2019湖北黄石中考数学解析
2019全国中考数学真题分类汇编之29:数学文化(含答案)
2019年全国中考数学真题分类汇编:数学文化一、选择题1. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( )()A 1,11 ()B 7,53 ()C 7,61 ()D 6,50 【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价y 钱.⎩⎨⎧=+=-y x yx 4738解得:⎩⎨⎧==537y x ,故选B.2.(2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为y ,则可建立方程组为( )A .B .C .D .【考点】二元一次方程组的解法与应用 【解答】解:设甲的钱数为,乙的钱数为y ,依题意,得:.故选:A .3. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长y尺,则可列二元一次方程组为()A. B. C D【考点二元一次方程组的解法与应用、数学文化【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.4.(2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3 B.5+45=7+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.5. (2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读个字,则下面所列方程正确的是( ) A .+2+4=34685 B .+2+3=34685C .+2+2=34685D .+12+14=34685【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读个字,根据题意可得:+2+4=34685, 故选:A .7.(2019年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为y ,可列方程组为( ) A . B .C D .【考】由实际问题抽象出二元一次方程组【解答】解:设人数为,买鸡的钱数为y ,可列方程组为: . 故:D .8.(2019年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为y 斤,则可列方程组为( ) A . B .CD .【考由际问抽出二元一次方程组 【解答】解:由题意可得, , 故:C .9.(019年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为尺,绳子长为y 尺,则所列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选A.10.(2019年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头y两,根据题意可列方程组为()A.B.C.D【考】二元一次方程组的应用【解答】解:设马每匹两,牛每头y两,根据题意可列方程组为:.故:D.11.(2019年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【考点】勾股定理【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a , 由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ), 较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a , 则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C . 二、填空题1. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米斛,1个小桶可以盛米y 斛, 则,故++y +5y =5, 则+y =56.答:1大桶加1小桶共盛56斛米.故答案为:56.2. (2019年辽宁省大连市)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 . 【考点】二元一次方程组的应用【解答】解:设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛, 根据题意得:, 故案为.3(2019年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为.【解答】一元一次方程的应用【考点】解:设有个人共同买鸡,根据题意得:9﹣11=6+16.故答案为:9﹣11=6+16.4.(2019年湖南省株洲市)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.5.(2019年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长y尺,可列方程组为.【解答】二元一次方程组的应用【考点】解:设木条长尺,绳子长y尺,依题意,得:.答案为:..(2019年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重y两,根据题意可列方程组为____.【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重两,每枚白银重y两,由题意得:,故案为:.7(201年宁夏自治)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程2+5﹣14=0即(+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(++5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程2﹣4﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵2﹣4﹣12=0即(﹣4)=12,∴构造如图②中大正方形的面积是(+﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数614040401000036000806403109204849791803139699出现“正面朝上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.三、解答题1.(2019年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有人,根据题意得:+2=,去分母得:2+12=3﹣27,解得:=39,∴=15,则共有39人,15辆车.2.(2019年湖北省黄石市)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用【考点】解:(1)设当走路慢的人再走600步时,走路快的人的走步,由题意得:600=100:60∴=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+60y100∴y=500答:走路快的人走500步才能追上走路慢的人.。
专题04 分式-湖北省2019-2021年3年中考真题数学分项汇编(解析版)
专题04 分式一、单选题1.(2021·湖北黄石市·中考真题)函数()02y x =+-的自变量x 的取值范围是( ) A .1x ≥- B .2x >C .1x >-且2x ≠D .1x ≠-且2x ≠【答案】C 【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解. 【详解】 解:函数()02y x =+-的自变量x 的取值范围是: 10x +>且20x -≠,解得:1x >-且2x ≠, 故选:C . 【点睛】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.2.(2021·湖北随州市·中考真题)下列运算正确的是( ) A .22a a -=- B .235a a a +=C .236a a a ⋅=D .()326a a =【答案】D 【分析】根据负指数运算法则可判断A ,根据同类项的定义可判断B ,根据同底数幂的乘法可判断C ,根据幂的乘方可判断D 【详解】 A . 2221aa a -=≠-,故选项A 计算不正确; B . 2a 与3a 不是同类项不能合并,235a a a +≠,故选项B 计算不正确;C . 232356a a a a a +⋅==≠,故选项C 计算不正确;D . ()23236a a a ⨯==,故选项D 正确.故选择D . 【点睛】本题考查负整指数运算,同类项识别与合并,同底数幂的乘法,幂的乘方,掌握负整指数运算,同类项识别与合并,同底数幂的乘法,幂的乘方是解题关键.3.(2020·湖北黄石市·中考真题)函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠D .2x >,且3x ≠【答案】A 【分析】根据分式与二次根式的性质即可求解. 【详解】依题意可得x -3≠0,x -2≥0 解得2x ≥,且3x ≠ 故选A . 【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质. 4.(2020·湖北随州市·中考真题)222142x x x÷--的计算结果为( ) A .2x x + B .22xx + C .22xx - D .2(2)x x +【答案】B 【分析】先把分母因式分解,再把除法转换为乘法,约分化简得到结果. 【详解】222142x x x÷-- =21(2)(2)(2)x x x x ÷+--=()()()2·222x x x x -+-=22xx +. 故选:B . 【点睛】本题主要考查了分式的除法,约分是解答的关键.5.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D 【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可. 【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11 故答案为D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 6.(2020·湖北荆门市·中考真题)下列等式中成立的是( ) A .()326339x yx y -=-B .2221122x x x +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭C .2+=+D .111(1)(2)12x x x x =-++++【答案】D 【分析】根据幂的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则计算即可. 【详解】 解:A 、()3263327x yx y -=-,故选项A 错误;B 、22222122411412x x x x x x +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭++-+=- 2221214x x x x ++-+-=x =,故选项B 错误;C⎫=+===6=-故选项C 错误; D 、112112(1)(2)(1)(2)x x x x x x x x ++-=-++++++ 21(1)(2)x x x x +--=++1(1)(2)x x =++,故选项D 正确, 故选:D . 【点睛】本题考查了的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则,熟练掌握相关运算法则是解决本题的关键.7.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=+y x 自变量x 的取值范围是( ) A .23x ≤B .23x ≥C .23x <且1x ≠- D .23x ≤且1x ≠-【答案】D 【分析】根据分式及二次根式有意义的条件解答即可. 【详解】∵11=-+y x ∵x+1≠0,2-3x≥0, 解得:23x ≤且1x ≠-, 故选D. 【点睛】本题考查分式及二次根式有意义的条件,要使分式有意义,分母不为0;要使二次根式有意义,被开方数大于等于0.8.(2019·湖北黄石市·在实数范围内有意义,则x 的取值范围是( ) A .1≥x 且2x ≠ B .1x ≤C .1x >且2x ≠D .1x <【答案】A 【分析】分式有意义,分母不等于零;二次根式的被开方数是非负数. 【详解】依题意,得x -1≥0且x -2≠0, 解得x≥1且x≠2. 故选A . 【点睛】本题考查了二次根式有意义的条件,分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C 【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②, 2②-①×得,27y =,解得72y =, 把72y =代入①得,712x +=,解得52x =-,∵222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+, 故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键.二、填空题10.(2021·湖北荆州市·中考真题)已知:(1012a -⎛⎫=+ ⎪⎝⎭,b =_____________. 【答案】2 【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解. 【详解】解:∵(112213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,=2=,故答案是:2.本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键.11.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设12a =,12b =,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++.则1210S S S +++=____.【答案】10 【分析】先根据1ab =求出1111n n nS a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得.【详解】 解:1ab =,111111()1nn n n n n na S ab a a b ∴=+=+++++(n 为正整数), 11()n n n n a a a ab =+++, 111nnna a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10. 【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键. 12.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________.【答案】1x y-先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得. 【详解】 解:221y x x y x y ⎛⎫÷- ⎪-+⎝⎭()()yx y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()yyx y x y x y=÷+-+ ()()yx yx y x y y+=⋅+- 1x y=-, 故答案为:1x y-.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 13.(2020·湖北武汉市·中考真题)计算2223m nm n m n--+-的结果是________. 【答案】1m n- 【分析】根据分式的减法法则进行计算即可. 【详解】 原式2()3()()()()m n m nm n m n m n m n ---+=+--223()()m n m nm n m n --=++-()()m nm n m n =++-1m n=- 故答案为:1m n-. 【点睛】本题考查了分式的减法运算,熟记运算法则是解题关键. 14.(2019·湖北武汉市·中考真题)计算221164a a a ---的结果是___________ 【答案】14a + 【分析】先通分,然后根据同分母分式加减法法则进行计算即可. 【详解】原式=()()()()244444a a a a a a +-+-+- =()()()2444a a a a -++-=()()444a a a -+- =14a +, 故答案为14a +. 【点睛】本题考查了异分母分式的加减法,熟练掌握异分母分式加减法的运算法则是解题的关键.三、解答题15.(2021·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.【答案】22-+a ,【分析】先对分式进行化简,然后再代入进行求解即可. 【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a =代入得:原式==【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键.16.(2021·湖北黄石市·中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a.【答案】11a +【分析】先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可. 【详解】 解:原式=1(1)(1)()a a a a a a1(1)(1)a aa a a1=1a +,将31a 代入,原式===. 【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键.17.(2021·湖北襄阳市·中考真题)先化简,再求值:2211x x x x x ++⎛⎫÷- ⎪⎝⎭,其中1x =.【答案】11x x +-;1+【分析】将被除数中分子因式分解,括号里先通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,然后约分,得到最简结果,代入x 的值计算即可.【详解】解:原式()2211x x xx x +⎛⎫=÷- ⎪⎝⎭, ()2211x x xx+-=÷,()()()2111x xx x x +=⋅+-,11x x +=-.当1x =时,原式1===【点睛】此题主要考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式因式分解后再约分.18.(2021·湖北中考真题)(1)计算:0(346)⨯- (2)解分式方程:212112x x x+=--. 【答案】(1)8;(2)1x =. 【分析】(1)先计算零指数幂、去括号、立方根、化简二次根式,再计算实数的混合运算即可得; (2)先将分式方程化成整式方程,再解一元一次方程即可得. 【详解】解:(1)原式1462⨯--+=44=+,8=;(2)212112xx x+=--, 方程两边同乘以21x -得:221x x -=-, 移项、合并同类项得:33x -=-,系数化为1得:1x =,经检验,1x =是原分式方程的解, 故方程的解为1x =. 【点睛】本题考查了零指数幂、立方根、化简二次根式、解分式方程,熟练掌握各运算法则和方程的解法是解题关键.19.(2021·湖北鄂州市·中考真题)先化简,再求值:2293411x x x x x x-+÷+--,其中2x =.【答案】1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可. 【详解】 解:原式()()()313341x x x x x xx -=⨯++--+1x x+=, 当2x =时,原式32=. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.20.(2021·湖北荆州市·中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =【答案】1a a + 【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把a =代入求值即可. 【详解】解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a+当a =6【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】 解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键. 22.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】 解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵当2x =时,原式1=. 或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键. 23.(2021·湖北十堰市·中考真题)化简:22214244a a a a a a a a +--⎛⎫-÷⎪--+⎝⎭. 【答案】21(2)a -【分析】先算分式的减法,再把除法化为乘法运算,进行约分,即可求解. 【详解】 解:原式=221(2)(2)4a a aa a a a ⎛⎫+--⋅⎪---⎝⎭=()()()22221(2)(2)4a a a a a a a a a a +--⎛⎫-⋅ ⎪---⎝⎭ =2224(2)4a a a a a a a --+⋅-- =24(2)4a aa a a -⋅--=21(2)a -【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.24.(2020·湖北荆州市·中考真题)先化简,再求值2211121a a a a -⎛⎫-÷ ⎪++⎝⎭:其中a 是不等式组22213a a a a -≥-⎧⎨-<+⎩①②的最小整数解; 【答案】1a a +,32先利用分式的混合运算法则化简分式,再解不等式组的解集求出最小整数解,代入即可解之. 【详解】解:原式=21(1)(1)(1)a a a a a -+⋅+-1a a +=,解不等式组22213a a a a -≥-⎧⎨-<+⎩①②,解不等式①得:2a ≥, 解不等式②得:4a <, ∵不等式组的解集为24a ≤<, ∵a 的最小值为2 ∵原式=21322+=. 【点睛】本题考查了分式的化简求值、解一元一次不等式组的解集,熟练掌握分式的混合运算法则,会求一元一次不等式组的整数解是解答的关键.25.(2020·湖北黄石市·中考真题)先化简,再求值:222111x x xx x ++---,其中5x =. 【答案】11x -,14. 【分析】先根据分式的减法法则进行化简,再将5x =代入求值即可. 【详解】原式2(1)(1)(1)1x xx x x +=-+-- 111x xx x +=--- 11x x x +--=11x =- 将5x =代入得:原式11514==-.本题考查了分式的减法运算与求值,熟练掌握分式的减法运算法则是解题关键.26.(2020·湖北省直辖县级行政单位·中考真题)(1)先化简,再求值:22244422a a a a a a -+-÷-,其中1a =-. (2)解不等式组32235733x x x x +>-⎧⎪-⎨≤-⎪⎩,并把它的解集在数轴上表示出来.【答案】(1)22a +,2;(2)24x -<≤,数轴见解析 【分析】(1)首先把分式的分子和分母分解因式,把除法去处转化成乘法运算,再把a 代入计算即可; (2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可. 【详解】(1)22244422a a a a a a-+-÷- 2(2)2(2)(2)(2)a a a a a a -=⋅-+- 22a =+, 当1a =-时, 原式2212==-+;(2)解:由322x x +>-得:2x >-, 由35733x x --得:4x ≤, ∵不等式组的解集为:24x -<≤. 在数轴上表示如下:【点睛】本题考查了解一元一次不等式组以及分式的化简求值,正确对分式进行通分、约分是关键.27.(2020·湖北中考真题)先化简,再求值:22221244a b a b a b a ab b---÷+++,其中3,3a b ==.【答案】ba b-+, 【分析】利用完全平方公式、平方差公式和通分等方法将原分式化简成ba b-+,再将a 、b 的值代入化简后的分式中即可得出结论. 【详解】 解:原式()()()2122a b a b a b a b a b +--=-÷++ ()()()2212a b a ba b a b a b +-=-⨯++- 21a ba b+=-+ ba b=-+,当3,3a b ==时,原式==【点睛】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.28.(2020·湖北宜昌市·中考真题)先化简,再求值:20441(1)12x x x x x x ++----+,其中2020x =.【答案】1x +;2021 【分析】先把244x x ++分解因式,再进行约分化简,最后把x=2020代入进行计算即可. 【详解】20441(1)12x x x x x x ++-⋅---+2(2)1112x x x x +-=⋅--+21x =+-1x =+当2020x =时, 原式20201=+2021=.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值,在化简过程中要注意运算顺序和分式的化简,注意运算的结果要化成最简分式或整式.29.(2020·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:222936933m m m m m m ⎛⎫--÷⎪-+--⎝⎭,其中m =.【答案】1m 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可. 【详解】222936933m m m m m m ⎛⎫--÷⎪-+--⎝⎭ 22(3)(3)33(3)3m m m m m m ⎡⎤+--=-⋅⎢⎥--⎣⎦ 2333()33m m m m m +-=-⋅-- 233m m m m -=⋅- 1m =;当m =2==. 【点睛】本题主要考查了分式的化简求值以及二次根式的化简,熟练掌握分式的混合运算法则是解答的关键.30.(2020·湖北鄂州市·中考真题)先化简2224421111x x x x x x x -+-÷+-+-,再从2-,1-,0,1,2中选一个合适的数作为x 的值代入求值. 【答案】2x,-1. 【分析】先化简分式,然后在确保分式有意义的前提下,确定x 的值并代入计算即可. 【详解】解:2224421111x x x x x x x -+-÷+-+- =()()()()22111121x x x x x x x -+⨯++---=()2111x x x x -+--=()()211x x x x x x-+--=()221x x x -- =()()211x x x --=2x在2-、1-、0、1、2中只有当x=-2时,原分式有意义,即x 只能取-2 当x=-2时,2212x ==--. 【点睛】本题考查了分式的化简求值和分式有意义的条件,正确将分式化简和选取合适的x 的值是解答本题的关键. 31.(2019·湖北鄂州市·中考真题)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭. 【答案】x+2;当1x =-时,原式=1.【分析】先化简分式,然后将x 的值代入计算即可. 【详解】解:原式()()22244242x x x x x x ⎡⎤--=-÷⎢⎥---⎢⎥⎣⎦ 244224xx x x x -⎡⎤=-÷⎢⎥---⎣⎦()()22424x x x x x -+-=⋅-- 2x =+∵20x -≠,40x -≠, ∵2x ≠且4x ≠, ∵当1x =-时, 原式121=-+=. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.32.(2019·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:22111211+÷-++++x x x x x,其中1x .【答案】21x +【分析】把被除式分母利用完全平方公式因式分解,按照分式除法的运算法则计算,再通分整理可得最简结果,把x 的值代入计算即可. 【详解】 原式()()()221111x x x x +=⨯+--+()()211111x x x x x +-+=-++22111x x x +-+=+ 21x =+当1x =时,原式==. 【点睛】本题考查分式的计算——化简求值,熟练掌握运算法则是解题关键.33.(2019·湖北省直辖县级行政单位·中考真题)(1)计算:20(2)|3|(6)----; (2)解分式方程:22511x x =--. 【答案】(1)6;(2)x=32【解析】【分析】(1)先计算乘方、去绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x 的值,再检验即可得.【详解】解:(1)原式=43416-++=;(2)两边都乘以()()11x x +-,得:()215x +=, 解得:32x =, 检验:当32x =时,()()51104x x +-=≠, ∴原分式方程的解为32x =. 【点睛】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.34.(2019·湖北荆州市·中考真题)先化简2211a a a a⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值.【答案】-1【分析】 先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a ⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.35.(2019·湖北宜昌市·中考真题)已知:x y ≠,8y x =-+,求代数式22x y x y y x+--的值. 【答案】8【分析】先根据分式加减运算法则化简原式,再将8y x =-+代入计算可得.【详解】 原式2222x y x y x y y x x y x y =+=-----()()22x y x y x y x y x y x y+--===+--, 当x y ≠,8y x +=-时,原式()88x x +-+==.【点睛】本题主要考查分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.36.(2019·湖北黄石市·中考真题)先化简,再求值:2321222x x x x x -+⎛⎫+-÷ ⎪++⎝⎭,其中2x =. 【答案】11x x +-,3. 【分析】 根据分式的运算法则即可求出答案.【详解】原式=2234(1)222x x x x x ⎛⎫--+÷ ⎪+++⎝⎭=221(1)22x x x x --÷++=2(1)(1)22(1)x x x x x +-+⋅+-=11x x +-, ∵|x|=2时,∵x=±2,由分式有意义的条件可知:x=2,∵原式=3.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.37.(2019·湖北荆门市·中考真题)先化简,再求值:2222224333a b a b a a a b a b a bb +-⎛⎫-÷ ⎪-+-⎝⎭•,其中a b = 【答案】103【分析】先根据分式混合运算的法则把原式进行化简,再把a b 、的值代入进行计算即可.【详解】 原式2()43()3()()a b ab a b a b a b +=--+- 22()43()()a b ab a b a b +-=+-,()2223()()a b a b a b +=+-,当a b == 原式103==. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.38.(2019·湖北中考真题)先化简,再求值:21112a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中1a =.【分析】 根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】21112a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 2112a a a a a-+-=÷ 21(1)a a a a -=⋅- 11a =-,当1a =时,原式== 【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.39.(2019·湖北黄冈市·中考真题)先化简,再求值.2222225381a b b a b b a a b ab+⎛⎫+÷ ⎪--+⎝⎭,其中a =1b =.【答案】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=()225381a b b a b ab a b +-÷-+ ()()()()5a b ab a b a b a b -=⋅++- 5ab =,当a =1b =时,原式=.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则.。
中考试题 因式分解(解析版)2019数学全国中考真题
2019全国中考数学真题知识点05因式分解(解析版)一、选择题8.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的。
1. (2019·无锡市)分解因式224x y 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【答案】C【解析】本题考查了公式法分解因式,4x 2-y 2=(2x -y )(2x +y ),故选C.2. (2019·潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=--【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .二、填空题11.(2019·广元)分解因式:a 3-4a =________.【答案】a(a+2)(a -2)【解析】a 3-4a =a(a 2-4)=a(a+2)(a -2).12.(2019·苏州)因式分解:x 2-xy = .【答案】x (x -y )【解析】本题考查了提公因式法分解因式,x 2-xy = x (x -y ),故答案为x (x -y ).11.(2019·温州)分解因式:m 2+4m+4= .【答案】(m+2)2【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.11.(2019·绍兴 )因式分解:=-12x .【答案】(x+1)(x-1)11.(2019·嘉兴)分解因式:x 2﹣5x = .【答案】(5)x x -11.(2019·杭州)因式分解:1-x 2=_________.【答案】(1-x)(1+x)【解析】直接应用平方差公式进行因式分解,1-x 2=(1-x)(1+x),故填:(1-x)(1+x).14.(2019·威海)分解因式:2x 2-2x +12= . 【答案】2122x ⎛⎫- ⎪⎝⎭ 【解析】先提取公因式2,再根据完全平方公式进行二次分解.2x 2-2x +12=2(x 2-x +14)=2122x ⎛⎫- ⎪⎝⎭. 10.(2019·盐城)分解因式:21x -= .【答案】(1)(1)x x -+【解析】直接利用平方差公式分解因式,进而得到答案.7.(2019·江西)因式分解:12-x = .【答案】(x+1)(x-1)【解析】12-x =(x+1)(x-1)14.(2019·长沙,14,3分)分解因式:am 2-9a= .【答案】a(m+3)(m-3).【解析】先提取公因式a ,再应用平方差公式进行分解因式. am 2-9a=a(m+3)(m-3).13.(2019·衡阳)因式分解:2a 2-8= .【答案】2(a +2)(a =2)【解析】2a 2-8=2(a +2)(a =2),故答案为2(a +2)(a =2).11.(2019·黄冈)分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。
2019湖北黄石中考数学试卷解析
{来源}2019年黄石中考数学{适用范围:3. 九年级}{标题}黄石市二〇一九年初中学业水平考试考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共 10 小题,每小题 3分,合计30分.{题目}1.(2019年黄石)下列四个数:-3,-0.5,23A. -3B.-0.5C.23{答案}A{解析}本题考查了绝对值的定义,一个正数的绝对值等于它本身;一个负数的绝对值等于它相反数;0的绝对值是0,由于2233,0.50.5,33-=-===A .{分值}3{章节: [1-1-2-4]绝对值}{考点: :绝对值的性质}{类别:常考题}{难度:1-最简单}{题目}2.(2019年黄石)国际行星命名委员会将紫金山天文台于2007年9月11日发现的编号为171448的小行星命名为“谷超豪星”,则171448用科学计数法可表示为A. 60.17144810⨯B. 51.7144810⨯C. 50.17144810⨯D. 61.7144810⨯{答案}B{解析}本题考查了科学记数法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.因此171448用科学记数法表示为1.71448⨯105.因此本题选B.{分值}3{章节: [1-1-5-2]科学计数法}{考点: 将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}3.(2019年黄石)下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.{答案}D{解析}本题考查了轴对称和中心对称图形的识别,A .轴对称图形;B .中心对称图形;C .轴对称图形;D .既是轴对称图形,又是中心对称图形,因此本题选D .{分值}3{章节: [1-23-2-2]中心对称图形}{考点:轴对称图形}{考点:中心对称图形}{类别:常考题}{难度:1-最简单}{题目}4.(2019年黄石)如图,该正方体的俯视图是A B C D (第4题){答案}A{解析}本题考查了几何体的三视图.空间几何体的三视图首先是要确定主视图的位置,然后要时刻遵循 “长对正,高平齐,宽相等” 的规律,即是空间几何体的长对正视图的长,高对侧视图的高,宽对俯视图的宽. 轮廓内看见的棱线用实线画出,看不见的棱线用虚线画出.结合正方体的摆放方式,因此本题选A .{分值}3{章节: [1-29-2]三视图}{考点: 简单几何体的三视图}{类别:常考题}{难度:1-最简单}{题目}5.(2019年黄石)化简1(93)2(1)3x x --+的结果是A. 21x -B. 1x +C. 53x +D. 3x -{答案}D{解析}本题考查了整式的加减运算,解答过程如下: 1(93)2(1)3x x --+=3x-1-2x-2 =3x-3因此本题选D .{分值}3{章节: [1-2-2]整式的加减}{考点: 整式加减}{类别:常考题}{难度:2-简单}{题目}6.(2019年黄石)在实数范围内有意义,则x 的取值范围是 A. 1x ≥且2x ≠ B. 1x ≤ C. 1x >且2x ≠ D. 1x <{答案}A{解析}本题考查了分式和二次根式有意义的条件,由二次根式被开方数大于等于零,可知x-1≥0, 解得x ≥1, 由分式中的分母不等于零,可得x-2≠0, 解得x ≠2.因此本题选A. {分值}3{章节: [1-16-1]二次根式}{考点:分式的意义}{考点:二次根式的有意义的条件}{难度:2-简单}{类别:易错题}{题目}7.(2019年黄石)如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上, AB 边的中点是坐标原点O ,将正方形绕点C 按逆时针方向旋转90°后,点B 的对应点'B 的坐标是A.(-1,2)B.(1,4)C.(3,2)D.(-1,0){答案}C{解析}本题考查了图形旋转的性质,图形旋转前后的对应边相等,对应角相等,对应点到旋转中心的距离相等;对应点与旋转中心的连线所成的角等于旋转角.根据图形旋转的性质可知:∠BCB 、=90°,CB 、=CB=2,所以'B 的坐标是(3,2),因此本题选C .{分值}3{章节: [1-23-1]图形的旋转}{考点:旋转的性质}{类别:常考题}{难度:2-简单}{题目}8.(2019年黄石)如图,在∆ABC 中,50B ∠=︒,CD AB ⊥于点D ,BCD ∠和BDC ∠的角平分线相较于点E ,F 为边AC 的中点,CD CF =,则ACD CED ∠+∠=A.125°B.145°C.175°D.190°{答案}C{解析}本题考查了三角形的角平分线,直角三角形斜边的中线等于斜边的一半,等边三角形的判定与性质,解答过程如下:连接DF ,∵CD AB ⊥于点D ,∴∠CDA=∠CDB=90°,∵∠B=500,∴∠DCB=400,∵CE ,DE 分别平分∠DCB,∠CDB ,∴∠CED=1150,∵F 为边AC 的中点,∴DF=CF,又∵CD=CF, ∴△CDF 为等边三角形,∴∠ACD=600, ∴∠ACD+∠CED=600+1150=1750.因此本题选C .{分值}3{章节:[1-18-2-1]矩形}{考点:三角形的角平分线}{考点:等边三角形的判定与性质}{考点:直角三角形斜边上的中线}{类别:高度原创}{难度:3-中等难度}{题目}9.(2019年黄石)如图,在平面直角坐标系中,点B 在第一象限,BA x ⊥轴于点A ,反比例函数k y x=(0x >)的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y x =的对称点'C 的坐标为(1,n )(1n ≠),若∆OAB 的面积为3,则k 的值为 A. 13 B.1 C.2 D.3{答案}D{解析}本题考查了反比例函数的几何意义,连接OC ,根据C 是线段AB 的中点,∆OAB 的面积为3,可知△OAC 的面积为32,根据反比例函数的几何意义,1322k =,k=3,因此本题选D . {分值}3{章节:[1-26-1]反比例函数的图像和性质}{考点:反比例函数的几何意义}{类别:常考题}{难度:3-中等难度}{题目}10.(2019年黄石)如图,矩形ABCD 中,AC 与BD 相交于点E,:AD AB =,将ABD 沿BD 折叠,点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得BH EH +的值最小,此时BH CF=A.2B. 3C. 2D. 32{答案}B {解析}本题考查了矩形的性质,三角形全等的性质与判定,最短路线的知识,解答过程如下: 延长BA 至P ,使AP=AB ,连接EP ,交AD 于点H ,连接BH ,此时BH+EH 最小.∵:AD AB =,∴∠BDA=300,∠DBA=600,设AB=a,则,∵△DBF 是由△DAB 折叠得到的,∴∠FBD=∠ABD=600,∠FDB=∠BDA=300,AB=FB,DA=DF,∴△ADF 为等边三角形,∴∠DAF=600,∵∠EDA=∠EAD=300,∴∠DAC=∠FAC,∴△FAC ≌△DAC,∴CF=CD=AB=a,同理在Rt △BAH 中,可求得∠ABH=300,∴030AB COS BH =∴a , ∴BH CF = 因此本题选B .{分值}3{章节:[1-18-2-1]矩形}{考点:几何选择压轴}{考点:与矩形菱形有关的综合题}{考点:最短路线问题}{难度:5-高难度}{类别:高度原创}{题型:2-填空题}二、填空题:本大题共 6小题,每小题 3分,合计18分.{题目}11.(2019年黄石)分解因式:2224x y x -=_________________{答案}x 2(y+2)(y-2){解析}本题考查了因式分解,因式分解主要有两种方法,一是提公因式法,二是公式法,具体解答过程:x 2y 2-4x 2=x 2(y 2-4)= x 2(y+2)(y-2),因此本题填x 2(y+2)(y-2).{分值}3{章节: [1-14-3]因式分解}{考点:因式分解-提公因式法}{考点:因式分解-平方差}{类别:常考题}{难度:2-简单}{题目}12.(2019年黄石)分式方程:241144x x x -=--的解为 __________________ {答案}x=-1{解析}本题考查了分式方程的解法,解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,检验.解答过程如下:241144x x x -=-- 解:方程两边同时乘以x(x-4)得:4-x=x(x-4)x 2-3x-4=0,(x-4)(x+1)=0x 1=4,x 2=-1检验:当x=4时,x(x-4)=0,所以x=4是增根.所以原方程的解为:x 2=-1因此本题填x=-1.{分值}3{章节:[1-15-3]分式方程}{考点:解含两个分式的分式方程}{考点:分式方程的检验}{考点:分式方程的增根}{类别:易错题}{难度:2-简单}{题目}13.(2019年黄石)如图,一轮船在M 处观测灯塔P 位于南偏西30°方向,该轮船沿正南方向以15海里/小时的速度匀速航行2小时后到达N 处,再观测灯塔P 位于南偏西60°方向,若该轮船继续向南航行至灯塔P 最近的位置T 处,此时轮船与灯塔之间的距离PT 为________海里(结果保留根号)北{答案}153{解析}本题考查了解直角三角形的应用,解答过程如下:根据题意可知:∠PMN=30°,∠PNT=60°,MN=15×2=30,∴PN=MN=30,∵PT⊥MN,∴PT=cos30°PN=3301532⨯=,因此本题填153.{分值}3{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形-方位角}{类别:常考题}{难度:3-中等难度}{题目}14.(2019年黄石)根据下列统计图,回答问题:某超市去年8~11月个月销售总额统计图某超市去年8~11月水果类销售额占该超市当月销售总额的百分比统计图该超市10月份的水果类销售额______11月份的水果类销售额(请从“>” “=” “<”中选一个填空){答案}>{解析}本题考查了条形统计图和折线统计图,由条形统计图可知10月份销售总额为60万元,11月份销售总额为70万元,由折线统计图可知10月份水果销售总额占当月销售总额的20%,11月份水果销售总额占当月销售总额的15%,所以10月份的水果销售额为60×20%=12(万元),11月份的水果销售额为70×15%=10.5(万元),因此本题填>.{分值}3{章节:[1-10-1]统计调查}{考点:条形统计图}{考点:折线统计图}{类别:常考题}{难度:2-简单}{题目}15.(2019年黄石)如图,Rt ∆ABC 中,A ∠=90°,CD 平分ACB ∠交AB 于点D ,O 是BC 上一点,经过C 、D 两点的⊙O 分别交AC 、BC 于点E 、F ,AD =ADC ∠=60°,则劣弧CD 的长为_______________{答案}43π {解析}本题考查了圆的基本性质以及弧长计算,解答过程如下:连接OD ,DF , ∵A ∠=90°,ADC ∠=60°,∴∠ACD=300,∵AD =∴CD=,∵CD 平分ACB ∠,∴∠DCO=∠ACD=300, ∵OC=OD ,∴∠COD=1200,∵CF 是⊙O 的直径,∴∠CDF=900,∴CF=0cos 30CD=4,∴OC=2,∴CD =120441803ππ⨯=. 因此本题填43π. {分值}3{章节:[1-24-4]弧长和扇形面积}{考点:含30度角的直角三角形}{考点:直径所对的圆周角}{考点:弧长的计算}{类别:常考题}{难度:3-中等难度}{题目}16.(2019年黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵147101316192225283134374043则第20行第19个数是_____________________{答案}625{解析}本题考查了数字的排列规律探究,根据数的规律,第n个数可以表示为3n-2,根据排列规律,到第20行第19个数一共有1+2+3+4+⋯+19+20-1=209(个),即n=209时,3n-2=625,因此本题填625.{分值}3{章节:[1-2-1]整式}{考点:规律-数字变化类}{类别:发现探究}{难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共 9小题,合计72分.{题目}17.(2019年黄石)(本小题7分)()101 201912sin453π-⎛⎫-+-︒+ ⎪⎝⎭{解析}本题考查了零指数幂,绝对值,特殊角的三角函数值,负整数指数幂等综合的实数混合运算.{答案}解:()101 201912sin453π-⎛⎫--︒+ ⎪⎝⎭=11232+--⨯+=3{分值}7{章节:[1-28-3]锐角三角函数} {考点:零次幂}{考点:负指数参与的运算} {考点:特殊角的三角函数值} {类别:常考题}{难度:3-中等难度}{题目}18.(2019年黄石)(本小题7分)先化简,再求值:2321222x xxx x-+⎛⎫+-÷⎪++⎝⎭,其中2x=.{解析}本题考查了分式的化简求值,先对分式进行化简,然后将已知字母的值代入求值.注意字母取值时要使原分式有意义.{答案}解:2321222x xxx x-+⎛⎫+-÷⎪++⎝⎭=22 3422(1) x xx x+-+•+-=2 (1)(1)22(1) x x xx x-++•+-=11 xx+ -∵2x=.∴2x=±∵x≠-2, ∴x=2,∴11 xx+ -=3{分值}7{章节:[1-15-2-2]分式的加减} {考点:分式的混合运算}{类别:易错题}{难度:3-中等难度}{题目}19.(2019年黄石)(本小题7分)若点P的坐标为(13x-,29x-),其中x满足不等式组5102(1)131722x xx x-≥+⎧⎪⎨-≤-⎪⎩,求点P所在的象限.{解析}本题考查了点的坐标及解一元一次不等式组.先通过解一元一次不等式组求出x的取值范围,然后再判断P点横坐标和纵坐标的正负性,利用各象限点的坐标的特征判断P点所在的象限.{答案}解:5102(1) 131722x xx x-≥+⎧⎪⎨-≤-⎪⎩解不等式①得:x≥4,解不等式②得:x≤4,∴不等式组的解集为:x=4,当x=4时,P点的坐标为(1,-1),所以P点在第四象限.{分值}7{章节:[1-9-3]一元一次不等式组}{考点:点的坐标}{考点:解一元一次不等式组}FB {难度:3-中等难度}{类别:常考题}{题目}20.(2019年黄石)(本小题7分)已知关于x 的一元二次方程26(41)0x x m -++=有实数根.(1)求m 的取值范围.(2)若该方程的两个实数根为1x 、2x ,且124x x -=,求m 的值.{解析}本题考查了一元二次方程根的判别式和一元二次方程根与系数的关系.(1)根据一元二次方程有实数根,列出关于m 的不等式,求出m 的取值范围;(2)将两根之差转化为两根之和与两根之积的形式,求出m 的值,注意结合(1)中取值范围进行取舍. {答案}解:(1) ∵一元二次方程26(41)0x x m -++=有实数根.∴△=(-6)2-4(4m+1)≥0解得:m ≤2.(2)∵x 1+x 2=6, x 1x 2=4m+1 又∵124x x -=∴(x 1-x 2)2=16∴(x 1+x 2)2-4x 1x 2=16∴36-4(4m+1)=16 解得:m=1.{分值}7{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:根的判别式}{考点:根与系数关系}{难度:3-中等难度}{类别:常考题}{题目}21.(2019年黄石)(本小题8分)如图,在ABC 中,90BAC ∠=︒,E 为边BC 上的点,且AB AE =,D 为线段 BE 的中点,过点E 作EF AE ⊥,过点A 作AF BC ,且AF 、EF 相交于点F . (1)求证:C BAD ∠=∠(2)求证:AC EF ={解析}本题考查了等腰三角形的性质,平行线的性质以及全等三角形的判定与性质.(1)利用等腰三角形三线合一的性质得到AD ⊥BC ,再利用直角三角形的性质可得到∠C 与 ∠BAD 相等;(2)利用ASA 判定△BAC 与△AEF 全等,利用全等三角形的性质可以证明结论. {答案}证明:(1)∵AB=AE ,∴△ABE 是等腰三角形,又∵ D 为线段BE 的中点,∴AD ⊥BC ,∴∠C+∠DAC=90°,又∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠C=∠BAD.(2)∵AF ‖BC, ∴∠EAF=∠AEB ,∵AB=AE ,∴∠ABE=∠AEB ,∠EAF=∠ABC.又∵∠BAC=∠AEF=90°,∴△BAC ≌△AEF∴AC=EF.{分值}8{章节:[1-13-2-1]等腰三角形}{考点:两直线平行内错角相等}{考点:全等三角形的判定ASA,AAS}{考点:三线合一}{难度:3-中等难度}{类别:常考题}{题目}22.(2019年黄石)(本小题8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回并洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(,m n).(1)请写出(,m n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.{解析}本题考查了用列举法求概率以及利用概率的大小判断游戏的公平性.(1)用列表法或画树形图法列出所有等可能结果;(2)按照游戏规则,求出甲乙两人获胜的概率,通过概率的大小判断游戏是否公平.{答案}解: (1)(2)由上表可知,共有9种等可能的结果,其中和为奇数的有4种,和为偶数的有5种,∴P(甲赢)=49,P(乙赢)=59∴乙赢的可能性大一些,故这个游戏不公平.{分值}8{章节:[1-25-2]用列举法求概率}{考点:两步事件不放回}{考点:游戏的公平性}{难度:3-中等难度}{类别:常考题}{题目}23.(2019年黄石)(本小题8分)“今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?{解析}本题考查了行程问题的一元一次方程应用.(1)求出走路慢的人走600步时,走快路的人做多少步;(2)走快路的人每走100步,比走慢路的人多40步,求出走快路的人几个100步就比走慢路的人多200步即可.{答案}解:(1)设 走路慢的人再走600步时,走快路的人走了x 步,根据题意得:60010060x=,解得:x=1000, 1000-600-100=300(步)即走快路的人在前面,两人相隔300步.(2)设走快路的人走了y 个100步,追上了走慢路的人,根据题意得:(100-60)y=200, 解得y=5,即走快路的人走了500步才能追上走慢路的人.{分值}8{章节:[1-3-3]实际问题与一元一次方程}{考点:一元一次方程的应用(行程问题)}{难度:3-中等难度}{类别:数学文化}{题目}24.(2019年黄石)(本小题10分)如图,AB 是⊙O 的直径,点D 在AB 的延长线上, C 、E 是⊙O 上的两点,CE CB =,BCD CAE ∠=∠,延长AE 交BC 的延长线于点F(1)求证:CD 是⊙O 的切线;(2)求证:CE CF =(3)若1BD =,CD =求弦AC 的长.{解析}本题考查了圆的切线的性质与判定,三角形的全等与相似.(1)连接OC ,证明OC ⊥CD;(2)通过证明△ACF ≌△ACB 即可;(3)证明△DCB ∽△DAC,利用相似三角形的性质求出AC 的长.{答案}(1)证明:连接OC ,∵CE=CB,∴∠CAE=∠BAC,又∵∠BCD=∠CAE, ∴∠CAE=∠BAC, ∴∠ACO=∠BCD.∵AB 是⊙O 的直径,∴∠ACB=900,∴∠OCD=∠OCB+∠BCD=∠OCB+∠ACO=∠ACB=900,∴OC ⊥CD,∴CD 是⊙O 的切线.(2)在Rt △ACF 和Rt △ACB 中,∠CAF=∠CAB,∵∠ACF=∠ACB=900,AC 为公共边,∴△ACF ≌△ACB ,∴CF=CB, 又∵CE=CB, ∴CE=CF.(3)∵∠BCD=∠CAB, ∠D=∠D,∴△DCB ∽△DAC ∴DC DB CB DA DC AC==∵∴DA=2, AB=1,∴2CB AC =设AC=2x ,在Rt △ABC 中,AC 2+BC 2=AB 2∴())2221x +=,解得:6x =(舍负)∴AC=263⨯=. {分值}10{章节:[1-27-1-2]相似三角形的性质}{考点:全等三角形的判定ASA,AAS}{考点:相似三角形的判定(两角相等)}{考点:相似三角形的性质}{考点:圆周角定理}{考点:直径所对的圆周角}{考点:切线的判定}{考点:切割线定理}{考点:圆与相似的综合}{考点:几何综合}{难度:4-较高难度}{类别:常考题}{题目}25.(2019年黄石)(本小题10分)如图,已知抛物线213y x bx c =++经过点A (-1,0)、B (5,0).(1)求抛物线的解析式,并写出顶点M 的坐标;(2)若点C 在抛物线上,且点C 的横坐标为8,求四边形AMBC 的面积(3)定点(0,)D m 在y 轴上,若将抛物线的图象向左平移2各单位,再向上平移3个单位得到一条新的抛物线,点P 在新的抛物线上运动,求定点D 与动点P 之间距离的最小值d (用含m的代数式表示){解析}本题考查了求二次函数解析式,利用图像上点的坐标求图形的面积.(1)直接将A ,B 两点坐标代入求函数解析式;(2)求出C 点坐标,将四边形AMBC 面积分成△ABC 和△ABM 的面积之和计算;(3)利用两点间的距离公式,用含m 的式子表示PD 的长,求出PD 的最小值.{答案}解:(1)将A(-1,0),B(5,0)代入 213y x bx c =++中得:10325503b c b c -+=++=⎧⎪⎨⎪⎩解得:4353b c =-=-⎧⎪⎨⎪⎩ ∴抛物线的解析式为2145333y x x =--,顶点M 坐标为(2,-3).(2)当x=8时,y=9,∴C(8,9) ∴S 四边形AMBC =S △ABC +S △ABM =1169633622⨯⨯+⨯⨯=.(3)∵顶点M 坐标为(2,-3),∴将抛物线的图象向左平移2各单位,再向上平移3个单位得到一条新的抛物线的解析式为213y x =. 设P(x,213x ) ∴2222422112()(1)393PD x x m x m x m =+-=+-+ 当42224210,即时,x 0,(1)03393m m m x -≥≤≥-≥, ∴当x=0时,PD 2有最小值m 2,∴当m ≤32时,PD 有最小值|m |; 当2310时,即时,32m m -22213129()324m PD x m -=+-+, 当213032x m +-=时,PD 2有最小值为1294m -, 即当32m 时,PD.即3()3)2m m m d ≤⎧={分值}10{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {考点:二次函数图象的平移}{考点:其他二次函数综合题}{难度:5-高难度}{类别:高度原创}。
中考数学必考考点专题13反比例函数含解析
专题13 反比例函数1.反比例函数:形如y=xk(k为常数,k≠0)的函数称为反比例函数。
其他形式xy=k、1-=kxy。
2.图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。
对称中心是:原点。
它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3.性质:(1)当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;(2)当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
5.反比例函数解析式的确定由于在反比例函数xky=中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
【例题1】(2019山东枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A.B分别在x 轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1 B.C.D.2【答案】A专题知识回顾专题典型题考法及解析【解析】根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决.∵等腰直角三角形ABC的顶点A.B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1故选:A.的图【例题2】(2019湖南郴州)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.【答案】8【解析】∵A、C是两函数图象的交点,∴A、C关于原点对称,∵CD⊥x轴,AB⊥x轴,∴OA=OC,OB=OD,∴S△AOB=S△BOC=S△DOC=S△AOD,的图象上,又∵反比例函数y=4x∴S△AOB=S△BOC=S△DOC=S△AOD=1×4=2,2∴S四边形ABCD=4S△AOB=4×2=8,故答案为:8.【例题3】(2019江苏镇江)如图,点A(2,n)和点D是反比例函数y=mx(m>0,x>0)图像上的两点,一次函数y=kx+3(k≠0)的图像经过点A,与y轴交于点B,与x轴交于点C,过点D作DE ⊥x轴,垂足为E,连接OA、OD.已知△OAB与△ODE的面积满足S△OAB﹕S△ODE=3﹕4.(1)S△OAB=________,m=________;(2)已知点P(6,0)在线段OE上,当∠PDE=∠CBO时,求点D的坐标.【答案】见解析。
2019年全国各地中考数学试题分类汇编之专题6 不等式(组)(含解析)
不等式(组)一.选择题1. (2019•湖北天门•3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.2.(2019甘肃省陇南市)(3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣33. (2019•湖南衡阳•3分)不等式组的整数解是()A.0 B.﹣1 C.﹣2 D.14. (2019•湖南衡阳•3分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0C.x<﹣1或0<x<2 D.﹣1<x<0或x>25.(2019•浙江宁波•4分)不等式>x的解为()A.x<1 B.x<﹣1 C.x>1 D.x>﹣16. (2019•山东省德州市 •4分)不等式组的所有非负整数解的和是( )A .10B .7C .6D .07. (2019•甘肃武威•3分)不等式2x +9≥3(x +2)的解集是( ) A .x ≤3 B .x ≤﹣3 C .x ≥3 D .x ≥﹣38. (2019•湖南怀化•4分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只. A .55 B .72 C .83 D .899. (2019•湖南岳阳•3分)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3 B .c <﹣2C .c <D .c <110.(2019,山西,3分)不等式组⎩⎨⎧<->-42231x x 的解集是( )A.4>xB.1->xC.41<<-xD.1-<x11. (2019•南京•2分)实数A.B.c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( ) A . B .C .D .12(201▪9广西河池▪3分)不等式组的解集是( ) A .x ≥2B .x <1C .1≤x <2D .1<x ≤213. (2019•山东省滨州市•3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.14. (2019•山东省聊城市•3分)若不等式组无解,则m的取值范围为()A.m≤2B.m<2 C.m≥2D.m>2二.填空题1. (2019•山东省滨州市•5分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.2. (2019•江苏泰州•3分)不等式组的解集为.3. (2019•湖南株洲•3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为.4. (2019•山东省德州市•4分)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}=.5. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是.6. (2019•甘肃•3分)不等式组的最小整数解是.7. (2019•湖南长沙•3分)不等式组的解集是.8. (2019•湖南邵阳•3分)不等式组的解集是.9. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是.10.(2019•浙江金华•4分)不等式3x-6≤9的解是________.11.(2019•浙江绍兴•5分)不等式3x﹣2≥4的解为.三.解答题1.(2019▪黑龙江哈尔滨▪10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?2.((2019,山西,9分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元. 方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元). (1)请分别写出y 1,y 2与x 之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.3.(2019,四川成都,6分)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x4.(2019,四川巴中,8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?5.(2019,山东淄博,5分)解不等式6.(2019▪湖北黄石▪7分)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.7. (2019•湖南衡阳•8分)某商店购进A.B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A.B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A.B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?8. (2019•山东省滨州市•10分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.9. (2019•广东•6分)解不等式组:10. (2019•广东•7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?11. ( 2019甘肃省兰州市)(本题5分)解不等式组:⎪⎩⎪⎨⎧-<++<-131512x x x x12. (2019•广西贵港•10分)(1)计算:﹣(﹣3)0+()﹣2﹣4sin 30°;(2)解不等式组:,并在数轴上表示该不等式组的解集.13. (2019•江苏苏州•5分)()152437x x x +<⎧⎪⎨+>+⎪⎩解不等式组:14. (2019•江苏连云港•6分)解不等式组15. (2019•湖南湘西州•6分)解不等式组:并把解集在数轴上表示出来.16. (2019•湖南岳阳•8分)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?17. (2019•山东省滨州市•12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.18. (2019•山东省聊城市•8分)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?不等式(组)一.选择题1. (2019•湖北天门•3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2019甘肃省陇南市)(3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣3【分析】先去括号,然后移项、合并同类项,再系数化为1即可.【解答】解:去括号,得2x+9≥3x+6,移项,合并得﹣x≥﹣3系数化为1,得x≤3;故选:A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3. (2019•湖南衡阳•3分)不等式组的整数解是()A.0 B.﹣1 C.﹣2 D.1【分析】先求出不等式组的解集,再求出整数解,即可得出选项.【解答】解:解不等式①得:x<0,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x<0,∴不等式组的整数解是﹣1,故选:B.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.4. (2019•湖南衡阳•3分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0C.x<﹣1或0<x<2 D.﹣1<x<0或x>2【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.【点评】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.5.(2019•浙江宁波•4分)不等式>x的解为()A.x<1 B.x<﹣1 C.x>1 D.x>﹣1【分析】去分母、移项,合并同类项,系数化成1即可.【解答】解:>x,3﹣x>2x,3>3x,x<1,故选:A.【点评】本题考查了解一元一次不等式,注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.6. (2019•山东省德州市•4分)不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.0【考点】不等式组的非负整数解【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7. (2019•甘肃武威•3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣3【分析】先去括号,然后移项、合并同类项,再系数化为1即可.【解答】解:去括号,得2x+9≥3x+6,移项,合并得﹣x≥﹣3系数化为1,得x≤3;故选:A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8. (2019•湖南怀化•4分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89【分析】设该村共有x户,则母羊共有(5x+17)只,根据“每户发放母羊7只时有一户可分得母羊但不足3只”列出关于x的不等式组,解之求得整数x的值,再进一步计算可得.【解答】解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意找到题目蕴含的不等关系,并据此得出不等式组.9. (2019•湖南岳阳•3分)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <D .c <1【分析】由函数的不动点概念得出x 1.x 2是方程x 2+2x +c =x 的两个实数根,由x 1<1<x 2知,解之可得.【解答】解:由题意知二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2是方程x 2+2x +c =x 的两个实数根, 且x 1<1<x 2, 整理,得:x 2+x +c =0, 则.解得c <﹣2, 故选:B .【点评】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c 的不等式.10.(2019,山西,3分)不等式组⎩⎨⎧<->-42231x x 的解集是( )A.4>xB.1->xC.41<<-xD.1-<x【解析】4,31>>-x x ;1,22,422-><-<-x x x ;∴4>x ,故选A11. (2019•南京•2分)实数A.B.c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( ) A . B .C .D .【分析】根据不等式的性质,先判断c 的正负.再确定符合条件的对应点的大致位置. 【解答】解:因为a >b 且ac <bc , 所以c <0.选项A 符合a >b ,c <0条件,故满足条件的对应点位置可以是A .选项B不满足a>b,选项C.D不满足c<0,故满足条件的对应点位置不可以是B.C.D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.12(201▪9广西河池▪3分)不等式组的解集是()A.x≥2B.x<1 C.1≤x<2 D.1<x≤2【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13. (2019•山东省滨州市•3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【考点】不等式组的解法【分析】直接利用关于原点对称点的性质得出关于a的不等式组进而求出答案.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,∴,解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.【点评】此题主要考查了关于原点对称点的性质以及解不等式组,正确掌握是解题关键.14. (2019•山东省聊城市•3分)若不等式组无解,则m的取值范围为()A.m≤2B.m<2 C.m≥2D.m>2【考点】解一元一次不等式组【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m的不等式,解之可得.【解答】解:解不等式<﹣1,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二.填空题1. (2019•山东省滨州市•5分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为x>3.【考点】一次函数与一元一次不等式的关系【分析】根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=x也经过点A从而确定不等式的解集.【解答】解:∵正比例函数y=x也经过点A,∴kx+b<x的解集为x>3,故答案为:x>3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.2. (2019•江苏泰州•3分)不等式组的解集为x<﹣3..【分析】求出不等式组的解集即可.【解答】解:等式组的解集为x<﹣3,故答案为:x<﹣3.【点评】本题考查了不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.3. (2019•湖南株洲•3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为a<1且a为有理数.【分析】根据题意列出不等式,解之可得,【解答】解:根据题意知2﹣a>1,解得a<1,故答案为:a<1且a为有理数.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4. (2019•山东省德州市•4分)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= 1.1.【考点】列出代数式【分析】根据题意列出代数式解答即可.【解答】解;根据题意可得:{3.9}+{﹣1.8}﹣{1}=3.9﹣3﹣1.8+2﹣1+1=1.1,故答案为:1.1【点评】此题考查解一元一次不等式,关键是根据题意列出代数式解答.5. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6. (2019•甘肃•3分)不等式组的最小整数解是0.【分析】求出不等式组的解集,确定出最小整数解即可.【解答】解:不等式组整理得:,∴不等式组的解集为﹣1<x≤2,则最小的整数解为0,故答案为:0【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.7. (2019•湖南长沙•3分)不等式组的解集是﹣1≤x<2.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.【解答】解:解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,故答案为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8. (2019•湖南邵阳•3分)不等式组的解集是﹣2≤x<﹣1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2019•浙江金华•4分)不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.11.(2019•浙江绍兴•5分)不等式3x﹣2≥4的解为x≥2.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x≥4+2,合并同类项得,3x≥6,把x的系数化为1得,x≥2.故答案为:x≥2.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.3.4.5.6.7.8.9.10.三.解答题1.(2019▪黑龙江哈尔滨▪10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【分析】(1)设每副围棋x元,每副中国象棋y元,根据题意得:,求解即可;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,即可求解;【解答】解:(1)设每副围棋x元,每副中国象棋y元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,∴z≤25,∴最多可以购买25副围棋;【点评】本题考查二元一次方程组,一元一次不等式的应用;能够通过已知条件列出准确的方程组和不等式是解题的关键.2.((2019,山西,9分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(3)请分别写出y 1,y 2与x 之间的函数表达式.(4)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.【解析】(1)x y x y 40;2003021=+=(2)由21y y <得:x x 4020030<+解得:20>x ,∴当20>x 时选择方式一比方式2省钱3.(2019,四川成都,6分)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x解: 5463-≤-x x1-∴≥x x 2425+-<2<x ∴4.(2019,四川巴中,8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【分析】①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得分式方程,解之即可;②设购买甲种物品y 件,则乙种物品购进(55﹣y )件,由题意得不等式,从而得解.【解答】解:①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得:=解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y 件,则乙种物品购进(55﹣y )件由题意得:5000≤100y +90(55﹣y )≤5050解得5≤y ≤10∴共有6种选购方案.【点评】本题考查了分式方程的应用以及一元一次不等式的整数解的问题.本题中等难度.5.(2019,山东淄博,5分)解不等式【分析】将已知不等式两边同乘以2,然后再根据移项、合并同类项、系数化为1求出不等式的解集.【解答】解:将不等式两边同乘以2得,x﹣5+2>2x﹣6解得x<3.【点评】解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变,在不等式的两边同时乘以或除以同一个正数不等号的方向不变,在不等式的两边同时乘以或除以同一个负数不等号的方向改变.6.(2019▪湖北黄石▪7分)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.【分析】先求出不等式组的解集,进而求得P点的坐标,即可求得点P所在的象限.【解答】解:,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x﹣9=﹣1,∴点P的坐标为(1,﹣1),∴点P在的第四象限.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7. (2019•湖南衡阳•8分)某商店购进A.B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A.B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A.B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?【分析】(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,根据数量=总价÷单价结合花费300元购买A商品和花费100元购买B商品的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B商品m个,则购买A商品(80﹣m)个,根据A商品的数量不少于B商品数量的4倍并且购买A.B商品的总费用不低于1000元且不高于1050元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可找出各购买方案.【解答】解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.8. (2019•山东省滨州市•10分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出x的整数解,由分式有意义的条件确定最终符合分式的x的值,代入计算可得.【解答】解:原式=[﹣]•=•=,解不等式组得1≤x<3,则不等式组的整数解为1.2,又x≠±1且x≠0,∴x=2,∴原式=.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元一次不等式组的能力.9. (2019•广东•6分)解不等式组:【答案】解:由①得x>3,由②得x>1,∴原不等式组的解集为x>3.【考点】解一元一次不等式组10. (2019•广东•7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x个,则足球(60-x)个.由题意得70x+80(60-x)=4600,解得x=20。
2019年湖北省黄石市中考数学试卷附分析答案
A.
B.1
C.2
D.3
【解答】解:∵点 C 关于直线 y=x 的对称点 C'的坐标为(1,n)(n≠1), ∴C(n,1), ∴OA=n,AC=1, ∴AB=2AC=2, ∵△OAB 的面积为 3,
∴
,
解得,n=3, ∴C(3,1), ∴k=3×1=3. 故选:D. 10.(3 分)如图,矩形 ABCD 中,AC 与 BD 相交于点 E,AD:AB :1,将△ABD 沿 BD 折叠,点 A 的对应点为 F,连接 AF 交 BC 于点 G,且 BG=2,在 AD 边上有一点 H,
∴BE=DE=AE=CE=AB=CD=a.
∵将△ABD 沿 BD 折叠,点 A 的对应点为 F,
∴BM 垂直平分 AF,BF=AB=a,DF=DA a. 在△BGM 中,∵∠BMG=90°,∠GBM=30°,BG=2,
∴GM BG=1,BM GM ,
∴DM=BD﹣BM=2at .
∵矩形 ABCD 中,BC∥AD,
点,经过 C、D 两点的⊙O 分别交 AC、BC 于点 E、F,AD ,∠ADC=60°,则劣
弧 的长为
.
16.(3 分)将被 3 整除余数为 1 的正整数,按照下列规律排成一个三角形数阵,则第 20 行
第 19 个数是
.
第 3页(共 20页)
三、解答题(本大题共 9 小题,共 72 分.解答应写出必要的文字说明、证明过程或演算步骤)
A.125°
B.145°
C.175°
D.190°
9.(3 分)如图,在平面直角坐标系中,点 B 在第一象限,BA⊥x 轴于点 A,反比例函数 y
(x>0)的图象与线段 AB 相交于点 C,且 C 是线段 AB 的中点,点 C 关于直线 y=x 的 对称点 C'的坐标为(1,n)(n≠1),若△OAB 的面积为 3,则 k 的值为( )
中考压轴题二次函数与周长、面积综合题(解析版)
专题05 二次函数与周长、面积综合题1.(2019年湖北省黄石市中考数学试题)如图,已知抛物线经过点、.(1)求抛物线的解析式,并写出顶点的坐标;(2)若点在抛物线上,且点的横坐标为8,求四边形的面积(3)定点在轴上,若将抛物线的图象向左平移2各单位,再向上平移3个单位得到一条新的抛物线,点在新的抛物线上运动,求定点与动点之间距离的最小值(用含的代数式表示)【答案】(1),;(2)36;(3)【解析】【分析】(1)函数的表达式为:y=(x+1)(x-5),即可求解;(2)S四边形AMBC=AB(y C-y D),即可求解;(3)抛物线的表达式为:y=x2,即可求解.【详解】(1)函数的表达式为:y=(x+1)(x-5)=(x2-4x-5)=,点M坐标为(2,-3);(2)当x=8时,y=(x+1)(x-5)=9,即点C(8,9),S四边形AMBC=AB(y C-y D)=×6×(9+3)=36;(3)y=(x+1)(x-5)=(x2-4x-5)=(x-2)2-3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D 与动点P 之间距离PD =,∵>0,PD 有最小值,当x 2=3m -时, PD 最小值d =.2.(2019年湖南省常德市中考数学试题)如图,已知二次函数图象的顶点坐标为(1,4)A ,与坐标轴交于B 、C 、D 三点,且B 点的坐标为(1,0)-. (1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值; (3)当矩形MNHG 周长最大时,能否在二次函数图象上找到一点P ,使PNC ∆的面积是矩形MNHG 面积的916?若存在,求出该点的横坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++ (2)最大值为10(3)故点P 坐标为:315(,)24或或. 【解析】 【分析】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式,即可求解;(2)矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,即可求解;(3)2711sin45822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯94PH HG ==,即可求解. 【详解】(1)二次函数表达式为:()214y a x =-+, 将点B 的坐标代入上式得:044a =+,解得:1a =-,的故函数表达式为:223y x x =-++…①;(2)设点M 的坐标为()2,23x x x -++,则点()22,23N x x x --++, 则222MN x x x =-+=-,223GM x x =-++,矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,∵20-<,故当22bx a=-=,C 有最大值,最大值为10, 此时2x =,点()0,3N 与点D 重合; (3)PNC ∆的面积是矩形MNHG 面积的916, 则99272316168PNCS MN GM ∆=⨯⨯=⨯⨯=, 连接DC ,在CD 得上下方等距离处作CD 的平行线m 、n , 过点P 作y 轴的平行线交CD 、直线n 于点H 、G ,即PH GH =, 过点P 作PK CD ⊥于点K ,将()3,0C 、()0,3D 坐标代入一次函数表达式并解得: 直线CD 的表达式为:3y x =-+,OC OD =,∴45OCD ODC PHK ∠=∠=︒=∠,CD =设点()2,23P x x x -++,则点(),3H x x -+,2711sin45822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯ 解得:94PH HG ==,则292334PH x x x =-+++-=,解得:32x =,故点315,24P ⎛⎫⎪⎝⎭, 直线n 的表达式为:93344y x x =-+-=-+…②,联立①②并解得:32x ±=即点'P 、''P 的坐标分别为⎝⎭、⎝⎭;故点P 坐标为:315,24⎛⎫ ⎪⎝⎭或3324⎛+-- ⎝⎭或3324⎛--+ ⎝⎭. 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.(2019年山东省烟台市中考)如图,顶点为M 的抛物线23y ax bx =++与x 轴交于(1,0)A -,B 两点,与y 轴交于点C ,过点C 作CD y ⊥轴交抛物线于另一点D ,作DE x ⊥轴,垂足为点E .双曲线6(0)y x x=>经过点D ,连接MD ,BD .(1)求抛物线的表达式;(2)点N ,F 分别是x 轴,y 轴上的两点,当以M ,D ,N ,F 为顶点的四边形周长最小时,求出点N ,F 的坐标;【答案】(1)2y x 2x 3=-++;(2)N 5,07⎛⎫ ⎪⎝⎭;F 50,3⎛⎫ ⎪⎝⎭; 【解析】 【分析】(1)先求D 的坐标,再代入二次函数解析式解析式求解;(2)分别作点M ,D 关于y 轴,x 轴的对称点M ','D ,连接MD '交x 轴,y 轴于点N ,F .即M ',F ,N ,'D 在同一直线上时,四边形的周长最小,用待定系数法求直线MD '的表达式,再求N,F 的坐标; 【详解】解:(1)由题意,得点C 的坐标(0,3),3OC =. ∵6k OC CD =⋅=, ∴2CD =.∴点D 的坐标(2,3).将点(1,0)A -,(2,3)D 分别代人抛物线23y ax bx =++,得30,423 3.a b a b -+=⎧⎨++=⎩解得1,2.a b =-⎧⎨=⎩∴抛物线的表达式为2y x 2x 3=-++.(2)分别作点M ,D 关于y 轴,x 轴的对称点M ','D , 连接MD '交x 轴,y 轴于点N ,F .由抛物线的表达式可知,顶点M 的坐标(1,4), ∴点M 的坐标(1,4)-. 设直线MD '为y kx b =+, ∵点'D 的坐标(2,3)-, ∴4,2 3.k b k b -+=⎧⎨+=-⎩解得7,35.3a b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线MD '的表达式为7533y x =-+. 令0y =,则75033x -+=,解得57x =,∴点N 的坐标5,07⎛⎫ ⎪⎝⎭.令0x =,则53y =,∴点F 的坐标50,3⎛⎫ ⎪⎝⎭.4.(广东省深圳市2019年中考数学试题)如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【答案】(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 1;(3)12(4,5),(8,45)P P -- 【解析】 【分析】(1)OB =OC ,则点B (3,0),则抛物线的表达式为:y =a (x +1)(x -3)=a (x 2-2x -3)=ax 2-2ax -3a ,即可求解;(2)CD +AE =A ′D +DC ′,则当A ′、D 、C ′三点共线时,CD +AE =A ′D +DC ′最小,周长也最小,即可求解; (3)S △PCB :S △PCA =12EB ×(y C -y P ):12AE ×(y C -y P )=BE :AE ,即可求解. 【详解】(1)∵OB =OC ,∴点B (3,0),则抛物线的表达式为:y =a (x +1)(x -3)=a (x 2-2x -3)=ax 2-2ax -3a , 故-3a =3,解得:a =-1,故抛物线的表达式为:y =-x 2+2x +3…①; 对称轴为:直线1x =(2)ACDE 的周长=AC +DE +CD +AE ,其中AC 、DE =1是常数, 故CD +AE 最小时,周长最小,取点C 关于函数对称点C (2,3),则CD =C ′D , 取点A ′(-1,1),则A ′D =AE ,故:CD +AE =A ′D +DC ′,则当A ′、D 、C ′三点共线时,CD +AE =A ′D +DC ′最小,周长也最小,四边形ACDE 的周长的最小值=AC +DE +CD +AE +1+A ′D +DC +1+A ′C (3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBP A 的面积分为3:5两部分, 又∵S △PCB :S △PCA =12EB ×(y C -y P ):12AE ×(y C -y P )=BE :AE , 则BE :AE ,=3:5或5:3, 则AE =52或32, 即:点E 的坐标为(32,0)或(12,0), 将点E 、C 的坐标代入一次函数表达式:y =kx +3, 解得:k =-6或-2,故直线CP 的表达式为:y =-2x +3或y =-6x +3…② 联立①②并解得:x =4或8(不合题意值已舍去), 故点P 的坐标为(4,-5)或(8,-45).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A ′点来求最小值,是本题的难点.5.(湖南省益阳市2019年中考数学试题)在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A (1,4),B (3,0). (1)求抛物线对应二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P (m ,n )是抛物线在第四象限的图象上的点,且m +n =﹣1,连接P A 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).的【答案】(1)y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由见解析;(3)点N(43,﹣73).【解析】【分析】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式,即可求解;(2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N是PQ的中点,根据C,P点的坐标求出直线PC的解析式,同理求出AC,DQ的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.【详解】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N 是PQ 的中点, 设直线PC 的解析式为y =kx +b ,将点C (﹣1,0)、P (4,﹣5)的坐标代入得:045k b k b -+=⎧⎨+=-⎩,解得:11k b =-⎧⎨=-⎩,所以直线PC 的表达式为:y =﹣x ﹣1…①, 同理可得直线AC 的表达式为:y =2x +2, 直线DQ ∥CA ,且直线DQ 经过点D (0,3), 同理可得直线DQ 的表达式为:y =2x +3…②, 联立①②并解得:x =﹣43,即点Q (﹣43,13), ∵点N 是PQ 的中点, 由中点公式得:点N (43,﹣73). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N 是PQ 的中点,是本题解题的突破点. 最新模拟试题6.(2020年安徽省阜阳市太和县九年级第二次调研模拟预测试题)如图,在平面直角坐标系xoy 中,顶点为M 的抛物线1C :2y ax bx =-(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=︒.(1)求该抛物线的表达式; (2)联结AM ,求AOM S △;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E F 、(点E 在点F 的左侧),如果△MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.【答案】(1)2y x =+;(23)抛物线2C 为:2y x =++或23327y x x =-++ 【解析】【分析】(1)根据题意,可以写出点B 和点A 的坐标,从而可以得到该抛物线的表达式;(2)根据(1)中的函数解析式,可以求得点M 的坐标,从而可以求得直线AM 的函数解析式,从而可以求得S △AOM ;(3)根据题意,利用分类讨论的方法和三角形相似的知识可以求得点F 的坐标,从而可以求得抛物线C 2的表达式.【详解】解:(1)过A 作AH x ⊥轴,垂足为H ,∵2OB =,∴0(2)B ,∵120AOB ∠=︒∴60AOH ∠=︒,30HAO ∠=︒.∵2OA =, ∴112OH OA ==. 在Rt AHO 中,222OH AH OA +=,∴AH ==∴(1A --,∵抛物线1C :2y ax bx =+经过点A B 、,∴可得:420a b a b -=⎧⎪⎨-=⎪⎩解得:a b ⎧=⎪⎪⎨⎪=⎪⎩∴这条抛物线的表达式为2y x x =;(2)过M 作MG x ⊥轴,垂足为G ,∵2y x x =+=21)x -∴顶点M是1,3⎛ ⎝⎭,得3MG =设直线AM 为y =kx +b ,把(A -,1,3M ⎛⎫ ⎪ ⎪⎝⎭代入得k b k b =-+=+,解得33k b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴直线AM为y x =-令y =0,解得x =12∴直线AM 与x 轴的交点N 为1,02⎛⎫ ⎪⎝⎭∴111111×××22223223AOM S ON MG ON AH =⋅-⋅=+ (3)∵0(2)B ,、M ⎛ ⎝⎭,∴在Rt △BGM中,tan 3MG MBG BG ∠==, ∴30MBG ∠=︒.∴150MBF ∠=︒.由抛物线的轴对称性得:MO MB =,∴150MBO MOB ∠=∠=︒.∵120AOB ∠=︒,∴150AOM ∠=︒∴AOM MBF ∠=∠.∴当△MBF 与AOM 相似时,有:=OM BM OA BF 或=OM BF OA BM即332BF =或32=, ∴2BF =或23BF =. ∴0(4)F ,或803⎛⎫ ⎪⎝⎭, 设向上平移后的抛物线2C为:2y x x k =++, 当0(4)F ,时,3k =, ∴抛物线2C为:2y =+当803F ⎛⎫ ⎪⎝⎭,时,k =,∴抛物线2C 为:23327y x x =-++综上:抛物线2C 为:2y x =++或2y x x =++ 【点睛】本题是一道二次函数综合题,解答本题的关键是明确题意,求出相应的函数解析式,作出合适的辅助线,找出所求问题需要的条件,利用分类讨论和数形结合的思想解答.7.(2019年河南省中原名校中考第三次大联考数学试卷)如图,直线y =﹣x +5与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 与直线y =﹣x +5交于B ,C 两点,已知点D 的坐标为(0,3) (1)求抛物线的解析式;(2)点M ,N 分别是直线BC 和x 轴上的动点,则当△DMN 的周长最小时,求点M ,N 的坐标,并写出△DMN 周长的最小值;(3)点P 是抛物线上一动点,在(2)的条件下,是否存在这样的点P ,使∠PBA =∠ODN ?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2+4x +5;(2)点M 、N 的坐标分别为(85,175)、(34,0),△DMN 周长的最小;(3)点P (﹣23,73). 【解析】(1)求出点B 、C 的坐标、将点B 、C 坐标代入二次函数表达式,即可求解;(2)过点D 分别作x 轴和直线BC 的对称点D ′(0,-3)、D ″,连接D ′D ″交x 轴、直线BC 于点N 、M ,此时△DMN 的周长最小,即可求解;(3)tan∠ODN=13ONOD==tan∠PBA,确定直线BP的表达式,即可求解.【详解】(1)y=﹣x+5,令x=0,则y=5,令y=0,则x=5,故点B、C的坐标分别为(5,0)、(0,5),则二次函数表达式为:y=﹣x2+bx+5,将点B坐标代入上式并解得:b=4,故抛物线的表达式为:y=﹣x2+4x+5…①,令y=0,则x=﹣1或5,故点A(﹣1,0),而OB=OC=2,故∠OCB=45°;(2)过点D分别作x轴和直线BC的对称点D′(0,﹣3)、D″,∵∠OCB=45°,则CD″∥x轴,则点D″(2,5),连接D′D″交x轴、直线BC于点N、M,此时△DMN的周长最小,将点D′、D″的坐标代入一次函数表达式:y=mx+n并解得:直线D′D″的坐标代入一次函数表达式为:y=4x﹣3,则点M、N的坐标分别为(85,175)、(34,0),△DMN周长的最小值=DM+DN+MN;(3)如图2,tan∠ODN=13ONOD==tan∠PBA,则直线BP 的表达式为:y =﹣13x +s ,将点B 的坐标代入上式并解得: 直线BP 的表达式为:y =﹣13x +53…②, 联立①②并解得:x =5或﹣23(舍去5) 故:点P (﹣23,73). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性等知识点,其中(2),通过点的对称性确定点M 、N 的位置,是此类题目的基本方法.8.(2019年河南省实验外国语学校中考数学模拟试卷)如图,直线y =-12x -3与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线y =ax 2+bx ﹣3与x 轴的另一个交点为点B (2,0),点D 是抛物线上一点,过点D 作DE ⊥x 轴于点E ,连接AD ,D C .设点D 的横坐标为m .(1)求抛物线的解析式;(2)当点D 在第三象限,设△DAC 的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;(3)连接BC ,若∠EAD =∠OBC ,请直接写出此时点D 的坐标.【答案】(1)y =14x 2+x ﹣3;(2)S △ADC =﹣34(m +3)2+274;△ADC 的面积最大值为274;此时D (﹣3,﹣154);(3)满足条件的点D 坐标为(﹣4,﹣3)或(8,21).【解析】(1)求出A 坐标,再用待定系数法求解析式;(2)设DE 与AC 的交点为点F .设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3),根据S △ADC =S △ADF +S △DFC 求出解析式,再求最值;(3)①当点D 与点C 关于对称轴对称时,D (﹣4,﹣3),根据对称性此时∠EAD =∠AB C . ②作点D (﹣4,﹣3)关于x 轴的对称点D ′(﹣4,3),直线AD ′的解析式为y =32x +9,解方程组求出函数图像交点坐标.【详解】解:(1)在y =﹣12x ﹣3中,当y =0时,x =﹣6, 即点A 的坐标为:(﹣6,0),将A (﹣6,0),B (2,0)代入y =ax 2+bx ﹣3得:366304230a b a b --=⎧⎨+-=⎩, 解得:141a b ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为:y =14x 2+x ﹣3; (2)设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3), 设DE 与AC 的交点为点F .∴DF =﹣12m ﹣3﹣(14m 2+m ﹣3)=﹣14m 2﹣32m , ∴S △ADC =S △ADF +S △DFC =12DF •AE +12•DF •OE =12DF •OA =12×(﹣14m 2﹣32m )×6 =﹣34m 2﹣92m =﹣34(m +3)2+274, ∵a =﹣34<0, ∴抛物线开口向下,∴当m =﹣3时,S △ADC 存在最大值274, 又∵当m =﹣3时,14m 2+m ﹣3=﹣154, ∴存在点D (﹣3,﹣154),使得△ADC 的面积最大,最大值为274; (3)①当点D 与点C 关于对称轴对称时,D (﹣4,﹣3),根据对称性此时∠EAD =∠AB C .②作点D (﹣4,﹣3)关于x 轴的对称点D ′(﹣4,3),直线AD ′的解析式为y =32x +9, 由2392134y x y x x ⎧=+⎪⎪⎨⎪=+-⎪⎩,解得60x y =-⎧⎨=⎩或821x y =⎧⎨=⎩, 此时直线AD ′与抛物线交于D (8,21),满足条件,综上所述,满足条件的点D 坐标为(﹣4,﹣3)或(8,21)【点睛】本题属于二次函数综合题,考查了待定系数法,一次函数的应用,二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会构建一次函数解决实际问题,属于中考压轴题.. 9.(广东省佛山市南海外国语学校2019-2020学年九年级下学期第一次月考数学试题)如图,已知抛物线2y ax bx c =++经过点0()3,A ﹣、()9,0B 和()0,4C ,CD 垂直于y 轴,交抛物线于点D ,DE 垂直于x 轴,垂足为E ,直线l 是该抛物线的对称轴,点F 是抛物线的顶点.(1)求出该二次函数的表达式及点D 的坐标;(2)若Rt △AOC 沿x 轴向右平移,使其直角边OC 与对称轴l 重合,再沿对称轴l 向上平移到点C 与点F 重合,得到11Rt AO F △,求此时11Rt AO F △与矩形OCDE 重叠部分图形的面积;(3)若Rt △AOC 沿x 轴向右平移t 个单位长度(06t <≤)得到222Rt A O C △,222Rt A O C △与Rt OED △重叠部分图形的面积记为S ,求S 与t 之间的函数表达式,并写出自变量t 的取值范围.【答案】(1)抛物线的解析式为2484279y x x =-++,点D 的坐标为()6,4;(2) 163;(3)221(03)3146(36)3t t S t t t ⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩. 【解析】【分析】(1)将点A (-3,0)、B (9,0)和C (0,4)代入y =ax 2+bx +c 即可求出该二次函数表达式,因为CD 垂直于y 轴,所以令y =4,求出x 的值,即可写出点D 坐标;(2)设A 1F 交CD 于点G ,O 1F 交CD 于点H ,求出顶点坐标,证△FGH ∽△F A 1O 1,求出GH 的长,因为Rt △A 1O 1F 与矩形OCDE 重叠部分的图形是梯形A 1O 1HG ,所以S 重叠部分=11A O F S ∆-S △FGH ,即可求出结果; (3)当0<t ≤3时,设O 2C 2交OD 于点M ,证△OO 2M ∽△OED ,求出O 2M =23t ,可直接求出S =2OO M S ∆=12OO 2×O 2M =13t 2;当3<t ≤6时,设A 2C 2交OD 于点M ,O 2C 2交OD 于点N ,分别求出直线OD 与直线A 2C 2的解析式,再求出其交点M 的坐标,证△DC 2N ∽△DCO ,求出C 2N =23(6-t ),由S =S 四边形A 2Q 2NM =2222A O C C MN S S ∆∆-,可求出S 与t 的函数表达式.【详解】(1)∵抛抛线2y ax bx c =++经过点()30A -,、()9,0B 和()0,4C ,∴抛物线的解析式为()()39y a x x =+-,∵点()0,4C 在抛物线上,∴427a =-, ∴427a =-, ∴抛物线的解析式为:2448(3)(9)427279y x x x x =-+-=-++, ∵CD 垂直于y 轴,()0,4C, 令24844279x x -++=, 解得,0x =或6x =,∴点D 的坐标为()6,4;(2)如图1所示,设1A F 交CD 于点G ,1O F 交CD 于点H ,∵点F 是抛物线2484279y x x =-++的顶点, ∴163,3F ⎛⎫ ⎪⎝⎭, ∴164433FH =-=, ∵11GH AO ,∴11FGH FAO △△∽, ∴111GH FH A O FO =, ∴4334GH =, 解得,1GH = ,∵11Rt AO F △与矩形OCDE 重叠部分的图形是梯形11A O HG , ∴11A O F FGH S S S =-△△重叠部分 1111122AO O F GH FH =⋅-⋅ 114341223=⨯⨯-⨯⨯ 163=;(3)①当03t <≤时,如图2所示,设22O C 交OD 于点M , ∵22C O DE ,∴2OO M OED △△∽, ∴22O DE EOO M O =, ∴246O M t =, ∴223O M t =, ∴22221121S 2233OO M S OO O M t t t ==⨯=⨯=△;②当36t <≤时,如图3所示,设22A C 交OD 于点M ,22O C 交OD 于点N ,将点()6,4D 代入y kx =, 得,23k =, ∴23OD y x =, 将点()3,0t -,(),4t 代入y kx b =+,得,(3)04k t b kt b -+=⎧⎨+=⎩, 解得,43k =,443b t =-+, ∴直线22A C 的解析式为:44433y x t =-+, 联立23OD y x =与44433y x t =-+, 得,2444333x x t =-+, 解得,62x t =-+,∴两直线交点M 坐标为462,43t t ⎛⎫-+-+⎪⎝⎭, 故点M 到2O C 2的距离为6t -,∵2C N OC ,∴2DC N DCO △△∽, ∴22DC C N CD OC=, ∴2664C N t -=, ∴22(6)3C N t =-, ∴222222A O C C MN A O NM S S S S ==-△△四边形211(6)22OA OC C N t =⋅-- 11234(6)(6)223t t =⨯⨯-⨯-- 21463t t =-+-; ∴S 与t 的函数关系式为:221(03)3146(36)3t t S t t t ⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩.【点睛】本题考查了待定系数法求解析式,相似三角形的判定与性质,三角形的面积等,解题关键是能够根据题意画图,知道有些不规则图形的面积可转化为几个规则图形的面积和或差来求出.。
湖北省黄石市2019年中考试卷(数学解析版)
2019年湖北省黄石市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•黄石)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3B.﹣0.5C.D.选:A.2.(3分)(2019•黄石)国际行星命名委员会将紫金山天文台于2007年9月11日发现的编号为171448的小行星命名为“谷超豪星”,则171448用科学记数法可表示为()A.0.171448×106B.1.71448×105C.0.171448×105D.1.71448×106选:B.3.(3分)(2019•黄石)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.选:D.4.(3分)(2019•黄石)如图,该正方体的俯视图是()A.B.C.D.选:A.5.(3分)(2019•黄石)化简(9x﹣3)﹣2(x+1)的结果是()A.2x﹣2B.x+1C.5x+3D.x﹣3【解析】原式=3x﹣1﹣2x﹣2=x﹣3,选:D.6.(3分)(2019•黄石)若式子在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2B.x≤1 C.x>1且x≠2D.x<1【解析】依题意,得x﹣1≥0且x﹣200,解得x≥1且x≠2.选:A.7.(3分)(2019•黄石)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是()A.(﹣1,2)B.(1,4)C.(3,2)D.(﹣1,0)【解析】如图所示,由旋转得:CB'=CB=2,∠BCB'=90°,∵四边形ABCD是正方形,且O是AB的中点,∴OB=1,∴B'(2+1,2),即B'(3,2),选:C.8.(3分)(2019•黄石)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°【解析】∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,选:C.9.(3分)(2019•黄石)如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y =(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),若△OAB的面积为3,则k的值为()A.B.1C.2D.3【解析】∵点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),∴C(n,1),∴OA=n,AC=1,∴AB=2AC=2,∵△OAB的面积为3,∴,解得,n=3,∴C(3,1),∴k=3×1=3.选:D.10.(3分)(2019•黄石)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH 的值最小,此时=()A.B.C.D.【解析】如图,设BD与AF交于点M.设AB=a,AD=a,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD==,∴BD=AC==2a,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a.∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,DF=DA=a.在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=BG=1,BM=GM=,∴DM=BD﹣BM=2a﹣.∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴=,即=,∴a=2,∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4.易证∠BAF=∠F AC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.如图,建立平面直角坐标系,则A(3,0),B(3,2),B′(3,﹣2),E(0,),易求直线B′E的解析式为y=﹣x+,∴H(1,0),∴BH==4,∴==.选:B.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2019•黄石)分解因式:x2y2﹣4x2=x2(y+2)(y﹣2).【解析】原式=x2(y2﹣4)=x2(y+2)(y﹣2),答案:x2(y+2)(y﹣2)12.(3分)(2019•黄石)分式方程:﹣=1的解为x=﹣1.【解析】去分母得:4﹣x=x2﹣4x,即x2﹣3x﹣4=0,解得:x=4或x=﹣1,经检验x=4是增根,分式方程的解为x=﹣1,答案:x=﹣113.(3分)(2019•黄石)如图,一轮船在M处观测灯塔P位于南偏西30°方向,该轮船沿正南方向以15海里/小时的速度匀速航行2小时后到达N处,再观测灯塔P位于南偏西60°方向,若该轮船继续向南航行至灯塔P最近的位置T处,此时轮船与灯塔之间的距离PT为15海里(结果保留根号).【解析】由题意得,MN=15×2=30海里,∵∠PMN=30°,∠PNT=60°,∴∠MPN=∠PMN=30°,∴PN=MN=30海里,∴PT=PN•sin∠PNT=15海里.答案:15.14.(3分)(2019•黄石)根据下列统计图,回答问题:该超市10月份的水果类销售额>11月份的水果类销售额(请从“>”“=”“<”中选一个填空).【解析】10月份的水果类销售额60×20%=12(万元),11月份的水果类销售额70×15%=10.5(万元),所以10月份的水果类销售额>11月份的水果类销售额,答案>.15.(3分)(2019•黄石)如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=,∠ADC=60°,则劣弧的长为π.【解析】连接DF,OD,∵CF是⊙O的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于点D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半径=2,∴劣弧的长==π,答案π.16.(3分)(2019•黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵,则第20行第19个数是625.【解析】由图可得,第一行1个数,第二行2个数,第三行3个数,…,则前20行的数字有:1+2+3+…+19+20=210个数,∴第20行第20个数是:1+3(210﹣1)=628,∴第20行第19个数是:628﹣3=625,答案:625.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(7分)(2019•黄石)计算:(2019﹣π)0+|﹣1|﹣2sin45°+()﹣1.【解析】原式=1+﹣1﹣2×+3=3.18.(7分)(2019•黄石)先化简,再求值:(+x﹣2)÷,其中|x|=2.【解析】原式=÷=•=,∵|x|=2时,∴x=±2,由分式有意义的条件可知:x=2,∴原式=3.19.(7分)(2019•黄石)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.【解析】,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x﹣9=﹣1,∴点P的坐标为(1,﹣1),∴点P在的第四象限.20.(7分)(2019•黄石)已知关于x的一元二次方程x2﹣6x+(4m+1)=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根为x1、x2,且|x1﹣x2|=4,求m的值.【解析】(1)∵关于x的一元二次方程x2﹣6x+(4m+1)=0有实数根,∴△=(﹣6)2﹣4×1×(4m+1)≥0,解得:m≤2.(2)∵方程x2﹣6x+(4m+1)=0的两个实数根为x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=42,即32﹣16m=16,解得:m=1.21.(8分)(2019•黄石)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.【解答】证明:(1)∵AB=AE,D为线段BE的中点,∴AD⊥BC∴∠C+∠DAC=90°,∵∠BAC=90°∴∠BAD+∠DAC=90°∴∠C=∠BAD(2)∵AF∥BC∴∠F AE=∠AEB∵AB=AE∴∠B=∠AEB∴∠B=∠F AE,且∠AEF=∠BAC=90°,AB=AE∴△ABC≌△EAF(ASA)∴AC=EF22.(8分)(2019•黄石)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.【解析】(1)(m,n)所有可能出现的结果:(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),(3,1),(3,2),(3,3).(2)数字之和为奇数的概率=,数字之和为偶数的概率=,≠,∴这个游戏不公平.23.(8分)(2019•黄石)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解析】(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.24.(10分)(2019•黄石)如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE =CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.【解析】(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△CBD∽△DCA,∴,∴,∴DA=2,∴AB=AD﹣BD=2﹣1=1,设BC=a,AC=a,由勾股定理可得:,解得:a=,∴.25.(10分)(2019•黄石)如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)【解析】(1)函数的表达式为:y=(x+1)(x﹣5)=(x2﹣4x﹣5)=x2﹣x﹣,点M坐标为(2,﹣3);(2)当x=8时,y=(x+1)(x﹣5)=9,即点C(8,9),S四边形AMBC=AB(y C﹣y D)=×6×(9+3)=36;(3)y=(x+1)(x﹣5)=(x2﹣4x﹣5)=(x﹣2)2﹣3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D与动点P之间距离PD==,∵,PD有最小值,当x2=3m﹣时,PD最小值d==.。
人教版九年级数学中考一元一次方程及其应用专项练习及参考答案
人教版九年级数学中考一元一次方程及其应用专项练习专题知识回顾知识点1:一元一次方程的概念1.一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。
2.方程的解:判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等.知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
2.解一元一次方程的一般步骤:(1)去分母在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。
(2)去括号一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。
(3)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。
(4)合并同类项把方程化成ax =b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。
(5)系数化为1在方程两边都除以未知数的系数a ,得到方程的解x =b/a ,依据等式基本性质2,计算要仔细,分子分母勿颠倒。
要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a≠0时,方程有唯一解x =b/a ; ②a=0,b=0时,方程有无数个解; ③a=0,b≠0时,方程无解。
知识点3:列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。
2019年全国各地中考数学试题分类汇编(第一期) 专题36 规律探索(含解析)
规律探索一.选择题1. (2019•山东省济宁市 •3分)已知有理数a ≠1,我们把称为a 的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5B .7.5C .5.5D .﹣5.5【考点】数字的变化【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a 1=﹣2, ∴a 2==,a 3==,a 4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣, ∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(﹣)﹣2=﹣=﹣7.5,故选:A .【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 2. (2019•广东深圳•3分)定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m =( )A. -2B. 52-C. 2D.52【答案】B 【解析】⎰-=-=-=----m51122511)5(mmm m m dx x ,则m =52-,故选B.3.(2019,山东枣庄,3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4. (2019•湖北十堰•3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50 B.60 C.62 D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5. (2019•湖北武汉•3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251.252.…、299.2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.二.填空题1. (2019•江苏连云港•3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1.2.3.4.5.6.7.8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为(2,4,2).【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.【解答】解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.2.(2019•浙江衢州•4分)如图,由两个长为2,宽为1的长方形组成“7”字图形。
2019年湖北省黄冈市中考数学试卷--(附解析答案)
2019年湖北省黄冈市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分,每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)﹣3的绝对值是()A.﹣3B.C.3D.±32.(3分)为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为()A.5.5×106B.5.5×105C.55×104D.0.55×1063.(3分)下列运算正确的是()A.a•a2=a2B.5a•5b=5ab C.a5÷a3=a2D.2a+3b=5ab4.(3分)若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5B.5C.﹣4D.45.(3分)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是()A.(6,1)B.(﹣2,1)C.(2,5)D.(2,﹣3)6.(3分)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是()A.B.C.D.7.(3分)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB =40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m8.(3分)已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算()2+1的结果是.10.(3分)﹣x2y是次单项式.11.(3分)分解因式3x2﹣27y2=.12.(3分)一组数据1,7,8,5,4的中位数是a,则a的值是.13.(3分)如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为.14.(3分)用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为.15.(3分)如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=.16.(3分)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是.三、解答题(本题共9题,满分72分)17.(6分)先化简,再求值.(+)÷,其中a=,b=1.18.(6分)解不等式组.19.(6分)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.20.(7分)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(8分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)22.(7分)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,≈1.414,≈1.732.)23.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.24.(10分)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?25.(14分)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S 的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.2019年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分,每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)﹣3的绝对值是()A.﹣3B.C.3D.±3【分析】利用绝对值的定义求解即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.(3分)为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为()A.5.5×106B.5.5×105C.55×104D.0.55×106【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将550000用科学记数法表示为:5.5×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列运算正确的是()A.a•a2=a2B.5a•5b=5ab C.a5÷a3=a2D.2a+3b=5ab【分析】直接利用单项式乘以单项式以及同底数幂的乘除运算法则、合并同类项法则分别化简得出答案.【解答】解:A、a•a2=a3,故此选项错误;B、5a•5b=25ab,故此选项错误;C、a5÷a3=a2,正确;D、2a+3b,无法计算,故此选项错误.故选:C.【点评】此题主要考查了单项式乘以单项式以及同底数幂的乘除运算、合并同类项,正确掌握相关运算法则是解题关键.4.(3分)若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5B.5C.﹣4D.4【分析】利用根与系数的关系可得出x1•x2=﹣5,此题得解.【解答】解:∵x1,x2是一元二次方程x2﹣4x﹣5=0的两根,∴x1•x2==﹣5.故选:A.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.5.(3分)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是()A.(6,1)B.(﹣2,1)C.(2,5)D.(2,﹣3)【分析】将点A的横坐标不变,纵坐标减去4即可得到点A′的坐标.【解答】解:∵点A的坐标为(2,1),∴将点A向下平移4个单位长度,得到的点A′的坐标是(2,﹣3),故选:D.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.正确掌握规律是解题的关键.6.(3分)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是()A.B.C.D.【分析】左视图有1列,含有2个正方形.【解答】解:该几何体的左视图只有一列,含有两个正方形.故选:B.【点评】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.7.(3分)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB =40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解答】解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m故选:A.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.8.(3分)已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min【分析】从图中可得信息:体育场离文具店1000m,所用时间是(45﹣30)分钟,可算出速度.【解答】解:从图中可知:体育场离文具店的距离是:2.5﹣1.5=1km=1000m,所用时间是(45﹣30)=15分钟,∴体育场出发到文具店的平均速度==m/min故选:C.【点评】本题运用函数图象解决问题,看懂图象是解决问题的关键.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算()2+1的结果是4.【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式=3+1=4.故答案为:4.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.10.(3分)﹣x2y是3次单项式.【分析】根据单项式次数的定义进行解答即可.【解答】解:∵单项式﹣x2y中所有字母指数的和=2+1=3,∴此单项式的次数是3.故答案为:3.【点评】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键11.(3分)分解因式3x2﹣27y2=3(x+3y)(x﹣3y).【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣9y2)=3(x+3y)(x﹣3y),故答案为:3(x+3y)(x﹣3y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)一组数据1,7,8,5,4的中位数是a,则a的值是5.【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.13.(3分)如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为50°.【分析】依据平行线的性质,即可得到∠BAC的度数,再根据角平分线的定义,即可得到∠DAC的度数.【解答】解:∵AB∥CD,∠ACD=80°,∴∠BAC=100°,又∵AD平分∠BAC,∴∠DAC=∠BAC=50°,故答案为:50°.【点评】本题主要考查了平行线的性质,以及角平分线的定义.解题时注意:两直线平行,同旁内角互补.14.(3分)用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为4π.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径,从而可以计算面积.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π,故答案为:4π.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.(3分)如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=8.【分析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于4,然后由反比例函数y=的比例系数k的几何意义,可知△AOC的面积等于|k|,从而求出k的值.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8.故答案为8.【点评】本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.16.(3分)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是14.【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.【点评】本题考查翻折变换,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题,属于中考常考题型.三、解答题(本题共9题,满分72分)17.(6分)先化简,再求值.(+)÷,其中a=,b=1.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=÷=•ab(a+b)=5ab,当a=,b=1时,原式=5.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣1,解②得:x≤2,则不等式组的解集是:﹣1<x≤2.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.(6分)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.20.(7分)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.【分析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x 米/分,依题意,得:﹣=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)【分析】(1)由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【解答】解:(1)本次随机调查的学生人数为30÷15%=200(人);(2)书画的人数为200×25%=50(人),戏曲的人数为200﹣(50+80+30)=40(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为1200×=240(人);(4)列表得:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,∴恰好抽到“器乐”和“戏曲”类的概率为=.【点评】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.(7分)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,≈1.414,≈1.732.)【分析】延长CD,交过A点的水平线AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED 的长,由EC﹣ED求出DC的长即可【解答】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=40m,∠EAD=45°,∴ED=AE tan45°=20m,在Rt△ABC中,∠BAC=30°,BC=40m,∴AB=40≈69.3m,则CD=EC﹣ED=AB﹣ED=40﹣20≈29.3m.答:这两座建筑物AB,CD的高度分别为69.3m和29.3m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.【分析】(1)连接OD,由DE是⊙O的切线,得出∠ODE=90°,∠ADO+∠BDE=90°,由∠ACB=90°,得出∠CAB+∠CBA=90°,证出∠CAB=∠ADO,得出∠BDE=∠CBA,即可得出结论;(2)证出CB是⊙O的切线,得出DE=EC,推出EC=EB,再由OA=OC,得出OE∥AB,即可得出结论.【解答】证明:(1)连接OD,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB.【点评】本题考查了切线的判定与性质、相似三角形的判定、等腰三角形的判定与性质、平行线的判定与性质等知识,熟练掌握切线的判定与性质是解题的关键.24.(10分)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?【分析】(1)分0≤x≤30;30≤x≤70;70≤x≤100三段求函数关系式,确定第2段利用待定系数法求解析式;(2)利用w=yx﹣p和(1)中y与x的关系式得到w与x的关系式;(3)把(2)中各段中的w分别减去0.3x得到w′与x的关系式,然后根据一次函数的性质和二次函数的性质求解.【解答】解:(1)当0≤x≤30时,y=2.4;当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得,解得,∴y=﹣0.01x+2.7;当70≤x≤100时,y=2;(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;当70≤x≤100时,w=2x﹣(x+1)=x﹣1;(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,当x=70时,w′的最大值为48,不合题意;当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,所以产量至少要达到80吨.【点评】本题考查了一次函数的应用:学会建立函数模型的方法;确定自变量的范围和利用一次函数的性质是完整解决问题的关键.25.(14分)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S 的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.【分析】(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式即可;(2)由已知易得点P为AB的垂直平分线与抛物线的交点,点P的纵坐标是1,则有1=﹣﹣x+2,即可求P;(3)S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t ﹣)2+;(4)设点Q(m,0),直线BC的解析式y=﹣x+2,直线AQ的解析式y=﹣(x+2)+2,求出点K(0,),H(,),由勾股定理可得OK2=,OH2=+,HK2=+,分三种情况讨论△HOK为等腰三角形即可;【解答】解:(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式可得,∴,∴y=﹣﹣x+2;(2)∵△P AM≌△PBM,∴P A=PB,MA=MB,∴点P为AB的垂直平分线与抛物线的交点,∵AB=2,∴点P的纵坐标是1,∴1=﹣﹣x+2,∴x=﹣1+或x=﹣1﹣,∴P(﹣1﹣,1)或P(﹣1+,1);(3)CM=t﹣2,MG=CM=2t﹣4,MD=4﹣(BC+CM)=4﹣(2+t﹣2)=4﹣t,MF=MD=4﹣t,∴BF=4﹣4+t=t,∴S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;当t=时,S最大值为;(4)设点Q(m,0),直线BC的解析式y=﹣x+2,直线AQ的解析式y=﹣(x+2)+2,∴K(0,),H(,),∴OK2=,OH2=+,HK2=+,①当OK=OH时,=+,∴m2﹣4m﹣8=0,∴m=2+2或m=2﹣2;②当OH=HK时,+=+,∴m2﹣8=0,∴m=2或m=﹣2;③当OK=HK时,=+,不成立;综上所述:Q(2+2,0)或Q(2﹣2,0)或Q(2,0)或Q(﹣2,0);【点评】本题考查二次函数综合;熟练应用待定系数法求函数解析式,掌握三角形全等的性质,直线交点的求法是解题的关键.。
2019年全国各地中考数学真题试卷二次函数解答题
2019年全国各地中考数学真题试卷二次函数解答题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.(2019▪ 湖北黄石▪ 10 分)如图,已知抛物线 y =x 2+bx +c 经过点 A (﹣1,0)、B(5,0).(1) 求抛物线的解析式,并写出顶点 M 的坐标;(2) 若点 C 在抛物线上,且点 C 的横坐标为 8,求四边形 AMBC 的面积;(3) 定点 D (0,m )在 y 轴上,若将抛物线的图象向左平移 2个单位,再向上平移 3 个单位得到一条新的抛物线,点 P 在新的抛物线上运动,求定点 D 与动点 P 之间距离的最小值 d (用含 m 的代数式表示)2.(2019▪ 贵州毕节 12 分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本 10 元.试销阶段每袋的销售价 x (元)与该士特产的日销售量 y (袋)之间的关系如表:若日销售量 y 是销售价 x 的一次函数,试求:(1) 日销售量 y (袋)与销售价 x (元)的函数关系式;(2) 假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大, 每袋的销售价应定为多少元每日销售的最大利润是多少元3 (2019•山东省滨州市 •14 分)如图①,抛物线 y =﹣x 2+ x +4 与 y 轴交于点 A ,与x轴交于点B,C,将直线AB 绕点A 逆时针旋转 90°,所得直线与x 轴交于点D.(1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离;②当点P到直线A D 的距离为时,求s in∠PAD 的值.4.(2019,四川成都,12 分)如图,抛物线y=ax+bx +c经过点A(-2,5),与x 轴相交于B(-1,0),C(3,0)两点,(1)抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△ BCD 沿沿直线BD 翻折得到△ B C'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△ CPQ 为等边三角形时,求直线BP 的函数表达式。
2019-2021年3年中考真题数学分项汇编-专题20 应用题综合(函数、不等式、方程)-(解析版)
专题20 应用题综合(函数、不等式、方程)一.解答题(共45道)1.(2021·浙江台州市·中考真题)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1, R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k ,b 为常数,0≤m ≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R 0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U 0 ,该读数可以换算为人的质量m ,温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式I =U R; ②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k ,b 的值;(2)求R 1关于U 0的函数解析式;(3)用含U 0的代数式表示m ;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩;(2)1024030R U =-;I (3)0120135m U =-;(4)该电子体重秤可称的最大质量为115千克.【分析】(1)根据待定系数法,即可求解;(2)根据“串联电路中电流处处相等,各电阻两端的电压之和等于总电压”,列出等式,进而即可求解;(3)由R 1=12-m +240,1024030R U =-,即可得到答案; (4)把06U =时,代入0480540m U =-,进而即可得到答案. 【详解】解:(1)把(0,240),(120,0)代入R 1=km +b ,得2400120b k b =⎧⎨=+⎩,解得:2402b k =⎧⎨=-⎩;(2)∵001830U U R -=,∴1024030R U =-; (3)由(1)可知:2402b k =⎧⎨=-⎩,∴R 1=2-m +240, 又∵1024030R U =-,∴024030U -=2-m +240,即:0120135m U =-; (4)∵电压表量程为0~6伏,∴当06U =时,1201351156m =-= 答:该电子体重秤可称的最大质量为115千克.【点睛】本题主要考查一次函数与反比例函数的实际应用,熟练掌握待定系数法,是解题的关键. 2.(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..; ②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元()0a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.【答案】(1)48000,37;(2)33150元;(3)50150a <<【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,同(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为()25018001850y x a x =-+-+,得到对称轴,再根据两公司租出的汽车均为17辆,结合x 为整数可得关于a 的不等式180016.517.5100a -<<,即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦,解得:x =37或x =-1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦,y 乙=35001850x -,当甲公司的利润大于乙公司时,0<x <37,y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦=25018001850x x -++,当x =1800502--⨯=18时,利润差最大,且为18050元; 当乙公司的利润大于甲公司时,37<x ≤50,y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦=25018001850x x --,∵对称轴为直线x =1800502--⨯=18, 当x =50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+,对称轴为直线x =1800100a -, ∵x 只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大, ∴180016.517.5100a -<<,解得:50150a <<. 【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x 为整数得到a 的不等式.3.(2021·吉林长春市·中考真题)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水查流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间,某学校STEAM 小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究: (实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:(探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x .纵轴表示箭尺读数y ,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.(结论应用)应用上述发现的规律估算:(3)供水时间达到12小时时,箭尺的读数为多少厘米?(4)如果本次实验记录的开始时间是上午8:00,那么当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)【答案】(1)见解析;(2)在同一直线上,解析式为66y x =+;(3)78()cm ;(4)当天晚上的22:00.【分析】(1)将各点在坐标系中直接描出即可;(2)观察发现,供水时间每增加2小时,箭尺读数增加12cm ,由此可判断它们在同以直线上,设直线解析式为y kx b =+,再代入两个点坐标即可求解;(3)当12x =时代入(2)中解析式即可求出箭尺的读数;(4)当90y =时代入(2)中解析式即可求出供水时间,再结合实验开始时间为8:00即可求解.【详解】解:(1)将表格中各点在直角坐标系中描出来如下图所示:(2)分析表格中数据发现,供水时间每增加2小时,箭尺读数增加12cm ,观察(1)中直角坐标系点的特点,发现它们位于同一直线上,设直线解析式为y kx b =+,代入点(0,6)和点(2,18),得到60182b k b =+⎧⎨=+⎩,解得66k b =⎧⎨=⎩,∴直线的表达式为:66y x =+;(3)当供水时间达到12小时时,即12x =时,代入66y x =+中,解得612678y cm ,∴此时箭尺的读数为78cm ;(4)当箭尺读数为90厘米时,即90y =时,代入66y x =+中,解得(906)614x (小时),∴经过14小时后箭尺读数为90厘米,∵实验记录的开始时间是上午8:00,∴箭尺读数为90厘米时对应的时间为8+14=22,即对应当天晚上的22:00.【点睛】本题考查待定系数法求一次函数的解析式、一次函数的实际应用问题,读懂题目,掌握一次函数的图形及性质是解决本题的关键.4.(2021·黑龙江鹤岗市·中考真题)已知A 、B 两地相距240km ,一辆货车从A 地前往B 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B 地前往A 地,到达A 地后(在A 地停留时间不计)立即原路原速返回.如图是两车距B 地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中m 的值是__________;轿车的速度是________km/h ;(2)求货车从A 地前往B 地的过程中,货车距B 地的距离()km y 与行驶时间()h x 之间的函数关系式; (3)直接写出轿车从B 地到A 地行驶过程中,轿车出发多长时间与货车相距12km ?【答案】(1)5;120;(2)66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩;(3)1h 或27h 31. 【分析】(1)由图象可知轿车从B 到A 所用时间为2h ,即可得出从A 到B 的时间,进而可得m 的值,根据速度=距离÷时间即可得轿车速度;(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,分1≤x <2.5;2.5≤x <3.5;3.5≤x <5三个时间段,分别利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车相遇前和相遇后相距12km 两种情况,分别列方程求出x 的值即可得答案.【详解】(1)由图象可知轿车从B 到A 所用时间为3-1=2h ,∴轿车从A 到B 的时间为2h ,∴m =3+2=5,∵A 、B 两地相距240km ,∴轿车速度=240÷2=120km/h ,故答案为:5;120(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,①设()1110(0 2.5)MN y k x b k x =+≠≤<∵图象过点(0,240)M 和点(2.5,75)N ∴1112402.575b k b =⎧⎨+=⎩解得:1124066b k =⎧⎨=-⎩, ∴66240(0 2.5)MN y x x =-+≤<②∵货车在2.5h~3.5h 时装载货物停留1h ,∴75(2.5 3.5)NG y x =≤<,③设()2220(3.55)GH y k x b k x =+≠≤≤,∵图象过点(3.5,75)G 和点(5,0)H ∴2222503.575k b k b +=⎧⎨+=⎩解得:2225050b k =⎧⎨=-⎩, ∴50250(3.55)GH y x x =-+≤≤,∴66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩. (3)设轿车出发xh 与货车相距12km ,则货车出发(x +1)h ,①当两车相遇前相距12km 时:66(1)24012012x x -++-=,解得:2731x =, ②当两车相遇后相距12km 时:[]12066(1)240x x --++=12,解得:x =1,答:轿车出发1h 或27h 31与货车相距12km . 【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.5.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x += ()21 1.44,x ∴+= 解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:20.6 1.4-=(万人),购买乙种门票的人数为:30.4 2.6-=(万人),所以:门票收入问;()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,∴当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.6.(2021·河北中考真题)下图是某同学正在设计的一动画示意图,x 轴上依次有A ,O ,N 三个点,且2AO =,在ON 上方有五个台阶15~T T (各拐角均为90︒),每个台阶的高、宽分别是1和1.5,台阶1T 到x 轴距离10OK =.从点A 处向右上方沿抛物线L :2412y x x =-++发出一个带光的点P .(1)求点A 的横坐标,且在图中补画出y 轴,并直接..指出点P 会落在哪个台阶上; (2)当点P 落到台阶上后立即弹起,又形成了另一条与L 形状相同的抛物线C ,且最大高度为11,求C 的解析式,并说明其对称轴是否与台阶5T 有交点;(3)在x 轴上从左到右有两点D ,E ,且1DE =,从点E 向上作EB x ⊥轴,且2BE =.在BDE 沿x 轴左右平移时,必须保证(2)中沿抛物线C 下落的点P 能落在边BD (包括端点)上,则点B 横坐标的最大值比最小值大多少?(注:(2)中不必写x 的取值范围)【答案】(1)(2,0)A -,见解析,点P 会落在4T 的台阶上;(2)2(7)11y x =--+,其对称轴与台阶5T 有交点;(32-.【分析】(1)二次函数与坐标轴的交点坐标可以直接算出,根据点A 的坐标可以确定y 轴,利用函数的性质可以判断落在那个台阶上;(2)利用二次函数图象的平移来求解抛物线C ,再根据函数的对称轴的值来判断是否与台阶5T 有交点; (3)抓住二次函数图象不变,是BDE 在左右平移,要求点B 横坐标的最大值比最小值大多少,利用临界点法,可以确定什么时候横坐标最大,什么时候横坐标最小,从而得解.【详解】解:(1)当0y =,24120x x -++=,解得:2,6x x =-=,A 在左侧,(2,0)A ∴-, 2412y x x =-++关于22b x a=-=对称,y ∴轴与OK 重合,如下图:由题意在坐标轴上标出相关信息,当7y =时,24127x x -++=,解得:1,5x x =-=,4.556<<,∴点P 会落在4T 的台阶上,坐标为(5,7)P ,(2)设将抛物线L ,向下平移5个单位,向右平移a 的单位后与抛物线C 重合,则抛物线C 的解析式为:2(2)11y x a =---+,由(1)知,抛物线C 过(5,7)P ,将(5,7)P 代入2(2)11y x a =---+,27(3)11a =--+,解得:5,1a a ==(舍去,因为是对称轴左边的部分过(5,7)P ), 抛物线C :2(7)11y x =--+,2(7)11y x =--+关于72b x a=-=,且677.5<<,∴其对称轴与台阶5T 有交点.(3)由题意知,当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点D 时,此时点B 的横坐标值最大;当0y =,2(7)110x --+=,解得:1277x x ==(取舍),故点B 的横坐标最大值为:8当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点B 时,此时点B 的横坐标值最小;当2y =,2(7)112x --+=,解得:1210,4x x ==(舍去),故点B 的横坐标最小值为:10,则点B 横坐标的最大值比最小值大:81022-.【点睛】本题综合性考查了二次函数的解析式的求法及图象的性质,图象平移,抛物线的对称轴,解题的关键是:熟练掌握二次函数解析式的求法及图象的性质,通过已知的函数求解平移后函数的解析式. 7.(2021·广西来宾市·中考真题)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【答案】(1)213482y x x =-++;(2)12米;(3)3524b ≥. 【分析】(1)根据题意可知:点A (0,4)点B (4,8),利用待定系数法代入抛物线221:8C y x bx c =-++即可求解;(2)高度差为1米可得21=1C C -可得方程,由此即可求解; (3)由抛物线2117C :1126y x x =-++可知坡顶坐标为 61(7,)12,此时即当7x =时,运动员运动到坡顶正上方,若与坡顶距离超过3米,即2161773812y b c =-⨯++≥+,由此即可求出b 的取值范围. 【详解】解:(1)根据题意可知:点A (0,4),点B (4,8)代入抛物线221:8C y x bx c =-++得, 2=4144=88c b c ⎧⎪⎨-⨯++⎪⎩,解得:=43=2c b ⎧⎪⎨⎪⎩, ∴抛物线2C 的函数解析式213482y x x =-++; (2)∵运动员与小山坡的竖直距离为1米, ∴221317(4)(1)182126x x x x -++--++=, 解得:14x =-(不合题意,舍去), 212x =,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)∵点A (0,4),∴抛物线221:48C y x bx =-++, ∵抛物线22117161C :1=(7)1261212y x x x =-++--+,∴坡顶坐标为 61(7,)12, ∵当运动员运动到坡顶正上方,且与坡顶距离超过3米时, ∴21617743812y b =-⨯++≥+,解得:3524b ≥. 【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4) 还原:将用数学方法得到的结论还原为实际问题.8.(2021·贵州安顺市·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【答案】(1)y =14-x 2+2x (0≤x ≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)5≤m ≤8 【分析】(1)设二次函数的解析式为:y =a (x -8)x ,根据待定系数法,即可求解; (2)把:x =1,代入y =14-x 2+2x ,得到对应的y 值,进而即可得到结论; (3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m 的范围.【详解】(1)根据题意得:A (8,0),B (4,4),设二次函数的解析式为:y =a (x -8)x ,把(4,4)代入上式,得:4=a ×(4-8)×4,解得:14a =-, ∴二次函数的解析式为:y =14-(x -8)x =14-x 2+2x (0≤x ≤8); (2)由题意得:x =0.4+1.2÷2=1,代入y =14-x 2+2x ,得y =14-×12+2×1=74>1.68, 答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x ≤8时,新函数表达式为:y =14x 2-2x , 当x <0或x >8时,新函数表达式为:y =-14x 2+2x , ∴新函数表达式为:2212(08)412(08)4x x x y x x x x ⎧-≤≤⎪⎪=⎨⎪-+⎪⎩或,∵将新函数图象向右平移()0m m >个单位长度,∴O '(m ,0),A '(m +8,0),B '(m +4,-4),如图所示,根据图像可知:当m +4≥9且m ≤8时,即:5≤m ≤8时,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小.【点睛】本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键.9.(2021·湖北中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(1)求y 与x 的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)【答案】(1)1090y x =-+;(2)4万元;(3)当销售价x 定为7元/件时,该月纯收入最大.【分析】(1)利用待定系数法即可得;(2)将8x =代入()20%10a x =-求出a 的值,代入y 与x 的函数关系式求出该月的销售量,再利用a 乘以该月的销售量即可得;(3)设该月纯收入为w 万元,先根据纯收入的计算公式求出w 与x 之间的函数关系式,再利用二次函数的性质求解即可得.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,将点(6,30),(7,20)代入得:630720k b k b +=⎧⎨+=⎩,解得1090k b =-⎧⎨=⎩,则y 与x 的函数关系式为1090y x =-+;(2)当8x =时,()20%1080.4a =⨯-=,1089010y =-⨯+=,则0.4104⨯=(万元), 答:政府该月应付给厂家补贴4万元;(3)设该月纯收入为w 万元,由题意得:(1090)6(1090)(20%1(1090)0)w x x x x x -=-+--++-+,整理得:28(5)(9)8(7)32w x x x =---=--+,由二次函数的性质可知,在69x ≤<内,当7x =时,w 取得最大值,最大值为32,答:当销售价x 定为7元/件时,该月纯收入最大.【点睛】本题考查了一次函数和二次函数的实际应用,正确建立函数关系式是解题关键.10.(2021·辽宁大连市·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【分析】(1)由图象易得()50,100和()80,40,然后设y 关于x 的函数解析式为y kx b =+,进而代入求解即可;(2)设该电商每天所获利润为w 元,由(1)及题意易得222808000w x x =-+-,然后根据二次函数的性质可进行求解.【详解】解:(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∵5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=;答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.11.(2021·内蒙古鄂尔多斯市·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x (元)和游客居住房间数y (间)符合一次函数关系,如图是y 关于x 的函数图象.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?【答案】(1)y 与x 之间的函数解析式为y=-0.1x+68,200x 320≤≤;(2)当房价定为320元时,宾馆利润最大,最大利润是10800元【分析】(1)设y 与x 之间的函数解析式为y=kx+b ,根据待定系数法即可得出答案;(2)设宾馆每天的利润为W 元,利用房间数乘每一间房间的利润即可得到W 关于x 的函数解析式,配方法再结合增减性即可求得最大值.【详解】(1)根据题意,设y 与x 之间的函数解析式为y=kx+b ,图象过(280,40),(290,39),∴2804029039k b k b +=⎧⎨+=⎩,解得:-0.168k b =⎧⎨=⎩ ∴y 与x 之间的函数解析式为y=-0.1x+68,∵每间房价不低于200元且不超过320元 ∴200x 320≤≤(2)设宾馆每天的利润为W 元,()()()2w=x-20y=x-20-0.1x+68=-0.1x +70x-1360, ∴()22w=-0.1x +70x-1360=-0.1x-350+10890 当x <350时,w 随x 的增大而增大,∵200x 320≤≤,∴当x=320时,W 最大=10800∴当房价定为320元时,宾馆利润最大,最大利润是10800元【点睛】本题考查的是二次函数在实际生活中的应用及待定系数法求一次函数的解析式,注意利用配方法和函数的增减性求函数的最值,难度不大.12.(2021·贵州铜仁市·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用1y (万元)与月销售量x (辆)(4x ≥)满足某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y 与x 的关系式1y =________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y =(每辆原售价-1y -进价)x ,请你根据上述条件,求出月销售量()4x x ≥为多少时,销售利润最大?最大利润是多少?【答案】(1)1122y x =-;(2)月销售量为8辆时,销售利润最大,最大利润是32万元 【分析】(1)观察表格中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,再代入数据求解即可;(2)根据已知条件“每月销售利润y =(每辆原售价-1y -进价)x ”,求出y 的表达式,然后再借助二次函数求出其最大利润即可.【详解】解:(1)由表中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,代入点(4,0)和点(5,0.5),得到040.55k b k b =+⎧⎨=+⎩,解得122k b ⎧=⎪⎨⎪=-⎩,故1y 与x 的关系式为1122y x =-; (2)由题意可知:降价后每月销售利润y =(每辆原售价-1y -进价)x , 即:211(22216)822y x x x x ,其中4x ≥, ∴y 是x 的二次函数,且开口向下,其对称轴为82b x a=-=, ∴当8x =时,y 有最大值为21888322万元, 答:月销售量为8辆时,销售利润最大,最大利润是32万元.【点睛】本题考查待定系数法求一次函数解析式以及二次函数的应用,读懂题意,根据题中已知条件列出表达式是解决本题的关键.13.(2021·湖北鄂州市·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)【答案】(1)4200y x =+;(2)种植面积为240亩时总利润最大,最大利润268800元.【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y (元)与种粮面积x (亩)之间的函数关系为4200y x =+,进而得出W 与x 的函数关系式,再利用二次函数的最值公式求出即可.【详解】解:(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:160840190960k b k b +=⎧⎨+=⎩,解得:4200k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为4200y x =+. (2)设老张明年种植该作物的总利润为W 元,依题意得:()21604200120W x x ⎡=-+⎤⎣⎦+⋅242080x x =-+()24260270400x =--+. ∵40-<,∴当260x <时,y 随x 的增大而增大.由题意知:240x ≤,∴当240x =时,W 最大,最大值为268800元.即种植面积为240亩时总利润最大,最大利润268800元.【点睛】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W 与x 的函数关系式是求最值问题的关键.14.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360 解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去 ∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+∴当x =10时,M 最大值=4000元 ∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.15.(2021·湖北随州市·中考真题)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.。
湖北省黄石市2019年中考[数学]考试真题和参考答案
湖北省黄石市2019年中考[数学]考试真题与答案解析一、选择题1.3的相反数是( )A.3B.-3C.D.-2.下列图形中,既是中心对称又是轴对称图形的是( )A.B.C.D.3.如图所示,该几何体的俯视图是( )A.B.C.D.4.下列运算正确的是( )A.8a-3b=5ab B.(a2)3=a5C.a9÷a3=a3D.a2•a=a35.函数y=+的自变量x的取值范围是( )A.x≥2,且x≠3B.x≥2C.x≠3D.x>2,且x≠36.不等式组的解集是( )A.-3≤x<3B.x>-2C.-3≤x<-2D.x≤-37.在平面直角坐标系中,点G的坐标是(-2,1),连接OG,将线段OG绕原点O旋转180°,得到对应线段OG',则点G'的坐标为( )A.(2,-1)B.(2,1)C.(1,-2)D.(-2,-1)8.如图,在Rt△ABC中,∠ACB=90°,点H、E、F分别是边AB、BC、CA的中点,若EF+CH=8,则CH的值为( )A.3B.4C.5D.69.如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为( )A.140°B.70°C.110°D.80°10.若二次函数y=a2x2-bx-c的图象,过不同的六点A(-1,n)、B(5,n-1)、C(6,n+1)、D(,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y2<y1<y3二、填空题11.计算:()-1-|1-|= .12.因式分解:m3n-mn3= .13.据报道,2020年4月9日下午,黄石市重点园区(珠三角)云招商财富推介会上,我市现场共签项目20个,总投资137.6亿元.用科学记数法表示137.6亿元,可写为 元.14.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是 分.15.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则的长等于 .16.匈牙利著名数学家爱尔特希(P.Erdos,1913-1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是 .三、解答题17.先化简,再求值:-,其中x=5.18.如图,是某小区的甲、乙两栋住宅楼,小丽站在甲栋楼房AB的楼顶,测量对面的乙栋楼房CD的高度.已知甲栋楼房AB与乙栋楼房CD的水平距离AC=18米,小丽在甲栋楼房顶部B点,测得乙栋楼房顶部D点的仰角是30°,底部C点的俯角是45°,求乙栋楼房CD 的高度(结果保留根号).19.如图,AB=AE,AB∥DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.20.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、B两点,点C在第四象限,BC∥x轴.(1)求k的值;(2)以AB、BC为边作菱形ABCD,求D点坐标.21.(8分)已知:关于x的一元二次方程x2+x-2=0有两个实数根.(1)求m的取值范围;(2)设方程的两根为x1、x2,且满足(x1-x2)2-17=0,求m的值.22.(8分)我市将面向全市中小学开展“经典诵读”比赛.某中学要从2名男生2名女生共4名学生中选派2名学生参赛.(1)请列举所有可能出现的选派结果;(2)求选派的2名学生中,恰好为1名男生1名女生的概率.23.(8分)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.24.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB 上一点,经过点A、D的⊙O分别交AB、AC于点E、F.(1)求证:BC是⊙O的切线;(2)若BE=8,sin B=,求⊙O的半径;(3)求证:AD2=AB•AF.25.(10分)在平面直角坐标系中,抛物线y=-x2+kx-2k的顶点为N.(1)若此抛物线过点A(-3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C坐标;(3)已知点M(2-,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°时,求抛物线的解析式.答案解析一、选择题1.B【解答】解:根据相反数的概念及意义可知:3的相反数是-3.2.D【解答】解:A、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;B、是中心对称图形,但不是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、既是中心对称图形,又是轴对称图形,故本选项符合题意.3.B【解答】解:该几何体的俯视图是4.D【解答】解:A.不是同类项不能合并,选项错误;B.原式=a2×3=a6,选项错误;C.a9÷a3=a9-3=a6,选项错误;D.a2•a=a2+1=a3,选项正确.5.A【解答】解:根据题意得:x-2≥0,且x-3≠0,解得x≥2,且x≠3.6.C【解答】解:不等式组,由①得:x<-2,由②得:x≥-3,则不等式组的解集为-3≤x<-2.7.A【解答】解:由题意G与G′关于原点对称,∵G(-2,1),∴G′(2,-1).8.B【解答】解:∵在Rt△ABC中,∠ACB=90°,点H,E,F分别是边AB,BC,CA的中点,∴EF=AB,CH=AB,∵EF+CH=8,∴CH=EF=8=4.9.C【解答】解:如图,在优弧AB上取一点P,连接AP,BP,∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90°,∵∠DCE=40°,∴∠AOB=360°-90°-90°-40°=140°,∴∠P=∠AOB=70°,∵A、C、B、P四点共圆,∴∠P+∠ACB=180°,∴∠ACB=180°-70°=110°.10.D【解答】解:∵二次函数y=a2x2-bx-c的图象过点A(-1,n)、B(5,n-1)、C(6,n+1),∴抛物线的对称轴直线x满足2<x<2.5,抛物线的开口向上,∴抛物线上离对称轴水平距离越大的点,对应函数值越大,∵D(,y1)、E(2,y2)、F(4,y3),则y2<y1<y3.二、填空题11.4-【解答】解:原式=3-(-1)=3-+1=4-.12.mn(m+n)(m-n)【解答】解:原式=mn(m2-n2)=mn(m+n)(m-n).13.1.376×1010【解答】解:137.6亿元=137****0000元=1.376×1010元.14.85【解答】解:90×+90×+80×=85(分).15.π【解答】解:∵每个小方格都是边长为1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB为等腰直角三角形,∴∠A=∠B=45°,∴连接OC,则∠COB=90°,∵OB=,∴的长为:=π.16.18°【解答】解:∵这个五边形由正五边形的任意四个顶点及正五边形的中心构成,∴根据正五边形的性质可得OA=OB=OC=OD,AB=BC=CD,∴△AOB≌△BOC≌△COD(SSS),∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,∵正五边形每个角的度数为:=108°,∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∴∠AOB=∠BOC=∠COD=(180°-2×54°)=72°,∴∠AOD=360°-3×72°=144°,∵OA=OD,∴∠ADO=(180°-144°)=18°.三、解答题17.【分析】原式第一项约分后,两项利用同分母分式的减法法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=-=-=,当x=5时,原式=.18.【分析】由三角函数定义求出DE=BE×tan30°=18,证出△ABC是等腰直角三角形,得出CE=AB=AC=18,进而得出答案.【解答】解:如图所示:由题意得:BE=AC=18,CE=AB,∠DBE=30°,∠CBE=45°,在Rt△EDB中,∠DBE=30°,=tan30°,∴DE=BE×tan30°=18×=18,在Rt△ABC中,∠ABC=90°-45°=45°,∴△ABC是等腰直角三角形,∴CE=AB=AC=18,∴CD=DE+CE=18+18(米);答:乙栋楼房CD的高度为(18+18)米.19.【解答】解(1)∵AB∥DE,∠E=40°,∴∠EAB=40°,∵∠DAB=70°,∴∠DAE=30°;(2)证明:在△ADE与△BCA中,,∴△ADE≌△BCA(ASA),∴AD=BC.20.【分析】(1)根据点A(1,a)在y=2x上,可以求得点A的坐标,再根据反比例函数y =(k≠0)的图象与反比例函数y=2x的图象相交于A(1,a),即可求得k的值;(2)因为B是反比例函数y=和正比例函数y=2x的交点,列方程可得B的坐标,根据菱形的性质可确定点D的坐标.【解答】解:(1)∵点A(1,a)在直线y=2x上,∴a=2×1=2,即点A的坐标为(1,2),∵点A(1,2)是反比例函数y=(k≠0)的图象与正比例函数y=2x图象的交点,∴k=1×2=2,即k的值是2;(2)由题意得:=2x,解得:x=1或-1,经检验x=1或-1是原方程的解,∴B(-1,-2),∵点A(1,2),∴AB==2,∵菱形ABCD是以AB、BC为边,且BC∥x轴,∴AD=AB=2,∴D(1+2,2).21.【分析】(1)根据方程的系数结合根的判别式,即可得出△=m+8≥0,根据二次根式的意义即可得出m≥0,从而得出m的取值范围;(2)根据根与系数的关系可得x1+x2=-,x1•x2=-2,结合(x1-x2)2-17=0即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)∵关于x的一元二次方程x2+x-2=0有两个实数根,∴△=[]2-4×1×(-2)=m+8≥0,且m≥0,解得:m≥0.(2)∵关于x的一元二次方程x2+x-2=0有两个实数根x1、x2,∴x1+x2=-,x1•x2=-2,∴(x1-x2)2-17=(x1+x2)2-4x1•x2-17=0,即m+8-17=0,解得:m=9.22.【分析】(1)用列表法表示所有可能出现的结果;(2)从所有可能出现的结果中,找出“一男一女”的结果,进而求出相应的概率.【解答】解:(1)用列表法表示所有可能出现的结果情况如下:(2)共有12种可能出现的结果,其中“一男一女”的有8种,∴P(一男一女)==.23.【分析】(1)设每头牛值x两银子,每只羊值y两银子,根据“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子”,即可得出关于x、y的二元一次方程组,解之即可得出结论.(2)可设购买a头牛,b只羊,根据用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),列出方程,再根据整数的性质即可求解.【解答】解:(1)设每头牛值x两银子,每只羊值y两银子,根据题意得:,解得:.答:每头牛值3两银子,每只羊值2两银子.(2)设购买a头牛,b只羊,依题意有3a+2b=19,b=,∵a,b都是正整数,∴①购买1头牛,8只羊;②购买3头牛,5只羊;③购买5头牛,2只羊.24.【分析】(1)先判断出OD∥AC,得出∠ODB=90°,即可得出结论;(2)由锐角三角函数可得sin B==,即可求解;(3)通过证明△DAB∽△FAD,可得,可得结论.【解答】解:(1)如图,连接OD,EF,则OA=OD,∴∠ODA=∠OAD,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∴∠ODB=∠C=90°,∵点D在⊙O上,∴BC是⊙O的切线;(2)∵∠BDO=90°,∴sin B==,∴OD=5,∴⊙O的半径为5;(3)连接EF,∵AE是直径,∴∠AFE=90°=∠ACB,∴EF∥BC,∴∠AEF=∠B,又∵∠AEF=∠ADF,∴∠B=∠ADF,又∵∠OAD=∠CAD,∴△DAB∽△FAD,∴,∴AD2=AB•AF.25.【分析】(1)把A(-3.1)代入y=-x2+kx-2k即可求解.(2)根据题意作图,求出直线AB的解折式,再表示出E点坐标,代入直线可求解.(3)先求出定点H,过H点做HI⊥x轴,根据题意求出∠MHI=30°,再根据题意分情况即可求解.【解答】解:(1)把A(-3.1)代入y=-x2+kx-2k,得-9-3k-2k=1.解得k=2,∴抛物线的解析式为y=-x2-2x+4;(2)设C(t,-t2-2t+4),则E(t,--t+2),设直线AB的解析式为y=kx+b,把A(-3,1),(0,4)代入得到,,解得,∴直线AB的解析式为y=x+4,∵E(t,--t+2)在直线AB上,∴--t+2=t+4,解得t=-2,∴C(-2,4).(3)由y=-x2+kx-2k=k(x-2)-x2,当x-2=0时,x=2,y=-4,∴无论k取何值,抛物线都经过定点H(2,-4),二次函数的顶点N(,-2k),①如图1中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G,若>2时,则k>4,∵M(2-,0),H(2,-4),∴MI=,HI=4,∴tan∠MHI==,∴∠MHI=30°,∵∠MHN=60°,∴∠NHI=30°,即∠GNH=30°,由图可知,tan∠GNH===,解得k=4+2或4(不合题意舍弃).②如图3中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G.若<2,则k<4,同理可得,∠MHI=30°,∵∠MHN=60°,∴NH⊥HI,即-2k═-4,解得k=4(不符合题意舍弃).③若=2,则N,H重合,不符合题意舍弃,综上所述,抛物线的解析式为y=-x2+(4+2)x-(8+4).。
2019年湖北省黄冈市中考数学试卷以及答案解析
2019年湖北省黄冈市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分,每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)﹣3的绝对值是()A.﹣3 B.C.3 D.±32.(3分)为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为()A.5.5×106B.5.5×105C.55×104D.0.55×1063.(3分)下列运算正确的是()A.a•a2=a2B.5a•5b=5ab C.a5÷a3=a2D.2a+3b=5ab 4.(3分)若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5 B.5 C.﹣4 D.45.(3分)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是()A.(6,1)B.(﹣2,1)C.(2,5)D.(2,﹣3)6.(3分)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是()A.B.C.D.7.(3分)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB =40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m8.(3分)已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算()2+1的结果是.10.(3分)﹣x2y是次单项式.11.(3分)分解因式3x2﹣27y2=.12.(3分)一组数据1,7,8,5,4的中位数是a,则a的值是.13.(3分)如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为.14.(3分)用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为.15.(3分)如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=.16.(3分)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是.三、解答题(本题共9题,满分72分)17.(6分)先化简,再求值.(+)÷,其中a=,b=1.18.(6分)解不等式组.19.(6分)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.20.(7分)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(8分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)22.(7分)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,≈1.414,≈1.732.)23.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.24.(10分)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?25.(14分)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S 的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.2019年湖北省黄冈市中考数学试卷答案与解析一、选择题(本题共8小题,每小题3分,共24分,每小题给出的4个选项中,有且只有一个答案是正确的)1.【分析】利用绝对值的定义求解即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将550000用科学记数法表示为:5.5×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用单项式乘以单项式以及同底数幂的乘除运算法则、合并同类项法则分别化简得出答案.【解答】解:A、a•a2=a3,故此选项错误;B、5a•5b=25ab,故此选项错误;C、a5÷a3=a2,正确;D、2a+3b,无法计算,故此选项错误.故选:C.【点评】此题主要考查了单项式乘以单项式以及同底数幂的乘除运算、合并同类项,正确掌握相关运算法则是解题关键.4.【分析】利用根与系数的关系可得出x1•x2=﹣5,此题得解.【解答】解:∵x1,x2是一元二次方程x2﹣4x﹣5=0的两根,∴x1•x2==﹣5.故选:A.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.5.【分析】将点A的横坐标不变,纵坐标减去4即可得到点A′的坐标.【解答】解:∵点A的坐标为(2,1),∴将点A向下平移4个单位长度,得到的点A′的坐标是(2,﹣3),故选:D.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.正确掌握规律是解题的关键.6.【分析】左视图有1列,含有2个正方形.【解答】解:该几何体的左视图只有一列,含有两个正方形.故选:B.【点评】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.7.【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解答】解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m故选:A.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.8.【分析】从图中可得信息:体育场离文具店1000m,所用时间是(45﹣30)分钟,可算出速度.【解答】解:从图中可知:体育场离文具店的距离是:2.5﹣1.5=1km=1000m,所用时间是(45﹣30)=15分钟,∴体育场出发到文具店的平均速度==m/min故选:C.【点评】本题运用函数图象解决问题,看懂图象是解决问题的关键.二、填空题(本题共8小题,每小题3分,共24分)9.【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式=3+1=4.故答案为:4.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.10.【分析】根据单项式次数的定义进行解答即可.【解答】解:∵单项式﹣x2y中所有字母指数的和=2+1=3,∴此单项式的次数是3.故答案为:3.【点评】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键11.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣9y2)=3(x+3y)(x﹣3y),故答案为:3(x+3y)(x﹣3y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.13.【分析】依据平行线的性质,即可得到∠BAC的度数,再根据角平分线的定义,即可得到∠DAC的度数.【解答】解:∵AB∥CD,∠ACD=80°,∴∠BAC=100°,又∵AD平分∠BAC,∴∠DAC=∠BAC=50°,故答案为:50°.【点评】本题主要考查了平行线的性质,以及角平分线的定义.解题时注意:两直线平行,同旁内角互补.14.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径,从而可以计算面积.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π,故答案为:4π.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.【分析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于4,然后由反比例函数y=的比例系数k的几何意义,可知△AOC的面积等于|k|,从而求出k的值.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8.故答案为8.【点评】本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.16.【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.【点评】本题考查翻折变换,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题,属于中考常考题型.三、解答题(本题共9题,满分72分)17.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=÷=•ab(a+b)=5ab,当a=,b=1时,原式=5.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣1,解②得:x≤2,则不等式组的解集是:﹣1<x≤2.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.20.【分析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,依题意,得:﹣=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.【分析】(1)由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【解答】解:(1)本次随机调查的学生人数为30÷15%=200(人);(2)书画的人数为200×25%=50(人),戏曲的人数为200﹣(50+80+30)=40(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为1200×=240(人);(4)列表得:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,∴恰好抽到“器乐”和“戏曲”类的概率为=.【点评】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.【分析】延长CD,交过A点的水平线AE于点E,可得DE⊥AE,在直角三角形ABC 中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC﹣ED求出DC的长即可【解答】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=40m,∠EAD=45°,∴ED=AE tan45°=20m,在Rt△ABC中,∠BAC=30°,BC=40m,∴AB=40≈69.3m,则CD=EC﹣ED=AB﹣ED=40﹣20≈29.3m.答:这两座建筑物AB,CD的高度分别为69.3m和29.3m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.【分析】(1)连接OD,由DE是⊙O的切线,得出∠ODE=90°,∠ADO+∠BDE=90°,由∠ACB=90°,得出∠CAB+∠CBA=90°,证出∠CAB=∠ADO,得出∠BDE=∠CBA,即可得出结论;(2)证出CB是⊙O的切线,得出DE=EC,推出EC=EB,再由OA=OC,得出OE∥AB,即可得出结论.【解答】证明:(1)连接OD,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB.【点评】本题考查了切线的判定与性质、相似三角形的判定、等腰三角形的判定与性质、平行线的判定与性质等知识,熟练掌握切线的判定与性质是解题的关键.24.【分析】(1)分0≤x≤30;30≤x≤70;70≤x≤100三段求函数关系式,确定第2段利用待定系数法求解析式;(2)利用w=yx﹣p和(1)中y与x的关系式得到w与x的关系式;(3)把(2)中各段中的w分别减去0.3x得到w′与x的关系式,然后根据一次函数的性质和二次函数的性质求解.【解答】解:(1)当0≤x≤30时,y=2.4;当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得,解得,∴y=﹣0.01x+2.7;当70≤x≤100时,y=2;(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;当70≤x≤100时,w=2x﹣(x+1)=x﹣1;(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,当x=70时,w′的最大值为48,不合题意;当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,所以产量至少要达到80吨.【点评】本题考查了一次函数的应用:学会建立函数模型的方法;确定自变量的范围和利用一次函数的性质是完整解决问题的关键.25.【分析】(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式即可;(2)由已知易得点P为AB的垂直平分线与抛物线的交点,点P的纵坐标是1,则有1=﹣﹣x+2,即可求P;(3)S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t ﹣)2+;(4)设点Q(m,0),直线BC的解析式y=x+2,直线AQ的解析式y=﹣(x+2)+2,求出点K(0,),H(﹣,),由勾股定理可得OK2=,OH2=+,HK2=+,分三种情况讨论△HOK 为等腰三角形即可.【解答】解:(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式可得,∴,∴y=﹣﹣x+2;(2)∵△P AM≌△PBM,∴P A=PB,MA=MB,∴点P为AB的垂直平分线与抛物线的交点,∵AB=2,∴点P的纵坐标是1,∴1=﹣﹣x+2,∴x=﹣1+或x=﹣1﹣,∴P(﹣1﹣,1)或P(﹣1+,1);(3)CM=t﹣2,MG=CM=2t﹣4,MD=4﹣(BC+CM)=4﹣(2+t﹣2)=4﹣t,MF=MD=4﹣t,∴BF=4﹣4+t=t,∴S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;当t=时,S最大值为;(4)设点Q(m,0),直线BC的解析式y=x+2,直线AQ的解析式y=﹣(x+2)+2,∴K(0,),H(﹣,),∴OK2=,OH2=+,HK2=+,①当OK=OH时,=+,∴3m2+12m+8=0,∴m=﹣2+或m=﹣2﹣;②当OH=HK时,+=+,∴3m2+12m+8=0,∴m=﹣2+或m=﹣2﹣;③当OK=HK时,=+,∴m2+4m﹣8=0,∴m=﹣2+2或m=﹣2﹣2;综上所述:Q(﹣2+2,0)或Q(﹣2﹣2,0)或Q(﹣2+,0)或Q(﹣2﹣,0);【点评】本题考查二次函数综合;熟练应用待定系数法求函数解析式,掌握三角形全等的性质,直线交点的求法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年湖北省黄石市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019湖北省黄石市,1,3分值) 下列四个数:-3,-0.5,235 A. -3B.-0.5C.235【答案】A【解析】根据绝对值的意义求出各个数的绝对值,再比较它们的大小. 【知识点】绝对值2.(2019湖北省黄石市,2,3)国际行星命名委员会将紫金山天文台于2007年9月11日发现的编号为171448的小行星命名为“谷超豪星”,则171448用科学计数法可表示为A. 60.17144810⨯B. 51.7144810⨯C. 50.17144810⨯D. 61.7144810⨯ 【答案】B【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.将7760000用科学记数法表示为:1.71448×105.故选:B . 【知识点】科学记数法3.(2019湖北省黄石市,3,3)下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.【答案】D【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断.A 、是轴对称图形,不是中心对称图形,故本选项错误;B 、不是轴对称图形,是中心对称图形,故本选项错误;C 、是轴对称图形,不是中心对称图形,故本选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D . 【知识点】轴对称图形;中心对称图形4.(2019湖北省黄石市,4,3)如图,该正方体的俯视图是ABCD【答案】A【解析】俯视图是从物体上面看所得到的图形,正方体从上面看,所得到的图形是正方形,故选:A . 【知识点】简单几何体的三视图5.(2019湖北省黄石市,5,3) 化简1(93)2(1)3x x --+的结果是 A. 21x -B. 1x +C. 53x +D. 3x -【答案】D【解析】原式去括号合并即可得到结果.原式=3x-1-2x-2=x-3,故选:D . 【知识点】整式的加减6.(2019湖北省黄石市,6,3)若式子12x x --在实数范围内有意义,则x 的取值范围是 A. 1x ≥且2x ≠ B. 1x ≤ C. 1x >且2x ≠D. 1x <【答案】A【解析】根据分式有意义,分母不等于零和二次根式的被开方数是非负数得x ﹣1≥0且x ﹣2≠0,解得x ≥1且x ≠2.故选:A .【知识点】分式有意义的条件;二次根式有意义的条件7.(2019湖北省黄石市,7,3)如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上, AB 边的中点是坐标原点O ,将正方形绕点C 按逆时针方向旋转90°后,点B 的对应点'B 的坐标是 A.(-1,2) B.(1,4) C.(3,2) D.(-1,0)xy DCA OB【答案】C【解析】根据旋转可得:CB '=CB =2,∠BCB '=90°,可得B '的坐标,如图,由旋转得:CB '=CB =2,∠BCB '=90°,∵四边形ABCD 是正方形,且O 是AB 的中点,∴OB =1,∴B '(2+1,2),即B '(3,2),故选:C .【知识点】坐标与图形变化﹣旋转;正方形的性质8.(2019湖北省黄石市,8,3)如图,在ABC V 中,50B ∠=︒,CD AB ⊥于点D ,BCD ∠和BDC ∠的角平分线相较于点E ,F 为边AC 的中点,CD CF =,则ACD CED ∠+∠= A.125°B.145°C.175°D.190°AED BCF【答案】C【思路分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【解题过程】连接DF,∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF 是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.【知识点】三角形的角平分线;直角三角形的斜边上的中线的性质;等边三角形;9.(2019湖北省黄石市,9,3)如图,在平面直角坐标系中,点B在第一象限,BA x⊥轴于点A,反比例函数kyx=(0x>)的图象与线段AB相交于点C,且C是线段AB的中点,点C关于直线y x=的对称点'C的坐标为(1,n)(1n≠),若OABV的面积为3,则k的值为A.13B.1C.2D.3xyBACC'O【答案】D【思路分析】根据对称性求出C点坐标,进而得OA与AB的长度,再根据已知三角形的面积列出n的方程求得n,进而用待定系数法求得k.【解题过程】∵点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),∴C(n,1),∴OA=n,AC=1,∴AB =2AC=2,∵△OAB的面积为3,∴,解得,n=3,∴C(3,1),∴k=3×1=3.故选:D.【知识点】反比例函数与一次函数的交点问题10.(2019湖北省黄石市,10,3)如图,矩形ABCD 中,AC 与BD 相交于点E ,:3AD AB =,将ABD V 沿BD 折叠,点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得BH EH +的值最小,此时BHCF = 3 B.23C.6 D.32G EC【答案】B 【思路分析】利用“将军饮马”模型,作点E 关于AD 在对称点E ′,连接BE ′交AD 于H ,由三角形全等得CF=AB ,最后说明△ABH 是一个含30°角的直角三角形得出它们的比值。
【解题过程】如图,作点E 关于AD 在对称点E ′,连接BE ′交AD 于H ,EE ′∥AB, 矩形ABCD 中,:3AD AB =,∴∠BDA=∠CBD=30°,折叠,∴∠FDA=60°,∴ △FDA 是一个等边三角形,∴∠CDF=∠BAF=30°,∴△DC F ≌△ABF ,∴CF=BF=AB ,∵BG=2,∴AB=3 EA=EB ,∠ABE=60°,△AEB 是一个等边三角形,∴EB=AB= EE ′,∴∠EBH=30°,∴∠ABH=30°,∴3cos302CF AB BH BH ===o ,∴BH CF =33,故选B.DH E'G EFBCA【知识点】矩形;等边三角形的判定与性质;全等三角形的判定与性质;折叠;特殊角的三角函数二、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2019湖北省黄石市,11,3) 分解因式:2224x y x -=_________________. 【答案】x 2(y +2)(y ﹣2)【解析】原式提取公因式,再利用平方差公式分解,原式=x 2(y 2﹣4)=x 2(y +2)(y ﹣2). 【知识点】因式分解12.(2019湖北省黄石市,12,3)分式方程:241144x x x -=--的解为 __________________【答案】x =﹣1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.去分母得:4﹣x =x 2﹣4x ,即x 2﹣3x ﹣4=0,解得:x =4或x =﹣1,经检验x =4是增根,分式方程的解为x =﹣1, 【知识点】解分式方程 13.(2019湖北省黄石市,13,3)如图,一轮船在M 处观测灯塔P 位于南偏西30°方向,该轮船沿正南方向以15海里/小时的速度匀速航行2小时后到达N 处,再观测灯塔P 位于南偏西60°方向,若该轮船继续向南航行至灯塔P 最近的位置T 处,此时轮船与灯塔之间的距离PT 为________海里(结果保留根号)北NPM【答案】15【解析】根据“若该轮船继续向南航行至灯塔P 最近的位置T 处,此时轮船与灯塔之间的距离为PT ”,得PT ⊥MN ,利用锐角三角函数关系进行求解,由题意得,MN =15×2=30海里,∵∠PMN =30°,∠PNT =60°,∴∠MPN=∠PMN=30°,∴PN=MN=30海里,∴PT=PN•sin∠PNT=15海里.【知识点】解直角三角形的应用14.(2019湖北省黄石市,14,3)根据下列统计图,回答问题:该超市10月份的水果类销售额11月份的水果类销售额(请从“>”“=”“<”中选一个填空).【答案】>【解析】10月份的水果类销售额60×20%=12(万元),11月份的水果类销售额70×15%=10.5(万元),所以10月份的水果类销售额>11月份的水果类销售额.【知识点】条形统计图;折线统计图15.(2019湖北省黄石市,15,3)如图,Rt ABCV中,A∠=90°,CD平分ACB∠交AB于点D,O是BC 上一点,经过C、D 两点的Oe分别交AC、BC于点E、F,3AD=,ADC∠=60°,则劣弧»CD的长为_______________FEOBAC【答案】π【思路分析】连接DF,OD,根据圆周角定理得到∠ADF=90°,根据三角形的内角和得到∠AOD=120°,根据三角函数的定义得到CF==4,根据弧长个公式求得»CD的长.【解题过程】连接DF,OD,∵CF是⊙O的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于点D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt △CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半径=2,∴劣弧的长==π.【知识点】角平分线的性质;圆周角定理;弧长的计算16.(2019湖北省黄石市,16,3)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵147101316192225283134374043L L L L则第20行第19个数是_____________________ 【答案】625【思路分析】根据题目中的数据和各行的数字个数的特点,可以求得第20行第19个数是多少。