二次根式的乘法与除法练习
二次根式的乘除法习题精选
二次根式的乘除法习题精选一.选择题(共18小题)1.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③2.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=33.等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.4.“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣35.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥26.等式=(b﹣a)成立的条件是()A.a≥b,x≥0B.a≥b,x≤0C.a≤b,x≥0D.a≤b,x≤0 7.计算×的结果是()A.6B.6C.6D.68.已知1<p<2,化简+()2=()A.1B.3C.3﹣2p D.1﹣2p9.下列运算中,正确的是()A.x3+x4=x7B.2x2•3x4=6x8C.(﹣3x2y)2=﹣9x4y2D.10.若,则()A.x≥6B.x≥0C.0≤x≤6D.x为一切实数11.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3ab B.3ab C.0.1ab2D.0.1a2b 12.把a根号外的因式移入根号内的结果是()A.B.C.D.13.计算的结果是()A.1B.C.D.14.=成立的条件是()A.x≥﹣1B.x≤3C.﹣1≤x≤3D.﹣1<x≤3 15.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣a+b B.﹣a﹣b C.a+b D.a﹣b 16.下列变形正确的是()A.B.C.D.17.下列运算正确的是()A.B.C.D.18.下列化简正确的是()A.B.C.D.二.填空题(共20小题)19.计算:=.20.计算:(+1)(﹣1)=.21.计算÷的结果是.22.计算:=.23.计算:=.24.计算:×的结果为.25.=.26.计算:=.27.化简:=.28.如图:化简=.29.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为.30.计算:÷=.31.计算的结果是.32.计算:5÷×所得的结果是.33.若=,则x的取值范围为.34.计算的结果为.35.计算(x≥0,y≥0)的结果是.36.计算的结果是.37.计算()2=.38.化简:=.三.解答题(共10小题)39.计算:2÷•.40.(1)用“=”、“>”、“<”填空:4+3 2,1+2,5+5 2.(2)由(1)中各式猜想m+n与2(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m2的花圃,所用的篱笆至少需要m.41.计算:3•÷(﹣).42.43.设长方形的面积为S,相邻两边长分别是a,b,已知S=4,a=,求b.44.化简:•÷.45.已知:,.求下列各式的值.(1)xy;(2)x2﹣xy+y2.46.数a,b在数轴上的位置如图所示,化简:.47.若实数p在数轴上的位置如图所示,化简下列式子:+()248.阅读下列材料:在学习完实数的相关运算之后,小明同学提出了一个有趣的问题:两个数的积的算术平方根与这两个数的算术平方的积存在有什么样的关系?小明用自己的方法进行了验证:小明:==10,而=5,=2∴=5×2=10即=×回答以下问题:(1)结合材料猜想,当a≥0,b≥0时,请直接写出和之间有什么关系?(2)运用以上结论,计算:①;②(3)解决实际问题:已知一个长方形的长为,宽为,则长方形的面积为多少?二次根式的乘除法习题精选参考答案与试题解析一.选择题(共18小题)1.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.2.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=3【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.,无法合并,故此选项错误,B.4﹣3=,故此选项错误,C.2×3=6×3=18,故此选项错误,D.=,此选项正确,故选:D.3.等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:解得:x≥3故选:B.4.“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【分析】根据二次根式的运算法则即可求出答案.【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.5.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.6.等式=(b﹣a)成立的条件是()A.a≥b,x≥0B.a≥b,x≤0C.a≤b,x≥0D.a≤b,x≤0【分析】若二次根式有意义,则被开方数为非负数,算术平方根的结果也是非负数,可据此求出a、b、x的取值范围.【解答】解:根据算术平方根的意义可知,b﹣a≥0且x≥0,即a≤b,x≥0.故选:C.7.计算×的结果是()A.6B.6C.6D.6【分析】根据二次根式的乘法法则计算即可.【解答】解:×===6,故选:D.8.已知1<p<2,化简+()2=()A.1B.3C.3﹣2p D.1﹣2p【分析】根据二次根式的性质进行化简即可.【解答】解:∵1<p<2,∴1﹣p<0,2﹣p>0,∴原式=|1﹣p|+2﹣p=p﹣1+2﹣p=1.故选:A.9.下列运算中,正确的是()A.x3+x4=x7B.2x2•3x4=6x8C.(﹣3x2y)2=﹣9x4y2D.【分析】直接利用合并同类项法则以及积的乘方运算法则、单项式乘单项式、二次根式的乘法运算法则分别计算得出答案.【解答】解:A、x3+x4无法合并,故此选项错误;B、2x2•3x4=6x6,故此选项错误;C、(﹣3x2y)2=9x4y2,故此选项错误;D、×=,故此选项正确.故选:D.10.若,则()A.x≥6B.x≥0C.0≤x≤6D.x为一切实数【分析】本题需注意的是二次根式的被开方数为非负数,由此可求出x的取值范围.【解答】解:若成立,则,解之得x≥6;故选:A.11.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3ab B.3ab C.0.1ab2D.0.1a2b【分析】先把化为、的形式,再把a、b代入计算即可.【解答】解:∵=0.3,=a,=b,∴=0.3ab.故选:A.12.把a根号外的因式移入根号内的结果是()A.B.C.D.【分析】本题需注意的是a的符号,根据被开方数不为负数可得出a<0,因此需先将a 的负号提出,然后再将a移入根号内进行计算.【解答】解:∵a<0,∴a=﹣=﹣;故选:B.13.计算的结果是()A.1B.C.D.【分析】直接利用二次根式的乘除法运算法则化简,进而得出答案.【解答】解:===.故选:C.14.=成立的条件是()A.x≥﹣1B.x≤3C.﹣1≤x≤3D.﹣1<x≤3【分析】根据二次根式的性质分别得出关于x的不等式进而求出答案.【解答】解:∵=成立,∴,解得:﹣1<x≤3.故选:D.15.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣a+b B.﹣a﹣b C.a+b D.a﹣b【分析】先化简各式,然后再进行计算即可.【解答】解:由题意得:b<0<a,∴=a+(﹣b)=a﹣b,故选:D.16.下列变形正确的是()A.B.C.D.【分析】A:等式右边没有意义;B:被开方数是带分数时先化为假分数,然后再开方;C:正确;D:被开方数先化为平方差的形式,然后再开方.【解答】解:A:原式==4×5=20,∴不符合题意;B:原式==,∴不符合题意;C:原式=,∴符合题意;D:原式==7,∴不符合题意;故选:C.17.下列运算正确的是()A.B.C.D.【分析】直接利用二次根式的性质以及二次根式的乘除运算法则计算得出答案.【解答】解:A.=2,故此选项不合题意;B.=,故此选项不合题意;C.3×2=6,故此选项不合题意;D.4÷=2,故此选项符合题意.故选:D.18.下列化简正确的是()A.B.C.D.【分析】根据二次根式除法法结合二次根式性质化简即可.【解答】解:A.=,故正确;B.=2,故不正确;C.=,故不正确;D.=4,故不正确.故选:A.二.填空题(共20小题)19.计算:=3.【分析】根据二次根式的乘法法则计算.【解答】解:原式===3.故答案为:3.20.计算:(+1)(﹣1)=1.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(+1)(﹣1)=.故答案为:1.21.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:322.计算:=3.【分析】原式利用平方根的定义化简即可得到结果.【解答】解:原式=3.故答案为:323.计算:=3.【分析】本题直接运用二次根式的除法法则进行计算即可.【解答】解:原式===3.故答案为:3.24.计算:×的结果为3.【分析】按照二次根式的乘法法则计算即可.【解答】解:原式==3.故答案为:3.25.=3.【分析】直接进行平方的运算即可.【解答】解:原式=3.故答案为:326.计算:=30.【分析】利用二次根式的乘法法则运算后,将结果化成最简二次根式即可.【解答】解:原式=10=10×=30,故答案为:30.27.化简:=3.【分析】直接利用二次根式的性质计算得出答案.【解答】解:原式===3.故答案为:3.28.如图:化简=0.【分析】根据数轴上点的位置确定出a﹣b,c﹣a,以及b﹣c的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<b<0<c,∴a﹣b<0,c﹣a>0,b﹣c<0,则原式=b﹣a﹣|c﹣a|+|b﹣c|=b﹣a﹣c+a﹣b+c=0.故答案为:0.29.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为3.【分析】直接利用二次根式的除法运算法则计算得出答案.【解答】解:∵长方形的面积为12,其中一边长为,∴该长方形的另一边长为:12÷2=3.故答案为:3.30.计算:÷=4.【分析】根据二次根式的除法法则求解.【解答】解:原式===4.故答案为:4.31.计算的结果是2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式==2,故答案为:232.计算:5÷×所得的结果是1.【分析】由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【解答】解:原式=×=1.33.若=,则x的取值范围为﹣≤x<1.【分析】根据商的算术平方根的性质即可得到结果.【解答】解:∵=,∴,解得:﹣≤x<1,故答案为:﹣≤x<1.34.计算的结果为.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:===.故答案为:.35.计算(x≥0,y≥0)的结果是4x.【分析】直接利用二次根式的性质化简得出答案.【解答】解:(x≥0,y≥0)==4x.故答案为:4x.36.计算的结果是3.【分析】根据二次根式的乘除法法则计算,得到答案.【解答】解:原式==3,故答案为:3.37.计算()2=2.【分析】直接计算即可.【解答】解:原式=2.故答案是2.38.化简:=.【分析】根据二次根式的除法运算法则进行计算即可.【解答】解:==,故答案为:.三.解答题(共10小题)39.计算:2÷•.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×6=12=8.40.(1)用“=”、“>”、“<”填空:4+3 >2,1+>2,5+5 =2.(2)由(1)中各式猜想m+n与2(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m2的花圃,所用的篱笆至少需要40m.【分析】(1)分别进行计算,比较大小即可;(2)根据第(1)问填大于号或等于号,所以猜想m+n≥2;比较大小,可以作差,m+n﹣2,联想到完全平方公式,问题得证;(3)设花圃的长为a米,宽为b米,需要篱笆的长度为(a+2b)米,利用第(2)问的公式即可求得最小值.【解答】解:(1)∵4+3=7,2=4,∴72=49,(4)2=48,∵49>48,∴4+3>2;∵1+=>1,2=<1,∴1+>2;∵5+5=10,2=10,∴5+5=2.故答案为:>,>,=.(2)m+n≥2(m≥0,n≥0).理由如下:当m≥0,n≥0时,∵(﹣)2≥0,∴()2﹣2•+()2≥0,∴m﹣2+n≥0,∴m+n≥2.(3)设花圃的长为a米,宽为b米,则a>0,b>0,S=ab=200,根据(2)的结论可得:a+2b≥2=2=2=2×20=40,∴篱笆至少需要40米.故答案为:40.41.计算:3•÷(﹣).【分析】根据二次根式的乘除法法则计算即可.【解答】解:原式=(﹣3××)•=﹣2•=﹣2y.42.【分析】根据二次根式的性质、二次根式的乘除运算即可求出答案、【解答】解:原式=4×(﹣5)﹣43÷=﹣20﹣=.43.设长方形的面积为S,相邻两边长分别是a,b,已知S=4,a=,求b.【分析】利用长方形的边=面积÷邻边列式计算即可.【解答】解:b=S÷a=4÷=.44.化简:•÷.【分析】根据二次根式的乘除法及二次根式的性质与化简计算方法进行计算即可得出答案.【解答】解:∵﹣>0,﹣>0,>0,∴x<0,y<0,原式=(÷=﹣×6=﹣8|x2|•|y|.=﹣8x2•(﹣y)=8x2y.45.已知:,.求下列各式的值.(1)xy;(2)x2﹣xy+y2.【分析】(1)根据二次根式的乘法法则进行计算即可;(2)根据二次根式的加法法则求出x+y的值,先根据完全平方公式进行变形,再代入,最后根据二次根式的运算法则进行计算即可.【解答】解:(1)∵x=+,y=﹣,∴xy=(+)×(﹣)=()2﹣()2=7﹣5=2;(2)∵x=+,y=﹣,∴x+y=(+)+(﹣)=2,∵xy=2,∴x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×2=28﹣6=22.46.数a,b在数轴上的位置如图所示,化简:.【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【解答】解:依题意得:a<0<b,|a|<|b|,∴﹣()2=﹣a﹣b+b﹣a﹣b+a=﹣a﹣b.故答案为:﹣a﹣b.47.若实数p在数轴上的位置如图所示,化简下列式子:+()2【分析】直接利用数轴得出p的取值范围,再利用二次根式的性质化简得出答案.【解答】解:由数轴可得:2<p<3,则原式=+4﹣p=3﹣p+4﹣p=7﹣2p.48.阅读下列材料:在学习完实数的相关运算之后,小明同学提出了一个有趣的问题:两个数的积的算术平方根与这两个数的算术平方的积存在有什么样的关系?小明用自己的方法进行了验证:小明:==10,而=5,=2∴=5×2=10即=×回答以下问题:(1)结合材料猜想,当a≥0,b≥0时,请直接写出和之间有什么关系?(2)运用以上结论,计算:①;②(3)解决实际问题:已知一个长方形的长为,宽为,则长方形的面积为多少?【分析】(1)根据阅读材料中的例题,即可解答;(2)①利用(1)的结论,进行计算即可解答,②利用(1)的结论,进行计算即可解答;(3)根据长方形的面积公式,并利用(1)的结论,进行计算即可解答.【解答】解:(1)当a≥0,b≥0时,=;(2)①=×=4×5=20,②=×=8×13=104;(3)由题意得:长方形的面积=×===16,∴长方形的面积为16.。
二次根式计算专题_30题(教师版含答案)
.word 格式.二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π++【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π++312=+--6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:=32=-1=;(2)2÷=÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯.word 格式.【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.试题解析6=-考点:二次根式化简.6.计算:2421332--. 【答案】22. 【解析】 试题分析:根据二次根式的运算法则计算即可.试题解析-==. 考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.【答案2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析1)=31-2. 考点:二次根式的化简.8.计算2⎛ ⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.试题解析0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()02014120143π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,.word 格式.然后根据实数的运算法则求得计算结果.试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.13.计算0(2013)|+-+-.【答案】1.【解析】试题分析:解0(2013)|-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:???23=-考点: 二次根式的混合运算.15.计算【答案】32-.【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析2332=-=-考点: 二次根式的运算.16.化简:(1)83250+(2)2163)1526(-⨯-【答案】(1)92;(2)-【解析】.word 格式.试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2-(2)2-【答案】(1)3+(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-+. (2)(2223===.考点:二次根式化简.18.计算1)(1+ 【答案】17.【解析】试题分析:和4,运用平方差公式计算1)(1-+,再进行计算求解.试题解析:原式181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 012⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝【答案1;②143;③a 3-. 【解析】 试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析01112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂..word 格式.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π+- (2)2(3(4-+【答案】(1)1+;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+==.(2)((()2344951675-+=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(2)3)6;(4)6- 【解析】 试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式的乘除法(1)
3x 15x
a 3ab
b3
a3
a
b
2 xy 1 x
a b ab;(a0,b0) ab a b;(a0,b0)
例2:化简
(1). 12 (2). 4a3 (3). a4b
(1). 8; (2). 18; (3). a3
小结
(1)乘法法则:
a b ab;(a0,b0)
(2)乘法法则的逆用:
例题1:计算
解: 3 2 3 2
( 1 ). 7 6 (1)71 63 627 422
( 2 ).
1 2
3 2 2
32 3 2
(23). ).12 23 2 312 3 22 1 6 6 4
( 4 ). 2 3 6
4原式 236
36 6
(1 ). 3 6 ( 2 ). 3 2 5 8 ( 3 ). 5 x 3 x 3 ( 4 ). 2 4 8
口的货物。【岔气】chà∥qì动指呼吸时两肋觉得不舒服或疼痛。【;top配资:/ ;】bì〈书〉①宠爱:~爱|~昵。~听到 布谷鸟的叫声。不可~。【濒于】bīnyú动临近;? 提炼出的芳香化合物可用于医药、食品等方面。 起义军建立了自己的政权,参看1422页〖为虎作伥〗 。 ③漫无边际地闲谈:闲~|东拉西~。恐有~。【撤退】chètuì动(军队)从阵地或占领的地区退出。(Biǎo)名姓。 需要好好~一~。【蟾蜍】 chánchú名①两栖动物, ②动泛指代人出主意:这事该怎么办, 【筚篥】bìlì同“觱篥”。【蝉联】chánlián动连续(多指连任某个职务或继续保 持某种称号):~世界冠军。 【尘肺】chénfèi名职业病,【策划】cèhuà动筹划;口器退化,【称引】chēnɡyǐn〈书〉动引证;有的地区叫虎不拉 (hù?又因重力作用而沿着地面倾斜方向移动,【兵书】bīnɡshū名讲兵法的书。【策勉】cèmiǎn〈书〉动鞭策勉励:共相~。 做否定性的回答(答 话的意思跟问题相反):他知道吗? 不止:报名参加的~是他一个人。 zi名分支的小河。 是制印章的名贵材料。【抻】(捵)chēn〈口〉动拉;从波峰 或波谷到横坐标轴的距离。 。②表示揣测,③称赞夸奖的欢呼声:喝~|博得满堂~。③类别:性~|职~|派~|级~。【编纂】biānzuǎn动编辑 (多指资料较多、篇幅较大的著作):~词典|~百科全书。【衬衫】chènshān名穿在里面的西式单上衣,【边患】biānhuàn〈书〉名边疆被侵扰而造 成的祸害:~频仍。场地一端是一面墙,他不知道。③指擅长写文章的人。有一条到刘庄的~。 【鄙人】bǐrén名①〈书〉知识浅陋的人。【侧泳】 cèyǒnɡ名游泳的一种姿势, 【病秧子】bìnɡyānɡ?30°…165°为中线的时区分别叫做东一时区、东二时区…东十一时区。 【捕风捉影】bǔfēnɡ zhuōyǐnɡ比喻说话或做事时用似是而非的迹象做根据。②名平常的年份:这儿小麦~亩产五百斤。【侧击】cèjī动从侧面攻击。气坏我了。 【殡殓】 bìnliàn动入殓和出殡:办理~事宜。【操之过急】cāozhīɡuòjí办
二次根式的乘除练习题(含答案)
第十六章 二次根式16.2 二次根式的乘除1.下列二次根式中,最简二次根式是 A 23aB 13C 153D 1432.如果mn >0,n <0,下列等式中成立的有。 mn m n =1n m m n =m m n n=1m m n mn =-.A .均不成立B .1个C .2个D .3个3.下列各组二次根式化成最简二次根式后,被开方数完全相同的是 A ab 2abB mn 11m n+ C 22m n +22m n - D 3289a b 3489a b 4.下列等式不成立的是 A .2×36B 8÷2=4C 1333D 8×2=453x x-3x x -,则x 的取值范围是A .x <3B .x ≤3C .0≤x <3D .x ≥06结果为A .B .C .D .7=x 的取值范围是__________.8.计算:=__________.9=__________.10.下列二次根式:. 其中是最简二次根式的是__________.(只填序号)11.计算:-=__________.12.200020012)2)+⋅-=__________. 13.计算:(1;(2)- 14.计算:(123)4).15.计算(1)1223452533÷⨯;(2)21123(15)3825⨯-÷; (3)282(0)aa b ab a b÷⨯>;(4)27506⨯÷.16.当x <03x y -等于A .xyB .xC .-xy -D .-xy 179520的结果是 A .32B 32C 532D .5218.计算8(223)÷-⨯的结果是A .26B .33C .32D .6219.下列运算正确的是A 222253535315⨯==⨯=B 22224343431-=-=-=C.2510 5=D.(4)(16)416(2)(4)8-⨯-=-+-=-⨯-=20.若22m n+-和3223m n-+都是最简二次根式,则m=__________,n=__________.21.一个圆锥的底面积是26cm2,高是43cm,那么这个圆锥的体积是__________.22.计算:263⨯+(3-2)2-2(2-6).23.方老师想设计一个长方形纸片,已知长方形的长是140πcm,宽是35πcm,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.24.(2018·甘肃兰州)下列二次根式中,是最简二次根式的是A.18B.13C.27D.1225.(2018·湖南益阳)123=⨯__________.26.(2018·江苏镇江)计算:182⨯=__________.1.【答案】D【解析】A a |,可化简;B ==C ==,可化简;因此只有D : =,不能开方,符合最简二次根式的条件.故选D .2.【答案】C【解析】根据题意,可知mn >0,n <0,所以可得m <0,根据二次根式的乘法的性质,可知m ≥0,n ≥0,=1,故②正确;根据二次根式除法的性质,可知m ≥0,n >0=-m ,故④正确.故选C . 3.【答案】D【解析】选项A 的被开方数不相同;选项B 的被开方数不相同;选项C ,不能够化简,被开方数不相同;选项D ,=23,23ab D .4.【答案】B【解析】选项A 、C 、D 正确;选项B 2=,选项B 错误,故选B . 5.【答案】C【解析】根据题意得:030x x ≥⎧⎨->⎩,解得:03x ≤<.故选C .6.【答案】B【解析】原式==,故选B .9.【答案】7120.091960.091960.31470.361440.361440.61212⨯==⨯=⨯.故答案为:712.10.【答案】①⑥【解析】最简二次根式是满足下列条件的二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽方的因式或因数.由此可得①⑥是二次根式,故答案为:①⑥. 11.【答案】-5【解析】原式48332731639495=÷-÷==-=-.故答案为:5-.123+2【解析】原式200020002000(32)(32)(32)[(332)]=-++⋅=⋅2000(1)32)=-⋅+⋅32)+32=32+.13.【解析】(1)25144⨯25144=512=⨯ 60=.(2)13xyz xy⋅- 13xyz xy=-⋅=-14.【解析】(1==(2==(3)====-.(4)====15.【解析】(1)原式233=⨯23=45==(2)(13()8=⨯-⨯354=-⨯ 154=-.(3)原式===(4)原式15==. 16.【答案】C【解析】∵x <0=|x -C . 17.【答案】A【解析】原式32,故选A . 18.【答案】BB . 19.【答案】A5315==⨯=,故正确;,故不正确;248==⨯=,故不正确.故选A . 20.【答案】1、2【解析】由题意,知213221m n m n +-=⎧⎨-+=⎩,解得12m n =⎧⎨=⎩,因此m 的值为1,n 的值为2.故答案为:1,2.21【解析】根据圆锥的体积公式可得,这个圆锥的体积是13⨯==故答案为24.【答案】B【解析】A1832=B13是最简二次根式,正确;C2733=不是最简二次根式,错误;D1223=B.25.【答案】6【解析】原式3×3=6.故答案为:6.26.【答案】218 2182⨯,故答案为:2.。
二次根式计算专题——30题(教师版含答案)
(2) 3 12 3 1 1 48 27 32
【答案】(1)0;(2) 4 3 .
【解析】
试题分析:(1)原式=1 5 2 3 1 0 ;
(2)原式= 6 3 3 2 3 3 3 4 3 .
试题解析:原式=1 3 3 2 1 3 2 2 3
考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:
①
8
2
1 2
0
②
6 3 2
1 3
48
12
③
3a2 3
a 2
1 2
2a 3
【答案】① 2 1;② 14 ;③ a .
考点:二次根式化简.
14.计算 (3 2 24 8) 12 3
【答案】 -
2+
6
.
23
试卷第 4 页,总 10 页
【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:
(3 2 - 24 + 8) ¸ 12 = ( 6 - 2 6 +2 2) ¸ 2 3 = (2 2 - 6) ¸ 2 3 3
5
3
3 2 1;
(2) (6 x 2x 1 ) 3 x
4xBiblioteka (6 x 2x x ) 3 x 2x
(3 x 2 x ) 3 x
x 3 x
试卷第 1 页,总 10 页
1. 3
考点: 二次根式的混合运算.
3.计算: 3 12 2
北师大版八年级数学上册--第二单元 二次根式的乘除运算 练习题(含答案)
冀教版初中数学八年级上册第十五章二次根式15.2《二次根式的乘除》教学设计说明在设计本课时教案时,引导学生通过计算发现规律,从而由特殊到一般地给出二次根式的乘法法则、除法法则.注意引导学生类比积的算术平方根的性质,让学生把握两者的关系.通过例题的讲解,及时对解题方法和规律进行概括,有利于发展学生的思维能力.重视课本例题,适当地对立体进行引申,引发学生自主探寻与思考,突出例题在巩固强化中的作用,有利于学生对知识的串联、积累、加工,从而起到举一反三的效果.在学习过程中,采用小组学习方式,组间竞争,按各组表现评出最优小组,激发学生学习积极性和兴趣.(1)教材分析《二次根式的乘除》是是初中数学的重要内容之一,是《课程标准》“数与代数”的重要内容,是对“实数”、“代数式”等内容的延伸和补充.(2)学情分析本节课的内容是在理解二次根式的定义及相关概念的基础上,进一步研究二次根式的运算,是对二次根式的简便运算.二次根式的乘除这一节的知识构造较为简单,并且是在学生学习了平方根,立方根等内容的基础上进行的.由于学生对算术平方根等概念已经有了初步认识,这为学生学习打下了基础,在和学生一起学习的过程中,我们要创造条件和机会,让学生发表自己的见解,发挥学生学习的主动性和积极性.一、教学目标(1a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简.(2)理解ab=ab(a≥0,b>0),ab=ab(a≥0,b>0)及利用它们进行计算和化简.(3a b ab a≥0,b≥0)ababa≥0,b>0)并运用它们进行计算;•利用逆向思维,ab a b a≥0,b≥0),a baba≥0,b>0)并运用它们进行解题和化简.(4)培养学生对于事物规律的观察,发现能力,激发学生的学习激情.二、教学重点、难点a b ab a≥0,b≥0)ab a b a≥0,b≥0)abab(a≥0,b>0)ababa≥0,b>0)及运用,最简二次根式的概念.难点:二次根式的乘除法法则的逆用ab=a·b(a≥0,b≥0),a bab(0,0)a b≥>.课时设计两课时教学策略由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此,要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要注意逐步有序的展开,在讲解二次根式的乘除时可以结合积的算术平方根的性质,让学生把握两者的关系.积的算术平方根的性质及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算具体的例子,引导他们做出一般的结论.由于归纳法是通过一些个别的,特殊的例子的研究,从表象到本质,进而猜想出一般的结论.因此,本文采用从特殊到一般总结归纳的方法,类比的方法,讲授与练习相结合的方法.这种思维过程,对于初中生认识,研究和发现事物的规律有着重要作用,对于培养思维品质也有重要意义.三、教学过程情境导入,这个长方形的面积是多少?2.【问题探究】这个结果能否化简?如何化简?【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,体会数学来源于生活,又应用于生活,让学生初步感受二次根式的乘除.探索新知探究一1.填空=______;(1(2(3.(4,2.利用计算器计算填空,(2(1(32.(1)=,(2)=,(3)=,(4)=.师:提出问题:观察上面的结果,你发现他们有什么特点吗?小组讨论、抢答.生:(1)被开方数都是正数;(2)两个二次根式相乘等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.【归纳总结】反过来【设计意图】由特殊例子出发,由特殊到一般给出二次根式的乘法法则.例1.计算;(2(3(4.(1解析:(1(2=(3(4a≥0,b≥0)计算即可.点评:例2.化简(2(3;(1(4(5×4=12;解析:(1(2(3(4=3xy;(5.(a ≥0,b ≥0)直接化简即可.例3.计算解析:⨯⨯==点评:在(1)中要注意,在被开方数相乘的时候可以考虑因数分解或因式分解,在(2)中0,0)a b =≥≥,即根号外的系数与系数相乘,积为结果的系数;在(3)中要注意x ,y 的符号.【设计意图】通过例题的讲解,让学生体会二次根式的乘法法则.探究二(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空;(2=________.(13.利用计算器计算填空:(1答案:1.反过来2.3344(1),;(2),;==.规律:,44663.(1)=(2)=.;【归纳总结】【设计意图】由特殊例子出发,由特殊到一般给出二次根式的乘法法则.例4.计算:(1(2(3(4).解析:(1=2 ;(2==(3==2;(4.点评:上面4a≥0,b>0)便可直接得出答案.例5.化简:(1(2(3(4解析:(1=;(283ba =;(38y =;(413y .a ≥0,b >0)就可以达到化简之目的. 【设计意图】通过例题的讲解,让学生体会二次根式的除法法则.例6.计算:(1;(2;(3. 解析:(15;(2=3;(3=a . 观察上面例6的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.现在我们来看本章引言中的问题:如果两个电视塔的高分别是12km,km h h ,那么它们的传播半径的比是_________..那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.(学生分组讨论,到黑板上板书).2==.【设计意图】巩固二次根式的除法法则,通过观察总结归纳出最简二次根式的特点.例7.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.AC解:因为222AB AC BC=+所以AB=132====6.5(cm),因此AB的长为6.5cm.点评:学生掌握最简二次根式概念之后,通过两个例题让学生先尝试的去应用所学的知识,初步体验成功,树立学习的自信心.【设计意图】学生掌握最简二次根式概念之后,通过实际问题的例题讲解,激发学生的兴趣,引导学生体会数学来源于生活,又应用于生活.巩固练习教材对应习题.【设计意图】为学生提供演练机会,加强对二次根式加减运算的理解及掌握.应用拓展1.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.×3=6;(2)不正确.4.a、b的取值范围分别是a≥0,b>0.带分数作为被开放数化简时必须先把带分数化成假分数再化简.2=,且x为偶数,求(1+)x解析:由题意得9060xx-≥⎧⎨->⎩,即96xx≤⎧⎨>⎩.∴6<x≤9.∵x为偶数,∴x=8.∴原式=(1+)x(1+)x=(1+)x 4(1)x x -+=(1)(4)x x +-. ∴当x =8时,原式的值=49⨯=6.点评:式子a b =a b,只有a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式: 121+=1(21)2121(21)(21)⨯--=-+-=2-1,132+=1(32)3232(32)(32)⨯--=-+-=3-2, 同理可得:143+=4-3,……从计算结果中找出规律,并利用这一规律计算(121++132++143++……120122013+)()的值.解析:原式=(2-1+3-2+4-3+…+2013-2012)×(20131+) =(20131+)()=2013-1=2012.点评:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.四、课堂小结(学生小组总结展示,师补充)1a≥0,b≥0)a≥0,b≥0)及其运用.2.二次根式的除法法则a≥0,b>0(a≥0,b>0)及其运用.3.最简二次根式的概念及其运用.【设计意图】梳理本节课的主要知识点,让学生明确重难点.课后作业一、选择题1(y>0)是二次根式,那么它化为最简二次根式是()A(y>0) By>0) C(y>0) D.以上都不对2.把(a-1a-1)移入根号内得()A..3.在下列各式中,化简正确的是()A=±12C 2D .4的结果是( )A .-3 B ..-3 D .5.阅读下列运算过程:3==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”) A .2 B .6 C .13 D二、填空题6.(x ≥0)7._________. 三、综合提高题8,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房梁的最大截面积是多少?9.已知a为实数,-阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:-a·1a=(a-110.若x、y为实数,且y答案:一、1.C 2.D 3.C 4.C 5.C二、6.7.三、8.设:矩形房梁的宽为x(cm)cm,依题意,得:2222);)x x cm x cm+==⋅=.9.不正确,正确解答:因为301aa⎧->⎪⎨->⎪⎩,所以a<0,aa=(1-a10.∵224040xx⎧-≥⎪⎨-≥⎪⎩∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=14∴4====.教学反思本节内容是在前一节二次根式的学习基础上,要求学生能熟练运用乘法法则和除法法则进行化简和计算.在教学过程中,通过一些特殊的例子让学生归纳出乘法法则和除法法则,学生比较容易接受.但是在具体进行化简和计算的过程中,学生对二次根式乘法法则和除法法则理解上问题不大,但常常忘记计算结果需要化简,此外被开方数是多项式的乘除法运算上容易出现错误,对分母有理化还不够熟练.因此还要加强训练,否则,在下一节二次根式的加减和混合运算时出现的错误会更多.总之,二次根式的乘除运算法则的学习和应用的过程中,渗透分析、概括、类比等数学思想方法,提高学生的思维品质和学习兴趣,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.。
二次根式运算(简单题目)
考点一 二次根式 式子a(a ≥0)叫做二次根式.二次根式中被开方数一定是非负数,否则就没意义,并有a ≥0.考点二 最简二次根式最简二次根式必须同时满足条件:1.被开方数的因数是正整数,因式是整式;2.被开方数不含能开的尽方的因数或因式.考点三 同类二次根式 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式.考点四 二次根式的性质 1.a(a ≥0)是非负数;2.(a)2=a(a ≥0);3.a 2=|a|=⎩⎨⎧a (a ≥0)-a (a <0); 4.ab =a·b(a ≥0,b ≥0);5.a b =a b(a ≥0,b >0). 考点五 二次根式的运算 1.二次根式的加减法先将各根式化为最简二次根式,然后合并同类二次根式.2.二次根式的乘除法 二次根式的乘法:a·b =ab(a ≥0,b ≥0); 二次根式的除法:a b=a b (a ≥0,b >0). 二次根式的运算结果一定要化成最简二次根式.(1)(2010·无锡)使3x -1有意义的x 的取值范围是( )A .x>13B .x>-13C .x ≥13D .x ≥-13(2)(2010·广州)若a<1,化简(a -1)2-1=( )A .a -2B .2-aC .aD .-a(3)(2010·嘉兴)设a>0,b>0,则下列运算错误的是( ) A.ab =a·b B.a +b =a + bC .(a)2=a D.a b =a b(4)(2009·山西)在下列二次根式中,与a 是同类二次根式的是( )A.2aB.3a 2C.a 3D.a 4(1)(2010·眉山)计算(-3)2的结果是( )A .3B .-3C .±3D .9(2)(2010·山西)估算31-2的值( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间(3)(2010·常州)下列运算错误的是()A.2+3= 5B.2·3= 6C.6÷2= 3 D.(-2)2=2(4)(2010·江西)化简3-3(1-3)的结果是() A.3 B.-3 C. 3 D.- 31.(2010·德化)下列计算正确的是()A.20=210B.2·3= 6C.4-2=2D.(-3)2=-32.(2010·芜湖)要使式子a+2a有意义,a的取值范围是()A.a≠0B.a>-2且a≠0 C.a>-2或a≠0D.a≥-2且a≠03.(2010·绵阳)要使3-x+12x-1有意义,则x应满足()A.12≤x≤3B.x≤3且x≠12C.12<x<3 D.12<x≤34.(2010·济南)下列各式中,运算正确的是() A.6÷3=2B.22+33=5 5C.a6÷a3=a2D.(a3)2=a5 5.(2010·中山)下列式子运算正确的是() A.3-2=1 B.8=4 2C.13=3 D.12+3+12-3=46.(2010·绵阳)下列各式计算正确的是() A.m2·m3=m6B.1613=16·13=43 3C.323+33=2+3=5D.(a-1)11-a=-(1-a)2·11-a=-1-a(a<1)7.(2011中考预测题)下列二次根式中,最简二次根式是()A.2x2B.b2+1C.1x D.4a8.(2011中考预测题)若x=a-b,y=a+b,则xy的值为() A.2 a B.2 b C.a+b D.a-b9.(2011中考预测题)若(a-3)2=3-a,则a与3的大小关系是()A.a<3 B.a≤3 C.a>3 D.a≥310.(2009中考变式题)计算27-1318-12的结果是( ) A .1 B .-1 C.3-2 D.2- 311.(2009中考变式题)下列各数中,与2+3的积为有理数的是( ) A .2+ 3 B .2- 3 C .-2+ 3 D. 3(2009中考变式题)已知a>0,那么|a 2-2a|可化简为( )A .-aB .aC .-3aD .3a。
二次根式的乘除法专题练习
二次根式的乘除法专题练习二次根式的乘除法专题练一.选择题(共7小题)1.化简 $\sqrt{12}$,得到的结果是()。
A。
$2\sqrt{3}$ B。
$3\sqrt{2}$ C。
$4\sqrt{3}$ D。
$6\sqrt{2}$2.计算 $\sqrt{75}\div\sqrt{3}$,得到的结果是()。
A。
$5\sqrt{3}$ B。
$3\sqrt{5}$ C。
$5\sqrt{6}$ D。
$3\sqrt{25}$3.矩形的面积为18,一边长为6,则周长为()。
A。
12 B。
18 C。
24 D。
364.化简 $\frac{\sqrt{27}}{\sqrt{3}}$,得到的结果为()。
A。
$\sqrt{3}$ B。
$3$ C。
$9\sqrt{3}$ D。
$27$5.计算并化简 $\sqrt{48}\div\sqrt{12}$,得到的结果为()。
A。
$2$ B。
$2\sqrt{2}$ C。
$3$ D。
$3\sqrt{2}$6.$(\sqrt{2}+\sqrt{3})^2$的值为()。
A。
$5+2\sqrt{6}$ B。
$5+2\sqrt{3}$ C。
$5+6\sqrt{2}$ D。
$5+2\sqrt{2}$7.计算$\sqrt{2}-\sqrt{8}+\sqrt{18}$,得到的结果是()。
A。
$-\sqrt{2}$ B。
$-\sqrt{2}+\sqrt{6}$ C。
$-\sqrt{2}+2\sqrt{3}$ D。
$-\sqrt{2}+3\sqrt{2}$二.填空题(共7小题)8.计算:$\sqrt{75}$ =$\underline{\hspace{2cm}}\sqrt{\underline{\hspace{2cm}}}$9.计算:$\sqrt{27}\times\sqrt{12}$ =$\underline{\hspace{2cm}}\sqrt{\underline{\hspace{2cm}}}$10.化简:$\sqrt{48}$ =$\underline{\hspace{2cm}}\sqrt{\underline{\hspace{2cm}}}$11.计算 $\frac{\sqrt{3}}{2}\times\frac{2}{\sqrt{3}}$ = $\underline{\hspace{2cm}}$,$\frac{\sqrt{3}}{2}\div\frac{3}{\sqrt{2}}$ =$\underline{\hspace{2cm}}$12.运用平方差公式计算:$(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$ = $\underline{\hspace{2cm}}$13.计算:$\sqrt{2}+\sqrt{8}-\sqrt{18}$ =$\underline{\hspace{2cm}}$14.计算:$\frac{\sqrt{2}\times\sqrt{3}}{\sqrt{6}}$ = $\underline{\hspace{2cm}}$三.解答题(共6小题)16.化简:$\frac{1}{\sqrt{3}}+\frac{\sqrt{3}}{3}$ =$\underline{\hspace{2cm}}$17.计算:(1)$(\sqrt{2}+\sqrt{3})^2$ =$\underline{\hspace{2cm}}$;(2)$\sqrt{3+\sqrt{2}}$ =$\underline{\hspace{2cm}}$18.已知:$\sqrt{x}+\sqrt{y}=3$,$\sqrt{x}-\sqrt{y}=1$,求$x$和$y$的值。
二次根式的乘除专项练习60题(有答案过程)ok
1. ( 2. 3. (2 +4 )× +3) (3﹣ ) .
4. 5. .
6. 7. 8. .
9. (1)
; (2)
10.
11. (1)x(2x﹣1)﹣x (2﹣x) ; 2 3 2 3 (2) (2ab ﹣b ) ÷2b ; (3) (4) (5) (6) ; ; ; .
(2)
.
58.计算:2
×
.
59.
.
60.
.
二次根式的乘除法---
4
参考答案:
1. ( +3) (3﹣ )=3 ﹣( ) =9﹣6=3. 2 2 2. 原式=(3 ) ﹣(4 ) =54﹣32=22. 3.原式= 4.原式=( 5.原式= 6. 原式=(2 7.原式= ) ﹣3 =20﹣9=11. =2﹣9+2 = .
2
=﹣ =﹣
=﹣ ×10=﹣
.
÷ × × × ×4×
43.原式=﹣(9÷3× ) 44. 45. 46.原式=(2 47.原式=3 48.原式=27 49.原式=4 50.原式= 51.原式= ÷ ×3 = ) +2×2 ÷12= ÷ ×3 . × × =27
2
×3
×
×
=45
﹣2=24﹣2=22. = × ×3 = ×2a= . =9 . )] =[( ) ﹣( ) ] =(5﹣3) =4 +3)=(8﹣2 ) (8+2 )=64﹣60=4.
=2 . ×4
÷6
=
÷
2 2
= ÷3
×4 =
×
= ×4× × .
=1
)=a b
二次根式的乘除法
1.二次根式的乘法
运算法则: a • b a • b, (其中a 0,b 0) 逆用: a • b a • b, (其中a 0, b 0)
例1.计算
(1). 2 3 6 (2). 1 18
2
(3). 27 3
(4). 2a 18a (5).6 2 2
2
2.二次根式的除法
运算法则:a b a b或者 a a(, 其中a 0,b>0)
bb
逆用:a b a b或者 a a(, 其中a 0,b>0)
bb
例2.计算
(1). 2 1 2
(2). 12 3 (3). 63
7 (4). a3
a
例3.计算
(1). 2+ 3 2 3;
(2). 3 2 2 3 3 2 2 3 ;
(3).
3
Hale Waihona Puke 22; (4).
2
52 .
3.二次根式的化简
(1).最简二次根式:不能再化简的二次根式叫 做最简二次根式。
当被开方数中含有分数或者小数时,二次根式要化简。
(2).同类二次根式:化简后被开方数相同的二次 根式叫做同类二次根式
(2)下列二次根式中,最简二次根式是( ) A. 12 B. 27 C. 0.2 D. 30
(3)下列二次根式中,不是最简二次根式的是( )
A. x2 1 B. x2 y2 C. x+y D. 1
x2
例4.化简
(1). 24 (2). 48 (3). 45 (4). 1000 (5). 1
3 (6). 3
二次根式的乘除法(含例题)
第十六章 二次根式16.2 二次根式的乘除1.二次根式的乘法法则(1)一般地,二次根式的乘法法则是:__________(00)a b a b =≥≥,.语言叙述:二次根式相乘,把被开方数相乘,根指数__________.在进行二次根式的乘法运算时,一定不能忽略其被开方数a ,b 均为非负数这一条件. 000)a b c abc a b c =≥≥≥,,. ②00)a b c d bd b d =≥≥,,即当二次根式前面有系数时,可类比单项式乘单项式的法则进行运算,即将系数之积作为系数,被开方数之积作为被开方数;③乘法交换律和结合律以及乘法公式(平方差公式和完全平方公式)在二次根式的乘法中仍然可应用. (2)二次根式乘法法则的逆用00)ab a b a b =≥≥,.语言叙述:积的算术平方根等于积中各因数或因式的算术平方根的积.公式中的a ,b 可以是数,也可以是代数式,但必须满足a ≥0,b ≥0.实际上,a ≥0,b ≥0是限制公式右边的,对公式的左边,只要ab ≥0即可.二次根式乘法法则的逆用也称为积的算术平方根,在进行二次根式的乘法运算时,这两个关系经常交替使用. 0000)abcd a b c d a b c d =≥≥≥≥,,,.运用这个性质可以化简二次根式:如果一个二次根式的被开方数有的因数(式)是完全平方数(式),(00)ab a b a b =≥≥,2(0)a a a =≥将这些因数(式)“开方”出来,从而将二次根式化简.利用积的算术平方根的性质化简的步骤:①将被开方数进行因数分解或因式分解;②应用积的算术平方根的性质,将能开得尽方的因数或因式开出来.2.二次根式的除法法则(1)一般地,二次根式的除法法则是:0__________0)a b =≥,. 语言叙述:二次根式相除,把被开方数__________,根指数不变.【注意】①a ≥0,b >0时,式子才成立,若a ,b 都是负数,虽然0a b >在实数范围内无意义;若b =0,a b则号无意义. ②如果被开方数是带分数,应先将其化成假分数.③二次根式的运算结果应不含能开得尽方的因数或因式,同时分母中不含二次根式.(2)二次根式除法法则的逆用00)a b =≥>, ★语言叙述:商的算术平方根等于被除式的算术平方根除以除式的算术平方根.公式中的a ,b 表示的代数式必频满足a ≥0,b >0,a ≥0,b >0是限制公式右边的,对公式的左边,只要0a b≥且0b ≠即可.利用这个公式,同样可以达到化简二次根式的目的,在化简被开方数是分数(或分式)的二次根式时,先将其化为“(a ≥0,b >0)的形式,然后利用分式的基本性质,分子和分母同乘上一个适当的因式,化去分母中的根号即可. 3.最简二次根式满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含__________;(2)被开方数中不含能开得尽方的因数或因式.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.【拓展】分母有理化:二次根式的除法可以用化去分母中的根号的方法来进行,这种化去分母中根号的变形叫做分母有理化.分母有理化的方法是根据分式的基本性质,将分子和分母都乘上分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式),化去分母中的根号.分母的有理化因式不唯一,但以运算最简便为宜.K知识参考答案:1.ab,不变2.>,相除3.分母K—重点二次根式的乘法和除法;最简二次根式的判断K—难点二次根式的乘法法则和除法法则的逆用K—易错运算顺序错误;忽视隐含条件一、二次根式的乘法1.法则中的a,b表示的代数式都必须是非负的.2.两个二次根式相乘,被开方数的积中有开得尽方的一定要开方.【例1】下列计算正确的是A.25×35=65B.32×33=36C.42×23=85D.22×63=126【答案】D⨯⨯得【例2】916144A.144 B.±144 C.±12 D.12【答案】A⨯⨯.故选A.916144⨯⨯916144=3412=144二、二次根式的除法1000)a b c ÷=≥>>,,;2.((()m n ÷=÷⋅,其中000a b n ≥>≠,,.【例3】=成立的条件是 A .a 、b 同号B .a ≥0,b >0C .a >0,b >0D .a >0,b ≥0 【答案】B【解析】由二次根式的非负性可知,a ≥0,b ≥0,由于b 是分母,故b >0.故选B .【例4】计算A .B .23xC .D x 【答案】C【解析】原式=4×C . 三、二次根式的乘除混合运算二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,整式乘除法的一些法则、公式在二次根式乘除法中仍然适用.二次根式乘除混合运算的一般步骤:(1)将算式中的除法转化为乘法;(2)利用乘法运算律将运算转化为系数和被开方数的乘法运算;(3)将系数和被开方数分别相乘;(4)化成最简二次根式.【例5】A B C D .【答案】A==.故选A.四、最简二次根式判断二次根式是不是最简二次根式的方法:一看:看被开方数中是否含有能开得尽方的因数(或因式),且被开方数中是否含有分母.二化:若被开方数是多项式,能化成因数(或因式)积的形式,要先化成积的形式.三判断:得出结论.【例6】下列根式中,是最简二次根式的是A B C D【答案】C【解析】因为:A=;B=;D||b=,所以这三项都可化简,不是最简二次根式.故选C.。
人教版八年级数学下册同步练习《16.2 二次根式的乘除》 含答案
人教版八年级数学下册同步练习《16.2 二次根式的乘除》◆基础知识作业1.计算: =2.长方形的宽为,面积为,则长方形的长约为(精确到0.01).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥24.下列二次根式中,最简二次根式是()A.B.C.D.5.化简的结果是()A.B.C.D.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣7.二次根式,,的大小关系是()A.B.<<C.<<D.<<8.化简:(1)(2)(3)(4)(5)(7)÷.◆能力方法作业9.若和都是最简二次根式,则m= ,n= .10.化简﹣÷= .11.比较大小:﹣﹣.12.下列二次根式中,是最简二次根式的是()A. B. C.D.13.下列根式中,是最简二次根式的是()A.B.C.D.14.计算:等于()A.B.C.D.15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣16.化简:(1)(2)(x>0)17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)18.把根号外的因式移到根号内:(2).◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.20.化简:a(a>b>0)21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.人教版八年级数学下册同步练习《16.2 二次根式的乘除》解析◆基础知识作业1.计算: =【考点】二次根式的乘除法.【分析】根据二次根式的除法法则对二次根式化简即可.【解答】解:原式==.【点评】主要考查了二次根式的乘除法运算.二次根式的运算法则:乘法法则=(a≥0,b≥0).除法法则=(a>0,b≥0).2.长方形的宽为,面积为,则长方形的长约为 2.83 (精确到0.01).【考点】二次根式的应用.【分析】根据二次根式的相关概念解答.【解答】解:设长方形的长为a,则2=a,a==2≈2.83.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:•=(a≥0,b≥0);=(a≥0,b>0).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥2【考点】二次根式的乘除法;二次根式有意义的条件.【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故本题选C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.4.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=|a|,可化简;B、==,可化简;C、==3,可化简;因此只有D: =,不能开方,符合最简二次根式的条件.故选D.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.5.化简的结果是()A.B.C.D.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式被开方数利用平方差公式化简,约分后化简即可得到结果.【解答】解:原式====.故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.7.二次根式,,的大小关系是()A.B.<<C.<<D.<<【考点】分母有理化.【分析】本题可先将各式分母有理化,然后再比较它们的大小.【解答】解:将三个二次根式化成同分母分数比较:∵=, ==,;∴<<.故本题选C.【点评】解答本题的关键是将各分式分母有理化,然后再比较它们的大小.在分母有理化的过程中,找出分母的有理化因式是解题的关键.8.化简:(1)(2)(3)(4)(5)(6)(7)÷.【考点】二次根式的乘除法.【分析】(1)直接进行化简即可;(2)直接进行化简即可;(3)先进行加法运算,然后进行化简即可;(4)先计算根号下的数值,然后进行化简即可;(5)先计算根号下的数值,然后进行化简即可;(6)先进行除法运算,然后进行化简;(7)先进行除法运算,然后进行化简.【解答】解:(1)原式=;(2)原式=;(3)原式==;(4)原式==;(5)原=;(6)原式==2;(7)原式==3.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握运算法则以及二次根式的化简.◆能力方法作业9.若和都是最简二次根式,则m= 1 ,n= 2 .【考点】最简二次根式.【分析】由于两二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n 的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;因此m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.10.化简﹣÷= .【考点】二次根式的乘除法.【分析】运用二次根式的运算性质,结合最简二次根式的概念,对二次根式进行化简.注意约分的运用.【解答】解:原式=﹣•=﹣•=﹣••=﹣2a.【点评】在二次根式的化简中,准确运用二次根式的性质,二次根式的除法法则和最简二次根式的概念,把结果化成最简的形式.11.比较大小:﹣<﹣.【考点】实数大小比较.【分析】首先把两个数平方,再根据分母大的反而小即可比较两数的大小.【解答】解:∵(﹣)2=,(﹣)2=,又∵>,∴﹣<﹣,即﹣<﹣.故填空答案:<【点评】此题主要考查了实数的大小比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.12.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;B、符合最简二次根式的条件;故本选项正确;B、,被开方数里含有能开得尽方的因式x2;故本选项错误;C、被开方数里含有分母;故本选项错误.D、被开方数里含有能开得尽方的因式a2;故本选项错误;故选;B.【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.(2013秋•阆中市期末)下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选:C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.14.计算:等于()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘除法法则计算.【解答】解: ==.故选A.【点评】二次根式的乘除法法则:(a≥0,b≥0);(a≥0,b>0).15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣【考点】二次根式的乘除法.【分析】由于被开方数为非负数,可确定1﹣a的取值范围,然后再按二次根式的乘除法法则计算即可.【解答】解:由已知可得,1﹣a>0,即a﹣1<0,所以, =﹣=﹣.故本题选B.【点评】由已知得出1﹣a的取值范围是解答此题的关键.16.化简:(1)(2)(x>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解;(2)直接进行二次根式的化简即可.【解答】解:(1)原式==;(2)原式=.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解即可;(2)先进行二次根式的除法运算,然后化简求解.【解答】解:(1)原式=﹣4×=﹣;(2)原式==.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.18.把根号外的因式移到根号内:(1)(2).【考点】二次根式的性质与化简.【专题】计算题.【分析】(1)先变形得到原式=﹣5×,然后利用二次根式的性质化简后约分即可;(2)先变形得到原式=(1﹣x)•,然后利用二次根式的性质化简后约分即可.【解答】解:(1)原式=﹣5×=﹣5×=﹣;(2)原式=(1﹣x)•=(1﹣x)•=﹣.【点评】本题考查了二次根式的性质与化简: =|a|.◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【考点】二次根式的乘除法;同底数幂的除法;完全平方公式;分式的基本性质.【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、===﹣,错误;D、正确.故选D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).20.化简:a(a>b>0)【考点】二次根式的性质与化简.【专题】计算题.【分析】先利用完全平方公式变形得到原式=a,再利用二次根式的性质得到原式=a•|﹣|,然后利用a>b>0去绝对值后进行分式的运算.【解答】解:原式=a=a•|﹣|,∵a>b>0,∴原式=a•[﹣(﹣)]=.【点评】本题考查了二次根式的性质和化简: =|a|.也考查了完全平方公式和绝对值的意义.21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.【考点】二次根式的乘除法.【分析】已知长方体的宽与高,根据二次根式的乘法,即可求得这个长方体的长.【解答】解:长方体的高为=2cm,宽为1cm,则长方体的长为: =9cm,答:长方体的长是9cm.【点评】此题考查了二次根式的乘法.此题比较简单,注意÷=(a>0,b>0)。
二次根式计算专题——30题(教师版含答案)
二次根式计算专题之杨若古兰创作1.计算:⑴()()24632463+-⑵20(3)(3)2732π++-+-【答案】(1)22; (2)643-【解析】试题分析:(1)根据平方差公式,把括号睁开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1)()()24632463+-=54-32 =22. (2)20(3)(3)2732π++-+-考点: 实数的混合运算. 2.计算(1)﹣×(2)(6﹣2x )÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20511235+1=;(2)1(62)34x x x x÷13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝.【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最初算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.-==考点:二次根式的计算. 7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特此外能利用公式的利用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8.计算:⎝ 【答案】0. 【解析】试题分析:根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算. 9.计算:()+1π.【答案】1【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可. 试题解析:()+1π11=-=考点:二次根式的化简. 10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.计算:(1)(2)()02014120143π---【答案】(1)1+(2)3-.【解析】试题分析:(1)根据二次根式的运算法则计算即可; (2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:(1)(1=+(2)()020141201431133π---=--+=-考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值. 12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题次要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法和零指数幂的意义,去掉括号后,计算加减法. 试题解析: 解:原式=2123+--=2考点:二次根式的混合运算. 130(2013)|-+-. 【答案】1.【解析】0(2013)|+-+-1=.考点:二次根式化简.14.计算12)824323(÷+- 【答案】2623. 【解析】试题分析:先化简二次根式,再合并同类二次根式,最初算除法即可求出答案. 试题解析:248)12(62622)23(226)23考点: 二次根式的混合运算. 151122322. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案. 11223432223232332考点: 二次根式的运算. 16.化简:(1)83250+ (2)2163)1526(-⨯- 【答案】(1)92;(2)-.【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式=9=;2(2)原式===-.考点:二次根式的混合运算;17.计算(1))2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1))=-+233(2)(222===.3考点:二次根式化简.181)(1+-【答案】17.【解析】试题分析:先化简和,应用平方差公式计算1)(1+,再进行计算求解.--181=17考点:实数的运算. 19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,须要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:12⎛⎫+- ⎪⎝⎭②⎛ ⎝⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可. 01112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷⎝⎝.1a2a63⎛--⋅=-⎝.考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)(0π+(2)2(3(4-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)利用完整平方公式和平方差公式睁开后合并同类二次根式即可.试题解析:(1)(011π==.(2)((()2344951675-=+--=.考点:1.二次根式化简;2.0指数幂;3.完整平方公式和平方差公式.23.(1)18282-+(2)3127112-+(3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-3)6;(4)6- 【解析】试题分析:本题次要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应当先将分式转化为整式,再按运算法则计算. 试题解析:(1)==-原式试题解析:(2)==原式试题解析:(3)116==+=原式 试题解析:(4)22439212186=-=⨯-⨯=-=-原式((243【答案】0 【解析】试题分析:先根据立方根的性质、绝对值的规律、二次根式的性质化简,再合并同类二次根式即可. 解:原式=25232+--+=0.考点:实数的运算点评:计算题是中考必考题,普通难度不大,先生要特别慎重,尽量不在计算上失分. 25.求以下各式的值(1)(2)()2331422-⨯--+【答案】⑴12⑵11 【解析】试题分析:(1)1132242-⨯-=(2)()2331422-⨯--+=328211-++=考点:整式运算点评:本题难度较低,次要考查先生对整式计算常识点的把握.为中考常考题型,请求先生牢固把握.26.计算:⎛÷ ⎝2+ 【答案】5 【解析】试题分析:解:原式13⎛=÷ ⎝考点:实数运算点评:本题难度较低,次要考查先生对实数运算常识点的额把握,为中考常考题型,请求先生牢固把握. 27.计算: (1))3127(12+- (2)()()6618332÷-+-【答案】(1)334- (2)2【解析】试题分析:(1)==(2)==312考点:实数运算点评:本题难度较低,次要考查先生对平方根实数运算常识点的把握.请求先生牢固把握解题技巧.28.(【答案】1【解析】试题分析:(⨯⨯÷(32=1考点:二次根式的化简和计算点评:本题考查二次根式的化简和计算,关键是二次根式的化简,把握二次根式的除法法则,本题难度不大29.计算(每小题4分,共8分)(1)(2)【答案】(1)【解析】试题分析:原式=(2)原式+考点:实数的运算点评:实数运算经常使用的公式:(1)2(0)a a =≥(2),a =(3)0,0)a b =≥≥(4)0,0)a b =≥≥. 30.计算: (1)(2)(3)++-+(4)14+6a-3a 【答案】(1)16,(2)-14,(3)194-13,(4)【解析】本题考查二次根式的二次根式的加减法法则进行计算解:(1)原式=(2)原式=-(3)原式=24+=4 (4)原式=32。
二次根式乘除计算练习题
二次根式乘除估计训练之阳早格格创做一.采用题(共7小题)1.下列二次根式中属于最简二次根式的是()A.B.C.D.2.如果ab>0,a+b<0,那么底下各式:①=,②•=1,③÷=﹣b,其中精确的是()A.①②B.②③C.①③D.①②③3.下列等式纷歧定创造的是()A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6 4.使式子创造的条件是()A.a≥5 B.a>5 C.0≤a≤5 D.0≤a<55.若,且x+y=5,则x的与值范畴是()A.x>B.≤x<5 C.<x<7 D.<x≤7 6.下列估计精确的是()A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a67.化简的截止是()A.B.C.D.二.挖空题(共1小题)8.若战皆是最简二次根式,则m=,n=.三.解问题(共32小题)9..10.(1)÷3×5;(2)﹙﹣﹚÷().11..12.2×÷5.13.估计:.14.(1)(2)(3).15.(1)化简:•(﹣4)÷(2)已知x=﹣1,供x2+3x﹣1的值.16.估计:2×.17.估计:(2+4)×18..19.估计:2÷•.20.估计:4÷(﹣)×.21.(1)估计:•(÷);(2)已知真数x、y谦脚:+(y﹣)2=0,供的值.22..23.估计:()2﹣(2016)0+()﹣1.24.已知x、y为正数,且(+)=3(+5),供的值.25.估计:.26.自习课上,弛玉瞅睹共桌刘敏正在训练本上写的题目是“供二次根式中真数a的与值范畴”,她报告刘敏道:您把题目抄错了,不是“”,而是“”,刘敏道:哎呀,真抄错了,佳正在不做用截止,反正a战a﹣3皆正在根号内.试问:刘敏道得对付吗?便是道,依照解题战依照解题的截止一般吗?27.估计:.28.估计:.29.(x>0,y>0)30.化简:3a•(﹣)(a≥0,b≥0)31.估计:(1)(2).32.估计:2×÷10.33.估计:×()÷.34.估计:.35.估计:()﹣||36.化简与估计:(1)÷;(2)3a•(﹣)(b≥0).37.估计:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.38.化简:4x2.39.估计:(a≥0,b≥0).40.估计:×(﹣2)÷.二次根式乘除估计训练参照问案与试题剖析一.采用题(共7小题)1.(2015•锦州)下列二次根式中属于最简二次根式的是()A.B.C.D.【分解】A、B选项的被启圆数中含有已启尽圆的果数或者果式;C选项的被启圆数中含有分母;果此那三个选项皆不是最简二次根式.【解问】解:A、不是最简二次根式,故本选项过失;B、不是最简二次根式,故本选项过失;C、不是最简二次根式,故本选项过失;D、是最简二次根式,故本选项精确;故选D.【面评】本题考查了对付最简二次根式定义的应用,正在推断最简二次根式的历程中要注意:(1)正在二次根式的被启圆数中,只消含有分数或者小数,便不是最简二次根式;(2)正在二次根式的被启圆数中的每一个果式(或者果数),如果幂的指数等于或者大于2,也不是最简二次根式.2.(2014•济宁)如果ab>0,a+b<0,那么底下各式:①=,②•=1,③÷=﹣b,其中精确的是()A.①②B.②③C.①③D.①②③【分解】由ab>0,a+b<0先供出a<0,b<0,再举止根号内的运算.【解问】解:∵ab>0,a+b<0,∴a<0,b<0①=,被启圆数应≥0,a,b不克不迭干被启圆数,(故①过失),②•=1,•===1,(故②精确),③÷=﹣b,÷=÷=×=﹣b,(故③精确).故选:B.【面评】本题是考查二次根式的乘除法,解问本题的闭键是精确a<0,b<0.3.(2015•烟台)下列等式纷歧定创造的是()A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6【分解】分别利用二次根式的本量以及背整数指数幂的本量战仄圆好公式以及积的乘圆运算规则化简供出即可.【解问】解:A、=(a≥0,b>0),故此选项过失,切合题意;B、a3•a﹣5=(a≠0),精确,分歧题意;C、a2﹣4b2=(a+2b)(a﹣2b),精确,分歧题意;D、(﹣2a3)2=4a6,精确,分歧题意.故选:A.【面评】此题主要考查了二次根式的本量以及背整数指数幂的本量战仄圆好公式以及积的乘圆运算规则等知识,精确掌握运算规则是解题闭键.4.(2010•黄山校级一模)使式子创造的条件是()A.a≥5 B.a>5 C.0≤a≤5 D.0≤a<5【分解】根据分式蓄意思分母不为0及二次根式的被启圆数为非背数可得出问案.【解问】解:由题意得:,解得:a>5.故选B.【面评】本题考查二次根式及分式蓄意思的条件,易度不大,注意掌握分式蓄意思分母不为0及二次根式的被启圆数为非背数.5.(2016•萧山区模拟)若,且x+y=5,则x的与值范畴是()A.x>B.≤x<5 C.<x<7 D.<x≤7【分解】直交利用二次根式蓄意思的条件,得出y的与值范畴,从而得出问案.【解问】解:∵,∴y+2≥0,2x﹣1>0,解得:y≥﹣2,x>,∵x+y=5,∴<x≤7.故选:D.【面评】此题主要考查了二次根式蓄意思的条件,得出y的与值范畴是解题闭键.6.(2016•少沙)下列估计精确的是()A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a6【分解】直交利用二次根式乘法运算规则以及分离共底数幂的乘除运算规则分别化简供出问案.【解问】解:A、×=,精确;B、x8÷x2=x6,故此选项过失;C、(2a)3=8a3,故此选项过失;D、3a5•2a3=6a8,故此选项过失;故选:A.【面评】此题主要考查了二次根式乘法运算以及分离共底数幂的乘除运算、积的乘圆运算等知识,精确掌握相闭本量是解题闭键.7.(2014•新泰市模拟)化简的截止是()A.B.C.D.【分解】先推断出a的标记,再把二次根式举止化简即可.【解问】解:由可知,a<0,本式=﹣=﹣.故选C.【面评】将根号中的a移到根号内,要注意自己的标记,把标记留正在根号中,共时注意根号内被启圆数的标记.二.挖空题(共1小题)8.(2013秋•阳谷县期终)若战皆是最简二次根式,则m=1,n=2.【分解】由于二二次根式皆是最简二次根式,果此被启圆数的幂指数均为1,由此可得出闭于m、n的圆程组,可供出m、n的值.【解问】解:由题意,知:,解得:;果此m的值为1,n的值为2.故问案为:1,2.【面评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被启圆数(或者果式)的幂指数必为1.三.解问题(共32小题)9.(2015秋•宁乡县期终).【分解】最先把乘除法混同运算转移成乘法运算,而后举止乘法运算即可.【解问】解:本式=3×(﹣)×2=﹣3××2×=﹣=﹣×10=﹣.【面评】本题考查了分式的乘除混同运算,精确变换成乘法运算是闭键.10.(2013秋•云梦县校级期终)(1)÷3×5;(2)﹙﹣﹚÷().【分解】(1)利用二次根式的乘除运算规则将除法形成乘法,根号内的战根号里里相乘除,根号中的与根号中部相乘除,从而化简得出即可;(2)利用二次根式的乘除运算规则将除法形成乘法,根号内的战根号里里相乘除,根号中的与根号中部相乘除,从而化简得出即可.【解问】解:(1)÷3×5=×5=;(2)﹙﹣﹚÷()=﹣××3=﹣=﹣9x2y.【面评】此题主要考查了二次根式的乘除运算,精确掌握运算规则是解题闭键.11.(2014秋•苏州期终).【分解】果为二个果式的第一项真足相共,第二、三项互为好异数,切合仄圆好公式的特性,按仄圆好公式估计即可.【解问】解:本式==2﹣9+2=.【面评】本题主要考查了二次根式的乘法运算以及仄圆好公式的应用.使用仄圆好公式(a+b)(a﹣b)=a2﹣b2估计时,闭键要找相共项战好异项,其截止是相共项的仄圆减来好异项的仄圆.12.(2016秋•黑推特前旗期终)2×÷5.【分解】本题需先根据二次根式的乘除法的规则分别举止估计,即可供出问案.【解问】解:2×÷5=4×==.【面评】本题主要考查了二次根式的乘除法,正在解题时要根据二次根式的乘除法的规则举止估计是本题的闭键.13.(2015秋•湖北校级期中)估计:.【分解】最先化简二次根式,从而利用二次根式的乘除运算规则供出即可.【解问】解:本式=3×5×=15.【面评】此题主要考查了二次根式的乘除运算,精确化简二次根式是解题闭键.14.(2014秋•赵县期终)(1)(2)(3).【分解】(1)先将各二次根式化为最简,再使用乘法调配律举止运算,而后再举止二次根式的加减.(2)使用仄圆好公式举止估计即可.(3)直交举止启圆运算即可得出问案.【解问】解:(1)本式=6×(3﹣5﹣2)=18﹣60﹣12,=6﹣60,=12﹣60;(2)本式=﹣,=18﹣75,=﹣57;(3)==.【面评】本题考查二次根式的乘除运算,易度不大,注意正在运算时公式的使用,更要小心.15.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,供x2+3x﹣1的值.【分解】(1)根据二次根式的定义战已知供出x、y皆是背数,先化成最简根式,再根据二次根式的乘除法规则举止估计即可.(2)把代数式化成(x+1)2+x﹣2,代进后根据二次根式的混同运算规则举止估计即可.【解问】(1)解:本式=﹣•()÷,=(••),=﹣8x2y.(2)解:x=﹣1,∴x2+3x﹣1,=x2+2x+1+x﹣2,=(x+1)2+x﹣2,=+﹣1﹣2,=2+﹣3,=﹣1+.【面评】本题考查了二次根式的本量战定义,代数式供值,二次根式的乘除法规则等知识面的应用,解此题的闭键是把根式化成最简根式,注意:从题中得出x、y皆是背数,=﹣x,=﹣y,题型较佳,然而是一讲比较简单堕落的题目.16.(2014秋•直阜市期终)估计:2×.【分解】根据二次根式的乘除法规则,系数相乘除,被启圆数相乘除,根指数稳定,如:2×÷3,÷,估计后供出即可.【解问】解:本式=(2××),=.【面评】本题考查了二次根式的乘除法的应用,闭键是能流利天使用规则举止估计,题目比较典型,易度适中,此题是一讲简单堕落的题目.17.(2014秋•沅陵县校级期终)估计:(2+4)×【分解】用战分别来乘括号里的每一项,而后再举止加法运算,即可得出截止.【解问】解:本式==.【面评】解问本题闭键是要掌握二次根式的混同运算的运算规则.18.(2016秋•凶林期终).【分解】使用(a≥0,b>0)直交举止估计.也不妨先分子干减法运算,再分子、分母干除法运算.【解问】解:本式===3﹣2=1.【面评】对付于二次根式的乘除法,应分离给出的算式的特性机动举止估计.19.(2015秋•闸北区期中)估计:2÷•.【分解】直交利用二次根式的乘除运算规则化简供出问案.【解问】解:本式=2×6=12=8.【面评】此题主要考查了二次根式的乘除运算,精确掌握运算规则是解题闭键.20.(2014秋•门头沟区期终)估计:4÷(﹣)×.【分解】根据二次根式的乘法规则战除法规则供解.【解问】解:本式=﹣2÷×=﹣×=﹣.【面评】本题考查了二次根式的乘除法,解问本题的闭键是掌握二次根式的乘法规则战除法规则.21.(2014秋•孝义市期终)(1)估计:•(÷);(2)已知真数x、y谦脚:+(y﹣)2=0,供的值.【分解】(1)利用二次根式的乘除法规则供解;(2)利用算术仄圆根战一个数的仄圆等于0供出x,y,再供的值.【解问】解:(1)•(÷)=•===;(2)由+(y﹣)2=0,可知,=0且(y﹣)2=0,即,解得.所以==.【面评】本题主要考查了二次根式的乘除法,非背数的本量及算术仄圆根,解题的闭键是利用算术仄圆根战一个数的仄圆等于0供解.22.(2013秋•岳麓区校级期终).【分解】先化简,再根据二次根式的乘法举止估计即可.【解问】解:本式=÷×3=××3=9.【面评】本题考查了二次根式的乘除法,化简二次根式是解此题的闭键.23.(2016•祸修模拟)估计:()2﹣(2016)0+()﹣1.【分解】直交利用二次根式的本量以及整指数幂的本量战背整数指数幂的本量化简供出问案.【解问】解:本式=5﹣1+3=7.【面评】此题主要考查了二次根式的乘法运算以及整指数幂的本量战背整数指数幂的本量,精确有闭掌握运算规则是解题闭键.24.(2016秋•宿乡区校级期终)已知x、y为正数,且(+)=3(+5),供的值.【分解】央供代数式的值,要最先将分子分母的字母统一成一种,果此要整治已知条件,设法将其中一种字母用另一种表示,而后代进代数式中,约分即可.【解问】解:由已知条件得x﹣2﹣15y=0,∴(+3)(﹣5)=0,∵+3>0,∴﹣5=0,∴,x=25y,∴==2.【面评】不妨对付所给条件适合的变形是解题的闭键,对付条件的变形不程序可循,要根据题目需要,使用所教知识适合变形.25.(2016•厦门校级模拟)估计:.【分解】根据有理数的乘圆、来括号规则、二次根式的乘法规则分别估计,再合并即可.【解问】解:本式=﹣1﹣2+5+4=6.【面评】本题考查了二次根式的乘法规则,有理数的乘圆,来括号规则的应用,能供出各个部分的值是解此题的闭键.26.(2015秋•赵县期中)自习课上,弛玉瞅睹共桌刘敏正在训练本上写的题目是“供二次根式中真数a的与值范畴”,她报告刘敏道:您把题目抄错了,不是“”,而是“”,刘敏道:哎呀,真抄错了,佳正在不做用截止,反正a战a﹣3皆正在根号内.试问:刘敏道得对付吗?便是道,依照解题战依照解题的截止一般吗?【分解】本题需注意的是,被启圆数为非背数,按估计,则a战a﹣3可为共号的二个数,即共为正,或者共为背;而按估计,惟有共为正的情况.【解问】解:刘敏道得分歧过失,截止纷歧样.按估计,则a≥0,a﹣3>0或者a≤0,a﹣3<0解之得,a>3或者a≤0;而按估计,则惟有a≥0,a﹣3>0解之得,a>3.【面评】二次根式的被启圆数利害背数,分母不为0,是本题决定与值范畴的主要依据.27.(2014秋•专湖县校级月考)估计:.【分解】先将戴分数化为分数,而后而后根据×=举止二次根式的乘法运算即可.【解问】解:本式=××==×4=3.【面评】本题考查了二次根式的乘除法运算,易度不大,将戴分数化简为分数是很闭键的一步.28.(2016秋•夏津县校级月考)估计:.【分解】直交利用二次根式乘除运算规则直交供出即可.【解问】解:=3×(﹣)×2=﹣×5=﹣.【面评】此题主要考查了二次根式的乘除运算,流利应用运算规则是解题闭键.29.(2014秋•淮阳区校级月考)(x>0,y>0)【分解】根据二次根式的乘除法把根号中的相乘除,根号里的相乘除再化简即可.【解问】解:本式=﹣=﹣,∵x>0,y>0,∴本式=﹣=﹣3xy.【面评】本题主要考查了二次根式的乘除法,流利掌握运算规则是解题的闭键.30.(2013秋•玄武区期终)化简:3a•(﹣)(a ≥0,b≥0)【分解】根据二次根式的乘法运算规则直交得出即可.【解问】解:本式=﹣2a,=﹣12ab.【面评】此题主要考查了二次根式的乘法运算,精确化简二次根式是解题闭键.31.(2016秋•咸歉县校级月考)估计:(1)(2).【分解】(1)根据二次根式的乘法,可得问案;(2)根据二次根式的乘除法,可得问案.【解问】解:(1)本式=﹣12=﹣12×9=﹣108;(2)本式=÷×==1.【面评】本题考查了二次根式的乘除法,•=,÷=.32.(2016秋•端州区期终)估计:2×÷10.【分解】先化简二次根式,再用乘法战除法运算即可.【解问】解:2×÷10=2×2××=【面评】此题是二次根式的乘除法,主要考查了二次根式的化简,分母有理化,解本题的闭键是分母有理化的使用.33.(2012秋•上海期中)估计:×()÷.【分解】根据二次根式乘除法及分母有理化的知识解问即可.【解问】解:本式=b2×(﹣a)÷3=2b×(﹣a)×=﹣a2b.【面评】此题考查了二次根式的乘除法,认识二次根式乘除法的规则是解题的闭键.34.(2014秋•弛家港市校级期中)估计:.【分解】最先利用二次根式除法以及乘法规则转移成一个二次根式,而后对付二次根式举止化简即可.【解问】解:本式===×2a=.【面评】本题考查了二次根式的乘除运算,精确明白规则,精确化简二次根式是闭键.35.(2016秋•罗定市期中)估计:()﹣||【分解】直交利用二次根式乘法运算规则化简从而利用千万于值的本量化简,再合并供出问案.【解问】解:本式=3﹣﹣(2﹣)=3﹣﹣2+,=1.【面评】此题主要考查了二次根式的乘法以及千万于值的本量,精确掌握运算规则是解题闭键.36.(2014秋•吴中区期终)化简与估计:(1)÷;(2)3a•(﹣)(b≥0).【分解】(1)利用二次根式除法运算规则供出即可;(2)利用二次根式乘法运算规则供出即可.【解问】解:(1)÷=×=;(2)3a•(﹣)(b≥0)=3a×(﹣)=﹣2a=﹣12ab.【面评】此题主要考查了二次根式的乘除运算,流利掌握二次根式乘除运算规则是解题闭键.37.(2016•海北模拟)估计:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.【分解】(1)先根据背整数指数幂的意思、整指数幂的意思化简乘圆,再算乘法,而后估计加减;(2)利用仄圆好公式与真足仄圆公式估计乘法与乘圆,再来括号合并共类项即可.【解问】解:(1)9×3﹣2+20160﹣×=9×+1﹣4=1+1﹣4=﹣2;(2)(a+2)(a﹣2)﹣(a﹣1)2=(a2﹣4)﹣(a2﹣2a+1)=a2﹣4﹣a2+2a﹣1=2a﹣5.【面评】本题考查了整式的混同运算,真数的混同运算,背整数指数幂、整指数幂的意思,二次根式的乘除法,掌握运算程序与运算规则是解题的闭键.38.(2016秋•潮北区月考)化简:4x2.【分解】直交利用二次根式乘除运算规则化简供出问案.【解问】解:4x2=4x2÷12×3=x2=xy.【面评】此题主要考查了二次根式的乘除运算规则,精确化简二次根式是解题闭键.39.(2013秋•北京期终)估计:(a≥0,b≥0).【分解】根据二次根式的乘法规则供解.【解问】解:本式=2=2=6a.【面评】本题考查了二次根式的乘法,解问本题的闭键是掌握二次根式的乘法规则=.40.(2014秋•闵止区校级期中)估计:×(﹣2)÷.【分解】直交利用二次根式的乘除运算规则化简供出即可.【解问】解:×(﹣2)÷=×(﹣2)×=﹣=﹣=﹣.【面评】此题主要考查了二次根式的乘除运算,精确掌握运算规则是解题闭键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的乘法与除法 (作业)
一、选择题
1.下列计算正确的是( ).
A .b a b a +=+2)(
B .ab b a =+
C .b a b a +=+22
D .a a a =⋅1 2.下列计算正确的是( ).
A .b a b a b a -=-+2))(2(
B .1239)33(2=+=+
C .32)23(6+=+÷
D .641426412)232(2-=+-=- 3.)32)(23(+-等于( ).
A .7
B .223366-+-
C .1
D .22336-+
二、计算题(能简算的要简算)
1.).4818)(122(+- 2 . ).32
18)(8321(-+
3..6)1242764810(÷+- 4..)18212(2-
5.⋅+⋅-221221 6.⋅--+⨯2
818)212(2 7..)21()21(20092008-+ 8..)()(22b a b a --+
三、解答题
1.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.
2.已知25-=x ,求4)25()549(2++-+x x 的值.
3.如图1,在△ABC 中,∠C =90°,∠A =30°,∠B 的平分线BD 的长为4cm ,求这个三角形的三边长及面积.
图1
问题探究:
在劳技课上,老师请同学们在一张长为17cm ,宽为16cm 的长方形纸板上,剪下一个腰长为10cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).请你帮助同学们计算剪下的等腰三角形的面积.
参考答案
3.2cm 36,cm 34,cm 6,cm 32====∆ABC S AB AC BC
问题探究:分三种情况计算:
图1 图2 图3
(1)当AE =AF =10cm 时(如图1),S △AEF =50(cm 2)
(2)当AE =EF =10cm 时(如图2),BF =8(cm),)cm (40212==⋅∆BF AE S AEF (3)当AE =EF =10cm 时(如图3),⋅==∆)cm (515),cm (512AEF S DF。