某=f(2)=8处可导.六、设函数y=y(某)由方程2y2y+2某y某=1所确定,试求y=y(某)的驻点,并判别322它是否为极值点.【详解】对原方程两边求导,得3y2y'2yy'+某y'+y某=0,令y=0,得y=某,代入原方程,有2某某1=0从而解得唯一的驻点某=1.在(某)式两边对某求导得3y2y+某y+2(3y1)y+2y1=0,2'''2'32()因此y''|(1,1)=>02故驻点某=1是y=y(某)的极小点.七、设f(某)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f存在ξ∈(a,b)和η∈(a,b),使f【详解】方法一(用反证法)若不存在ξ∈(a,b),使f'(a)f'(b)>0,证明:(ξ)=0及f''(η)=0.(ξ)=0,则在区间(a,b)内恒有f(某)>0或f(某)<0,不妨设f(某)>0(对f(某)<0,类似可证),则f(某)f(b)f(b)=lim=lim某→b某→b某bf(某)f(a)f'(a)=lim+=lim+某→a某→a某a'f(某)≤0,某bf(某)≥0某a从而f'(a)f'(b)≤0,这与已知条件矛盾,即在(a,b)内至少存在一点ξ,使f(ξ)=0(ξ)=f(b)及罗尔定理,知存在η1∈(a,ξ)和η2∈(ξ,b),使再由f(a)=ff'(η1)=f'(η2)=0.'又在区间[η1,η2]上,对f方法二:不妨设f'(某)应用罗尔定理,知存在η∈(η1,η2)(a,b),使f''(η)=0.,即(a)>0,f'(b)>0(对f'(a)<0,f'(b)<0时类似可证)lim+某→af(某)f(某)>0,lim>0,某→b某b某a由极限的保号性,存在某1∈(a,a+δ1)和某2∈(bδ2,b)使得f(某1)>0及f(某2)<0,其中δ1,δ2为充分小的正数,显然某1<某2在区间[某1,某2]上应用介值定理知,存在ξ∈(某1,某2)(a,b)使f以下证明类似方法一.八、设f(某)为连续函数,'y+ay=f(某)的解f(某),其中a是正常数;(1)求初值问题=0y|某=0ka某(2)若f(某)≤k(k为常数),证明:当某≥0时,有y(某)≤(1e).a(ξ)=0【详解】(1)原方程的通解为y(某)=ea某f(某)ea某d某+C=ea某F(某)+C,∫其中F(某)是f(某)e的任一原函数a某由y(0)=0,得C=F(0)故y(某)=ea某a某atF某F0=eftedt,()()()∫0at某或者在原方程的两端同乘以e,得y'ea某+ayea某=f(某)ea某从而ye所以ye(a某')=f(某)e某0a某a某=∫f(t)eatdt,a某或y(某)=e(2)∫f(t)e某atdt,f(某)≤ea某∫f(t)eatdt≤kea某∫eatdt 某某ka某a某e(e1)ak=(1ea某)(某≥0)a≤。
考研高数二真题及答案97年到12年
又由于 D3 , D4 关于 x 轴对称,可知在 D3 D4 上关于 y 的奇函数为零, 故
D3 D4
x 5 ydxdy 0 。
5 2 因此 x y 1 dxdy dxdy dx D D 2
1
sin x
dy ,故选(D) 。
2 2 2
dx
ey
dy , x 0 、y 0 代入可得, 将 所以 dy dx dx
0 代入可得
x 0
0
x 0
再次求导得 2 d y e y dy e y d y ,再将 x 0 、 y 0 、 dy 2 2
dx dx dx Nhomakorabeadx
d2y dx 2
(A) x1 x2 , y1 y2 (C) x1 x2 , y1 y2 【答案】 :(D) 【解析】 : (B) x1 x2 , y1 y2 (D) x1 x2 , y1 y2
f ( x, y ) f ( x, y ) 0, 0 表示函数 f ( x, y ) 关于变量 x 是单调递增的,关于变量 y 是 x y
1
故选(B) 。 二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上. ... (9)设 y y ( x) 是由方程 x y 1 e 所确定的隐函数,则 d
2 y
2
y
2 x 0
dx
【答案】 1 :
________。
【解析】 :将 x 0 代入原方程可得 y 0 方程 x 2 y 1 e y 两端对 x 求导, 2 x dy 有
1。
x 0
(10)计算 lim n
考研数学二真题29套:1989年至2018年
六、(本题满分 7 分) 证明方程ln x
x 1 cos 2xdx 在区间(0, ) 内有且仅有两个不同实根. e 0
含 29 套考研数学二历年真题:1985 年至 2018 年 全国考研数学二真题 真题目录(29 套)
1、1989 年全国硕士研究生入学统一考试数学二试题 2、1990 年全国硕士研究生入学统一考试数学二试题 3、1991 年全国硕士研究生入学统一考试数学二试题 4、1992 年全国硕士研究生入学统一考试数学二试题 5、1993 年全国硕士研究生入学统一考试数学二试题 6、1994 年全国硕士研究生入学统一考试数学二试题 7、1995 年全国硕士研究生入学统一考试数学二试题 8、1996 年全国硕士研究生入学统一考试数学二试题 9、1997 年全国硕士研究生入学统一考试数学二试题 10、1998 年全国硕士研究生入学统一考试数学二试题 11、1999 年全国硕士研究生入学统一考试数学二试题 12、2000 年全国硕士研究生入学统一考试数学二试题 13、2001 年全国硕士研究生入学统一考试数学二试题 14、2002 年全国硕士研究生入学统一考试数学二试题 15、2003 年全国硕士研究生入学统一考试数学二试题 16、2004 年全国硕士研究生入学统一考试数学二试题 17、2005 年全国硕士研究生入学统一考试数学二试题 18、2006 年全国硕士研究生入学统一考试数学二试题 19、2007 年全国硕士研究生入学统一考试数学二试题 20、2008 年全国硕士研究生入学统一考试数学二试题 21、2009 年全国硕士研究生入学统一考试数学二试题 22、2010 年全国硕士研究生入学统一考试数学二试题 23、2011 年全国硕士研究生入学统一考试数学二试题 24、2012 年全国硕士研究生入学统一考试数学二试题 25、2013 年全国硕士研究生入学统一考试数学二试题 26、2014 年全国硕士研究生入学统一考试数学二试题 27、2015 年全国硕士研究生入学统一考试数学二试题 28、2016 年全国硕士研究生入学统一考试数学二试题 29、2017 年全国硕士研究生入学统一考试数学二试题
1996年全国Ⅱ高考数学试题(文)
1996年普通高等数学招生全国统一考试(全国Ⅱ)文科数学参考公式:三角函数的积化和差公式:[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+--[]1cos cos cos()cos()2αβαβαβ=++-[]1sin sin cos()cos()2αβαβαβ=-+--正棱台、圆台的侧面积公式1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长.球的体积公式:343V r π=球,其中R 表示球的半径.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题,第1-10题第小题4分,第11-15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7I =,集合{}1,3,5,7A =,{}3,5B =,则A .I AB =B .I A B =C .I A B =D .I A B =2.当1a >时,在同一坐标系中,函数xy a -=与logy x =的图像是3.若22sin cos x x >,则x 的取值范围是A .322,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭B .522,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭C .22,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭D .322,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭44等于A .1B .1-C .1D .1-5.6名同学排成一排,其中甲、乙两必须排在一起的不同排法有A .720种B .360种C .240种D .120种6.已知α是第三象限角,24sin 25α=-,则tan 2α= A .43B .34 C .34- D .43-7.如果直线,l m 与平面,,αβγ满足:l βγ= ,l ∥α,m α⊂和m γ⊥,那么必有A .a γ⊥且l m ⊥B .αγ⊥且m ∥βC .m ∥β且l m ⊥D .α∥β且αγ⊥8.当22x ππ-≤≤时,函数()sin f x x x =的A .最大值是1,最小值是-1B .最大值是1,最小值是12-C .最大值是2,最小值是-2D .最大值是2,最小值是-18.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2π B .2π-C .22πα- D .22πα--9.中心在原点,准线方程为4x =±,离心率为12的椭圆方程是 A .22143x y += B .22134x y += C .2214x y += D .2214y x += 10.圆锥母线长为1,侧面展开图圆心角为240°,该圆锥的体积A B .881π C D .1081π11.椭圆222515091890x x y y -+++=的两个焦点坐标是A .(3,5)-,(3,3)--B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1)-,(1,1)--12.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A .36aB .312aCD13.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .26014.设双曲线22221(0)x y a b a b-=<<的半焦距为c ,直线l 过(,0)a ,(0,)b 两点,已知原点到直线l,则双曲线的离心率为 A .2BCD15.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于A .0.5B .0.5-C .1.5D . 1.5-第Ⅱ卷(非选择题共85分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.16.已知点(2,3)-与抛物线22(0)y px p =>的焦点的距离是5,则p = .17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答).18.tan 20tan 4020tan 40+的值是 . 19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是 .三、解答题:本大题共6小题,共69分,解答应写出文字说明,证明过程或演算步骤.ABDCF EA 1AC BB 1C 1E F20.(本小题满分11分)解不等式log (1)1a x a +->.21.(本小题满分12分)设等比数列{}n a 的前n 项和为n S .若3692S S S +=,求数列的公比q . 22.(本小题满分11分)已知△ABC 的三个内角A、B 、C 满足:2A C B +=,11cos cos cos A C B+=-,求cos 2A C -的值. 23.(本小题满分12分)【注意:本题的要求是,参照标①的写法,在标号②、③、④、⑤的横线上填写适当步骤,完成(1)证明的全过程,并解答(2).】如图,在正三棱柱111ABC A B C -中,13AA AB a ==,E ,F 分别是1BB ,1CC 上的点,且BE a =,2CF a =.(1)求证:面AEF ⊥面ACF ; (2)求三棱锥1A AEF -的体积.(1)证明:在截面1A EC 内,过E 作1EG AC ⊥,G 是垂足.①∵BE a =,2CF a =,BE ∥CF ,延长FE 与CB 延长线交于D ,连结AD .∴△DBE ∽△DCF ∴DB BEDE CF= ② ∴DB AB =.③ ∴DA AC ⊥④ ∴FA AD ⊥⑤ ∴面AEF ⊥面ACF .24.(本小题满分12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?A 1AC BB 1C 1E FD(粮食单产=总产量耕地面积,人均粮食占有量=总产量总人口数25.(本小题满分12分)已知1l 、2l 是过点(P 的两条互相垂直的直线,且1l 、2l 与双曲线221y x -=各有两个交点,分别为1A 、1B 和2A 、2B . (1)求1l 的斜率1k 的取值范围;(2)若1A 恰 是双曲线的一个顶点,求22||A B 的值.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧 13. 14. 15. 16.三、解答题 17.1996年普通高等学校招生全国统一考试数学试题(文史类)参考解答及评分标准说明:一.答指出了每题要考查主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准相应的评分细则.二.对计算题,当考生的解答某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答较错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得累加数. 四.只给整数分数,选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算,第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)C (2)A (3)D (4)B (5)C (6)D (7)A (8)D (9)A (10)C (11)B (12)D (13)C (14)A (15)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)4 (17)32 (18)3 (19)42 三.解答题(20)本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力,满分11分. 解:(Ⅰ)当a >1时,原不等式等价于不等式组:⎩⎨⎧>-+>-+.1,01a a x a x 解得 x >2a -1. (Ⅱ)当0<a <1时,原不等式等价于不等式组:⎩⎨⎧<-+>-+.101a a x a x 解得 a -1<x <2a -1综上,当a >1时,不等式的解集为{x |x >2a -1};当0<a <1时,不等式的解集为{x |a -1<x <2a -1}.(21)本小题主要考查等比数列的基础知识,逻辑推理能力和运算能力.满分12分.解:若q =1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1.但a 1≠0,即得S 3+S 6≠2S 9,与题设矛盾,q ≠1.又依题意S 3+S 6=2S 9可得qq a q q a q q a --=--+--1)1(21)1(1)1(916131整理得q 3(2q 6-q 3-1)=0. 由q ≠0得方程 2q 6-q 3-1=0.(2q 3+1)(q 3-1)=0, ∵ q ≠1,q 3-1≠0,∴ 2q 3+1=0∴ q =-243(22)本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算能力.满分12分. 解法一:由题设条件知B =60º,A +C =120º.∵ -︒60cos 2=-22∴ C A cos 1cos 1+=-22 将上式化为 cos A +cos C =-22 cos A cos C利用和差化积及积化和差公式,上式可化为2cos2C A +cos 2CA -=-2[cos(A +C)+cos(A -C)] 将cos 2)(C A +=cos60º=21,cos(A +C )= 21代入上式得cos 2)(C A -=22-2cos(A -C)cos(A -C)=2cos 22)(C A --1代入上式并整理得42cos 22)(C A -+2cos 2)(C A --32=0,(2cos2C A --2)(22cos 2CA -+3)=0. ∵ 22cos 2C A -+3≠0,∴ 2cos 2C A --2=0,∴ cos 2C A -=22.解法二:由题设条件知 B=60º,A +C =120º.设α=2C A - 则2C A -=2α,可得A=60º+α,C=60º-α 所以)60cos(1)60cos(1cos 1cos 1o o αα-++=+C A =ααsin 23cos 211-+ααsin 23cos 211+=ααα22sin 43cos 41cos -=43cos cos 2-αα依题得B cos 243cos cos 2-=-α,∵ cos B =21,∴ 2243cos cos 2-=-αα. 整理得42cos 2α+2cos α-32=0, (2cos α-2)(22cos α+3)=0,∵ 22cos α+3≠0,∴ 2cos α-2=0从而得cos 222=-C A . (23)本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力运算能力.满分12分.(Ⅰ)②∵BE :CF =1:2 ∴ DC =2BD ,∴ DB =BC ,③∵△ABD 是等腰三角形,且∠ABD =120º,∴∠BAD =30º,∴∠CAD =90º, ④∵FC ⊥面ACD , ∴CA 是F A 在面ACD 上射影,且CA ⊥AD , ⑤∵F A ∩AC =A ,DA ⊥面ACF ,DA ⊂面ADF ⑥∴面ADF ⊥面ACF . (Ⅱ)解: ∵ F AA E AEF A V V 11--=.在面A 1B 1C 1内作B 1G ⊥A 1C 1,垂足为G .B 1G=23a 面A 1B 1C 1⊥面A 1 C ∵ B 1G ⊥面A 1 C ,∵ E ∈B B 1,而B B 1∥面A 1 C ,∴ 三棱柱E -AA 1F 的高为23a F AA S 1∆=AA 1·2AC =232a ∴43311a V V F AA E AEF A ==-- (24)本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公项,又设该地区现有人口为p 人,粮食单产为M 吨/公顷.依题意得不等式()()()()%10110%111010%2214104+⨯⨯≥+⨯-⨯+⨯PM P xM化简得x ≤103×[1-22.1)01.01(1.110+⨯].∵ ()⎥⎦⎤⎢⎣⎡+⨯-⨯22.101.011.1110103=103×[1-22.11.1×(1+110C ×0.01+210C ×0.012+…)] ≈103×[1-22.11.1×1.1045]≈4.1 9分∴ x ≤4(公顷)答:按规则该地区耕地平均每年至多只能减少4公顷.(25)本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.解:依题设:l 1、l 2都存在,因为l 1过点P ()02,-且与双曲线有两个交点,故方程组 y =k 1(x +2)(k 1≠0),y 2-x 2=1 ①有两个不同的解,在方程组①中消去y ,整理得(21k -1)x 2+2221k x +221k -1=0 ② 若(21k -1)=0,则方程①只有一个解,则l 1与以曲线只有一个交点,与题设矛盾. 故(21k -1) ≠0,即|k 1|≠1.方程②的判别式为 △ 1=(2221k )2-4(21k -1)(221k -1)=4(321k -1)设l 2的斜率k 2,因为l 2过点P ()02,-且与双曲线有两个交点,故方程组 y =k 2(x +2)(k 2≠0),y 2-x 2=1 ③有两个不同的解,在方程组③中消去y ,整理得(22k -1)x 2+2222k x +222k -1=0 ④ 同理有(22k -1) ≠0,△2=4(322k -1) 又因为l 1⊥l 2,所以有k 1·k 2=-1 于是,l 1、l 2与双曲线各有两个交点,等价于 321k -1>0, 322k -1>0, k 1·k 2=-1, |k 1|≠1. 解得3||331<<k , |k 1| ≠1.∴ k 1∈(-3,-1) ∪(-1,-33)∪(33,1)∪(1,3) (Ⅱ)双曲线y 2-x 2=1的顶点(0,1)、(0,-1).取A 1(0,1)时,有 k 1(0+2)=1,解得k 1=22.从而k 2=11k -=-2. 将k 2=-2代入方程④得 x 2+42x +3=0 ⑤记l 2与双曲线的两交点为A 2(x 1,y 1)、B 2(x 2,y 2),则|A2B2|2=(x1-x2)2+(y1-y2)2=3(x1-x2)2=3[(x1+x2)2-4x1x2].由⑤知x1+x2=-42x1x2=3∴| A2 B2|2=60,| A2 B2|=215当取A1(0,-1)时,由双曲线y2-x2=1关于x轴的对称性,知| A2 B2|=215所以l1过双曲线的一个顶点时,|A2 B2|=215。
1996年考研数学试题详解及评分参考
+
2
¶2z ¶u¶v
+
¶2z ¶v2
,
¶2z ¶x¶y
=
-2
¶2z ¶u 2
+
(a
-
2)
¶2z ¶u¶v
+
a
¶2z ¶v2
,
¶2z ¶y 2
=
4
¶2z ¶u 2
-
4a
¶2z ¶u¶v
+
a2
¶2z ¶v2
.
……4 分
将上述结果代入原方程,经整理后得 (10 + 5a)
¶2z ¶u¶v
+
(6 +
a
-
a2)
【答】 应选 (D) .
【解】 根据拉普拉斯展开定理,得
原式=
a2 b3
b2 a3
(-1)2+3+2+3 ×
a1 b4
b1 a4
= (a2a3 - b2b3 )(a1a4 - b1b4 ) ,故选 (D) .
三、(本题共 2 小题,每小题 5 分,满分 10 分)
(1) 求心形线 r = a (1 + cosq ) 的全长,其中 a > 0 .
S
Dyz
Dyz
Dxy
= -4òò òò z - y2 dydz + (x2 + y2)dxdy
Dyz
Dxy
……2 分
1996 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·1996 年数学试题详解及评分参考
òò ò ò ò ò 其中 Dyz
z - y2dydz = 1 dy 1 -1 y2
a1 0 0 b1 (5) 四阶行列式 0 a2 b2 0 的值等于
1996考研数学真题+答案
1996年全国硕士研究生入学统一考试数学试题参考解答及评分标准数 学(试卷一)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设2lim()8xx x a x a→∞+=-,则a = ln2 .(2) 设一平面经过原点及点)2,3,6(-,且与平面824=+-z y x 垂直,则此平面方程为2x +2y –3z = 0 .(3) 微分方程''2'2xy y y e -+=的通解为)1sin cos (21++=x c x c e y x(4) 函数)ln(22 +zy x u +=)在A (1,0,1)处沿点A 指向点B (3,-2,2)方向的方向导数为12.(5) 设A 是4 ⨯3矩阵,且A 的秩r(A)=2,而B = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-301020201,则r(AB) = 2 .二、选择题:(本题共5小题,每小题3分,满分15分) (1) 已知2)()(y x ydydx ay x +++ 为某函数的全微分,则a 等于 (D)(A) –1. (B) 0 . (C) 1 . (D) 2.(2) 设()x f 有二阶连续导数, 且(0)0f '=,0()lim 1x f x x→''=,则 (B)(A) )0(f 是()x f 的极大值 (B) )0(f 是()x f 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) )0(f 不是()x f 的极值, (0,(0))f 也不是曲线y =()x f 的拐点.(3) 设0n a >(1,2,)n = ,且∑∞=1n n a 收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑ (A)(A) 绝对收敛 (B) 条件收敛 (C ) 发散 (D) 敛散性与λ有关.(4) 设()x f 有连续的导数,(0)0f =,)0('f ≠0,F ()x =,)()(202dt t f t x x-⎰且当0→x 时,)('x F 与k x 同阶无穷小,则k 等于 (C)(A) 1. (B )2. (C) 3. (D) 4.(5) 四阶行列式 4433221100000000a b a b b a b a 的值等于 (D)(A) 4321a a a a -4321b b b b (B) 4321a a a a +4321b b b b (C)(2121b b a a -)(4343b b a a -) (D) (3232b b a a -)(4141b b a a -) 三、(本题共2小题,每小题5分,满分10分) (1) 求心形线)cos 1(θ+=a r 的全长,其中0>a .解:()sin r a θθ'=-,……2分22()ds r r d θ'=+22(1cos )(sin )2|cos |2a d a d θθθθθ=++-=……3分 利用对称性,所求心形线的全长0022cos 8sin822s a d a a ππθθθ===⎰. ……5分(2) 设101=x ,n n x x +=+61(n=1,2,…),试证数列{}n x 极限存在,并求此极限.证:由110x =及216164x x =+==,知12x x >.假设对某正整数k 有1k k x x +>,则有11266k k k k x x x x +++=+>+=,故由归纳法知,对一切正整数n ,都有1n n x x +>.即{}n x 为单调减少数列. ……3分又由16n n x x +=+,显见0(1,2,)n x n >= ,即{}n x 有下界. 根据极限存在准则,知lim n n x →∞存在.……4分令lim n n x a →∞=,对16n n x x +=+两边取极限,得6a a =+从而260a a --=.因此32a a ==-或.因为0(1,2,)n x n >= ,所以0a ≥.舍去2a =-,故极限值3a =. ……5分四、(本题共2小题,每小题6分,满分12分)(1) 计算曲面积分⎰⎰++Szdxdy dydz z x )(2,其中S 为有向曲面22y x z +=,(10≤≤z ),其法向量与z 轴正向的夹角为锐角.解一: 以1S 表示法向量指向z 轴负向的有向平面221(1)z x y =+≤,D 为1S 在XOY平面上的投影区域,则1(2)()S Dx z dxdy zdxdy dxdy π++=-=-⎰⎰⎰⎰.……2分记Ω表示由S 和1S 所围的空间区域,则由高斯公式知1(2)(21)S S x z dxdy zdxdy dv +Ω++=-+⎰⎰⎰⎰⎰212421113000336()6242r r r d rdr dz r r dr ππθππ⎡⎤=-=--=--=-⎢⎥⎣⎦⎰⎰⎰⎰. ……5分 因此13(2)()22S x z dxdy zdxdy πππ++=---=-⎰⎰. ……6分解二: 以,yz xy D D 表示S 在,YOZ XOY 平面平面上的投影区域,则(2)Sx z dxdy zdxdy ++⎰⎰2222(2)()(2)()yzyzxyD D D z y z dydz z y z dydz x y dxdy =--+--++⎰⎰⎰⎰⎰⎰2224()yzxyD D z y dydz x y dxdy =--++⎰⎰⎰⎰……2分其中3111222214(1)3yzyD z y dydz dy z y dz y dy--=-=-⎰⎰⎰4204431sin cos 334224y t tdt πππ==⋅⋅⋅=⎰;21222()2xyD x y dxdy d r rdr ππθ+=⋅=⎰⎰⎰⎰,……5分所以1(2) 4.222S x z dxdy zdxdy πππ++=-+=-⎰⎰. ……6分(2) 设变换⎩⎨⎧+=-=ay x v y x u 2 可把方程0622222=∂∂-∂∂∂+∂∂y z y x z x x 简化为02=∂∂∂v u z,求常数a .解:,2z z z z z z a x u v y u v∂∂∂∂∂∂=+=-+∂∂∂∂∂∂.……1分 22222222z z z z x u u v v ∂∂∂∂=++∂∂∂∂∂,2222222(-2)zz z z a a x yu u v v ∂∂∂∂=-++∂∂∂∂∂∂, 2222222244z z z z a a y u u v v ∂∂∂∂=-+∂∂∂∂∂. ……4分将上述结果代入原方程,经整理后得2222(105)(6)0z z a a a u v v∂∂+++-=∂∂∂. 依题意知a 应满足260,1050a a a +-=+≠且,解之得3a =.……6分五、(本题满分7分) 求级数∑∞=-222)1(1n nn 的和.解:设22()(||1)1nn x S x x n ∞==<-∑,……1分则2111()()211n n S x x n n ∞==--+∑,其中122111111n n n n n n x x x x x n n n ∞∞∞-=====--∑∑∑. 23111(0)1n nn n x x x n x n ∞∞===≠+∑∑.……3分设11()n n g x x n∞==∑,则11111()(||1)1n n n n g x x x x n x ∞∞-=='⎛⎫'===< ⎪-⎝⎭∑∑. 于是00()()(0)()ln(1)(||1)1x x dtg x g x g g t dt x x t'=-===--<-⎰⎰.从而21()[ln(1)][ln(1)]222x x S x x x x x =-------221ln(1)(||10)42x x x x x x+-=+-<≠且.……5分 因此221153ln 2(1)2284nn s n ∞=⎛⎫==- ⎪-⎝⎭∑. ……7分六、(本题满分7分)设对任意0>x ,曲线)(x f y =上点))(,(x f x 处的切线在y 轴上的截距等于⎰xdt t f x0)(1,求)(x f 的一般表达式. 解:曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-. ……1分 令0X =,得截距()()Y f x xf x '=-.……3分由题意,知01()()()xf t dt f x xf x x '=-⎰. 即0()[()()]x f t dt x f x xf x '=-⎰.上式对x 求导,化简得()()0xf x f x ''+=, ……5分即('())0d xf x dx=,积分得1'()x f x C =. 因此12()ln f x C x C =+(其中12,C C 为任意常数).……7分七、(本题满分8分)设)(x f 在[]1,0上具有二阶导数,且满足条件a x f ≤)(,b x f ≤)('',其中b a ,都是非负常数,c 是()0,1内的任意一点.证明22)('b a c f +≤.证:2()()()()()(),(*)2!f x c f x f c f c x c ξ''-'=+-+其中(),01c x c ξθθ=+-<<. ……2分在(*)式中令0x =,则有211()(0)(0)()()(0),01;2!f c f f c f c c c ξξ''-'=+-+<<<在(*)式中令1x =,则有222()(1)(1)()()(1),01;2!f c f f c f c c c ξξ''-'=+-+<<<上述两式相减得22211(1)(0)()()(1)()2!f f f c f c f c ξξ'''''⎡⎤-=+--⎣⎦. ……5分 于是22211|()|(1)(0)()(1)()2!f c f f f c f c ξξ'''''⎡⎤=----⎣⎦ 222111(1)|(0)||()|(1)|()|2!2!f f f c f c ξξ''''≤++-+22[(1)]2ba a c c ≤++-+. ……7分又因22(0,1),(1)1c c c ∈-+≤,故|()|22bf c a '≤+. ……8分八、(本题满分6分)设T A I ξξ=-,其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明: (1) A A =2的充要条件是1=ξξT ;(2) 当1=ξξT 时,A 是不可逆矩阵. 证:(1) 2()()2T T T T T A I I I ξξξξξξξξξξ=--=-+(2)(2)T T T T I I ξξξξξξξξ=--=--.A A =2即(2)T T T I I ξξξξξξ--=-,亦即()T T I ξξξξ-=O ,因为ξ是非零列向量,0T ξξ≠,故A A =2的充要条件是10T ξξ-=,即1T ξξ=.……3分 (2) 用反证法:当1T ξξ=时A A =2.若A 可逆,则有121A A A A --=,从而A I =.这与T A I I ξξ=-≠矛盾,故A 是不可逆矩阵.……6分九、(本题满分8分)已知二次型32312132132166255),,(x x x x x x cx x x x x x f -+-++=的秩为2. (1) 求参数c 及此二次型对应矩阵的特征值; (2) 指出方程123(,)4f x x x =表示何种二次曲面.解:(1) 此二次型对应矩阵为A =51315333c -⎛⎫ ⎪-- ⎪ ⎪-⎝⎭, ……1分因()2r A =,故513||153033A c-=--=-,解得3c =.容易验证此时A 的秩的确是2. ……3分这时,||(4)(9)I A λλλλ-=--,故所求特征值为0,4,9λλλ===.……6分 (2) 由上述特征值可知,123(,,)1f x x x =表示椭圆柱面. ……8分十、填空题 (本题共2小题,每小题3分,满分6分)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是37.(2) 设,ξη是两个相互独立且均服从正态分布2))2N 的随机变量,则随机变量||ξη- 的数学期望(||)E ξη-=2π.十一、(本题满分6分)设,ξη是相互独立且服从同一分布的随机变量,已知ξ的分布律为1(),1,2,33P i i ξ===. 又设max{,},min{,}X Y ξηξη==.(1) 写出二维随机变量(,)X Y 发分布律;(2) 求随机变量X 的数学期望.解:(1)Y X1 2 3 11 / 9 0 02 2 / 9 1 / 9 032 / 92 / 91 / 9……4分(2) 13522()1239999E X =⋅+⋅+⋅=……6分 注:写对分布律中的1个数得1分,2~4个得2分,5~7个得3分,8~9个得4分.数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题共2小题,每小题5分,满分10分) (1) 计算积分dxdy y x D⎰⎰+22,其中D=(){}x y x x y y x 2,0,22≤+≤≤ .解:原式2cos 40d r rdr πθθ=⋅⎰⎰3408cos 3d πθθ=⎰……3分 42340088110(1sin )sin sin sin 23339d ππθθθθ⎡⎤=-=-=⎢⎥⎣⎦⎰……5分(2) 【 同数学一 第三、(1)题 】 (3) 【 同数学一 第三、(2)题 】四 ~ 七、【 同数学一 第四 ~ 七题 】 八、(本题共2小题,每小题6分,满分12分)(1) 求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系.解:110011100111100001010011100010⎛⎫⎛⎫⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭……3分解得基础解系为12(1,0,1,0,1),(1,1,0,0,0)ξξ=--=-. ……6分(2) 【 同数学一 第八题 】九、(本题满分8分)【 同数学一 第九题 】数 学(试卷三)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 设322)(x e x y -+=, 则==|'x y 1/3.(2)=-+⎰-1122)1(dx x x 2 .(3) 052=+'+''y y y 的通解为)2sin 2cos (21x c x c e y x +=-. (4) =+-+∞→)]11ln(sin )31ln([sin lim xx x x 2 .(5) 由曲线1y x x =+,2x =及2y =所围图形的面积S =1ln 22-. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设当0→x 时,)1(2++-bx ax e x 是比2x 高阶的无穷小,则 (A )(A) 121==b a , (B) 11==b a , (C) 121=-=b a , (D) 11=-=b a ,. (2) 设函数()f x 在区间),(δδ-内有定义,若当),(δδ-∈x 时,恒有2()f x x ≤,则0x = 必是()f x 的 (C )(A) 间断点(B) 连续而不可导的点 (C) 可导的点,且(0)0f '=.(D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 (D )(A) 当lim ()x f x →-∞=-∞时,必有lim ()x f x →-∞'=-∞.(B) 当lim ()x f x →-∞'=-∞时,必有lim ()x f x →-∞=-∞.(C) 当lim ()x f x →+∞=+∞时,必有lim ()x f x →+∞'=+∞.(D) 当lim ()x f x →+∞'=+∞时,必有lim ()x f x →+∞=+∞.(4) 在区间),(∞-∞内,方程 0cos 2141=-+x x x(C )(A) 无实根 (B) 有且仅有一个实根 (C) 有且仅有二个实根 (D) 有无穷多个实根 (5) 设()()f x g x 、在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),则曲线()y g x =,()y f x =,x a =及x b =所围成图形绕直线y m =旋转而成的旋转体体积为 (B )(A)⎰-+-badx x g x f x g x f m .)]()()][()(2[π(B)⎰---ba dx x g x f x g x f m .)]()()][()(2[π (C)⎰-+-b adx x g x f x g x f m .)]()()][()([π (D)⎰---badx x g x f x g x f m .)]()()][()([π三、(本题共6小题,每小题5分,满分30分) (1) 计算⎰--2ln 021dx e x解一:原式2ln 2ln 22220111x x xxee dx ee e --=-=--+-⎰⎰……3分 ln 22033ln(1)ln(23)x x e e --=-=++.……5分解二:令sin xet -=,则cos sin tdx dt t-=, 原式2222666cos 1sin sin sin t dt dt tdt t t ππππππ==-⎰⎰⎰……3分 2633ln(csc cot )ln(23)t t ππ=-+=+-. ……5分(2) 求⎰+x dxsin 1解一:原式21sin cos x dx x-=⎛⎜⎠ ……2分 1tan cos x C x=-+.……5分解二:原式222sec 2(cos sin )(1tan )222x dxdx x x x ==++⎛⎛⎜⎜⎜⎜⎜⎠⎠ ……3分2(1tan )222(1tan )1tan 22x d C x x+-==+++⎛⎜⎜⎜⎠.……5分(3) 设2022()[()]tx f u duy f t ⎧=⎪⎨⎪=⎩⎰,其中()f u 具有二阶导数,且()0f u ≠,求22d y dx .解:222(),4()(),dx dy f t tf t f t dt dt'==所以22224()()4()()dydy tf t f t dt tf t dx dx f t dt''===. ……2分 22222214[()2()]()d y d dy f t t f t dx dx dt dx f t dt '''+⎛⎫== ⎪⎝⎭. ……5分 (4) 求函数()f x =xx+-11在0x =点处带拉格朗日型余项的n 阶泰勒展开式.解:2()11f x x=-+,()1(1)2!()(1,2,,1)(1)k k k k f x k n x +-⋅==++ . ……3分 所以12122()122(1)2(1)(1)n n n n n x f x x x x ξ+++=-+++-+-+ (ξ在0与x 之间).……5分 (5) 求微分方程2'''x y y =+的通解.解一:对应的齐次方程的特征方程为20λλ+=,解之得0,1λλ==-,故齐次方程的通解为12xy C C e -=+.……2分设非齐次方程的特解为2()x ax bx C ++,代入原方程得1,1,23a b c ==-=. 因此,原方程的通解为3212123x y x x x C C e -=-+++. ……5分 解二:令p y '=,代入原方程得2p p x '+=,……2分故()()220022xxxxx x p ex e dx C e x exe e C --=+=-++⎰.再积分得到20(22)xy x x c e dx -=-++⎰3212123x x x x C C e -=-+++. ……5分 解三:原方程为2()y y x ''+=,两边积分得3013y y x C '+=+. ……3分30213x x y e x C e dx C -⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦⎛⎜⎠()320213663x x x x x x e x e x e xe e C e C -⎡⎤=-+-++⎢⎥⎣⎦3212123x x x x C C e -=-+++. ……5分 (6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴且与底面成α解(20πα<<)的平面截此柱体,得一楔形体(如图),求此楔形体的体积V.解一:底面椭圆的方程为22221x y a +=,以垂直于y 轴的平行平面截此楔形体所得的截面为直角三角形,其一直角边长为221y a b -,另一直角边长为221y a bα-,故截面面积222()1tan 2a y S y b α⎛⎫=- ⎪⎝⎭,……3分 楔形体的体积为22220221tan tan 23ba y a bV dy b αα⎛⎫=-=⎪⎝⎭⎰. ……5分解二:底面椭圆的方程为22221x y +=,以垂直于x 轴的平行平面截此楔形体所得的截面为矩形,其一边长为22221x y b a=-tan x α,故截面面积22()21x S x bx aα=-,……3分楔形体的体积为32222222002221tan 1tan 33ab x a x a b V dx b a a ααα⎡⎤⎛⎫-⎢⎥=-=-= ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎰. ……5分 四、(本题满分8分) 计算不定积分⎰+.)1(22dx x x arctgx解一:原式22arctan arctan 1x x dx dx x x =-+⎛⎛⎜⎜⎠⎠……2分 22arctan 1(arctan )(1)2x dx x x x x =-+-+⎛⎜⎠ ……4分 2222arctan 1111()(arctan )212x d x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎛⎜⎠ ……6分 222arctan 11(arctan )ln 221x x x C x x=--+++. ……8分解二:令tan x t =,则原式2(csc 1)t t dt -⎰=……2分 2cos 1cot sin 2t t t dt t t =-+-⎰……4分21cot ln |sin |2t t t t C =-+-+……6分 22arctan 1(arctan )21x x C x x =-+++.……8分五、(本题满分8分)设函数⎪⎩⎪⎨⎧>-≤≤--<-=.2,1612,21,,1,21)(32x x x x x x x f(1) 写出()f x 的反函数()g x 的表达式;(2) 问()g x 是否有间断点与不可导点,若有,指出这些点.解:(1) 由题设,()f x 的反函数为3112()1816812x x g x x x x x ⎧--<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩. ……4分(2) ()g x 在(,)-∞+∞内处处连续,没有间断点.……5分 ()g x 的不可导点是01x x ==-及.……8分 (注:多写一个不可导点8x =扣1分)六、(本题满分8分)设函数()y y x =由方程1222223=-+-x xy y y 所确定. 试求()y y x =的驻点,并判 别它们是否为极值点.解:对原方程两边求导可得2320()y y yy xy y x '''-++-=*……2分令0y '=,得y x =.将此代入原方程有32210x x --=.从而解得唯一的驻点1x =. ……5分()*式两边求导,得22(32)2(31)210y y x y y y y ''''-++-+-=.因此(1,1)1|02y ''=>,故驻点1x =是()y y x =的极小值点. ……8分七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,'()'()0.f a f b >证明存在(,)a b ξ∈和),(b a ∈η,使()0f ξ=及0)(''=ηf .证一:先用反证法证明存在(,)a b ξ∈,使()0f ξ=. 若不存在(,)a b ξ∈,使()0f ξ=,则在区间(,)a b 内恒有()0f x >或()0f x <. 不妨设()0f x >(对()0f x <,类似可证),则()()()()lim lim 0x b x b f x f b f x f b x b x b--→→-'==≤--, ……3分 ()()()()lim lim 0x a x a f x f a f x f a x ax a ++→→-'==≥--.从而()()0f a f b ''≤,这与已知条件矛盾. 这即证得存在(,)a b ξ∈,使得()0f ξ=. ……5分再由()()()f a f f b ξ==及罗尔定理,知存在12(,)(,)a b ηξηξ∈∈和,使得12()()0f f ηη''==. 又在区间12[,]ηη上对()f x '应用罗尔定理知,存在12(,)(,)a b ηηη∈⊂,使()0f η''=.……8分证二:不妨设()0,()0f a f b ''>>(对()0,()0f a f b ''<<类似可证),即()lim 0x a f x x b +→>-,()lim 0x b f x x b-→>-. 故存在11(,)x a a δ∈+和22(,)x b b δ∈-,使1()0f x >及2()0f x <,其中12,δδ为充分小的正数. 显然12x x <,在区间12[,]x x 上应用介值定理知,存在一点12(,)(,)x x a b ξ∈⊂,使得()0f ξ=. ……5分 以下同证一. 八、(本题满分8分) 设()f x 为连续函数.(1) 求初值问题0'()0|x y ay f x y -+=⎧⎪⎨=⎪⎩的解()y y x =,其中a 是正常数; (2) 若()f x k ≤(k 为常数),证明:当0≥x 时,有()(1).ax k y x e a-≤-证一:(1) 原方程的通解为()[()][()]axax ax y x ef x e dx C e F x C --=+=+⎰, ……2分其中()F x 是()axf x e 的任一原函数.由(0)0y =得(0)C F =-,故()[()(0)]()xax ax at y x e F x F e f t e dt --=-=⎰.……4分 (2) 0()()xaxat y x ef t e dt -≤⎰……6分 0xaxat kee dt -≤⎰(1)(1),0ax ax ax k k e e e x a a--≤-=-≥. ……8分证二:在原方程的两端同乘以ax e ,得()ax ax ax y e aye f x e '+=.从而()()ax axye f x e '=,……2分 所以0()xaxat yef t e dt =⎰或0()xaxat y ef t e dt -=⎰.……4分(2)同证一数 学(试卷四)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设方程yy x =确定y 是x 的函数,则dy =(1ln )dxx y +.(2) 设⎰+=c x dx x xf arcsin )(,则=⎰)(x f dx 231(1)3x C -. (3) 设(00,y x )是抛物线c bx ax y ++=2上的一点,若在该点的切线过原点,则系数,,a b c应满足的关系是200(),c a ax c b ≥=或任意.(4) 设 123222212311111231111n n n n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,其中(;,1,2,,)i j a a i j i j n ≠≠= ,则线性方程组B X A T=的解是(1,0,,0)T X =(5) 设由来自正态总体X ~)9.0,(2μN 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间是 ( 4.412 , 5.588 ) 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 累次积分dr r r r f d ⎰⎰20cos 0)sin ,cos (πθθθθ可以写成 (D)(A) dx y x f dy y y ⎰⎰-102),(. (B)dx y x f dy y ⎰⎰-1102),(. (C)dy y x f dx ⎰⎰101),(. (D)dy y x f dx x x ⎰⎰-12),(.(2) 下述各选项正确的是 (A)(A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B) 若1n nn u v∞=∑收敛,则21nn u∞=∑和21nn v∞=∑都收敛(C) 若级数1n n u ∞=∑发散,则1n u n≥ (D) 若级数1nn u∞=∑收敛,且n n u v ≥(1,2,)n = ,则级数1nn v∞=∑也收敛(3) 设n 阶矩阵A 非奇异),2(≥n A *是矩阵A 的伴随矩阵,则 (C)(A) (A *)*=A A n 1- (B) (A *)*=A A n 1+(C) (A *)*=A An 2-(D) (A *)*=A An 2+(4) 设有任意两个n 维向量组12,,,m ααα 和12,,,m βββ ,若存在两组不全为零的12,,,mλλλ 和12,,,m k k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-= ,则 (D)(A) 12,,,m ααα 和 12,,,m βββ 都线性相关 (B) 12,,,m ααα 和 12,,,m βββ 都线性无关 (C) 11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性无关 (D)11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性相关(5) 已知0<P (B )<1,且P )()(])[(2121B A P B A P B A A +=+,则下列选项成立的是 (B)(A) )()(])[(2121B A P B A P B A A P +=+ (B) )()()(2121B A P B A P B A B A P +=+ (C) 1212()()()P A A P A B P A B +=+ (D) )()()()()(2211A B P A P A B P A P B P += 三、(本题满分6分)设()f x =()00,0xg x e x x x -⎧-≠⎪⎪⎨⎪⎪=⎩若若,其中()g x 有二阶连续导数,且(0)1g =, (0)1g '=-. (1) 求()f x '; (2) 讨论()f x '-∞+∞在(,)上的连续性.解:(1) 当0x ≠时,有22[()]()()()(1)()x x xx g x e g x e xg x g x x e f x x x---''+-+-++'==. ……1分 当0x =时,有20()(0)lim xx g x e f x-→-'= ……2分 00()()(0)1lim lim 222x x x x g x e g x e g x --→→'''''+--===. ……3分所以2()()(1)0()(0)102x xg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩若若.……4分(2) 因为在0x =处,有0lim ()x f x →'00()()()(1)()lim lim22x x xx x g x xg x g x e x e g x e x ---→→''''''+-+-+-== (0)1(0)2g f ''-'==.……5分 从而()f x '在0x ≠处连续,所以()f x '在(,)-∞+∞上为连续函数.……6分四、(本题满分6分)设函数()z f u =,方程()()xyu u p t dt ϕ=+⎰确定u 是x 、y 的函数,其中()f u 、()u ϕ可微;(),()p t u ϕ' 连续,且()1u ϕ'≠. 求 ()()z zp y p x x y∂∂+∂∂. 解:由()z f u =可得();();z u z uf u f u x x y y∂∂∂∂''==∂∂∂∂ ……1分在方程()()x yu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得()()u uu p x x x ϕ∂∂'=+∂∂, ……2分 ()()u uu p y y yϕ∂∂'=-∂∂. ……3分 所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-; ……5分 于是()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u φφ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦. ……6分五、(本题满分6分) 计算2(1)xx xe dx e -+∞-+⎰. 解一: 2200(1)(1)x x x x xe xe dx dx e e +∞+∞--=++⎛⎛⎜⎜⎠⎠011xxd e +∞-⎛⎫= ⎪+⎝⎭⎛⎜⎠ ……1分00111xxx dx e e ∞+∞=-+++⎛⎜⎠ ……2分 011x dx e+∞=+⎛⎜⎠. ……3分令x e t =,则1dx dt t=.于是2101(1)(1)x x xe dx dt e t t +∞+∞--=++⎛⎛⎜⎜⎠⎠ ……4分 1111ln 11t dt t t t +∞+∞⎛⎫=-= ⎪++⎝⎭⎛⎜⎠ ……5分 ln 2=.……6分解二:21(1)1x x xxe dx xd e e ---⎛⎫= ⎪++⎝⎭⎛⎛⎜⎜⎠⎠111x xx dx ee --=-++⎛⎜⎠ 11x x x x e dx e e-=-++⎛⎜⎠ln(1)1x x xxe e C e =-+++. ……3分 所以20lim ln(1)ln 2(1)1x x x x x x xe xe dx e e e +∞--→+∞⎡⎤=-++⎢⎥++⎣⎦⎛⎜⎠. ……4分其中lim ln(1)lim ln(1)11x x x x xxx x xe xe e x x e e e →+∞→+∞⎡⎤⎡⎤-+=-+-+⎢⎥⎢⎥++⎣⎦⎣⎦ lim ln 00011x x x x x e e e →+∞⎡⎤=-+=+=⎢⎥++⎣⎦ ……5分 因此20ln 2ln 2(1)x x xe dx e +∞--=+=+⎛⎜⎠. ……6分六、(本题满分5分)设)(x f 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰,求证:存在ξ)1,0(∈,使0)()(='+ξξξf f .证:设()()F x xf x =. 由积分中值定理,可见存在1(0,)2η∈.使112201()()()2xf x dx F x dx F η==⎰⎰. ……2分由已知条件,有1201(1)2()2()()2f xf x dx F F ηη==⋅=⎰.……3分 由于(1)(1)()F f F η==,……4分并且()F x 在[,1]η上连续,在(,1)η上可导.故由罗尔定理知:存在(,1)(0,1)ξη∈⊂,使得()0F ξ'=,即()()0f f ξξξ'+=.……5分七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成c bp aQ -+=,其中,,a b c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少;(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少? 解:(1) 设售出商品的销售额为R ,则a R PQ P c a b ⎛⎫==-⎪+⎝⎭,令22()0()ab c P b R p b -+'==+. 得00ab bp b a bc c c ==>. ……2分 当0bp a bc c <<时,有0R '>.所以随p 的增加,相应的销售额也增加. ……4分当bp a bc c>时,有0R '<.所以随p 的增加,相应的销售额将减少.……5分 (2) 由(1)知,当bp a bc c=时,销售额R 取得最大值,最大销售额为2max (/)()/R ab c b c a bc ab c==. ……6分八、(本题满分6分)求微分方程x y x y dx dy 22+-=的通解. 解:令y z x =,则dy dzz x dx dx=+. ……1分 当0x >时,原方程化为21dz z x z z dx +=+21dx x z =-+, ……3分 其通解为221ln(1)ln 1C z z x C z z x+=-++或=,……5分代回原变量,得通解22(0)y x y C x +>=.……6分当0x <时,原方程的解与0x >时相同.九、(本题满分8分)设矩阵A= 010010000010012y ⎫⎛⎪ ⎪⎪⎪⎝⎭(1) 已知A 的一个特征值为3,试求y ; (2) 求矩阵P ,使(AP)T(AP)为对角矩阵.解:(1) 因为22||(1)[(2)21]0I A y y λλλλ-=--++-=. 当3λ=时,代入上式解得2y =.……3分于是0100100000210012A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭. (2) 由T A A =,得2()()T T AP AP P A P =.而矩阵21000010000540045A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, ……4分 考虑二次型22222222212343412344495585()55T X A X x x x x x x x x x x x =++++=++++, ……6分 令1122334444,,,5y x y x y x x y x ===+=,即11223344100001000014/50001x y x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 取10000100400150001P ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎭-⎪⎪⎝,则有100001000050()(900)05TAP AP ⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭.……8分(2) 另解:2A 的特征值为11λ=(三重),29λ=.……5分对应于11λ=的特征向量为123(1,0,0,0),(0,1,0,0),(0,0,1,1),T T T ααα===-经正交标准化后,得向量组123(1,0,0,0),(0,1,0,0),)22T T Tβββ===;……6分 对应于29λ=的特征向量为4(0,0,1,1)T α=,经单位化后,得422Tβ=. ……7分令()123410000100,,,00220022P ββββ⎛⎫ ⎪ ⎪ ⎪== ⎝,则210000100001000()()09T T P A P AP AP ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭.……8分十、(本题满分8分)设向量12,,,t ααα 是齐次线性方程组AX = 0的一个基础解系,向量β不是方程组 AX= 0的解,即A β≠0. 试证明向量组β,β+1α,β+2α,…,β+t α线性无关. 解:设有一组数12,,,,t k k k k ,使得1()0tiii k k ββα=++=∑,……1分 即11()()t tiiii i k k k βα==+=-∑∑ (1)……2分上式两边同时左乘矩阵A ,有11()()0t tiiii i k k A k A βα==+=-=∑∑.因为0A β≠,故10tii k k=+=∑ (2)……4分从而,由(1)式得1()0tiii k α=-=∑.由于向量组1,.......,t αα是基础解系,所以120t k k k ==== .……6分 因而由(2)式得0k =.因此向量组β,β+1α,……,β+t α线性无关.……8分十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获得利润10万元;发生一次故障仍可获得利润5万元;发生二次故障多获得利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?解:以X 表示一周五天内机器发生故障的天数,则X 服从参数为(5,0.2)的二项分布.即55{}0.20.8(0,1,2,3,4,5)kk kP X k C k -==⋅⋅=……2分 于是5{0}0.80.328P X ===, 145{1}0.20.80.410P X C ==⋅⋅=;……3分2235{2}0.20.80.205P X C ==⋅⋅=;{3}1{0}{1}{2}0.057P X P x P x P x ≥=-=-=-==. ……4分以Y 表示所获利润,则()Y f X ==10,05,10,22,3X X X X =⎧⎪=⎪⎨=⎪⎪≥⎩若若若-若,……5分所以100.32850.41000.20520.057 5.216EY =⨯+⨯+⨯-⨯=(万元).……7分十二、(本题满分6分)考虑一元二次方程x 2+ Bx + C = 0,其中B,C 分别是将一枚骰子接连掷两次先后出现的 点数.求方程有实根的概率p 和有重根的概率q .解:一枚色子(骰子)掷两次,其基本事件总数为36. 方程组有实根的充分必要条件是224,4B BC C ≥≤. ……2分B1 2 3 4 5 6 使2/4C B ≤的基本事件个数 0 1 2 4 6 6 使2/4C B =的基本事件个数11……4分因此,使方程组有实根的基本事件个数为1246619++++=.于是1936p =. ……5分 同理,使方程组有重根的基本事件个数为112+=,于是213618q ==. ……6分十三 (本题满分6分)设12,,,n X X X 独立且与X 同分布,k k EX α=(1,2,3,4)k =.求证:当n 充分大时,∑==n i i n X n z 121近似服从正态分布,并求出其分布参数. 解:依题意,12,,,n X X X 独立同分布,于是22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX k α==,有……1分 22i EX α=,2422242()i i i DX EX EX αα=-=-; ……2分 2211nn i i EZ EX n α===∑,……3分 22422111()n n i i DZ DX n nαα===-∑……4分根据中心极限定理2242()/n n U n αα=-即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布.……6分数 学(试卷五)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学四 第一、(1) 题 】 (2) 【 同数学四 第一、(2) 题 】 (3) 设)1ln(2x x y ++=,则3x y '''=532(4) 五阶行列式aa a a a a a a a---------11110001100011000123451a a a a a =-+-+-.(5) 一实习生用同一台机器接连独立地制造3个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示3个零件中合格品的个数,则P (X=2)=1124. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设0)()(00=''='x f x f ,0)(0>'''x f , 则下列选项正确的是 (D)(A) )(0x f '是)(x f '的极大值 (B) )(0x f 是)(x f 的极大值(C) )(0x f 是)(x f 的极小值 (D) ))(,(00x f x 是曲线)(x f y =的拐点 (2) 【 同数学三 第二、(3) 题 】 (3) 【 同数学四 第二、(3) 题 】 (4) 【 同数学四 第二、(4) 题 】(5) 设A ,B 为任意两个事件,且A ⊂B , P (B )>0,则下列选项必然成立的是 (B)(A) ()()P A P A B < (B) ()()P A P A B ≤ (C) ()()P A P A B > (D) ()()P A P A B ≥ 三、(本题满分6分)【 同数学四 第三题 】 四、(本题满分7分) 设2(,)xyt f x y e dt -=⎰,求222222yfx y y x f x f y x ∂∂+∂∂∂-∂∂解:22x y fye x-∂=∂, ……2分 22x y f xey-∂=∂,222322x y f xy e x -∂=-∂, ……4分 222322x y f x ye y -∂=-∂,22222(12)x y f x y ex y-∂=-∂∂. ……6分 于是222222222x y x f f y f ey x x y x y -∂∂∂-+=-∂∂∂∂. ……7分五、(本题满分6分)【 同数学四 第五题 】六、(本题满分7分)【 同数学四 第七题 分值不同 】 七、(本题满分9分)已知一抛物线通过x 轴上的两点A ( 1, 0 ),B ( 3, 0 ).(1) 求证:两坐标轴与该抛物线所围图形的面积等于x 轴与该抛物线所围图形的面积; (2) 计算上述两个平面图形绕x 轴旋转一周所产生的两个旋转体体积之比. 解:(1) 设过,A B 两点的抛物线方程为(1)(3)y a x x =--, 则抛物线与两坐标轴所围图形的面积为110|(1)(3)|S a x x dx =--⎰……1分1204||(43)||3a x x dx a =-+=⎰. ……2分 抛物线与x 轴所围图形的面积为321|(1)(3)|S a x x dx =--⎰……3分 3214||(43)||3a x x dx a =-+=⎰.……4分所以12S S =.(2) 抛物线与两坐标轴所围图形绕x 轴旋转所得旋转体的体积为12210[(1)(3)]V a x x dx π=--⎰……5分124320[(1)4(1)4(1)]a x x x dxπ=---+-⎰5324120(1)4(1)38[(1)].5315x x a x a ππ--=--+=……6分抛物线与x 轴所围图形绕x 轴旋转所得旋转体的体积为32221[(1)(3)]V a x x dx π=--⎰353241(1)4(1)(1)53x x a x π⎡⎤--=--+⎢⎥⎣⎦ ……7分216.15a π=……8分 所以12198V V =.……9分八、(本题满分5分)设)(x f 在[,]a b 上连续,在(,)a b 内可导,且1()()ba f x dx fb b a=-⎰ 求证:在(,)a b 内至少存在一点ξ, 使 )(ξf ' = 0.证:因为()f x 在[,]a b 上连续,由积分中值定理可知,在(,)a b 内存在一点c ,使得()()()baf x dx f c b a =-⎰. ……2分 即()()()baf x dxf c f b b a==-⎰.……3分因为()f x 在[,]c b 上连续,在(,)c b 内可导,故由罗尔定理,在(,)c b 内至少存在一点出ξ,使得()0f ξ'=,其中(,)(,)c b a b ξ∈⊂.……5分九、(本题满分9分)已知线性方程组 ⎪⎪⎩⎪⎪⎨⎧+t= x - 6x - x - x -1=7x +px + x 2+3x -1= 4x + 6x - x + 2x 0= x 3+2x -x x 4321432143214321,讨论参数p, t 取何值时,方程组有解? 无 解? 当有解时, 试用其导出组的基础解系表示通解.解:方程组系数矩阵A 的增广矩阵为11230104112164101221327100800116100002A p p t t ---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪-+ ⎪ ⎪---+⎝⎭⎝⎭……3分(1) 当2t ≠-时,()()A A ≠秩秩,方程组无解. ……4分 (2) 当2t =-时,()()A A =秩秩,方程组有解.……5分(a) 若8p =-,得通解1212141122(,010001x c c c c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为任意常数).……7分(b) 若8p ≠-得通解1112(0001x c c --⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数).……9分十、(本题满分7分)设有4阶方阵A 满足条件30I A +=,I A A T2=,0A <,其中I 是4阶单位阵,求方阵A 的伴随阵*A 的一个特征值.解:由3|(3)|0I A A I +=--=,得A 的一个特征值3λ=-. ……1分 又4|||2|2||16T AA I I ===,2||||||16T A A A ==.于是||4A =-.……3分由于||0A <,知A 可逆.设A 的对应于特征值3λ=-的特征向量为α,则3A αα=-,由此得11(3)A A A αα--=-.即113A αα-=-,知13-是1A -的特征值. ……5分 由于*114||(4)()33A A A αααα-==--=,所以*A 有特征值43.……7分十一、(本题满分7分)【 同数学四 第十一题 】 十二、(本题满分6分)某电路装有三个同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为λ> 0的指数分布.当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T 的概率分布.解:以(1,2,3)i X i =表示第i 个电气元件无故障工作的时间,则123,,X X X 相互独立且同分布,其分布函数为1,0()00x e x F x x λ-⎧->=⎨≤⎩若,若,……1分设()G t 是T 的分布函数.当0t ≤时,()0G t =.当0t >时,有(){}1{}G t P T t P T t =≤=->……3分 1231{,,}P X t X t X t =->>>……4分 1231{}{}{}P X t P X t P X t =->⋅>⋅> ……5分 31[1()]F t =-- ……6分 31t e λ-=-.……7分总之,31,0()00t e t G t t λ-⎧->=⎨≤⎩若,若,于是T 服从参数为3λ的指数分布.。
1996年全国硕士研究生入学统一考试数学二试题
必是 f (x) 的
(A) 间断点
(C) 可导的点,且 f (0) 0
(3) 设 f (x) 处处可导,则
(A) 当 lim f (x) ,必有 lim f (x)
x
(B) 当 lim f (x) ,必有 lim f (x)
x
(C) 当 lim f (x) ,必有 lim f (x)
g ( x)dx
g ( x)dx
g ( x)dx
f (u) 具有二阶导数,且
(4) 求函数 f (x) 1 x 在 x 0 点处带拉格朗日型余项的 n 阶泰勒展开式. 1 x
(5) 求微分方程 y y x2 的通解.
(6) 设有一正椭圆柱体,其底面的长、短轴分别为 2a、2b ,用过此柱体底面的短轴与底面成 角( 0 )的平面截此柱体,得一锲形体(如图),求此锲形体的体积V . 2
(1) 计算 ln 2 1 e2x dx .
0
(2) 求
dx
1 sin x
x t f (u2 )du,
设 0
(3)
y [ f (t2 )]2 ,
.
g(x) f
g(x) f
g(x)
g(x) f
其中
f
(x)
(x)
(x)
(x)
g ( x)dx
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
1996年考研数学二试卷及答案
1996年考研数学二试卷及答案一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设232()x y x e -=+,则0x y ='=______.(2)121(x dx -+=⎰______.(3) 微分方程250y y y '''++=的通解为______.(4) 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+=⎢⎥⎣⎦______.(5) 由曲线1,2y x x x=+=及2y =所围图形的面积S =______.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设当0x →时,2(1)xe ax bx -++是比2x 高阶的无穷小,则 ( )(A) 1,12a b == (B) 1,1a b == (C) 1,12a b =-=- (D) 1,1a b =-=(2) 设函数()f x 在区间(,)δδ-内有定义,若当(,)x δδ∈-时,恒有2|()|f x x ≤,则0x =必是()f x 的 ( ) (A) 间断点 (B) 连续而不可导的点 (C) 可导的点,且(0)0f '= (D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 ( )(A) 当lim ()x f x →-∞=-∞,必有lim ()x f x →-∞'=-∞(B) 当lim ()x f x →-∞'=-∞,必有lim ()x f x →-∞=-∞(C) 当lim ()x f x →+∞=+∞,必有lim ()x f x →+∞'=+∞(D) 当lim ()x f x →+∞'=+∞,必有lim ()x f x →+∞=+∞(4) 在区间(,)-∞+∞内,方程1142||||cos 0x x x +-= ( )(A) 无实根 (B) 有且仅有一个实根 (C) 有且仅有两个实根 (D) 有无穷多个实根(5) 设(),()f x g x 在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),由曲线(),y g x =(),y f x x a ==及x b =所围平面图形绕直线y m =旋转而成的旋转体体积为 ( )(A) [][]2()()()()bam f x g x f x g x dx π-+-⎰(B) [][]2()()()()bam f x g x f x g x dx π---⎰(C) [][]()()()()bam f x g x f x g x dx π-+-⎰(D)[][]()()()()bam f x g x f x g x dx π---⎰三、(本题共6小题,每小题5分,满分30分.) (1)计算ln 0⎰.(2) 求1sin dxx +⎰.(3) 设2022(),[()],t x f u du y f t ⎧=⎪⎨⎪=⎩⎰其中()f u 具有二阶导数,且()0f u ≠,求22d y dx .(4) 求函数1()1xf x x-=+在0x =点处带拉格朗日型余项的n 阶泰勒展开式. (5) 求微分方程2y y x '''+=的通解.(6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴与底面成α角(02πα<<)的平面截此柱体,得一锲形体(如图),求此锲形体的体积V .四、(本题满分8分)计算不定积分22arctan (1)xdx x x +⎰.α五、(本题满分8分)设函数2312,1,(),12,1216, 2.x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩(1) 写出()f x 的反函数()g x 的表达式;(2) ()g x 是否有间断点、不可导点,若有,指出这些点.六、(本题满分8分)设函数()y y x =由方程3222221y y xy x -+-=所确定,试求()y y x =的驻点,并判别它是否为极值点.七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,()()0f a f b ''>,试证明:存在(,)a b ξ∈和(,)a b η∈,使()0f ξ=及()0f η''=.八、(本题满分8分)设()f x 为连续函数,(1) 求初值问题0(),0x y ay f x y ='+=⎧⎪⎨=⎪⎩的解()y x ,其中a 为正的常数;(2) 若|()|f x k ≤(k 为常数),证明:当0x ≥时,有|()|(1)ax ky x e a-≤-.答案一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】13132221132x xy x e e ,---⎛⎫⎛⎫'=+⋅- ⎪ ⎪⎝⎭⎝⎭02111323x y =⎛⎫'=-= ⎪⎝⎭.(2)【答案】2注意到对称区间上奇偶函数的积分性质,有原式()1122112121022x x dx dx --⎡⎤⎡⎤=+-==+=⎣⎦⎣⎦⎰⎰. (3)【答案】()12cos2sin 2xy ec x c x -=+因为250y y y '''++=是常系数的线性齐次方程,其特征方程2250r r ++=有一对共轭复根1212r ,r i.=-±故通解为()12cos2sin 2xy e c x c x -=+.(4)【答案】2因为x →∞时,sin ln 1ln 1k k kx x x⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭(k 为常数),所以, 原式3131lim sin ln 1lim sin ln 1lim lim 312x x x x x x x x x x x x →∞→∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫=+-+=⋅-⋅=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (5)【答案】1ln 22-曲线1y x ,x =+2y =的交点是()12,,2211,x y x x x '-⎛⎫'=+= ⎪⎝⎭当1x >时 1y x x=+(单调上升)在2y =上方,于是212211211ln 2ln 2.22S x dxx x x x ⎛⎫=+- ⎪⎝⎭⎛⎫=+-=- ⎪⎝⎭⎰二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(A)方法1:用带皮亚诺余项泰勒公式.由()21x e ax bx -++()()222112!x x x ax bx ο⎛⎫=+++-++ ⎪⎝⎭()()()222112b x a x x x οο⎛⎫=-+-+ ⎪⎝⎭令,可得 10111202b ,a ,b .a ,-=⎧⎪⇒==⎨-=⎪⎩应选(A). 方法2:用洛必达法则.由2200(1)2lim lim 0,2x x x x e ax bx e ax bx x→→-++--=洛 有 ()lim 210 1.xx e ax b b b →--=-=⇒=又由 0022121limlim 02222x x x x e ax b e a a a x →→----===⇒=. 应选(A).(2)【答案】(C)方法一:首先,当0x =时,|(0)|0(0)0f f ≤⇒=. 而按照可导定义我们考察2()(0)()00(0)f x f f x x x x x x x-≤=≤=→→,由夹逼准则, 0()(0)(0)lim0x f x f f x→-'==,故应选(C).方法二:显然,(0)0f =,由2|()|f x x ≤,(,)x δδ∈-,得2()1(,0)(0,)f x x xδδ≤∈-,,即2()f x x 有界,且 200()(0)()(0)limlim 0x x f x f f x f x x x →→-⎛⎫'==⋅= ⎪⎝⎭. 故应选(C).方法三:排除法.令3(),(0)0,f x x f '==故(A)、(B)、(D)均不对,应选(C). (3)【答案】(D)方法一:排除法.例如()f x x =,则(A),(C)不对;又令()xf x e -=,则(B)不对.故应选择(D).方法二:由lim ()x f x →+∞'=+∞,对于0M >,存在0x ,使得当0x x >时,()f x M '>.由此,当0x x >时,由拉格朗日中值定理,0000()()()()()()()f x f x f x x f x M x x x ξ'=+->+-→+∞→+∞,从而有lim ()x f x →+∞=+∞,故应选择(D).(4)【答案】(C)令1142()||||cos f x x x x =+-,则()()f x f x -=,故()f x 是偶函数,考察()f x 在(0,)+∞内的实数个数:1142()cos f x x x x =+-(0x >).首先注意到(0)10f =-<,1142()()()10,222f πππ=+>>当02x π<<时,由零值定理,函数()f x 必有零点,且由314211()sin 042f x x x x --'=++>,()f x 在(0,)2π单调递增,故()f x 有唯一零点.当2x π≥时,11114242()cos ()()10,22f x x x x ππ=+-≥+->没有零点; 因此,()f x 在(0,)+∞有一个零点.又由于()f x 是偶函数,()f x 在(,)-∞+∞有两个零点.故应选(C). (5)【答案】(B)见上图,作垂直分割,相应于[],x x dx +的小竖条的体积微元22(())(())dV m g x dx m f x dx ππ=---[][](())(())(())(())m g x m f x m g x m f x dx π=-+-⋅--- [][]2()()()()m g x f x f x g x dx π=--⋅-,于是 [][]2()()()()baV m g x f x f x g x dx π=--⋅-⎰,故选择(B).三、(本题共6小题,每小题5分,满分30分.) (1)方法一:换元法.u =,则221ln(1),21u x u dx du u=--=-, 所以2ln 2200011111)2)11211u du du du u u u u==-=+----+⎰1ln(22==. 方法二:换元法.令sin xe t -=,则cos ln sin ,sin t x t dx dt t =-=-,:0ln 2:26x t ππ→⇒→,ln 62026cos 1cos sin sin sin t t dt t dt t tππππ⎛⎫⎛⎫=⋅-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰2266ln(csc cot )cos ln(22t t t ππππ=--=-. 方法三:分部积分法和换元法结合.原式ln 2ln 0()x e e --==-⎰⎰22ln 2x xee--=-+⎰令xe t =,则:0ln 2:12x t →⇒→,原式2211ln(t =+=+⎰ln(22=-+.(3)这是由参数方程所确定的函数,其导数为22222()()24()()dydy f t f t t dt tf t dx dx f t dt'⋅⋅'===, 所以 2222221()(4())4()4()2()d y d dy dt d dt tf t f t tf t t dx dt dx dx dt dx f t ''''⎡⎤=⋅=⋅=+⋅⋅⎣⎦ 22224()2()()f t t f t f t '''⎡⎤=+⎣⎦. (4)函数()f x 在0x =处带拉格朗日余项的泰勒展开式为()(1)1(0)()()(0)(0),(01)!(1)!n n n n f f x f x f f x x x n n θθ++'=++++<<+.对于函数1()1xf x x -=+,有 12()12(1)1,1f x x x-=-=+-+2()2(1)(1),f x x -'=⋅-+ 3()2(1)(2)(1),f x x -''=⋅-⋅-+,,()(1)()2(1)!(1)n n n f x n x -+=-⋅+所以 ()(0)2(1)!,(1,2,3),n n fn n =-⋅ =故 121112()122(1)2(1)(01)1(1)n n n n n xx f x x x x xx θθ+++-==-+++-+- <<++. (5)方法一:微分方程2y y x ''+=对应的齐次方程0y y '''+=的特征方程为20r r +=,两个根为120,1r r ==-,故齐次方程的通解为12x y c c e -=+.设非齐次方程的特解2()Y x ax bx c =⋅++,代入方程可以得到1,1,23a b c ==-=, 因此方程通解为3212123xy c c ex x x -=++-+. 方法二:方程可以写成2()y y x ''+=,积分得303x y y c '+=+,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为30(())3dxdx xy e c e dx C -⎰⎰=++⎰33001(())()33xx x x xx e c e dx C e x de c e C --=++=++⎰⎰320(3)3x xx x e x e e x dx c Ce --=-++⎰ 332200(2)33x x xx x x x x x e e x dx c Ce e e x e xdx c Ce ----=-++=--++⎰⎰ 3202()3x x x x x x e e x e c Ce --=-+-++ 32123x x x x c Ce -=-+++. 方法三:作为可降阶的二阶方程,令y P '=,则y P '''=,方程化为2P P x '+=,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为220020()(22)2 2.x x x x x x xP e c x e dx e c x e xe e c e x x ---=+=+-+=+-+⎰再积分得 321223xx y c c e x x -=++-+. (6)建立坐标系,底面椭圆方程为22221x y a b+=.方法一:以垂直于y 轴的平面截此楔形体所得的截面为直角三角形, 其中一条直角边长为22a x b y b=-22tan a b y bα-, 故截面面积为22221()()tan 2a S y b y bα=-⋅. 楔形体的体积为222220022()tan ()tan 3bb a V S y dy b y dy a b b αα==-=⎰⎰.方法二:以垂直于x 轴的平面截此楔形体所得的截面为矩形,其中一条边长为222b y a x a=-另一条边长为tan x α⋅, 故截面面积为22()2tan bS x x a x aα=-,楔形体的体积为22200222()tan tan 3aa b V S x dx x a x dx a b a αα==-=⎰⎰.四、(本题满分8分) 方法一:分部积分法.2222arctan arctan arctan (1)1x x xdx dx dx x x x x =-++⎰⎰⎰1arctan ()arctan (arctan )xd xd x x=--⎰⎰2211arctan arctan (1)2dx x x x x x -+-+⎰分部 22111arctan ()arctan 12x x dx x x x x =-+--+⎰ 22111arctan ln ln(1)arctan 22x x x x C x =-+-+-+.方法二:换元法与分部积分法结合.令arctan x t =,则2tan ,sec x t dx tdt ==,2222222arctan sec cot (1)tan (1tan )tan x t t t dx dt dt t tdt x x t t t ===++⎰⎰⎰⎰2(csc 1)(cot )t t dt td t tdt =-=--⎰⎰⎰21cot cot 2t t dt t -+-⎰分部 2cos 1cot sin 2x t t dt t x =-+-⎰211cot sin sin 2t t d t t t =-+-⎰21cot ln sin 2t t t t C =-+-+.五、(本题满分8分)【解析】为了正确写出函数()f x 的反函数()g x ,并快捷地判断出函数()g x 的连续性、可导性,须知道如下关于反函数的有关性质.(1) 由题设,函数()f x的反函数为1,()18,16,8.12xg x xxx⎧<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩(2) 方法一:考察()f x的连续性与导函数.注意2312,1,(),12,1216,2x xf x x xx x⎧-<-⎪=-≤≤⎨⎪->⎩在(,1),(1,2),(2,)-∞--+∞区间上()f x分别与初等函数相同,故连续.在1,2x x=-=处分别左、右连续,故连续.易求得24,1,()3,12,(1)4,(1)3,12,2(2)12,(2)12(2)12.x xf x x x f fxf f f-+-+-<-⎧⎪'''=-<<-=-=⎨⎪>⎩'''==⇒=由于函数()f x在(,)-∞+∞内单调上升且连续,故函数()g x在(,)-∞+∞上单调且连续,没有间断点.由于仅有0x=时()0f x'=且(0)0f=,故0x=是()g x的不可导点;仅有1x=-是()f x的不可导点(左、右导数∃,但不相等),因此()g x在(1)1f-=-处不可导.方法二:直接考察()g x的连续性与可导性.注意1,()18,16,8,12xg x xxx⎧<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩在(,1),(1,8),(8,)-∞--+∞区间上()g x分别与初等函数相同,故连续.在1,8x x=-=处分别左、右连续,故连续,即()g x在(,)-∞+∞连续,没有间断点.()g x 在(,1),(1,8),(8,)-∞--+∞内分别与初等函数相同,在0x =不可导,其余均可导.在1x =-处,1111(1),(1),43x x g g -++=--=-'⎛'''-==-== ⎝ (1)g '⇒-不∃.在8x =处,881161(8),(8),121212x x x g g -+-+=='+'⎛⎫''====⎪⎝⎭ (8)g '⇒∃.因此,()g x 在(,)-∞+∞内仅有0x =与1x =-两个不可导点.六、(本题满分8分) 方程两边对x 求导,得22320,(32)0.y y yy xy y x y y x y y x ''''-++-=-++-= ①令0,y '=得y x =,代入原方程得32210x x --=,解之得唯一驻点1x =;对①两边再求导又得22(32)(32)10x y y x y y y x y y '''''-++-++-=. ②以1,0x y y '===代入②得11210,0,2x y y =''''-==> 1x =是极小点.定理:设函数()f x 在0x 处具有二阶导数且00()0,()0f x f x '''=≠,那么 (1) 当0()0f x ''<时,函数()f x 在0x 处取得极大值; (2) 当0()0f x ''>时,函数()f x 在0x 处取得极小值.七、(本题满分8分)首先证明(,)a b ξ∃∈,使()0f ξ=:方法一:用零点定理.主要是要证明()f x 在(,)a b 有正值点与负值点.不妨设()0,f a '>()0f b '>.由()()lim ()()0x a f x f a f a f a x a ++→-''==>-与极限局部保号性,知在x a =的某右邻域,()()0f x f a x a->-,从而()0f x >,因而111,,()0x b x a f x ∃>>>;类似地,由()0f b '>可证 2122,,()0x x x b f x ∃<<<.由零点定理,12(,)(,)x x a b ξ∃∈⊂,使()0f ξ=.方法二:反证法.假设在(,)a b 内()0f x ≠,则由()f x 的连续性可得()0f x >,或()0f x <,不妨设()0f x >.由导数定义与极限局部保号性,()()()()()lim lim 0x a x a f x f a f x f a f a x ax a +++→→-''===≥--,()()()()()lim lim 0x b x b f x f b f x f b f b x b x b ---→→-''===≤--,从而()()0f a f b ''≤,与()()0f a f b ''>矛盾.其次,证明(,)a b η∃∈,()0f η''=:由于()()()0f a f f b ξ===,根据罗尔定理,12(,),(,)a b ηξηξ∃∈∈,使12()()0f f ηη''==;又由罗尔定理, 12(,)(,),()0a b f ηηηη''∃∈⊂=.注:由0()0f x '>可得:在000(,),()()x x f x f x δ-<;在000(,),()()x x f x f x δ+>.注意由0()0f x '>得不到()f x 在00(,)x x δδ-+单调增的结果! 4.罗尔定理:如果函数()f x 满足(1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.八、(本题满分8分)(1) ()y ay f x '+=为一阶线性非齐次微分方程,可直接利用通解公式求解.通解为[]()()()ax ax ax y x e f x e dx C e F x C --⎡⎤=+=+⎣⎦⎰,其中()F x 是()axf x e 的任一原函数,由(0)0y =得(0)C F =-,故[]0()()(0)()xax ax at y x e F x F e e f t dt --=-=⎰.(2) 当0x ≥时,0()()()xxaxat axat y x ee f t dt ee f t dt --=⋅≤⎰⎰001(1)x x ax at ax at ax k ke e dt ke e e a a---⎛⎫≤⋅=⋅=- ⎪⎝⎭⎰.。
1996年普通高等学校招生全国统一考试数学试题及答案(理)
1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 已知全集I =N ,集合A ={x │x =2n ,n ∈N },B ={x │x =4n ,n ∈N },则 ( )(A) B A I =(B)B A I =(C) B A I =(D) B A I =(2) 当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图像( )(3) 若sin 2x >cos 2x ,则x 的取值范围是 ( )(A) ⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ (B) ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ (C) ⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ (D) ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ(4) 复数54)31()22(i i -+等于( )(A) i 31+(B) i 31+-(C) i 31-(D) i 31--(5) 如果直线l 、m 与平面α、β、γ满足:l l ,γβ =∥m m 和αα⊂,,⊥γ,那么必有( )(A)α⊥γ且l ⊥m (B)α⊥γ且m ∥β (C)m ∥β且l ⊥m(D)α∥β且α⊥γ(6) 当x x x f x cos 3sin )(,22+=≤≤-函数时ππ的( ) (A) 最大值是1,最小值是-1 (B) 最大值是1,最小值是-21 (C) 最大值是2,最小值是-2 (D) 最大值是2,最小值是-1(7) 椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是( )(A) (-3,5),(-3,-3) (B) (3,3),(3,-5) (C) (1,1),(-7,1)(D) (7,-1),(-1,-1))](arccos[sin )]2(arcsin[cos ,20)8(απαππα+++<<则若等于( )(A)2π (B) -2π (C)2π-2α (D) -2π-2α (9) 将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为( )(A) 63a(B) 123a(C)3123a (D)3122a (10) 等比数列{}n a 的首项a 1=-1,前n 项和为S n ,若3231510=S S 则n n S ∞→lim 等于( )(A)32(B) -32 (C) 2 (D) -2(11) 椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是( )(A) (3,0),(1,π)(B) (3,2π),(3,23π)(C) (2,3π),(2,35π)(D) (7,23arctg),(7,23arctg -2π) (12) 等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A) 130(B) 170(C) 210(D) 260(13) 设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过),0)(0,(b a 两点,已知原点到直线l 的距离为c 43,则双曲线的离心率为 ( )(A) 2(B)3(C)2 (D)332 (14) 母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于 ( )(A)π322 (B)π332 (C)π2(D)π362 (15) 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5) 等于( )(A) 0.5 (B) -0.5(C) 1.5(D) -1.5第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(16)已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则P=(17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答)(18)40tg 20tg 340tg 20tg ++的值是(19)如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)解不等式1)11(log >-xa .(21)已知△ABC 的三个内角A ,B ,C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求2cosCA -的值. 22.如图,在正三棱柱ABC -A 1B 1C 1中,E ∈BB 1,截面A 1EC ⊥侧面AC 1.(Ⅰ)求证:BE =EB 1;(Ⅱ)若AA 1=A 1B 1;求平面A 1EC 与平面A 1B 1C 1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(右下图)(Ⅰ)证明:在截面A 1EC 内,过E 作EG ⊥A 1C ,G 是垂足. ① ∵∴EG ⊥侧面AC 1;取AC 的中点F ,连结BF ,FG ,由AB =BC 得BF ⊥AC ,② ∵∴BF ⊥侧面AC 1;得BF ∥EG ,BF 、EG 确定一个平面,交侧面AC 1于FG . ③ ∵∴BE ∥FG ,四边形BEGF 是平行四边形,BE =FG , ④ ∵ ∴FG ∥AA 1,△AA 1C ∽△FGC , ⑤ ∵ ∴112121BB AA FG ==,即11,21EB BE BB BE ==故 23.某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)24.已知l 1、l 2是过点)0,2(-P 的两条互相垂直的直线,且l 1、l 2与双曲线122=-x y 各有两个交点,分别为A 1、B 1和A 2、B 2.(Ⅰ)求l 1的斜率k 1的取值范围;(Ⅱ)若12211,5l B A B A 求 、l 2的方程25.已知a 、b 、c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时,│f (x )│≤1.(Ⅰ)证明:│c │≤1;(Ⅱ)证明:当-1≤x ≤1时,│g (x )│≤2;(Ⅲ)设a >0,当-1≤x ≤1时,g (x )的最大值为2,求f (x ).1996年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)C (2)A (3)D (4)B(5)A(6)D(7)B(8)A(9)D(10)B (11)C (12)C (13)A (14)D (15)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)2 (17)32 (18)3(19)42三.解答题(20)本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.解:(Ⅰ)当a >1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a xx——2分由此得xa 11>-. 因为1-a <0,所以x <0, ∴.011<<-x a——5分(Ⅱ)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-.11,011a xx由①得,x >1或x <0, 由②得,,110ax -<< ∴ax -<<111 ——10分综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111 ——11分(21)本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分.解法一:由题设条件知B =60°,A +C =120°. ——2分∵,2260cos 2-=-∴22cos 1cos 1-=+CA 将上式化为C A C A cos cos 22cos cos -=+ 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos2C A C A CA C A -++-=-+ ——6分将21)cos(,2160cos 2cos-=+==+C A C A 代入上式得)cos(222)2cos(C A C A --=- 将1)2(cos 2)cos(2--=-CA C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分,0)32cos 22)(22cos2(=+---C A C A ∵,032cos 22≠+-CA ∴.022cos2=--CA 从而得.222cos=-C A ——12分解法二:由题设条件知B =60°,A +C =120°. 设αα2,2=--=C A CA 则,可得α+= 60A ,α-= 60C ——3分所以)60cos(1)60cos(1cos 1cos 1αα-++=+C A ααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα——7分依题设条件有Bcos 243cos cos 2-=-αα, ∵21cos =B ∴2243cos cos 2-=-αα整理得,023cos 2cos 242=-+αα——9分,0)3cos 22)(2cos 2(=+-αα∵03cos 22≠+α, ∴02cos 2=-α. 从而得222cos =-C A . ——12分(22)本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ) ①∵面A 1EC ⊥侧面AC 1,——2分 ②∵面ABC ⊥侧面AC 1, ——3分 ③∵BE ∥侧面AC 1, ——4分 ④∵BE ∥AA 1, ——5分 ⑤∵AF =FC ,——6分(Ⅱ)解:分别延长CE 、C 1B 1交于点D ,连结A 1D . ∵1EB ∥11112121,CC BB EB CC ==, ∴,21111111B A C B DC DB ===∵∠B 1A 1C 1=∠B 1 C 1A 1=60°, ∠DA 1B 1=∠A 1DB 1=21(180°-∠D B 1A 1)=30°, ∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即1DA ⊥11C A——9分∵CC 1⊥面A 1C 1B 1,即A 1C 1是A 1C 在平面A 1C 1D 上的射影,根据三垂线定理得DA 1⊥A 1C , 所以∠CA 1C 1是所求二面角的平面角. ——11分∵CC 1=AA 1=A 1B 1=A 1C 1,∠A 1C 1C =90°, ∴∠CA 1C 1=45°,即所求二面角为45°——12分 (23)本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M ——5分化简得]22.1)01.01(1.11[10103+⨯-⨯≤x ——7分 ∵]22.1)01.01(1.11[10103+⨯-⨯ )]01.001.01(22.11.11[1022101103 +⨯+⨯+⨯-⨯=C C ]1045.122.11.11[103⨯-⨯≈ 1.4≈—— 9分∴x ≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷.——10分(24)本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.解:(I )依题设,l 1、l 2的斜率都存在,因为l 1过点P )0,2(-且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k ②若0121=-k ,则方程组①只有一个解,即l 1与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为).13(4)12)(1(4)22(2121212211-=---=∆k k k k设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k ④同理有)13(4,0122222-=∆≠-k k 又因为l 1⊥l 2,所以有k 1·k 2=-1.——4分于是,l 1、l 2与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k 解得⎪⎩⎪⎨⎧≠<<.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1 ----∈k ——7分(Ⅱ)设),(),,(221111y x B y x A 由方程②知112,122212121212121--=⋅--=+k k x x k k x x ∴│A 1B 1│2=(x 1-x 2)2+(y 1-y 2)222121))(1(x x k -+=2212121)1()13)(1(4--+=k k k ⑤ ——9分同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+=⑥ 由22115B A B A =,得2222115B A B A =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+ 解得21±=k 取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分(25)本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当-1≤x ≤1时,│f (x )│≤1,取x =0得 │c │=│f (0)│≤1, 即│c │≤1.——2分(Ⅱ)证法一:当a >0时,g (x )=ax +b 在[-1,1]上是增函数, ∴g (-1)≤g (x )≤g (1),∵│f (x )│≤1 (-1≤x ≤1),│c │≤1, ∴g (1)=a +b =f (1)-c ≤│f (1)│+│c │≤2,g (-1)=-a +b =-f (-1)+c ≥-(│f (-1)│+│c │)≥-2, 由此得│g (x )│≤2;——5分当a <0时,g (x )=ax +b 在[-1,1]上是减函数, ∴g (-1)≥g (x )≥g (1),∵│f (x )│≤1 (-1≤x ≤1),│c │≤1,∴g (-1)=-a +b =-f (-1)+c ≤│f (-1)│+│c │≤2, g (1)=a +b =f (1)-c ≥-(│f (1)│+│c │)≥-2, 由此得│g (x )│≤2;——7分 当a =0时,g (x )=b ,f (x )=bx +c . ∵-1≤x ≤1,∴│g (x )│=│f (1)-c │≤│f (1)│+│c │≤2. 综上得│g (x )│≤2. ——8分证法二:由4)1()1(22--+=x x x ,可得b ax x g +=)()2121(])21()21[(22--++--+=x x b x x a ])21()21([])21()21([22c x b x a c x b x a +-+--++++= ),21()21(--+=x f x f ——6分当-1≤x ≤1时,有,0211,1210≤-≤-≤+≤x x 根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f 即│g (x )│≤2.——8分(Ⅲ)因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2, 即g (1)=a +b =f (1)-f (0)=2. ①∵-1≤f (0)=f (1)-2≤1-2=-1, ∴c =f (0)=-1.——10分因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图像的对称轴,由此得0,02==-b ab即 由① 得a =2. 所以 f (x )=2x 2-1. ——12分。
考研数学二(常微分方程)历年真题试卷汇编1(题后含答案及解析)
考研数学二(常微分方程)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(1989年)微分方程y〞-y=eχ+1的一个特解应具有形式(式中a,b 为常数) 【】A.aeχ+bB.aχeχ+bC.aeχ+bχD.aχeχ+bχ正确答案:B解析:y〞-y=eχ+1的特解应为方程y〞-y=eχ和y〞-y=1的特解之和,而特征方程为r2-1=0,解得r=±1 因此y-y=eχ的特解应为y1*=aχeχ,y〞-y=1的特解应为y2*=b 则原方程特解应具有形式y=aχeχ+b 知识模块:常微分方程2.(1998年)已知函数y=f(χ)在任意点χ处的增量△y=+α,其中α是比△χ(△χ→0)的高阶无穷小,且y(0)=π,则y(1)=【】A.B.2πC.πD.正确答案:A解析:由于△y与△χ+α,其α是比△χ(△χ→0)高阶的无穷小,则解此变量可分离方程得y=Cearctanχ,再由y(0)=π得C=π故y=兀earctanχ,y(1)=π知识模块:常微分方程3.(2000年)具有特解y1=e-χ,y2=2χe-χ,y3=3eχ的三阶常系数齐次线性微分方程是【】A.y〞′-y〞-y′+y=0B.y〞′+y〞-y′-y=0C.y〞′-6y〞+11y′-6y=0D.y〞′-2y〞-y′+2y=0正确答案:B解析:由本题所给三个特解可知,所求方程的特征方程的根为λ1=1,λ2=-1(二重),故特征方程是(λ-1)(λ+1)2=0,展开得λ3+λ2-λ-1=0 从而,微分方程应为y′〞+y′-y=0,则应选B.知识模块:常微分方程4.(2002年)设y=y(χ)是二阶常系数微分方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,则当χ→0时,函数的极限.【】A.不存在B.等于1C.等于2D.等于3正确答案:C解析:由于y(χ)是方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,在方程y〞+py′+qy=e3χ中,令χ=0 得y〞(0)+Py′(0)+qy(0)=e0=1 即y〞(0)=1 所以应选C.知识模块:常微分方程5.(2003年)已知y=是微分方程y′=的解,则φ()的表达式为【】A.B.C.D.正确答案:A解析:将y=代入方程y′=得故应选A.知识模块:常微分方程填空题6.(1994年)微分方程ydχ+(χ2-4χ)dy=0的通解为_______.正确答案:(χ-4)y4=Cχ.解析:该方程是一个变量可分离方程,即(χ-4)y4=Cχ知识模块:常微分方程7.(1995年)微分方程y〞+y=-2χ的通解为_______.正确答案:y=-2χ+C1cosχ+C2sinχ.解析:特征方程为r2+1=0,解得r1=i,r2=-I 齐次通解为=C1cos χ+C2sinχ易观察出非齐次一个特解为y*=-2χ则原方程通解为y=C1>cosχ+C2sinχ-2χ知识模块:常微分方程8.(1996年)微分方程y〞+2y′+5y=0的通解为_______.正确答案:y=e-χ(C1cos2χ+C2sin2χ).解析:特征方程为r2+2r+5=0,r1,2=-1±2i 故通解为y=C1e-χcos2χ+C2e-χsin2χ.知识模块:常微分方程9.(1999年)微分方程y〞-4y=e2χ的通解为________.正确答案:y=C1e-2χ+(C2+χ)e2χ(C1,C2为任意常数).解析:特征方程为r2-4=0,r1,2=±2 齐次通解为=1e-2χ+C2e2χ设非齐次方程特解为y*Aχe2χ代入原方程得A=,故原方程通解为知识模块:常微分方程10.(2001年)过点(,0)且满足关系式y′arcsinχ+=1的曲线方程为_______·正确答案:yarcsinχ=χ-.解析:由y′arcsinχ+=1 知(yarcsinχ)′=1 则yarcsinχ=χ+C 由因此yarcsinχ=χ-知识模块:常微分方程11.(2002年)微分方程yy〞+y′2=0满足初始条件的特解是_______.正确答案:y2=χ+1或y=解析:令y′=P,则,y〞=,代入原方程得则所求的特解为y2=χ+1.知识模块:常微分方程12.(2004年)微分方程(y+χ3)dχ-2χdy=0满足的特解为_______.正确答案:解析:方程(y+χ3)dχ-2χdy=0可改写为设方程为一阶线性方程,则其通解为由知C=1,则所求特解为y=知识模块:常微分方程13.(2005年)微分方程χy′+2y=χlnχ满足y(1)=-的解为_______.正确答案:解析:方程χy+2y=χlnχ是一阶线性方程,方程两端同除以χ得:y′+=lnχ,则通解为由y(1)=-得,C=0,则知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。
1996数学二考研真题及答案
3 3 = ln 2 + 3 − 2 2
(
)
方法三: 令 1− e 原式=
−2 x
= t, 则
∫
3 2
0
3 t2 1 ⎞ 3 1 1+ t 2 ⎛ = −1 + + ln dt dt = − ⎜ ⎟ 2 2 ∫ 0 1− t 1− t ⎠ 2 2 1− t ⎝
|
3 2 0
=−
3 + ln 2 + 3 2
x →−∞ x →−∞ '
( x ) = −∞,
(B) 当 lim f
x →−∞
'
f ( x ) = −∞, ( x ) = −∞, ,必有 xlim →−∞
' x →+∞
(C) 当 lim f ( x ) = +∞, 必有 lim f
x →+∞
( x ) = +∞,
(D) 当 lim f
x →+∞
(
)
(2)求
∫ 1 + sin x
方法一:
dx
【详解】 原式=
∫
1 − sin x 1 dx = tan x − +C 2 cos t cos x
方法二:
x 2 dx =∫ 原式= ∫ 2 2 x x⎞ x⎞ ⎛ ⎛ + + cos sin 1 tan ⎜ ⎟ ⎜ ⎟ 2 2⎠ 2⎠ ⎝ ⎝ dx sec 2 x⎞ ⎛ d ⎜1 + tan ⎟ 2 2⎠ = 2∫ ⎝ =− +C 2 x x⎞ ⎛ 1 tan + ⎜ 1 + tan ⎟ 2 2⎠ ⎝ ⎧ x = t f ( u 2 ) du ∫0 d2y ⎪ ,其中 f u 具有二阶导数,且 f u ≠ 0 ,求 . (3)设 ⎨ ( ) ( ) 2 2 2 dx ⎡ ⎤ ⎪ y = f (t ) ⎣ ⎦ ⎩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1996年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设232()x y x e -=+,则0x y ='=______.(2)121(x dx -+=⎰______.(3) 微分方程250y y y '''++=的通解为______.(4) 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+=⎢⎥⎣⎦______.(5) 由曲线1,2y x x x=+=及2y =所围图形的面积S =______.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设当0x →时,2(1)xe ax bx -++是比2x 高阶的无穷小,则 ( )(A) 1,12a b == (B) 1,1a b == (C) 1,12a b =-=- (D) 1,1a b =-=(2) 设函数()f x 在区间(,)δδ-内有定义,若当(,)x δδ∈-时,恒有2|()|f x x ≤,则0x =必是()f x 的 ( ) (A) 间断点 (B) 连续而不可导的点 (C) 可导的点,且(0)0f '= (D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 ( )(A) 当lim ()x f x →-∞=-∞,必有lim ()x f x →-∞'=-∞(B) 当lim ()x f x →-∞'=-∞,必有lim ()x f x →-∞=-∞(C) 当lim ()x f x →+∞=+∞,必有lim ()x f x →+∞'=+∞(D) 当lim ()x f x →+∞'=+∞,必有lim ()x f x →+∞=+∞(4) 在区间(,)-∞+∞内,方程1142||||cos 0x x x +-= ( )(A) 无实根 (B) 有且仅有一个实根(C) 有且仅有两个实根 (D) 有无穷多个实根(5) 设(),()f x g x 在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),由曲线(),y g x =(),y f x x a ==及x b =所围平面图形绕直线y m =旋转而成的旋转体体积为 ( )(A) [][]2()()()()bam f x g x f x g x dx π-+-⎰(B) [][]2()()()()bam f x g x f x g x dx π---⎰(C) [][]()()()()bam f x g x f x g x dx π-+-⎰(D)[][]()()()()bam f x g x f x g x dx π---⎰三、(本题共6小题,每小题5分,满分30分.) (1)计算ln 0⎰.(2) 求1sin dxx +⎰.(3) 设2022(),[()],t x f u du y f t ⎧=⎪⎨⎪=⎩⎰其中()f u 具有二阶导数,且()0f u ≠,求22d y dx .(4) 求函数1()1xf x x-=+在0x =点处带拉格朗日型余项的n 阶泰勒展开式. (5) 求微分方程2y y x '''+=的通解.(6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴与底面成α角(02πα<<)的平面截此柱体,得一锲形体(如图),求此锲形体的体积V .四、(本题满分8分)计算不定积分22arctan (1)xdx x x +⎰.α五、(本题满分8分)设函数2312,1,(),12,1216, 2.x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩(1) 写出()f x 的反函数()g x 的表达式;(2) ()g x 是否有间断点、不可导点,若有,指出这些点.六、(本题满分8分)设函数()y y x =由方程3222221y y xy x -+-=所确定,试求()y y x =的驻点,并判别它是否为极值点.七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,()()0f a f b ''>,试证明:存在(,)a b ξ∈和(,)a b η∈,使()0f ξ=及()0f η''=.八、(本题满分8分)设()f x 为连续函数,(1) 求初值问题0(),0x y ay f x y ='+=⎧⎪⎨=⎪⎩的解()y x ,其中a 为正的常数;(2) 若|()|f x k ≤(k 为常数),证明:当0x ≥时,有|()|(1)ax ky x e a-≤-.1996年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】13【解析】132221132x xy x e e ,---⎛⎫⎛⎫'=+⋅- ⎪ ⎪⎝⎭⎝⎭02111323x y =⎛⎫'=-= ⎪⎝⎭.(2)【答案】2【解析】注意到对称区间上奇偶函数的积分性质,有原式()1122112121022x x dx dx --⎡⎤⎡⎤=+-==+=⎣⎦⎣⎦⎰⎰. 【相关知识点】对称区间上奇偶函数的积分性质:若()f x 在[,]a a -上连续且为奇函数,则()0aa f x dx -=⎰; 若()f x 在[,]a a -上连续且为偶函数,则0()2()aaaf x dx f x dx -=⎰⎰.(3)【答案】()12cos2sin 2xy ec x c x -=+【解析】因为250y y y '''++=是常系数的线性齐次方程,其特征方程2250r r ++=有一对共轭复根1212r ,r i.=-±故通解为()12cos2sin 2xy e c x c x -=+.(4)【答案】2【解析】因为x →∞时,sin ln 1ln 1k k k x x x⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭::(k 为常数),所以, 原式3131lim sin ln 1lim sin ln 1lim lim 312x x x x x x x x x x x x →∞→∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫=+-+=⋅-⋅=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (5)【答案】1ln 22-【解析】曲线1y x ,x =+2y =的交点是()12,,2211,x y x x x '-⎛⎫'=+= ⎪⎝⎭当1x >时 1y x x=+(单调上升)在2y =上方,于是212211211ln 2ln 2.22S x dx x x x x ⎛⎫=+-⎪⎝⎭⎛⎫=+-=- ⎪⎝⎭⎰二、选择题(本题共5小题,每小题3分,满分15分.)(1)【答案】(A)【解析】方法1:用带皮亚诺余项泰勒公式.由()21x e ax bx -++()()222112!x x x ax bx ο⎛⎫=+++-++ ⎪⎝⎭()()()222112b x a x x x οο⎛⎫=-+-+ ⎪⎝⎭令,可得 10111202b ,a ,b .a ,-=⎧⎪⇒==⎨-=⎪⎩应选(A). 方法2:用洛必达法则.由2200(1)2lim lim 0,2x x x x e ax bx e ax bx x→→-++--=洛 有 ()lim 210 1.xx e ax b b b →--=-=⇒=又由 0022121limlim 02222x x x x e ax b e a a a x →→----===⇒=. 应选(A).(2)【答案】(C)【解析】方法一:首先,当0x =时,|(0)|0(0)0f f ≤⇒=. 而按照可导定义我们考察2()(0)()00(0)f x f f x x x x x x x-≤=≤=→→,由夹逼准则, 0()(0)(0)lim0x f x f f x→-'==,故应选(C).方法二:显然,(0)0f =,由2|()|f x x ≤,(,)x δδ∈-,得2()1(,0)(0,)f x x xδδ≤∈-U ,,即2()f x x有界,且 200()(0)()(0)limlim 0x x f x f f x f x x x →→-⎛⎫'==⋅= ⎪⎝⎭. 故应选(C).方法三:排除法.令3(),(0)0,f x x f '==故(A)、(B)、(D)均不对,应选(C).【相关知识点】定理:有界函数与无穷小的乘积是无穷小. (3)【答案】(D)【解析】方法一:排除法.例如()f x x =,则(A),(C)不对;又令()xf x e -=,则(B)不对.故应选择(D).方法二:由lim ()x f x →+∞'=+∞,对于0M >,存在0x ,使得当0x x >时,()f x M '>.由此,当0x x >时,由拉格朗日中值定理,0000()()()()()()()f x f x f x x f x M x x x ξ'=+->+-→+∞→+∞,从而有lim ()x f x →+∞=+∞,故应选择(D).【相关知识点】拉格朗日中值定理:如果函数()f x 满足(1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导,那么在(,)a b 内至少有一点ξ(a b ξ<<),使等式()()()()f b f a f b a ξ'-=-成立.(4)【答案】(C)【解析】令1142()||||cos f x x x x =+-,则()()f x f x -=,故()f x 是偶函数,考察()f x 在(0,)+∞内的实数个数:1142()cos f x x x x =+-(0x >).首先注意到(0)10f =-<,1142()()()10,222f πππ=+>>当02x π<<时,由零值定理,函数()f x 必有零点,且由314211()sin 042f x x x x --'=++>,()f x 在(0,)2π单调递增,故()f x 有唯一零点.当2x π≥时,11114242()cos ()()10,22f x x x x ππ=+-≥+->没有零点; 因此,()f x 在(0,)+∞有一个零点.又由于()f x 是偶函数,()f x 在(,)-∞+∞有两个零点.故应选(C).【相关知识点】零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使()0f ξ=.(5)【答案】(B) 【解析】见上图,作垂直分割,相应于[],x x dx +的小竖条的体积微元22(())(())dV m g x dx m f x dx ππ=---[][](())(())(())(())m g x m f x m g x m f x dx π=-+-⋅--- [][]2()()()()m g x f x f x g x dx π=--⋅-,于是 [][]2()()()()baV m g x f x f x g x dx π=--⋅-⎰,故选择(B).三、(本题共6小题,每小题5分,满分30分.) (1)【解析】方法一:换元法.u =,则221ln(1),21u x u dx du u=--=-, 所以2ln 220011111)2)11211u du du du u u u u==-=+----+⎰1ln(22==. 方法二:换元法.令sin xe t -=,则cos ln sin ,sin t x t dx dt t =-=-,:0ln 2:26x t ππ→⇒→,ln 62026cos 1cos sin sin sin t t dt t dt t tππππ⎛⎫⎛⎫=⋅-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰2266ln(csc cot)cos ln(22t t tππππ=--=-.方法三:分部积分法和换元法结合.原式ln2ln00()xe e--==-⎰⎰22ln2xxe e--=-+⎰令x e t=,则:0ln2:12x t→⇒→,原式2211ln(22t=-+=-++⎰ln(22=-+. 【相关知识点】1.1csc ln csc cotsinxdx dx x x Cx==-+⎰⎰,2. 0a>时,ln x C=++.(2)【解析】方法一:2(1sin)1sin1sin(1sin)(1sin)cosdx x dx xdxx x x x--==++-⎰⎰⎰22221sin cosseccos cos cosxdx d xdx xdxx x x=-=+⎰⎰⎰⎰1tancosx Cx=-+.方法二:21sin(cos sin)22dx dxx xx=++⎰⎰222(1tan)sec222(1tan)(1tan)1tan222xdxdx Cx x x+===-++++⎰⎰.方法三:换元法.令tan2xt=,则22222tan22arctan,,sin11tan1t tx t dx xt t t====+++,原式2221222221(1)111tan12dtdt C Ct xt t tt=⋅==-+=-+++++++⎰⎰.(3)【解析】这是由参数方程所确定的函数,其导数为22222()()24()()dydy f t f t tdt tf tdxdx f tdt'⋅⋅'===,所以 2222221()(4())4()4()2()d y d dy dt d dt tf t f t tf t t dx dt dx dx dt dx f t ''''⎡⎤=⋅=⋅=+⋅⋅⎣⎦ 22224()2()()f t t f t f t '''⎡⎤=+⎣⎦. (4)【解析】函数()f x 在0x =处带拉格朗日余项的泰勒展开式为()(1)1(0)()()(0)(0),(01)!(1)!n n n n f f x f x f f x x x n n θθ++'=++++<<+L .对于函数1()1xf x x -=+,有 12()12(1)1,1f x x x-=-=+-+2()2(1)(1),f x x -'=⋅-+3()2(1)(2)(1),f x x -''=⋅-⋅-+ ,,L()(1)()2(1)!(1)n n n f x n x -+=-⋅+所以 ()(0)2(1)!,(1,2,3),n n fn n =-⋅ =L故 121112()122(1)2(1)(01)1(1)n n n n n x x f x x x x x x θθ+++-==-+++-+- <<++L . (5)【解析】方法一:微分方程2y y x ''+=对应的齐次方程0y y '''+=的特征方程为20r r +=,两个根为120,1r r ==-,故齐次方程的通解为12x y c c e -=+.设非齐次方程的特解2()Y x ax bx c =⋅++,代入方程可以得到1,1,23a b c ==-=, 因此方程通解为3212123xy c c ex x x -=++-+. 方法二:方程可以写成2()y y x ''+=,积分得303x y y c '+=+,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为30(())3dxdx xy e c e dx C -⎰⎰=++⎰33001(())()33xx x x xx e c e dx C e x de c e C --=++=++⎰⎰320(3)3x xx x e x e e x dx c Ce --=-++⎰ 332200(2)33x x xx x x x x x e e x dx c Ce e e x e xdx c Ce ----=-++=--++⎰⎰ 3202()3x x x x x x e e x e c Ce --=-+-++ 32123x x x x c Ce -=-+++. 方法三:作为可降阶的二阶方程,令y P '=,则y P '''=,方程化为2P P x '+=,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为220020()(22)2 2.x x x x x x xP e c x e dx e c x e xe e c e x x ---=+=+-+=+-+⎰再积分得 321223xx y c c e x x -=++-+. 【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1. 4. 一阶线性非齐次方程()()y P x y Q x '+=的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰, 其中C 为任意常数. (6)【解析】建立坐标系,底面椭圆方程为22221x y a b+=.方法一:以垂直于y 轴的平面截此楔形体所得的截面为直角三角形, 其中一条直角边长为22a x b y b=-22tan a b y bα-, 故截面面积为22221()()tan 2a S y b y bα=-⋅. 楔形体的体积为222220022()tan ()tan 3bb a V S y dy b y dy a b b αα==-=⎰⎰.方法二:以垂直于x 轴的平面截此楔形体所得的截面为矩形, 其中一条边长为222b y a x a=-另一条边长为tan x α⋅, 故截面面积为22()2tan bS x x a x aα=-,楔形体的体积为200222()tan tan 3aa b V S x dx a b a αα===⎰⎰.四、(本题满分8分)【解析】方法一:分部积分法.2222arctan arctan arctan (1)1x x xdx dx dx x x x x =-++⎰⎰⎰1arctan ()arctan (arctan )xd xd x x=--⎰⎰2211arctan arctan (1)2dx x x x x x -+-+⎰分部 22111arctan ()arctan 12x x dx x x x x =-+--+⎰ 22111arctan ln ln(1)arctan 22x x x x C x =-+-+-+.方法二:换元法与分部积分法结合.令arctan x t =,则2tan ,sec x t dx tdt ==,2222222arctan sec cot (1)tan (1tan )tan x t t t dx dt dt t tdt x x t t t ===++⎰⎰⎰⎰2(csc 1)(cot )t t dt td t tdt =-=--⎰⎰⎰21cot cot 2t t dt t -+-⎰分部 2cos 1cot sin 2x t t dt t x =-+-⎰211cot sin sin 2t t d t t t =-+-⎰21cot ln sin 2t t t t C =-+-+.五、(本题满分8分)【分析】为了正确写出函数()f x 的反函数()g x ,并快捷地判断出函数()g x 的连续性、可导性,须知道如下关于反函数的有关性质.【相关知识点】反函数的性质:① 若函数()f x 是单调且连续的,则反函数()g x 有相同的单调性且也是连续的;② 函数()f x 的值域即为反函数()g x 的定义域;③ 1()()g x f x '=',故函数()f x 的不可导点和使()0f x '=的点x 对应的值()f x 均为()g x 的不可导点.【解析】(1) 由题设,函数()f x的反函数为1,()18,16,8.12xg x xxx⎧<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩(2) 方法一:考察()f x的连续性与导函数.注意2312,1,(),12,1216,2x xf x x xx x⎧-<-⎪=-≤≤⎨⎪->⎩在(,1),(1,2),(2,)-∞--+∞区间上()f x分别与初等函数相同,故连续.在1,2x x=-=处分别左、右连续,故连续.易求得24,1,()3,12,(1)4,(1)3,12,2(2)12,(2)12(2)12.x xf x x x f fxf f f-+-+-<-⎧⎪'''=-<<-=-=⎨⎪>⎩'''==⇒=由于函数()f x在(,)-∞+∞内单调上升且连续,故函数()g x在(,)-∞+∞上单调且连续,没有间断点.由于仅有0x=时()0f x'=且(0)0f=,故0x=是()g x的不可导点;仅有1x=-是()f x的不可导点(左、右导数∃,但不相等),因此()g x在(1)1f-=-处不可导.方法二:直接考察()g x的连续性与可导性.注意1,()18,16,8,12xg x xxx⎧<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩在(,1),(1,8),(8,)-∞--+∞区间上()g x分别与初等函数相同,故连续.在1,8x x=-=处分别左、右连续,故连续,即()g x在(,)-∞+∞连续,没有间断点.()g x在(,1),(1,8),(8,)-∞--+∞内分别与初等函数相同,在0x =不可导,其余均可导.在1x =-处,1111(1),(1),43x x g g -++=--=-'⎛'''-==-== ⎝ (1)g '⇒-不∃.在8x =处,881161(8),(8),121212x x x g g -+-+=='+'⎛⎫''====⎪⎝⎭ (8)g '⇒∃.因此,()g x 在(,)-∞+∞内仅有0x =与1x =-两个不可导点.六、(本题满分8分)【解析】方程两边对x 求导,得22320,(32)0.y y yy xy y x y y x y y x ''''-++-=-++-= ①令0,y '=得y x =,代入原方程得32210x x --=,解之得唯一驻点1x =;对①两边再求导又得22(32)(32)10x y y x y y y x y y '''''-++-++-=. ②以1,0x y y '===代入②得11210,0,2x y y =''''-==> 1x =是极小点.【相关知识点】1.驻点:通常称导数等于零的点为函数的驻点(或稳定点,临界点). 2.函数在驻点处取得极大值或极小值的判定定理.当函数()f x 在驻点处的二阶导数存在且不为零时,可以利用下述定理来判定()f x 在驻点处取得极大值还是极小值.定理:设函数()f x 在0x 处具有二阶导数且00()0,()0f x f x '''=≠,那么 (1) 当0()0f x ''<时,函数()f x 在0x 处取得极大值; (2) 当0()0f x ''>时,函数()f x 在0x 处取得极小值.七、(本题满分8分)【解析】首先证明(,)a b ξ∃∈,使()0f ξ=:方法一:用零点定理.主要是要证明()f x 在(,)a b 有正值点与负值点.不妨设()0,f a '>()0f b '>.由()()lim ()()0x a f x f a f a f a x a ++→-''==>-与极限局部保号性,知在x a =的某右邻域,()()0f x f a x a->-,从而()0f x >,因而111,,()0x b x a f x ∃>>>;类似地,由()0f b '>可证2122,,()0x x x b f x ∃<<<.由零点定理,12(,)(,)x x a b ξ∃∈⊂,使()0f ξ=.方法二:反证法.假设在(,)a b 内()0f x ≠,则由()f x 的连续性可得()0f x >,或()0f x <,不妨设()0f x >.由导数定义与极限局部保号性,()()()()()lim lim 0x a x a f x f a f x f a f a x ax a +++→→-''===≥--,()()()()()lim lim 0x b x b f x f b f x f b f b x b x b ---→→-''===≤--, 从而()()0f a f b ''≤,与()()0f a f b ''>矛盾.其次,证明(,)a b η∃∈,()0f η''=:由于()()()0f a f f b ξ===,根据罗尔定理,12(,),(,)a b ηξηξ∃∈∈,使12()()0f f ηη''==;又由罗尔定理, 12(,)(,),()0a b f ηηηη''∃∈⊂=.注:由0()0f x '>可得:在000(,),()()x x f x f x δ-<;在000(,),()()x x f x f x δ+>.注意由0()0f x '>得不到()f x 在00(,)x x δδ-+单调增的结果!【相关知识点】1.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使()0f ξ=.2.函数极限的局部保号性定理:如果0lim ()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <).3. 函数极限局部保号性定理的推论:如果在0x 的某去心邻域内()0f x ≥(或()0f x ≤),而且0lim ()x x f x A →=,那么0A ≥(或0A ≤).4.罗尔定理:如果函数()f x 满足(1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.八、(本题满分8分)【解析】(1) ()y ay f x '+=为一阶线性非齐次微分方程,可直接利用通解公式求解.通解为[]()()()ax ax ax y x e f x e dx C e F x C --⎡⎤=+=+⎣⎦⎰,其中()F x 是()axf x e 的任一原函数,由(0)0y =得(0)C F =-,故[]0()()(0)()xax ax at y x e F x F e e f t dt --=-=⎰.(2) 当0x ≥时,0()()()xxaxat axat y x ee f t dt ee f t dt --=⋅≤⎰⎰001(1)x x ax at ax at ax k ke e dt ke e e a a---⎛⎫≤⋅=⋅=- ⎪⎝⎭⎰.【相关知识点】一阶线性非齐次方程()()y P x y Q x '+=的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰, 其中C 为任意常数.。