大数据应用案例分析课件.pptx

合集下载

大数据在农业领域的应用pptx

大数据在农业领域的应用pptx

农业资源管理应用
1 2
农业水资源管理
通过大数据监测和分析,实现农业水资源的优化 配置和高效利用,缓解水资源短缺问题。
农业土地资源管理
利用大数据技术对土地资源进行动态监测和评估 ,合理规划土地利用,保护耕地资源。
3
农业劳动力资源管理
通过大数据分析,预测农业劳动力需求变化,为 农业劳动力资源的合理配置提供决策支持。
03
大数据在农业领域典型案例分析
精准种植案例分析
土壤与气候数据分析
通过收集土壤、气候等数据,利用大数据分析技术,为种植户提 供精准的种植建议,提高作物产量和品质。
智能农机装备应用
结合大数据和人工智能技术,实现农机装备的智能化、精准化作业 ,提高农业生产效率。
农业病虫害监测与预警
利用大数据技术对农业病虫害进行监测和预警,减少化学农药的使 用量,保障农产品质量安全。
农产品流通案例分析
农产品价格监测与预测
通过收集农产品价格数据,利用大数据分析技术,实现对农产品 价格的监测和预测,为农产品流通提供决策支持。
农产品质量安全追溯
结合大数据和物联网技术,实现对农产品生产、加工、流通等全过 程的质量安全追溯,保障消费者权益。
农产品产销对接
利用大数据技术对农产品产销信息进行匹配和对接,促进农产品产 销顺畅,提高农产品流通效率。
基于区块链技术的农产品追溯平台将实现对农产品生产、加工、运输、销售等全过程的透明 化管理和监控,保障农产品的质量安全和消费者的权益。
随着区块链技术的不断发展和应用,农产品追溯体系的功能和性能将不断提升,为农业生产 提供更加全面、精准、及时的服务。同时,区块链技术还将与物联网、大数据等技术进行深 度融合,构建更加完善的农产品质量安全监管体系。

2024年度大数据应用案例分析课件

2024年度大数据应用案例分析课件

大数据应用案例分析课件contents •大数据概述与背景•大数据在各行业应用现状•大数据应用案例介绍•大数据技术应用挑战与解决方案•大数据未来发展趋势预测•总结回顾与课程结束语目录01大数据概述与背景大数据定义及特点定义特点大数据产生背景物联网兴起互联网发展物联网技术的兴起使得大量设备接入网络,产生了海量的数据,需要大数据技术进行处理和分析。

云计算发展大数据技术架构数据采集与预处理数据存储与管理数据计算与分析数据可视化与应用02大数据在各行业应用现状1 2 3风险管理与合规客户洞察与个性化服务金融市场预测个性化医疗01远程医疗02流行病预测与防控03个性化学习教育资源优化在线教育与学习分析其他行业应用智慧城市物联网与智能制造农业现代化03大数据应用案例介绍案例一:金融风控模型构建数据来源数据分析模型构建应用效果数据来源数据分析模型构建应用效果案例二:医疗数据挖掘与疾病预测案例三:教育个性化推荐系统实现数据来源数据分析模型构建应用效果案例四:智能交通系统设计与优化数据分析数据来源应用效果模型构建基于交通分析结果,构建交通流预测和调度模型,实现交通信号的智能控制和车辆路径规划。

04大数据技术应用挑战与解决方案数据泄露风险由于技术和管理漏洞,大数据系统可能面临数据泄露的风险,需要加强系统安全防护和监控。

隐私保护挑战在大数据应用中,个人隐私保护是一个重要问题,需要采用匿名化、加密等技术手段来保护个人隐私。

法规合规性企业需要遵守相关法规和标准,确保大数据应用的合规性,规避法律风险。

数据安全与隐私保护问题数据处理效率提升策略分布式计算技术采用分布式计算技术,如Hadoop、Spark等,可以提高大数据处理的速度和效率。

数据压缩与存储优化通过数据压缩、存储优化等技术手段,减少数据存储空间和传输带宽的占用,提高数据处理效率。

并行计算与加速技术利用GPU、FPGA等硬件加速技术,以及并行计算编程模型,提高大数据处理的实时性和性能。

大数据技术与应用(成功案例)ppt课件

大数据技术与应用(成功案例)ppt课件
32 32
大数据商业价值---企业经营决策
某商店卖 牛奶,通过数据分 析,知道在本店买 了牛奶的顾客以后 常常会再去另一店 买包子,人数还不 少,那么这家店就 可以考虑与包子店 合作,或直接在店 里出售包子。
33 33
大数据商业价值---个性化营销
银行与客户的交 流渠道进行了整合,只要 某个客户在网上点击查询 了有关房贷利率的信息, 系统就会提示呼叫中心在 电话交流时推荐房贷产品, 如果发现顾客确实对此感 兴趣,销售部门就会发送 推介信息给客户,如果这 位顾客到银行网点办事, 业务人员就会详细介绍房 贷产品,开始只有少量的 线索,但通过多渠道的与 顾客交互接触,在这个过 程中,令顾客体验了银行 精准、体贴的服务,其结 果是营业收入大为增加, 成本大幅降低,
31•顺应客户购买行为习惯
31
大数据商业价值---大数据为“未来的新石油”
2013年,世界上存储的数 据预计能达到约1.2泽(约12亿TB) 字节,如果把这些数据全部印刷成 书,这些书可以覆盖整个美国52次, 如果将之存储于标准的光盘,这些 光盘可以堆成五堆,每一堆都可以 伸到月球。
2012年3月22日,奥巴马 政府宣布投资2亿美元拉动大数据相 关产业发展,将“大数据战略”上 升为国家战略。奥巴马政府甚至将 大数据定义为“未来的新石油”。
从范围来看,
传统数据管理方式
外部性管理,依赖管理力度和执行自律,成难毁 易。
元数据
数据 稽核
管理 制度
从内涵来看,
非结构化数据、内外部数据混搭、 云化处理等都会冲击传统管理模式
挑战1
从形式来看,
数据加工的复杂度和速度要求越来 越高,也对传统管理效率提出挑战
挑战2 6
资产验证

大数据应用案例分析PPT课件

大数据应用案例分析PPT课件

职业是什么?
对什么感兴趣?
消费习惯和特征是什么 ?
赢利点在哪?
公司在哪?
年龄分布、区域分布是什么样的?
02 用 户 画 像 体 系
驾驶行为数据将构建精准的车险用户画像
性别 犯罪记录 年龄
国籍
违章驾驶记录
驾驶时间
碰撞事故
车辆维修 收入情况 疲劳驾驶 酒驾经历 生活方式
行为 习惯
地理位置
使用药物情况
开车地点 职业 驾照类别 开车频率 开车原因 健庩状况
04 产 品 竞 争
截至2016年7月呈现2亿音乐用户听歌行为以及2万音乐人活跃行为
*听歌进入社交化时代,听歌单、听歌看评论成为流行听歌行为; *个性化推荐已覆盖多数听歌用户,越来越多用户通过个性化推荐发现好 音乐;*听歌进入多元化时代,民谣、电音、二次元音乐崛起; *独立音乐人迅速崛起,社交互动助推音乐人涨粉; *90后已成为音乐消费主力人群; *用户付费意识明显提高,付费会员数和数字专辑售卖增长迅猛;
7、分享自己的口味
主要需求(音乐消费者)
1、播放音乐 2、发现音乐 (喜欢的、特别的、潮流的) 3、展示自我,有基于音乐的互动。
用户分析 05
—目标用户:热爱音乐,对音乐有较高需求的高素质年轻人群。
通过数据可以发现网易云音乐用户群中19-30岁年龄段用户最多,占比达到48%,整体用户群偏年轻 化。
1、传播自己的音乐,让 更多的人知道 2、与粉丝有互动
歌手 有一定知名度,有粉丝基础
3、进一步提高知名度, 吸引更多粉丝
唱片 公司
商业机构,营利是最重要的目 的。
4、提高收入
音乐爱 好者
喜欢分享音乐,评论音乐
5、希望得到更多展示 (专栏)

大数据应用PPT模板

大数据应用PPT模板

通过监控数据,及时发现平台故障或异常情 况。
故障排查
预防措施
对发现的故障进行排查,定位故障原因,并 采取相应的处理措施。
分析故障原因,总结经验教训,采取预防措 施避免类似故障再次发生。
平台优化与扩展方案
性能优化
针对大数据平台的性能瓶颈,进行优化处理,提 高平台运行效率。
迁移方案
对于需要迁移的大数据平台,制定详细的迁移计 划和方案,确保迁移过程顺利进行。
可扩展性
可横向扩展至数千个节点,满 足大规模数据存储和访问需求。
实时性
支持实时数据读写操作,满足 实时应用需求。
容错性
通过数据备份和恢复机制,确 保数据的高可用性。
数据挖掘与机器学习
数据挖掘算法
介绍常用的数据挖掘算法,如分 类、聚类、关联规则挖掘等。
机器学习模型
阐述机器学习基本原理和常用模 型,如线性回归、逻辑回归、神 经网络等。
数据存储加密
利用加密算法和密钥管理 技术对存储在数据库、文 件系统等介质中的数据进 行加密,防止数据泄露。
加密算法选择
根据数据的重要性和安全 性要求,选择合适的加密 算法,如AES、RSA等。
敏感信息识别和脱敏处理技术
敏感信息识别
通过数据扫描和模式识别 技术,自动发现数据中的 敏感信息,如个人身份信 息、银行卡号等。
物流行业应用
智能物流
01
利用大数据和人工智能技术,实现物流过程的自动化和智能化,
提高物流效率和准确性。
物流优化
02
通过对海量物流数据的挖掘和分析,发现物流过程中的瓶颈和
问题,提出优化方案和建议,降低物流成本。
供应链协同
03
利用大数据实现供应链各环节之间的信息共享和协同工作,提

大数据及其典型应用 ppt课件

大数据及其典型应用 ppt课件
*某些搜索字词非常有助于了解流感疫情。Google 流感趋势
会根据汇总的 Google 搜索数据,近乎实时地对全球当前的 流感疫情进行估测。
*搜索流感相关主题的人数与实际患有流感症状的人数之间存
在着密切的关系。当然,并非每个搜索“流感”的人都真的 患有流感,但将与流感有关的搜索查询汇总到一起时,便可 以找到一种模式。将统计的查询数量与传统流感监测系统的 数据进行了对比,结果发现许多搜索查询在流感季节确实会 明显增多。通过对这些搜索查询的出现次数进行统计,便可 以估测出世界上不同国家和地区的流感传播情况。
信息资源管理-扩展知识 大数据及其典型应用
video
*棱镜门
*波士顿马拉松爆炸案
*PredPol
*少数派报告
*2013 大数据元年
2
*
2019/8/4
*
一、大数据的相关概念
二、国内外大数据分析的研究现状
三、构建大数据分析平台
四、公共安全领域大数据应用案例
3
2019/8/4
4
2019/8/4
* 数据管理技术发展历史
包含与“流感”相关,并带有位置标签的 tweet;然后,在地 图上标注这些 tweet 的位置分布,以及随时间产生的变化。同 时,还制作了流感的动态变化模型。新模型中,流感包括 4 个 阶段:无传染阶段、爆发阶段、稳定阶段以及衰退阶段。
*此外,采用了全新的算法,试图尽可能快得发现不同时期的转
换节点。实际上,Li 和 Cardie 在 2008 年 6 月至 2010 年 6 月 间,已经利用 100 万美国人的 360 万条 tweet ,验证了该方 法的有效性。 为了检验他们的预测是否成真,Li 和 Cardie 将 他们的分析与 CDC 进行对比。他们说,“我们确信,流感相 关 tweet 与 CDC 提供的流感疾病案例数目,呈显著相关。 ”

大数据应用案例分析

大数据应用案例分析
大数据处理办法
01 用 户 画 像 体 系
每个企业都不可以避免的要对用户进行画像,用户画像的提出,根本上是源于企业对用户认知的需求
。 产品经理,需要了解用户的特征,对产品进行功能的完善。内容运营人员,需要筛选目标用户,对内容
进 行精准投放。
购买能力如何?
活跃程度如何?
常住地在哪儿?
基本特征? 常去的商圈是哪儿?
04 产 品 竞 争
截至2016年7月呈现2亿音乐用户听歌行为以及2万音乐人活跃行为
*听歌进入社交化时代,听歌单、听歌看评论成为流行听歌行为; *个性化推荐已覆盖多数听歌用户,越来越多用户通过个性化推荐发现好 音乐;*听歌进入多元化时代,民谣、电音、二次元音乐崛起; *独立音乐人迅速崛起,社交互动助推音乐人涨粉; *90后已成为音乐消费主力人群; *用户付费意识明显提高,付费会员数和数字专辑售卖增长迅猛;

树立质量法制观念、提高全员质量意 识。24.7.324.7.3Wednesday, July 03, 2024

人生得意须尽欢,莫使金樽空对月。14:37:5514:37:5514:377/3/2024 2:37:55 PM

安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。24.7.314:37:5514:37Jul-243-Jul- 24


除提及人的干扰(@) c.

去除如门户的作者的干扰 否



模型评估 是否通过
训练生成 的模型
模型训练
特征权重计算





待预测类 别文本原
数据预处理
待预测 类别文
训练生成 的模型

大数据行业应用案例精品PPT课件

大数据行业应用案例精品PPT课件

多样 Variety
大数据的异构和多样性
• 很多不同形式(文本、图像、视 频、机器数据)
• 无模式或者模式不明显 • 不连贯的语法或句义
价值 Value
挖掘大量的不相关信息的价值
• 对未来趋势与模式的可预测分析 • 深度复杂分析(机器学习、人工
智能、商务智能(咨询报告等)
11
高速 Velocity
实时分析和离线分析
2010年
一兆字节的存储量
仅需要0.005美分
10
2020年
1T硬盘 = 一杯咖啡的钱 = 一个图书馆的全部信息
大数据的概念
归类数据类型、有效分析组合
海量 Volume
非结构化数据的超大规模和增长
• 占总数据量的80~90% • 比结构化数据增长快10倍到50倍 • 是传统数据仓库的10倍到50倍
• 数据输入、处理与丢弃 • 互联网接入终端快速增长 • 快速计算、数据分析
大数据的热门应用领域
1
商业
沃尔玛基于每月4500万网购数据,结合网上挖掘的对产品的大众评分,开发语义搜索引擎,方
便浏览,在线购物者增加10—15%,增加销售十多亿美元。还通过对消费者购物行为分析,了解顾
客购物习惯,优化商品陈列。
2
农业
硅谷Climate公司从美国政府获得30年的气候、60年的农作物收成、14TB的土壤数据,还收集
250万个地点的气候数据,向农户提供天气变化、作物、病虫害和灾害、肥料、收获、产量、市场
价格等咨询和保险服务,承诺每英亩的玉米利润增加100美元,如预测有误将将及时赔付。
3
制造业
丰田利用数据分析在试制样车前避免了80%的缺陷;GE通过对2万台喷气引擎的数据分析,能 够提前一个挖掘,帮助一汽等车企深入了解消费者需求,设计新品及资源调配

大数据分析PPT(共73张)

大数据分析PPT(共73张)
分布式计算架构
Master-Slave架构、 MapReduce架构、DAG架构 等
分布式计算编程模型
MapReduce编程模型、BSP编 程模型、Dryad编程模型等
分布式计算资源调度
资源调度策略、任务调度算法 、容错机制等
存储技术
01
分布式文件系统
HDFS、GFS、Ceph等
02
03
04
NoSQL数据库
针对性和有效性。
医疗行业应用
1 2 3
个性化医疗
通过大数据分析,对患者的基因、生活习惯、病 史等信息进行综合分析,为患者提供个性化的治 疗方案和健康建议。
精准医疗
运用大数据分析技术,对疾病的发生、发展、转 归等过程进行深入研究,为精准诊断和治疗提供 科学依据。
医疗资源管理
通过大数据分析,对医疗资源的分布、利用、需 求等进行实时监测和预测,提高医疗资源的配置 效率和管理水平。
特点
大数据具有5V特点,即Volume(大量)、Velocity(高速)、Variety(多样 )、Value(低价值密度)、Veracity(真实性)。
大数据发展历程
萌芽期
成熟期
20世纪90年代至2008年,大数据概 念开始萌芽,主要关注数据存储和计 算能力的提升。
2013年至今,大数据技术逐渐成熟, 应用领域不断扩大,同时大数据产业 也开始形成。
未来发展趋势预测
人工智能与大数据融合
人工智能技术将进一步提高大数据处 理和分析的效率和准确性。
数据驱动决策
大数据将更广泛地应用于企业决策、 政府治理等领域,提高决策的科学性 和有效性。
跨界融合与创新
大数据将与云计算、物联网、区块链 等技术相结合,推动跨界融合和创新 发展。

《大数据应用案例分析课件》

《大数据应用案例分析课件》

大数据应用案例分析的优势和劣势
优势
简化业务决策流程,提升营销效率;提高经营决 策精准度;客观评估市场下沉,发现新的用户群。
劣势
耗费大量的人力、物力和时间;数据分析结果存 在局限性和盲点;缺乏中长期规划和人才储备, 能否提高核心竞争力令人担忧。
大数据应用案例分析的未来趋势
机器学习
大数据应用结合人工智能和机器 学习技术,将会成为大数据处理 的重要趋势。
数据建模
将采集到的数据进行 逻辑处理,对整体数 据进行分析和建模, 并将结果呈现在分析 工程图中。
数据分析
运用机器学习、云服 务等多种技术,深入 挖掘数据的价值,从 而精准预测市场、消 费、需求等。
大数据应用案例分析的应用工具和技术
1 数据仓库
2 数据挖掘工具
利用主流数据库,将数据存储在数据仓库中, 以此加速数据的分析。
大数据应用案例分析课件
大数据应用案例分析是指根据具体行业领域和企业的实际需求,运用大数据 技术与分析方法,从数据挖掘、数据分析等方面,深入剖析行业企业的数据 资源,开展数据应用分析和研究工作,发现数据中的关键变量,为企业决策 服务。
大数据应用案例分析的重要意 义
随着信息化普及进程,数据已成为企业发展的优势气息,大数据应用分析, 具有非常显著的优势和功效。如:基准数据增加、精准度提升、工作效率提 高、成本降低等。通过分析大数据应用案例可以快速了解数据在一个行业的 实际应用,一方面可以加深理性了解数据的价值,加快行业发展;另一方面 可以帮助企业迅速剖析市场,增强品牌在行业内的竞争优势。
大数据应用案例分析对企业管理影响
1 提升工作效率
大数据应用案例分析可以 让企业实现大数据的实时 监测、。
2 优化营销策略

大数据技术及应用PPT课件

大数据技术及应用PPT课件

.
17
大数据技术介绍
何为大数据
技术能力视角
大数据指的是规模超过现有数据库工具获取、 存储、管理和分析能力的数据集额,并同时强 调并不是超过某个特定数量级的数据集才是大 数据
大数据内涵视角
大数据是具备海量、高速、多样、可变等特征 的多维数据集,需要通过可伸缩的体系结构实 现高效的存储、处理和分析。
.
• 实时数据流处理的要求,是区别大数 据引用和传统数据仓库技术,BI技术 的关键差别之一;
• 1s 是临界点,对于大数据应用而言, 必须要在1秒钟内形成答案,否则处 理结果就是过时和无效的;
.
30
中央政府对大数据的重视程度
习近平 政府管理不仅要讲究策略,还要讲究手段,比如大数据技术
的应用,2014年3月8日 “大数据”首次写入政府工作报告
该是一种什么样的体验。(其实你的信息,什么时候想要什么东西都
已经被商户预测啦,已经提前将商品运往目的地。甚至你路过的广告
屏,视频网站,包括使用的APP都将引导你消费。)
3.数据足够大就称呼其为大数据吗?(其实不然,关键在于其中承载
的信息。数据处理之后才可以称之为信息或者叫做知识。其实大数据
可以这样理解,当数据增长速度超过了计算机处理能力的增长速度,
大量的不相关信息;对未来趋势与模式的可预测分析;深度 复杂分析(机器学习、人工智能Vs传统商务智能)
实时分析而非批量式分析;数据输入、处理与丢弃; 立竿见影而非事后见效
.
26
大数据技术
Volume
1Bity
1K B
1 M B
1G B
1T B
1P B
1E B
1Z B
1Y B
1PB相当于50%的全美学术研究图书馆藏书信息内容 5EB相当于至今全世界人类所讲过的话语 1ZB如同全世界海滩上的沙子数量总和 1YB相当于7000位人类体内的微细胞总和

大数据应用案例分析课件(PPT2)

大数据应用案例分析课件(PPT2)

数据质量挑战
电商数据存在大量噪声和无效 信息,需要进行数据清洗和预 处理。
2024/1/26
实时处理挑战
电商业务要求实时处理和分析 数据,对技术架构和算法性能 提出更高要求。
商业模式创新机遇
大数据可以揭示市场趋势和消 费者需求变化,为电商企业创 新商业模式提供有力支持。
10
03
案例分析:金融领域大数据应 用
通过分析客户的交易行为、偏好、社交媒体互动等信息, 实现客户细分和个性化服务,提升客户满意度和忠诚度。
13
金融领域大数据挑战与机遇
2024/1/26
数据安全和隐私保护
随着金融数据的不断增长和集中,数据安全和隐私保护成为重要挑战。需要加强数据安全管理和技术手段,确保数据 的安全性和合规性。
数据整合和分析能力
金融机构需要具备强大的数据整合和分析能力,以应对复杂多变的市场环境和客户需求。需要建立完善的数据治理体 系和技术平台,提升数据处理和分析能力。
创新业务模式和服务
大数据为金融机构提供了创新业务模式和服务的机会。可以通过数据挖掘和分析,发现新的市场机会和 客户需求,推出个性化的金融产品和服务。
14
04
02
03
个性化治疗
医疗科研
通过分析患者的基因、生活习惯 等数据,制定个性化的治疗方案 ,提高治疗效果。
利用大数据技术进行医疗科研, 加快新药研发、临床试验等进程 。
2024/1/2621Leabharlann 医疗健康领域大数据挑战与机遇
数据隐私保护
如何在利用数据的同时保护患者隐私, 是医疗健康领域大数据面临的重要挑战

随着大数据技术的不断发展, 数据挖掘和分析将成为未来大
数据应用的重要方向。

大数据应用案例介绍 课件

大数据应用案例介绍 课件
密集地震台网的大数据,不再受限于传统的方式,在密集的大数据中可以简单而准确地得到地 震发生在哪里、多大,无须一而再地检查和复核,足以做出快速决定,地震预警的警报可以在 数秒发出,地震烈度速报可以在几分钟就发出。快速决策无疑对于大地震的减轻灾害和挽救生 命无疑具有重要的意义
2 地震大数据
2.2 大数据推进地震新模式和新业态
1 推荐系统
1.1 推荐系统概述
多样性
用户满意 度
判定
覆盖率
过度推荐 热门问题
标准
冷启动问 题
预测准确 度
推荐系统判定标准
用户满意度:通过调查问卷的形式,用户对 推荐系统的满意度分为不同的层次
预测准确度:最重要的推荐系统离线评测指 标
覆盖率:覆盖率的定义是推荐系统能够推荐 出来的物品占总物品集合的比例,覆盖率描 述了一个推荐系统对物品长尾的发掘能力
小数据时代
➢ 小数据时代,在数据的限制无法突破的 情形下,数据处理算法的研究越来越深 入,发明的算法越来越复杂
大数据时代
➢ 当数据量以指数级扩张时,在小数量级的数据 中表现很差的简单算法,准确率会大幅提高; 大数据的简单算法比小数据复杂算法更有效
极其简单地震参数处理
“着未着法”
2 地震大数据
4. 地震处理从复杂到简单-从“审慎的决策”到“快速的决策”
数据是和构造体有关的,它们是相关联的。汶川地震前前兆异常
度的变化,和巴颜克拉块体有关联,这和各方面研究成果一致。
AZCL
(
,
t
)
Lim
S
NA ( ,t) N( ,t)

数据量大
无法使用



纷杂、混乱
无法处理

第五讲:大数据应用案例分析-何利文

第五讲:大数据应用案例分析-何利文

应用场景- SIS(安全仪表系统)
• • • • SIS采用警报和再生气流量决定是否紧急关闭; SIS视流量在设定点,因为流量开关被破坏; 因为流量仍在设定点,高温也被视为合理; 当温度到太高的时候,SIS不能足够快地作出 反应,因为温度上升非常快; • 即使作出反应,也似乎太晚无法阻止管破裂, 或失控的火灾。
ETL 生产指 挥系统 测井生 产管理 系统 运销 管理 系统 地理 … XX统建 信息 系统 系统 工程设 计集成 系统
一体 部署 资源 运维 化 云化 池化 简化
智能油田云平台部署方案
一体化运维管理平台(OEM 12C), RUEI Exalogic Exalogic
集成 适配器
CEP RTD BAM
使用广泛接受的标准…
最低的总拥有成本
在一个成熟的,熟悉的IT基础设施 上
从传感器到数据库解决方案的数据流
• 高性能数据管理解决方案将充分使用现有的数 据获取基础设施
传感器
钻井数据
井场 聚合器
WITSML
传感器 传感器 传感器 传感器 传感器
RTU MTU/ DCS/ SCADA RTU
生产数据
Protocol TBD
Essbase Hyperion OBIEE TimesTen
实时一体机
传感器
PPDM 一体机
分析一体机
WITSML
PRODML
DLIS Loader
CEP = 复杂事件处理 BAM = 业务活动监控 RTD = 实时决策 井场信息传递标准 油气生产数据交换标准
SQL Loader
日志
ASCII 格式数据
解决方案
• 采用自学习解决方案,分析实时数据和过往数 据来侦测不寻常的行为模式; • 系统设计足够快,可伸缩并且灵活; • 如有异常事件发生时,将通知操作人员,并给 出合理解释为何处理过程中该状态有些异样; • 通过给操作人员提供正确的知识,以正确的方 式展现,让其拥有坚实的理由采取措施/动作, 并且给工程师提供线索来判定什么导致了该异 样行为。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据应用案例分析
目录
1 大数据概念 2 大数据处理办法 3 大数据应用案例
1
大数据概念
01 大 数 据 时 代 到 来
随着智能手机的普及,网民参与互联网产品和使用各种手机应用的程度越来越深,用户的行为、 位置 、 甚至身体生理等每一点变化都成为了可被记录和分析的数据,数据量呈现爆炸式增长。
PB EB ZB
02 大 数 据 的 构 成
大数据 =海量数据(交易数据、交互数据)+针对海量数据处理的解决方案
海量交易数据: 企业内部的经营交易信息主要包括联 机交易数据和联机 分析数据,是结构化的、通过关系 数据库进行管理和访 问的静态、历史数据。通过这些 数据,我们能了解过去 发生了什么。
想驾驭这庞大的数据,我们 必 须了解大数据的特征。
职业是什么?
对什么感兴趣?
消费习惯和特征是什么 ?
赢利点在哪?
公司在哪?
年龄分布、区域分布是什么样的?
02 用 户 画 像 体 系
驾驶行为数据将构建精准的车险用户画像
性别 犯罪记录 年龄
国籍
违章驾驶记录
驾驶时间
碰撞事故
车辆维修 收入情况 疲劳驾驶 酒驾经历 生活方式
行为 习惯
地理位置
使用药物情况
开车地点 职业 驾照类别 开车频率 开车原因 健庩状况
04 产 品 竞 争
截至2016年7月呈现2亿音乐用户听歌行为以及2万音乐人活跃行为
*听歌进入社交化时代,听歌单、听歌看评论成为流行听歌行为; *个性化推荐已覆盖多数听歌用户,越来越多用户通过个性化推荐发现好 音乐;*听歌进入多元化时代,民谣、电音、二次元音乐崛起; *独立音乐人迅速崛起,社交互动助推音乐人涨粉; *90后已成为音乐消费主力人群; *用户付费意识明显提高,付费会员数和数字专辑售卖增长迅猛;
7、分享自己的口味
主要需求(音乐消费者)
1、播放音乐 2、发现音乐 (喜欢的、特别的、潮流的) 3、展示自我,有基于音乐的互动。
大数据处理办法
01 用 户 画 像 体 系
每个企业都不可以避免的要对用户进行画像,用户画像的提出,根本上是源于企业对用户认知的需求
。 产品经理,需要了解用户的特征,对产品进行功能的完善。内容运营人员,需要筛选目标用户,对内容
进 行精准投放。
购买能力如何?
活跃程度如何?

常住地在哪儿?
基本特征? 常去的商圈是哪儿?


除提及人的干扰(@) c.

去除如门户的作者的干扰 否



模型评估 是否通过
训练生成 的模型
模型训练
特征权重计算





待预测类 别文本原
数据预处理
待预测 类别文
训练生成 的模型
文本打 上类别

始库
本库
标签
04 大 数 据 的 处 理
里程数据

工况数据 车辆信息
融融合合信信息息 数数据据库库
构化 数据
如今的数据类型早已不是单一的文本形式 ,网络日志、 音频、视频、图片、地理 位置信息等,对数据的处理 能力提出了 更高要求
4. 价值(value)
沙里淘金,价值密度低
虽然数据量很大,但是价值密度较 低,如何通过强大 的机器算法更 迅速地完成数据价值“提纯”,是 目前 大数据亟待解决的难题
2
数据量巨大
全球在2010 年正式进入ZB 时 代,IDC预计到 2020 年,全 球将总共拥有35ZB 的数据量
3.速度( Velocity)
实时获取需要的信息 比如:在客户每次浏览页面, 每次下订单过程中都会 对用 户进行实时的推荐,决策已经 变得实时
2. 多样(Variety)
结构化数据、半结构化数据和非结
TB
GB
1PB = 2^50字节 1EB = 2^60字节 1ZB = 2^70字节
地球上至今总共的数据量 : 在2006 年,个人用户才刚刚迈进TB时代 , 全球一共新产生了约180EB的数据;
在2011 年,这个数字达到了1.8ZB。
据IDC研究机构预测: 到2020 年,整个世界的数据总量将会增长 44 倍,达到35.2ZB(1ZB=10 亿TB)!
*综艺影视对音乐的影响依旧强大,热门歌曲中7成来源于 综艺或影视;
*偶像流行乐保持高热度,欧美歌曲受众提升; *音乐市场正在构建一种新的评价体系,评论数成为歌曲 热度重要评价指标;
*男歌手受喜爱度高于女歌手,女性歌迷消费群体经济崛 起;
用户分析 05
—目标用户:热爱音乐,对音乐有较高需求的高素质年轻人群。
据 挖
充电数据
数据 去重
空值
数据
处理
去噪
格式 统一
对齐融合

行驶轨迹



去除异常的 数据项
将空值更
汇聚多源异 构数据 中 的一致部分
过 程
将多源异构数
改为 对
使用UGC算法去除无用数
据转换 为统一
应的默认
据 使用基于密度的聚类去除
数据表达形式

异常数据
3
大数据应用案例
01 大数据是做好音乐平台的一把利器
海量数据处理: 大数据的涌现已经催生出了设计用于 数据密集型处理的 架构。例如具有开放源码、在商品 硬件群中运行的 Apache Hadoop。
注:大数据 不仅仅指的是数据量庞大,更为重要的是数据类型复杂
03 大 数 据 4V 特 征
大数据
解 决 方 案
产品
转 化
市场价值
1. 海量(Volume)
海量交互数据: 源于Facebook、Twitter、微博、及 其他来源的社交媒 体数据构成。它包括了呼叫详细记 录CDR、设备和传感 器信息、GPS和地理定位映射数 据、通过管理文件传输 Manage File Transfer协议传 送的海量图像文件、Web 文本和点击流数据、科学信 息、电子邮件等等。可以告 诉我们未来会发生什么。
目标 细分 用户 群体
用户特征
音乐 消费

学生 白领
年轻,时间宽裕,喜欢新鲜, 爱评论爱分享爱展示,有个性
时间碎片化,有一定压力,会 关注娱乐界动态
IT从 压力大,需要更多消遣和心理 业者 慰藉
时尚 人士
热爱音乐和潮流,有个性
需求
1、个性化推荐音乐 2、对音乐有评论等互动行 为 3、分享展示喜欢的音乐 4、迅速找到喜欢的音乐 5、推荐潮流音乐 6、有明星动态
医疗条件
共用车辆情况 婚姻状态
学习周期 感知力
教育水平 民族特征 消费习惯
购买 能力
心理 特征
通过对用户不同维度的大数据分析,最终得出可执行的业务决策。
基本 属性
兴趌 爱好
社交 网络
03 基于机器学习的数据挖掘及分类基本识别流程
训练样本
数据预处理
训练样本
分词
特征选择

数据源 a.去除营销博文干扰 b.去
相关文档
最新文档