新人教版八年级上册数学作业本答案
人教版八年级上册数学 八年级上册数学作业本参考答案
人教版八年级上册数学八年级上册数学作业本参考答案一、第一章实数1. 课前练习(1) 有理数的范围是整数、分数及其运算结果。
(2) 无理数是不能表示为有理数的数。
(3) 小数除了有限小数外,还有无限小数,无限小数有循环小数和非循环小数两种。
(4) √2、π、e等都是无理数。
2. 课后作业(1) 有理数是指整数、分数及其运算结果,如4、-5/6、√16等。
(2) 无理数是指不能表示为有理数的数,如√2、π、e等。
(3) 有限小数是指小数部分有限的小数,如0.5、-3.25等。
循环小数是指小数部分出现了一定规律循环的小数,如0.3(3)、0.25(25)等。
(4) 在实数轴上,0与正数、负数之间是有间隔的。
(5) 非负有理数和非负无理数都可以表示为不小于0的数,但有理数可以表示为x=a或a<x<b,而无理数不能表示为这样的形式。
3. 拓广探究(1) 设a是正整数,b是不为1的正整数,证明:如果a可整除b,则a和b的最大公约数是b的约数。
证:设d是a和b的最大公约数,因为a可整除b,所以a=k×b,其中k是正整数。
如果d≠b,那么d是b的真因数,d也是a的因数,这与d是a和b的最大公约数矛盾。
所以d=b,即a和b的最大公约数是b的约数。
(2) 设x和y都是有理数,证明:x+y和x-y都是有理数。
证:因为x和y都是有理数,所以可以表示为x=a/b,y=c/d,其中a、b、c、d都是整数。
则x+y=a/b+c/d=(ad+bc)/bd,其中ad+bc、bd都是整数,所以x+y也是有理数。
同理,x-y=a/b-c/d=(ad-bc)/bd,其中ad-bc、bd都是整数,所以x-y也是有理数。
(3) 设x和y都是无理数,是否有必要证明x+y和x-y都是无理数?答:不必要。
因为有理数和无理数的运算结果都是无理数,所以x+y和x-y一定都是无理数。
二、第二章代数式1. 课前练习(1) 代数式是由常数、变量及运算符号组成的式子。
八年级上册数学作业本答案
八年级上册数学作业本答案第一章有理数1.1 自然数、整数和有理数1.自然数是从1开始的正整数,以符号ℕ表示。
2.整数包括正整数、负整数和0,以符号ℤ表示。
3.有理数是可以表示为两个整数的比值的数,以符号ℚ表示。
1.2 有理数的加减法1.2.1 有理数的加法1.相同符号的有理数相加,保留符号,并将绝对值相加。
2.不同符号的有理数相加,先计算绝对值的差,再用绝对值大的数的符号,并将差值作为结果。
1.2.2 有理数的减法1.减去一个数,可以转换为加上它的相反数。
2.减去一个负数,可以转换为加上它的绝对值。
第二章图形的认识2.1 基本概念1.点是图形的基本元素,用大写字母表示。
2.直线是由无数个点连成的,用两个点表示。
3.射线是由一个起点和一个方向组成。
4.线段是由两个端点和它们之间的所有点组成。
2.2 线段与角1.线段可以使用两个端点表示,例如AB表示线段AB。
2.角是由两条射线的公共起点和它们之间的空间组成,通常用大小的字母表示顶点。
第三章代数式与方程式3.1 代数式与项1.代数式是由数字、字母、运算符号和括号等符号组成的式子。
2.代数式的项是由常数或字母的乘积构成的部分。
3.2 方程式1.方程式是含有等号的代数式。
2.方程式的解是满足等号两边数值相等的值。
第四章数的运算4.1 整数的乘除法1.两个整数相乘,符号相同时结果为正,符号不同时结果为负。
2.一个整数除以另一个整数,符号相同且除数不为0时,结果为正,符号不同时结果为负。
4.2 有理数的乘除法1.有理数的乘法,符号相同结果为正,符号不同时结果为负。
2.有理数的除法,同符号结果为正,异符号结果为负。
第五章数与式5.1 数的比较1.小于号(<)表示比较左侧数小于右侧数。
2.大于号(>)表示比较左侧数大于右侧数。
3.小于等于号(≤)表示比较左侧数小于或等于右侧数。
4.大于等于号(≥)表示比较左侧数大于或等于右侧数。
5.2 代数式的化简1.化简代数式时,可以使用合并同类项和用分配律交换位置。
八年级上册数学作业本答案
八年级上册数学作业本答案八年级上作业本同步练答案(人教版)跟别人要答案的学生,不是好学生哦,做个好学生吧!独立完成作业,然后再来对照答案,祝你学习进步。
下面是小编整理的八年级上册数学作业本答案,供大家参考。
八年级上数学作业本[人教版]答案,浙教版也可以用,参考答案第1章平行线【1.1】1.;4,;4,;2,;52.2,1,3,BC3.C4.;2与;3相等,;3与;5互补.理由略5.同位角是;BFD和;DEC,同旁内角是;AFD和;AED6.各4对.同位角有;B与;GAD,;B与;DCF,;D与;HAB,;D与;ECB;内错角有;B与;BCE,;B与;HAB,;D与;GAD,;D与;DCF;同旁内角有;B与;DAB,;B与;DCB,;D与;DAB,;D与;DCB【1.2(1)】1.(1)AB,CD(2);3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,;B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是;ADE和;ABC的角平分线,得;ADG=12;ADE,;ABF=12 ;ABC,则;ADG=;ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为;1,;2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由;BCD=120;,;CDE=30;,可得;DEC=90;.所以;DEC+;ABC=180;,AB∥DE(同旁内角互补,两直线平行)5.(1)180;;AD;BC(2)AB与CD不一定平行.若加上条件;ACD=90;,或;1+;D=90;等都可说明AB∥CD6.AB∥CD.由已知可得;ABD+;BDC=180; 7.略【1.3(1)】1.D2.;1=70;,;2=70;,;3=110;3.;3=;4.理由如下:由;1=;2,得DE∥BC(同位角相等,两直线平行),4; ;3=;4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.;=44;.∵ AB∥CD, 4; ;=;6.(1);B=;D(2)由2x+15=65-3x解得x=10,所以;1=35;【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1); (2); 3.(1)DAB(2)BCD4.∵ ;1=;2=100;, 4; m∥n(内错角相等,两直线平行).4; ;4=;3=120;(两直线平行,同位角相等)5.能.举例略6.;APC=;PAB+;PCD.理由:连结AC,则;BAC+;ACD=180;.4; ;PAB+;PCD=180;-;CAP-;ACP.10.(1)B;E∥DC.理由是;AB;E=;B=90;=;D又;APC=180;-;CAP-;ACP, 4; ;APC=;PAB+;PCD(2)由B;E∥DC,得;BEB;=;C=130;.【1.4】4; ;AEB;=;AEB=12;BEB;=65;1.2第2章特殊三角形2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.15cm4.略5.由m∥n,AB;n,CD;n,知AB=CD,;ABE=;CDF=90;.1.B∵ AE∥CF, 4; ;AEB=;CFD.4; △AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;;ADC;;DAC,;C;AD,DC;AC4; AE=CF3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AM ;l5.如图,答案不唯一,图中点C1,C2,C3均可2于M,BN ;l3于N,则△ABM≌△BCN,得AB=BC6.(1)略(2)CF=15cm7.AP平分;BAC.理由如下:由AP是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1);4(2);3(3);1 4; ;BAP=;CAP(第5题)3.(1);B,两直线平行,同位角相等【2.2】(2);5,内错角相等,两直线平行(3);BCD,CD,同旁内角互补,两直线平行1.(1)70;,70; (2)100;,40; 2.3,90;,50; 3.略4.(1)90; (2)60;4.;B=40;,;C=40;,;BAD=50;,;CAD=50; 5.40;或70;5.AB∥CD.理由:如图,由;1+;3=180;,得6.BD=CE.理由:由AB=AC,得;ABC=;ACB.(第又∵;3=72;=;25题) ;BDC=;CEB=90;,BC=CB,4; △BDC≌△CEB(AAS). 4; BD=CE6.由AB∥DF,得;1=;D=115;.由BC∥DE,得;1+;B=180;.(本题也可用面积法求解)4; ;B=65;7.;A+;D=180;,;C+;D=180;,;B=;D【2.3】8.不正确,画图略1.70;,等腰2.33.70;或40;9.因为;EBC=;1=;2,所以DE∥BC.所以;AED=;C=70;4.△BCD是等腰三角形.理由如下:由BD,CD分别是;ABC,;ACB的平50分线,得;DBC=;DCB.则DB=DC【2.5(1)】5.;DBE=;DEB,DE=DB=56.△DBF和△EFC都是等腰三角形.理由如下:1.C2.45;,45;,63.5∵ △ADE和△FDE重合, 4; ;ADE=;FDE.4.∵ ;B+;C=90;,4; △ABC是直角三角形∵ DE∥BC, 4; ;ADE=;B,;FDE=;DFB,5.由已知可求得;C=72;,;DBC=184; ;B=;DFB. 4; DB=DF,即△DBF是等腰三角形.6.DE;DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC是等腰三角形4; DE=DF.;ECD=45;, 4; ;EDC=45;.同理,;CDF=45;,7.(1)把120;分成20;和100; (2)把60;分成20;和404; ;EDF=90;,即DE;DF【2.4】【2.5(2)】1.(1)3(2)51.D2.33; 3.;A=65;,;B=25; 4.DE=DF=3m2.△ADE是等边三角形.理由如下:∵ △ABC是等边三角形,4; ;A=;B=;C=60;.∵ DE∥BC, 4; ;ADE=;B=60;,5.由BE=12AC,DE=12AC,得BE=DE6.135m;AED=;C=60;,即;ADE=;AED=;A=60;3.略【2.6(1)】4.(1)AB∥CD.因为;BAC=;ACD=60;1.(1)5(2)12(3)槡52.A=225(2)AC;BD.因为AB=AD,;BAC=;DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则;APQ=60;.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP, 4; ;B=;BAP=30;.同理可得;C=;QAC=30;.4.槡22cm(或槡8cm)5.169cm26.18米4; ;BAC=120;7.S梯形BCC;D;=1(C;D;+BC);BD;=1(a+b)2,6.△DEF是等边三角形.理由如下:由 ;ABE+ ;FCB= ;ABC=60;,22;ABE=;BCF,得;FBC+;BCF=60;. 4; ;DFE=60;.同理可S梯形BCC;D;=S△AC;D;+S△ACC;+S△ABC=ab+12c2.得;EDF=60;,4; △DEF是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能2.是直角三角形,因为满足m2=p2+n23.符合4.;BAC,;ADB,;ADC都是直角(第7题)5.连结BD,则;ADB=45;,BD=槡32. 4; BD2+CD2=BC2,4; ;BDC=90;. 4; ;ADC=135;第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)2.8,12,6,长方形1.BC=EF或AC=DF或;A=;D或;B=;E2.略3.直五棱柱,7,10,34.B3.全等,依据是“HL”5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,;AEB+;DEC=90;.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形4; ;AEC=90;,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵ ;ADB=;BCA=Rt;,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm4; Rt△ABD≌Rt△BAC(HL). 4; ;CAB=;DBA,7.正多面体顶点数(V)面数(F)棱数(E)V+F-E4; OA=OB正四面体6.DF4462;BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体4; ;B=;D,从而;D+;C=;B+;C=90;86122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72;,72;,48.槡79.64;10.∵ AD=AE, 4; ;ADE=;AED, 4; ;ADB=;AEC.【3.2】又∵ BD=EC,4; △ABD≌△ACE. 4;AB=AC1.C11.482.直四棱柱3.6,712.B13.连结BC.∵ AB=AC, 4; ;ABC=;ACB.4.(1)2条(2)槡55.C又∵ ;ABD=;ACD, 4; ;DBC=;DCB. 4; BD=CD6.表面展开图如图.它的侧面积是14.25(;15+2+2.5);3=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB, 4; ;ACB=;DBC,从而OB=OC16.AB=10cm.;AED=;C=Rt;,AE=AC=6cm,DE=CD.18+12;15;2;2=21(cm2)可得BE=4cm.在Rt△BED中,42+CD2=(8-CD)2,解得CD=3cm【3.3】(第6题)1.②,③,④,① 2.C523.圆柱圆锥球4.b5.B6.B7.示意图如图从正面看长方形三角形圆8.D9.(1)面F(2)面C(3)面A从侧面看长方形三角形圆10.蓝,黄从上面看圆圆和圆心圆4.B5.示意图如图6.示意图如图11.如图(第11题)(第7题)第4章样本与数据分析初步【4.1】(第1.抽样调查5题)(第6题)2.D3.B4.(1)抽样调查(2)普查(3)抽样调查【3.4】5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.15;3;05;3;4=27(cm2)5.如图40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】1.22.2,不正确,因为样本容量太小3.C4.120千瓦;时5.8625题(第5题)(第6题)6.小王得分70;5+50;3+80;210=66(分).同理,小孙得745分,小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分最高复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.(1)平均身高为161cm12(平方环).八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是1615cm,162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不唯一.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为96年,众数为8年,中位数为85年;乙:平均数为9480分的,甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这一角度看,乙组成绩更好(2)甲公司运用了众数,乙公司运用了中位数6.(1)x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2).(3)此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、【4.4】舒服1.C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选取的样本具有代表性7.(1)3.平均数为144岁,中位数和众数都是14岁4.槡2平均数中位数众数标准差5.286.D7.A8.A9.10,32004年(万元)5126268.310.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)65303011.3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提高,但差距拉大(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是75,乙的平均数、中位数、投中9个以上次数分1.方差或标准差2.4003.(1)18千克(2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不唯一,只要分析有道理即可1.①⑥2.C第5章一元一次不等式3.(1)x>3(2)x<-3(3)无数;如x=9,x槡=3,x=-3等8【5.1】(4)x; 槡-24.(1)x;1(2)x<45.x>2.最小整数解为31.(1)>(2)>(3)<(4)<(5);2.(1)x+2>0(2)x2-7<5(3)5+x;3x(4)m2+n2;2mn6.共3组:0,1,2;1,2,3;2,3,47.a<-323.(1)<(2)>(3)<(4)>(5)>【5.3(2)】4.1.(1)x;0(2)x<43(3)x<3(第4题)2.(1)x>2(2)x<-73.(1)x;5(2)x<-35.C56.(1)80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.(1)x<165(2)x<-1【6.(1)买普通门票需540元,买团体票需480元,买团体票便宜5.2】(2)设x人时买团体票便宜,则30x>30;20;08,解得x>16.所以171.(1)(2); (3)(4); (5)人以上买团体票更便宜2.(1); (2); (3); (4); (5); (6);【5.3(3)】3.(1)x<22,不等式的基本性质2(2)m;-2,不等式的基本性质3(3)x;2,不等式的基本性质2(4)y<-1,不等式的基本性质1.B2.设能买x支钢笔,则5x;324,解得x;644335.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x);450,解得x;6.所以304.-45x+3>-45y+35.a;2座的客车至多租6辆6.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则4.设加工服装x套,则200+5x;1200,解得x;200.所以小红每月至少加4工服装200套5;06y;06x<06y, 4; 45y;x<y5.设小颖家这个月用水量为x(m3),则5;15+2(x-5);15,解得x;55数学八年级上875.至少为875m33750.所以商店应确定电脑售价在3334至3750元之间6.(1)140-11x95.设该班在这次活动中计划分x组,则3x+10;5(x-1),{解得3x+10;5(x-1)+1,(2)设甲厂每天处理垃圾x时,则550x+495;140-11x7;x;7.5.即计划分7个组,该班共有学生31人9;7370,解得x6.设购买A型x台,B型(10-x)台,则100;12x+10(10-x);105,解得;6.甲厂每天至少处理垃圾6时0;x;25.x可取0,1,2,有三种购买方案:①购A型0台,B型10台;7.(1)设购买钢笔x(x>30)支时按乙种方式付款便宜,则②购A型1台,B型9台;③购A型2台,B型8台30;45+6(x-30)>(30;45+6x);09,解得x>757.(1)x>2或x<-2(2)-2;x;0(2)全部按甲种方式需:30;45+6;10=1410(元);全部按乙种方式需:(30;45+6;40);09=1431(元);先按甲种方式买30台计算复习题器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需30;45+6;10;09=1404(元).这种付款方案最省钱1.x<122.7cm<x<13cm3.x;24.82【5.4(1)】5.x=1,2,3,46.0,17.(1)3x-2<-1(2)y+12x;0(3)2x>-x21.B2.(1)x>0(2)x<13(3)-2;x<槡3(4)无解8.(1)x>73.(1)1;x<4(2)x>-14.无解5.C2(2)x;1116.设从甲地到乙地的路程为x千米,则26<8+3(x-3);29,解得9<x;9.(1)-4<x<-2(2)-0.81;x<-0.7610.m;310.在9千米到10千米之间,不包含9千米,包含10千米11.-2<x<17.(1)-3<a;-1(2)412.设小林家每月“峰电”用电量为x千瓦时,则056x+028(140-x);053;140,解得x;125.即当“峰电”用电量不超过125千瓦时使用“峰【5.4(2)】谷电”比较合算3x-2>0,烄13.m;21.1烅,解得2(3<x;42.24或3514.设这个班有x名学生,则x-1()x<6,解得x<56.23x-2);4;烆202x+14x+17∵ x是2,4,7的倍数, 4; x=28.即这个班共有28名学生3.设小明答对了x题,则81;4x;85,解得2014;x;2114.所以小明答15.设甲种鱼苗的投放量为x吨,则乙种鱼苗的投放量为(50-x)吨,得对了21题9x+4(50-x);360,{解得30;x;32,即甲种鱼苗的投放量应控制在3x+10(50-x);290,4.设电脑的售价定为x元,则x-3000>10%x,{解得33331x-3000;20%x,3<x;30吨到32吨之间(包含30吨与32吨)563.略4.略5.C6.如图第6章图形与坐标【6.3(1)】【6.1】1.A(-2,1),B(2,1),C(2,-1),D(-2,-1)1.C2.A;(3,5),A;(-3,-5)2.(3,3)3.(1)东(北),350(350),北(东),350(350)3.点A与B,点C与D的横坐标相等,纵坐(2)495标互为相反数4.A(2,1),C(4,0),D(4,3).点F的坐标为(4,-1)5.(1)横排括号内依次填A,B,C,D,E;竖排括号内由下往上依次填1,2,4.(1)A(1,6),B(3,2),C(1,2),它们关于(第y轴对称的点的坐标分别为6题)3,4,5((2)略-1,6),(-3,2),(-1,2)(6.(1)星期一、星期三、星期四、星期五的最高气温分别记做(1,21),(3,5),2)略(4,12),(5,13);其中(6,18)表示星期六的最高气温,这一天的最高5.(1)略(2)B6.(1)略(2)相同;相似变换气温是18℃【6.3(2)】(2)本周内,星期天的最高气温最高;由于冷空气的影响,星期一、二气温降幅最大1.(1)右,3(2)(-3,3)(3)(x,1)(0;x;3)2.略7.在(2,7)处落子3.(1)把点A向下平移6个单位得到点B(2)把点A向右平移4个单位,再向下平移4个单位得到点C【6.2(1)】(3)把点C向左平移4个单位,再向下平移2个单位得到点B1.(2,-3),3,22.C3.(1)平行(2)平行(4)点(-3,-1)向右平移3个单位,再向上平移2个单位,得到点(0,1)4.(1)A(1,4),B(-1,2),C(1,0)(2)略(3)分别在一、二、三、四象限4.(1)(-3,m+4)(2)-25.(1)(-2,2)(2)m=-35.图略,A;,B;,C;的坐标分别为(-1,0),(1,0),(0,1)6.(1)训兽馆,海狮馆,鸟馆6.(1)C(-2,-3),D(-2,3),图略(2)A代表“长颈鹿馆”(8,9),B代表“大象馆”(4,2)(2)将AB向左平移4个单位,或以y轴为对称轴作一次对称变换7.图略.使点A变换后所得的三角形仍是等腰直角三角形的变换有:【6.2(2)】①把点A向下平移4个单位到点(1,-2);1.-4,(-8,0)②把点A先向右平移2个单位,再向下平移4个单位到点(3,-2);2.过点A且垂直于AB的直线为y轴建立坐标系,A(0,0),B(5,0),C(5,③把点A向右平移2个单位到点(3,2);5),D(0,5)④把点A先向右平移1个单位,再向下平移1个单位到点(2,1);⑤把点A先向右平移1个单位,再向下平移3个单位到点(2,-1)数学八年级上复习题5.(1)s=360-70t(2)220,表示汽车行驶2时后距离B地220km6.(1)R,I(2)是(3)16;1.(1)四(2)(0,1)(3)12.(2,5,2)7.(1)(从下至上)8,32(2)573.(1)k=2,t=2(2)k=-2,t=-2(3)是,因为风速随时间的变化而变化,且对于确定的时间都有一个确定4.图形略.直角三角形的风速5.图略,直线l上的点的纵坐标不变;向上平移3个单位后所得直线l;上任【7.2(2)】意一点的坐标表示为(x,1)6.;27.光线从点A到点B所经过的路程是7071.(1)x为任何实数(2)t;-1的任何实数8.(1)A(0,-1),B(0,2),C(4,2),D(4,-1)(2)1429.南偏东20;方向,距离小华86米2.(1)-4;5(2)x=1(2y+3);-110.(1)图略3.(1)y=x+14,4<x<14(2)20cm(2)图案Ⅱ各顶点的坐标分别为(-2,-1),(-4,-1),(-1,-3)(3)不能,因为以9,5,15为边不能组成三角形(3)①各顶点的横坐标、纵坐标分别互为相反数;②△ABC绕原点旋转4.(1)v=2t,0;t;20(2)v=16180;后,得到图案Ⅱ5.y=1第2x2,0;x;107章一次函数6.(1)y=x2槡+9,x>0(2)5cm(3)8cm【7.1】【7.3(1)】1.s,t;60千米/时2.y,x;120元/立方米1.-3,0;-1,-1;-3,13.常量是p,变量是m,q2.(1)y=12x,是一次函数,也是正比例函数4.常量是10,110,变量是N,H.13岁需97时,14岁需96时,15岁需95时(2)y=500-3x,是一次函数,但不是正比例函数5.(1)T,t是变量(2)t,W是变量6.f,x是变量,k是常量3.(1)Q=-4t(2)20(3)-172【7.2(1)】4.(1)y=2000x+12000(2)220001.y=(1+306%)x;5153;存入银行5000元,定期一年后可得本息和为5.(1)y=002t+50(2)80元,122元5153元6.(1)T=-4.8h+24(2)9.6℃ (3)6km7.(1)是(2)23.85元;65.7元;129.4元2.(1)瓜子质量x(2)1463.(1)-4(2)43(3)44.(1)4.9m;122.5m(2)4s58【7.3(2)】3.(1)y=600x+400(2)1120元4.(1)Q=95x+32(2)2121.-3;2-62.B5.(1)当0;x;4时,y=12x;当x>4时,y=16x-16(3.(1)y=2x+3,x为任何实数(2)1(3)x<-32)12元/立方米,16元/立方米(3)9立方米26.20,904.(1)y=53x+253(2)不配套【7.5(2)】5.(1)84cm(2)y=27x+3(3)11张x=3,6.(1)可用一次函数来描述该山区气温与海拔的关系.y=-x1.{200+22y=2(2)400;x;8002.(1)2(2)2,80(3)40千米(4)y=20x(5)y=40x-80【x=17.4(1)】3.{(近似值也可)y=21.(1)(3,0);(0,6)(2)-2(3)一,三;一,三,四2.D4.(1)2;6(2)3(3)y=3x(4)y=-x+8(5)1~5(包括1和5)3.(1)y=-3x+3(2)不在4.图略5.设参加人数为x人,则选择甲旅行社需游费:75%;500x=375x(元),选择5.(1)y=16-2x,0<x<4(2)图略乙旅行社需游费:80%;500(x-1)=(400x-400)(元).当375x=400x-6.(1)y1=50+0.4x;y2=0.6x(2)略400时,x=16.故当10;x<16时,选择乙旅行社费用较少;当人数x=16(3)(250,150).当通话时间为250分时,两种方式的每月话费都为150元时,两家旅行社费用相同;当16<x;25时,选择甲旅行社费用较少7.(1)不过第四象限(2)m>3课题学习【7.4(2)】方案一,废渣月处理费y1=005x+20,方案二,废渣月处理费y2=01x.1.C2.5<s<113.y1<y2处理费用越高,利润越小,因此应选择处理费用较低的方案.当产品的月生产4.(1)B(0,-3)(2)A8,()量小于400件时应选方案二;等于400件时两方案均可,大于400件时,选方30,k=98案一5.(1)1000万m3(2)40天6.(1)y=320000-2000x复习题(2)方案为A型车厢26节,B型车厢14节,总运费为268000元1.s,,()0;(0,7)【p;0.053L/km;p=0053s;10.62.在3.77.5(1)】21.y=22x2.如y=-x+1等4.x;35.B6.A7.(1)y=-52x(2)y=2x+4598.y=0.5x+15(0;x;18),图略9.y=-2x-1x+y>10,{①10.(1)2(2)y=2x+30(3)10个0.9x+y=10-0.8.②11.(1)S=-4x+40(2)0<x<10(3)P(7,3)由②,得y=9.2-0.9x.③12.(1)24分(2)12千米(3)38分把③代入①,得x+9.2-0.9x>10,解得x>8.又由x;10且为整数,得x=9,或x=10.总复习题把x=9代入③,得y=1.1;把x=10代入③,得y=02.所以饼干的标价为每盒1.A9元,牛奶的标价为每袋1.1元;或饼干的标价2.D3.D4.B5.B6.B7.D为每盒8.2510元,牛奶的标价为每袋02元9.3010.x>-511.40;12.等腰三角形底边上的中线、顶角的平分线和底边上的高互相重合;直角27.7三角形斜边上的中线等于斜边的一半;等边对等角;28.(1)1500元;BAD;内错角相等,两直线平行(2)印刷费为(2.2;4+0.7;6);2000=26000(元),总费用为26000+1500=27500(元)13.12;x<214.图略15.516.4(3)设印数为x千册.17.由已知可得Rt△BFD≌Rt△CED(HL),得;B=;C.所以△ABC是①若4;x<5,由题意,得1000;(2.2;4+0.7;6)x+1500;等腰三角形60000,解得x;4.5. 4; 4;x;4.5;18.10米19.D20.C21.C22.D23.C24.B②若x;5,由题意,得1000; (2.0;4+0.6;6)x+1500;60000,解得x;5.04. 4; 5;x;5.04.25.(1)A(1,槡3)(2)槡334综上所述,符合要求的印数x(千册)的取值范围为4;x;4.5或26.设饼干的标价为每盒x元,牛奶的标价为每袋y元,则5;x;5.04。
人教版八年级上册数学作业本答案完整版
参考答案第十一章 三角形11.1与三角形有关的线段11.1.1三角形的边1.(1)3;әA B C,әA B D,әA D C(2)A B,B D,A D;A,B,D(3)øA D C,øD C A,øC A D2.(1)3(2)123.(1)> (2)> (3)> (4)<4.(1)能.理由略(2)不能.理由略(3)能.理由略(4)不能.理由略5.a=5c m或7c m,周长为17c m或19c m6.35c m的长铁条合适,10c m的长铁条不合适.理由略11.1.2三角形的高㊁中线与角平分线11.1.3三角形的稳定性1.略2.(1)4c m2(2)30ʎ(3)2.4c m3.(1)D (2)B4.14c m5.(1)C D,B C(2)әA B C,әA B E,әA E C(3)әD B C,әD B E,әD E C6.25ʎ,25ʎ*7.(1)S1=S2.理由略(2)S3=S5,因为S3+S6=S5+S6=12S(3)S7=S8=S9=S10=S11=S1211.2与三角形有关的角11.2.1三角形的内角(1)1.(1)180ʎ,75ʎ(2)30ʎ,60ʎ,90ʎ2.(1)77ʎ(2)70ʎ3.33ʎ4.ø2=50ʎ,øB=50ʎ,øA C B=90ʎ5.(1)120ʎ(2)1256.øA B P=30ʎ+25ʎ=55ʎ,øB A P=80ʎ11.2.1三角形的内角(2)1.302.(1)3(2)43.D4.115ʎ5.42ʎ6.R tәA B D,R tәA C D,R tәA D E.理由略11.2.2三角形的外角1.C2.60ʎ3.145ʎ4.(1)øA B C=90ʎ,øC=45ʎ(2)40ʎ,50ʎ,90ʎ5.40ʎ.理由:ø3=ø2+180ʎ-140ʎ6.74ʎ*7.øC A D=30ʎ,øA E D=80ʎ,øE A D=10ʎ11.3多边形及其内角和11.3.1多边形1.(1)首尾顺次相接,n边形(2)顶点,对角线,n(n-3)2(3)相等,相等2.1;øB C D;2;øD C E,øB C F3.略4.①④5.(1)⑤ (2)①ˑ ②ˑ ③6.(1)图略,3,4(2)4,5,5,6(3)n-3,n-211.3.2多边形的内角和1.(1)720ʎ(2)八(3)45ʎ2.53.36ʎ,72ʎ,108ʎ,144ʎ4.1165.116.160ʎ复习题1.A B C,A D E2.①3.1,图略4.125.62ʎ,118ʎ6.(1)由A CʅB C,得ø1+øB C D=90ʎ,又因为ø1=øB,所以øB+øB C D=90ʎ,所以C D是әA B C的高(2)2c m7.118.øA E B=øC.理由略9.(1)26ʎ(2)略10.(1)øI=90ʎ+12øA,øO=12øA,øP=90ʎ-12øA.理由略(2)125ʎ,35ʎ,55ʎ11.(1)19,0(2)0<x<19第十二章 全等三角形12.1全等三角形1.(1) (2)ˑ (3)ˑ (4)2.C,øA,A C3.97,104.B C与D E,A C与A E,øB A C与øD A E,øC与øE5.直线B C,逆时针旋转180ʎ,平移B C长度6.(1)øE D C,E C(2)6,90ʎ12.2三角形全等的判定(1)1.S S S2.A B=B C,A B D,C B E3.提示:由әA B DɸәB A C(S S S),得øD=øC4.略5.øB A D=øC A D,理由略.提示:әA O EɸәA O F(S S S)6.(1)略(2)A BʊD E,A CʊD F,理由略*7.提示:由әA B DɸәA C D(S S S),可得A DʅB C,A D平分øB A C12.2三角形全等的判定(2)1.øB E D,D E,әB D E,S A S2.øE A D=øB A C或øE A B=øD A C或E D=B C3.B4.由әE DHɸәF DH,得E H=F H.还能得如下结论:øD E H=øD F H,øDH E=øDH F5.由әB C AɸәD E B(S A S),得B C=D E6.由әA B CɸәA B D(S A S),得øA B C=øA B D, ʑ øC B E=øD B E7.(1)A B=A C,A D=A D,øB=øC*(2)不全等.两边及一边的对角对应相等的两个三角形不一定全等12.2三角形全等的判定(3)1.C2.(1)øB C A=øE F D(2)øB=øE3.提示:由øC B A=øF E D,øB C A=øE F D,A B=D E,得әB A CɸәE D F(A A S)4.提示:由әA B CɸәE D C(A S A),得D E=A B5.提示:由әB C DɸәC B E(A S A),得B E=C D6.提示:可先证明әA O DɸәA O E,得出O D=O E;再证明әB O DɸәC O E,从而得出O B=O C12.2三角形全等的判定(4)1.D2.(1) (2)ˑ (3)ˑ (4)3.(1)A C=D C(2)øA=øD或øB=øE(3)A C=D C4.(1)提示:әA B CɸәA D C(A A S)(2)由(1)得C B=C D5.提示:әA O DɸәC O B(S A S),әA O EɸәC O F(A A S)6.全等三角形有әA B CɸәD C B(S A S),әA B OɸәD C O(A A S).理由略12.2三角形全等的判定(5)1.D2.A C=D F或B C=E F或øA=øD或øB=øE3.提示:由R tәA D EɸR tәA D F(H L),得øD A E=øD A F,即A D是øB A C的平分线4.(1)A E=D F,A BʊC D(2)略5.(1)ȵ A D=B D,A C=B E,øA D C=øB D E, ʑ әB E DɸәA C D(H L)(2)提示:由әB E DɸәA C D,得D E=D C6.当A P=A C=10c m,即点P与点C重合时,或A P=B C=5c m,即P是A C的中点时,әA B C与әA P Q全等*7.正确. ȵ R tәO C PɸR tәO D P, ʑ øC O P=øD O P,即O P平分øA O B12.2三角形全等的判定(6)1.(1)A A S(2)A S A (3)S A S(4)H L2.②④3.D4.提示:先证明әA B EɸәA C D,再证明әO B DɸәO C E5.提示:先证明әA O DɸәB O C,再证明әO C EɸәO D F6.提示:延长A M到点N,使MN=A M,连接B N.先证明әA C MɸәN B M,得到B N=A C,再由әA B N的三边关系得到A N<A B+B N, ʑ 2A M<A B+A C12.3角的平分线的性质(1)1.(1)略(2)5c m2.(1)B C,C D(2)A B,A D3.P B=P C,A B=A C4.提示:根据角平分线的性质可得A E=E F,D E=E F,故A E=D E5.提示:由әP DMɸәP E N(S A S),得P M=P N6.(1)提示:两个三角形的边A B,A C上的高相等(2)方法一:ȵ B D=C D,ʑ SәA B D=SәA C D. ʑ A B=A C方法二:过点D分别作A B,A C的垂线段,通过三角形全等证明12.3角的平分线的性质(2)1.A2.253.略4.21ʎ5.提示:可证明әC O EɸәB O D,得O E=O D6.(1)略(2)作图略,A DʅA E复习题1.A2.4对:әA F DɸәA F E,әB D FɸәC E F,әA F BɸәA F C,әA B EɸәA C D3.由әA B CɸәA'B'C',得B C=B'C',即影子一样长4.点P为øA和øB的平分线的交点,图略5.提示:由әB D FɸәC D E(S A S),得øF=øD E C,故B FʊC E6.3c m,37ʎ7.由R tәA B DɸR tәC B E(H L),得øB A D=øB C E.ȵøE+øB C E= 90ʎ, ʑ øE+øB A D=90ʎ, ʑ A FʅC E8.(1)提示:证明әC B DɸәE F C,D B=C F(2)2(3)2第十三章 轴对称13.1轴对称13.1.1轴对称1.B2.A DʅB C,中点,垂直平分线3.(1) (2)ˑ4.①和③是轴对称图形.对称轴及对称点略5.(1)点D ,E ,F (2)l 垂直平分线段A D (3)交点在直线l 上6.图略.正三㊁四㊁五㊁ n 边形分别有3,4,5, ,n 条对称轴13.1.2 线段的垂直平分线的性质(1)1.(1)B M (2)90 (3)2c m 2.A D +D E +A E =B D +D E +E C =B C =5c m3.ȵ A C =A D , ʑ 点A 在C D 的垂直平分线上.同理,点B 在C D 的垂直平分线上, ʑ AB 垂直平分CD 4.以点A 为圆心㊁适当长为半径作弧,交l 于点B 和C ,再分别以点B 和C 为圆心㊁大于12B C 的长为半径作弧,两弧交于点D ,连接D A ,直线D A 就是所求作的垂线5.ȵ A B =A C ,B D =D C , ʑ 直线A D 是线段B C 的垂直平分线.ȵ 点E 在A D 上, ʑ E B =E C6.A C =A E =12A B =3c m13.1.2 线段的垂直平分线的性质(2)1.对应点,垂直平分线2.连接A B ,分别以点A 和B 为圆心㊁大于12A B 的长为半径画弧,两弧交于点C 和D ,连接C D ,C D 就是所求作的直线3.①②③⑤是轴对称图形.图略 4.略5.提示:作出三角形任意一边的中线即可6.方案一:两组对边中点的连线;方案二:两条对角线13.2 画轴对称图形(1)1.(1)略 (2)A 'B 2.略 3.略 4.略 5.略 6.略13.2 画轴对称图形(2)1.C 2.点P 的坐标(2,3)(1,-4)(-2.5,-6)0,-72点P 关于x 轴对称的点的坐标(2,-3)(1,4)(-2.5,6)0,72 点P 关于y 轴对称的点的坐标(-2,3)(-1,-4)(2.5,-6)0,-723.1,24.略5.(1)图略.-3,5,-1,1,-3,3 (2)图略.-1,5,-3,1,-1,3 (3)是.图略6.A 2(1,-3),B 2(4,-1),C 2-12,-2.图略13.3 等腰三角形13.3.1 等腰三角形(1)1.(1)50ʎ (2)66ʎ 2.50 3.3,904.øB C D =25ʎ,øA D C =50ʎ,øA C B =90ʎ5.由әA B C ɸәA E D (S A S ),得A C =A D .又AM ʅC D , ʑ C M =MD .ʑ M 是C D 的中点6.提示:连接A P ,证明әA D P ɸәA E P 或әB D P ɸәC E P ,得P D =P E*7.(1)15ʎ (2)20ʎ (3)øE D C =12øB A D ,理由略13.3.1 等腰三角形(2)1.70,等腰 2.(1)30ʎ (2)30ʎ或75ʎ或120ʎ3.提示:由øD B C =øD C B ,得әB C D 是等腰三角形4.30海里5.øC =30ʎ,C D =3c m 6.ȵ øB =øC =12(180ʎ-øA ), ʑ A B =A C .ȵ B D =C E , ʑ A D =A E , ʑ øA D E =øA E D =12(180ʎ-øA ),ʑ øA D E =øB , ʑ D E ʊB C*7.(第7题)13.3.2 等边三角形(1)1.(1)0.5c m (2)3 2.D 3.90ʎ4.提示: ȵ әA D F ɸәB E D ɸәC F E , ʑ A D =B E =C F5.(1)ȵ әA B C 是等边三角形,ʑ AC =C B ,øA =øE C B =60ʎ.又AD =CE ,ʑ әA D C ɸәC E B (S A S ), ʑ øC B E =øA C D(2)øC F E =øC B E +øD C B =øA C D +øD C B =øA C B =60ʎ6.提示:可证明әA B D ɸәA C E (S A S ), ʑ A D =A E ,øD A E =øB A C =60ʎ,ʑ әA D E 是等边三角形13.3.2等边三角形(2)1.2402.30ʎ,4c m,2c m3.ȵ øA=90ʎ-60ʎ=30ʎ,øC=90ʎ, ʑ A B=2B C.又ȵ A B-B C=5c m, ʑ B C=5c m4.øB=15ʎ,øD A C=øB+øA C B=30ʎ,C D=12A C=12A B=25c m5.(1)略(2)(12+43)c m6.ȵ B'D=B'E, ʑ B B'平分øA B C, ʑ øB'B D=30ʎ,ʑ B B'=2B'D=5ˑ2=10c m7.根据әA B D的画法,有A B=A C=B C=C D,ʑәA B C是等边三角形, *øA B C=øA C B=60ʎ,øD=øC B D=12øA C B=30ʎ.ʑ øA B D=60ʎ+30ʎ=90ʎ, ʑ әA B D就是所要画的三角形13.3.2等边三角形(3)1.12.60,1203.74.әO D E是等边三角形.提示:证明øD O E=2øA O B=60ʎ,O D=O C=O E即可5.(1)15时30分(2)17时30分6.(1)连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可*(2)әD E F仍为等腰直角三角形.连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可13.4课题学习最短路径问题1.提示:作点O关于A B的对称点O',连接O'C,交A B于点P2.提示:作点O关于A B的对称点O',点M关于B C的对称点M',连接O'M',交A B,B C于点P和Q3.提示:利用平移,将点C移动到边C D上的点C'处,C C'=2c m,作点O关于A B对称点O',连接O'C',交A B于点P复习题1.C2.5c m,50ʎ3.18ʎ4.略5.ȵ E DʅB C, ʑ øE+øB=90ʎ,øD F C+øC=90ʎ.ȵ A B=A C, ʑ øB=øC.又øD F C=øA F E, ʑ øE=øA F E, ʑ A E=A F.ʑ әA E F是等腰三角形6.ȵ әA C E与әA D E关于直线A E对称, ʑ D E=E C,A D=A C=C B,ʑ D E+E B+D B=E C+E B+D B=C B+D B=10c m7.ȵ øA=60ʎ,A D=12A B=A C, ʑ әA C D是等边三角形,øD C B=90ʎ-øA C D=30ʎ.øA C E=90ʎ-øA=30ʎ,øE C D=30ʎ,ʑøA C E=øE C D =øD C B8.ȵ E B=E C, ʑ øE B C=øE C B. ȵ øA B E=øA C E,ʑ øA B C=øA C B, ʑ A B=A C.又ȵ E B=E C,ʑ 点A和E在B C的垂直平分线上. ʑ A DʅB C9.(1)a=2,b=3(2)(-6,-2)10.(第10题)11.(1)略(2)P(a,b)关于直线m对称的点的坐标为(-a-4,b);P(a,b)关于直线n对称的点的坐标为(b,a)12.(1)由әA B EɸәD B C(S A S),得A E=D C(2)成立(3)等边三角形第十四章 整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.(1)不正确.a6(2)正确(3)不正确.-79(4)不正确.-2102.(1)108(2)1211(3)-127(4)5103.(1)m6(2)x2m+1(3)a6(4)-x54.1020次5.(1)(a+b)3(2)(x-y)7(3)b9(4)(a-b)56.1.2ˑ1011m 14.1.2幂的乘方14.1.3积的乘方1.B2.(1)26(2)b9(3)1012(4)-x153.(1)不正确.8x3(2)不正确.a3b6(3)不正确.9a6(4)不正确.-127x3y64.(1)-a6(2)9ˑ1010(3)a12b6(4)-8x6y35.54a2,27a36.5.14ˑ108k m214.1.4整式的乘法(1)1.(1)15a5(2)-72a3b6(3)6ˑ107(4)-3x5y42.(1)不正确.3x3y2(2)不正确.-2x2-2x y3.(1)2x2+2x(2)6x2-18x y(3)-2a+2b-2c(4)-15a4+43a34.a b-b25.3x3-5x2+6x,-146.(1)2x y,4x y-2y(2)15x y+y14.1.4整式的乘法(2)1.(1)x2+3x+2(2)2x2-x-12.(1)x2-4(2)6x2+x-1(3)x2+4x y-21y2(4)6x2+11x y-10y23.(1)x2-y2(2)4x2-9(3)x2+2x y+y2(4)4x2-12x+94.(1)3m2-m n-5m+2n-2(2)6x-9,35.(a-b)(a-2b)=a2-3a b+2b26.小丽说得对,理由略14.1.4整式的乘法(3)1.(1)a2(2)a2(3)a3b3(4)12.C3.(1)100(2)a6(3)-b3(4)-a b4.(1)1(2)-1(3)1(4)15.(1)a4(2)-m3(3)1(4)2a76.104s14.1.4整式的乘法(4)1.(1)2a(2)-5y2(3)-2ˑ103(4)r32.自上而下:-x3y,6x z,-12x3.D4.(1)-14a b(2)3x+1(3)3a+4(4)-6x+2y-15.(1)-y+2x y2(2)-2a2+4a+8,26.(8.47ˑ1010)ː(2.75ˑ103ˑ105)=308年14.2乘法公式14.2.1平方差公式1.(1)a2-1(2)y-32.(1) (2) (3) (4) (5)ˑ3.(1)a2-4(2)9a2-b2(3)y2-0.09x2(4)a2-14b24.(1)(100+3)(100-3)=9991(2)(60-0.2)(60+0.2)=3599.965.(1)二,去括号后未变号(2)略6.(1)-8a2(2)5x2-34y2(3)-2a2+7a+27.(1)a2-b2(2)a-b,a+b,(a-b)(a+b)(3)(a-b)(a+b)=a2-b2 *(4)略14.2.2 完全平方公式(1)1.D2.(1)9+6x +x 2(2)y 2-14y +49 (3)x 2-10x +25 (4)9+2t +19t 23.(1)10000 (2)38809 4.(1)14x 2-2x y +4y 2 (2)-4a 2-12a -95.(1)略 (2)(a -b )2+4a b =(a +b )2(3)69 ʃ11 6.8a b14.2.2 完全平方公式(2)1.D 2.(1)y +z (2)y -z (3)2b -c ,2b -c3.(1)4x 2+12x y +9y 2 (2)4x 2-4x +14.(1)4x 2+y 2+z 2-4x y +4x z -2y z (2)a 2-4b 2+4b -15.x 2-3,1 6.(1)a 5+5a 4b +10a 3b 2+10a 2b 3+5a b 4+b 5(2)24314.3 因式分解14.3.1 提公因式法1.C2.(1)3 (2)x (3)2a 2(4)a -b 3.(1)2x 2(x +3) (2)3p q (q 2+5p 2) (3)x y (x +y -1) (4)-2a b 3(4a -3c )4.(1)(a -b )(2a -2b -1) (2)(x -y )2(3-x +y )(3)(a -b )(7+a )5.-24 6.(1)998 (2)-1020197.2r h +12πr 2,分解因式得r 2h +12πr,64πm 214.3.2 公式法(1)1.B2.(1)2x ,3y ,(2x +3y )(2x -3y )(2)5b ,4a ,(5b +4a )(5b -4a )(3)x 2-y 2,x y (x +y )(x -y )3.(1)(x +1)(x -1) (2)3(2+a )(2-a ) (3)(a +b +c )(a +b -c )(4)(a 2+9b 2)(a +3b )(a -3b )4.(1)2013 (2)-15.a 2-4b 2=(a +2b )(a -2b )=128c m26.(1)34 (2)23 (3)58 (4)10120014.3.2 公式法(2)1.D 2.(1)3a +2 (2)9y 2,3y (3)-2m n 3.(1)(x -3)2 (2)(2a +b )2 (3)-(3x -2y )2 (4)a +12b24.(5x+y)2,4255.(1)-3x(x-1)2(2)(2a+b-4)2(3)(a+2b)2(a-2b)2(4)(a+2)(a-2)6.(1)1ˑ104(2)1ˑ1047.(1)(x+2y-1)2(2)(a+b-2)2*复习题1.D2.(1)3x4y4(2)-4a b3.a2+4a b+4b2,a2-4b2,4b2-a2,-a2-4a b-4b24.(1)2a3b3c3+12a3b c3(2)-3a b+8b(3)14x2-16a2(4)16m2+8m+15.②6.(1)(x+2)(x-2)(2)(8-a)2(3)(x-y)(2+a)(4)(0.7x+0.2y)(0.7x-0.2y)7.(1)2x5(2)-7x3y2+2x2(3)-4x-12(4)x-y8.(1)(x-y)(5x-4y)(2)-a2(b-1)2(3)4a(x+2y)(x-2y)(4)(x-2)(x-3)(x+3)9.吃亏了,少了25m2,理由略10.(1)(a+2b)(2a+b)=2a2+5a b+2b2(2)如图(3)答案不唯一.如图,(a+2b)(a+b)=a2+3a b+2b2[第10(2)题][第10(3)题]11.原式=(2-1)ˑ(2+1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22-1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22048-1)ˑ(22048+1)=24096-112.(1)C(2)(x-2)4(3)设x2-2x=y,原式=y(y+2)+1=(y+1)2=(x2-2x+1)2=(x-1)4第十五章 分式15.1 分式15.1.1 从分数到分式1.(1)3t (2)nm +12.m ,x 5,13a 2b ,23,5π整式集合 2a ,x x -3,x 2-x +1y,x +1x -1分式集合3.(1)x ʂ0 (2)x ʂ2 (3)x ʂ0且x ʂ1 (4)x ʂʃ34.(1)m +n x +y千克 (2)b45a 5.(1)x =43 (2)x =-12 (3)-3 6.x -5x 2-3615.1.2 分式的基本性质(1)1.(1)x (2)3a 2-3a b (3)y -2 (4)1 2.(1)ˑ (2) (3)ˑ (4)ˑ 3.(1)12x (2)-x 3y(3)2a5b 4.(1)相等.因为把第一个分式的分子㊁分母同乘以3x 就是第二个分式(2)相等.因为把第一个分式的分子㊁分母同乘以3b 2就是第二个分式5.(1)5x -103x +20 (2)x -23x -1 6.(1)A (2)3y (答案不唯一) 15.1.2 分式的基本性质(2)1.B 2.A 3.(1)c b (2)-4x 5y (3)34(x -y )4.(1)x +2x -2 (2)1m (m -2) (3)x +2x -25.(1)x +2y 4x ,34 (2)a +3a -3,46.答案不唯一,例如:x 2-1x 2+x=x -1x ,1215.1.2 分式的基本性质(3)1.(1)5a (2)a 2b 22.D3.(1)412x 2与5x 12x 2 (2)3b c a 2b 2与2a c a 2b 2 (3)5a 2c 21a c 与35c 21a c (4)3a b 23b 2与a 3b24.(1)a c +c (a -1)(a +1)与a c -c (a -1)(a +1) (2)2y 2x y (y +1)与3x 2x y (y +1)5.(1)a -2a 与a 2-2a a (2)x 2-y 2x +y 与2y 2x +y6.(1)c -a (a -b )(b -c )(c -a ),a -b (a -b )(b -c )(c -a )与c -b(a -b )(b -c )(c -a )(2)2a (a -3)(a +3)(a -3)2与3(a +3)(a +3)(a -3)215.2 分式的运算15.2.1 分式的乘除(1)1.C 2.(1)不正确.-3x (2)不正确.8x 23a 2 3.(1)1 (2)-5a14x 4.(1)-1a c (2)1a (a -2) (3)2x -2x +2 (4)-13m5.s a ːm s b =b a m6.300x ㊃2x m =600m 个15.2.1 分式的乘除(2)1.B2.(1)a b (2)a 2b 2 (3)(x -1)2(4)4a 2c 4 (5)4c 2d 2a 2b 6 (6)(2a +b )2(a -b )23.(1)3c a b (2)49x 2y 2 (3)m 2n 24.(1)1b (2)-y (x +y )5.32倍15.2.2 分式的加减(1)1.(1)3x (2)x -y a (3)1 (4)-b a2.C3.(1)5y -4x 6x 2y 2 (2)3b c 3+2a36a 2b 2c 24.(1)2 (2)a b a -b (3)3x +4 (4)4x +25.(1)2a a +2 (2)1m -1 (3)2a 2a -2 6.3000a -30003a =2000a时15.2.2 分式的加减(2)1.D 2.(1)2 (2)-1a 3.(1)b 2a3 (2)1a -2 (3)1x +1 (4)1x -14.aa -3,a 可选除0,2,3以外的任意数5.方法一:原式=2x (x +4)(x -2)(x +2)㊃x 2-4x =2x +8;方法二:原式=3x x -2㊃x 2-4x -x x +2㊃x 2-4x =2x +8*6.(1)100(x +y ),100x +100y ,x +y 2,2xy x +y(2)乙购买粮食的方式更合算,理由略15.2.3 整数指数幂(1)1.(1)25,1,125 (2)25,1,1252.(1)不正确.1 (2)不正确.-1 (3)不正确.19 (4)正确3.(1)1100 (2)127 (3)1000 (4)94 4.(1)6a2c 4 (2)y 2x 6z45.(1)8m 8n 7 (2)b 138a 8 6.原式=y -9x 3,8915.2.3 整数指数幂(2)1.C 2.A3.(1)1.0ˑ105 (2)1.0ˑ10-5 (3)-1.12ˑ105 (4)-1.12ˑ10-44.(1)75 (2)3.6ˑ10-135.(1)0.00001 (2)0.000236.3.1ˑ10-315.3 分式方程(1)1.C 2.(1)x =73(2)x =4 3.m =14 4.(1)x =12 (2)x =35.(1)x =1 (2)x =-1*6.设原分式为x -16x ,则x -15x +1=12,解得原分数为153115.3 分式方程(2)1.A 2.90x +6=60x 3.设乙单独做,x 天完成,则46+4x=1,解得x =124.120元5.设原计划每天铺设x m 管道,则3000x -3000(1+25%)x =30,解得x =20,(1+25%)x =25.实际每天铺设管道25m 6.(1)70m /m i n (2)李明能在联欢会开始前赶到学校15.3 分式方程(3)1.10 2.B 3.35.6mm4.设乙每分钟输入x 名学生的成绩,则26402x =2640x-2ˑ60,解得x =11,2x =22.乙每分钟输入11名学生的成绩,甲每分钟输入22名学生的成绩5.设货车的速度是x km /h ,由题意得14401.5x +6=1440x,解得x =80.货车的速度是80k m /h ,客车的速度是120k m /h *6.255p -1元 复习题1.B2.C3.C4.3ˑ10-4微米 5.(1)1.2ˑ104 (2)10-46.(1)y 29x 6 (2)x -5 7.(1)x =1 (2)无解 8.设甲的速度为x k m /h ,则8-0.5x x =122x,解得x =4,所以甲的速度是4k m /h ,乙的速度是8k m /h9.设该市去年居民用水的价格为x 元/米3,则今年居民用水的价格为(1+25%)x元/米3.根据题意,得36(1+25%)x -18x=6,解得x =1.8,(1+25%)x =2.25.该市今年居民用水的价格为2.25元/米310.王师傅这次运输所花时间为180v h ,180v ˑ29v +14+180v ˑ20=176,解得v =45.王师傅这次运输的平均速度为45k m /h 11.(1)取a =1,b =1,得M =N =1;取a =2,b =12,得M =N =1.猜想:M =N (2)M =a a +1+b b +1=a a +a b +b b +a b =1b +1+1a +1=N ,因此M =N 总复习题1.C2.C3.D4.B5.A6.1.83ˑ10-77.538.5409.所有图案都是轴对称图形,图略10.(1)3x2-20x+26(2)-111.(1)2x(3-2y)(2)y(y+2x)(y-2x)(3)(a+3)2(a-3)2(4)(a-b)(2a-2b+3)(2a-2b-3)12.(1)无解(2)x=-713.ȵ øA=50ʎ,øB D C=85ʎ,ʑøA B D=35ʎ.又ȵB D平分øA B C,D EʊB C,得øB D E=35ʎ, ʑ øBE D=110ʎ. ʑ әB D E各内角度数分别为35ʎ,35ʎ,110ʎ14.әA B C,әA B D,әA C D;øB=36ʎ15.B E=A B-A E=7c m,在әB E F中,øB E F=øG E F=øA E G=60ʎ,得E F=2B E=14c m16.øA B C=øA D C.提示:连接B D,证明øA D B=øA B D,øC D B=øC B D,得øA D B+øC D B=øA B D+øC B D,即øA D C=øA B C17.设甲公司单独完成需要x天,则12x+121.5x=1,解得x=20,1.5x=30.甲㊁乙两公司单独完成此项工程,分别需要20天和30天18.(1)在R tәA D B与R tәC E A中,A B=A C,øB A D=øA C E, ʑ әA D BɸәC E A, ʑ A D=C E,A E=B D. ʑ D E=B D+C E(2)D E=B D+C E(3)D E=C E-B D19.(1)øA+øD=øB+øC(2)6(3)øP=45ʎ(4)øP=øB+øD2,理由略20.(1)32(2)ʃ321.略期末综合练习1.D2.D3.A4.A5.B6.D7.B8.C9.C 10.A 11.4.2ˑ10-712.23b13.3x(x+2y)(x-2y)14.ʃ4 15.116.917.= 18.24ʎ19.20ʎ或35ʎ或80ʎ或50ʎ20.2 21.a+1,选取a=2,所求的值为322.略23.提示:(1)由әB O DɸәC O E可得(2)提示:证明A B=A C,得点A,O都在B C的垂直平分线上24.(1)甲工程队每月修建绿道1.5k m,乙工程队每月修建绿道1k m(2)甲工程队至少修建绿道8个月25.(1)①30 ②|60ʎ-2α|(2)①略 ②|8-2n|。
人教版八年级上册数学作业本答案
三一文库()/初中二年级〔人教版八年级上册数学作业本答案[1]〕参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得∠ADG=12∠ADE,∠ABF=12∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE(同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB与CD不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180°7.略【1.3(1)】1.D2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵AB∥CD,∴α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)# (2)# 3.(1)DAB(2)BCD4.∵∠1=∠2=100°,∴m∥n(内错角相等,两直线平行).∴∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP,∴∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴∠AEB′=∠AEB=12∠BEB′=65°1.2第2章特殊三角形2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.15cm4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵AE∥CF,∴∠AEB=∠CFD.∴△AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴AE=CF3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AM⊥l5.如图,答案不唯一,图中点C1,C2,C3均可2于M,BN⊥l3于N,则△ABM≌△BCN,得AB=BC6.(1)略(2)CF=15cm7.AP平分∠BAC.理由如下:由AP是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1)∠4(2)∠3(3)∠1∴∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70°(2)100°,40°2.3,90°,50°3.略4.(1)90°(2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50°5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题)∠BDC=∠CEB=90°,BC=CB,∴△BDC≌△CEB(AAS).∴BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=1880°.(本题也可用面积法求解)∴∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D【2.3】8.不正确,画图略1.70°,等腰2.33.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平50分线,得∠DBC=∠DCB.则DB=DC【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF和△EFC都是等腰三角形.理由如下:1.C2.45°,45°,63.5∵△ADE和△FDE重合,∴∠ADE=∠FDE.4.∵∠B+∠C=90°,∴△ABC是直角三角形∵DE∥BC,∴∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴∠B=∠DFB.∴DB=DF,即△DBF是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC是等腰三角形∴DE=DF.∠ECD=45°,∴∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100°(2)把60°分成20°和40°∴∠EDF=90°,即DE⊥DF【2.4】【2.5(2)】1.(1)3(2)51.D2.33°3.∠A=65°,∠B=25°4.DE=DF=3m2.△ADE是等边三角形.理由如下:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12(3)槡52.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP,∴∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4.槡22cm(或槡8cm)5.169cm26.18米∴∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)#BD′=1(a+b)2,6.△DEF是等边三角形.理由如下:由∠ABE+∠FCB=∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°.∴∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴△DEF是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能2.是直角三角形,因为满足m。
八年级数学作业本答案(上学期)
三一文库()/初中二年级〔八年级数学作业本答案(上学期)〕第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)2.8,12,6,长方形1.BC=EF或AC=DF或∠A=∠D或∠B=∠E2.略3.直五棱柱,7,10,34.B3.全等,依据是“HL”5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴∠AEC=90°,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴Rt△ABD≌Rt△BAC(HL).∴∠CAB=∠DBA,7.正多面体顶点数(V)面数(F)棱数(E)V+F-E∴OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72°,72°,48.槡79.64°10.∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC.【3.2】又∵BD=EC,∴△ABD≌△ACE.∴AB=AC1.C11.482.直四棱柱3.6,712.B13.连结BC.∵AB=AC,∴∠ABC=∠ACB.4.(1)2条(2)槡55.C又∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD6.表面展开图如图.它的侧面积是14.25(π15+2+2.5)33=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB,∴∠ACB=∠DBC,从而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=C。
初中八上数学作业本答案参考
初中八上数学作业本答案参考第21章数据的整理与初步处理§21.1 算术平均数与加权平均数(一)一、选择题. 1.C 2.B二、填空题. 1. 169 2. 20 3. 73三、解答题. 1. 82 2. 3.01§21.1 算术平均数与加权平均数(二)一、选择题. 1.D 2.C二、填空题. 1. 14 2. 1529.625三、解答题. 1.(1) 84 (2) 83.2§21.1 算术平均数与加权平均数(三)一、选择题. 1.D 2.C二、填空题. 1. 4.4 2. 87 3. 16三、解答题. 1. (1)41 (2)49200 2. (1)A (2)C§21.1算术平均数与加权平均数(四)一、选择题. 1.D 2.B二、填空题. 1. 1 2. 30% 3. 25180三、解答题. 1. (略) 2. (1)15 15 20 (2)甲 (3)丙§21.2平均数、中位数和众数的选用(一)一、选择题. 1.B 2.D二、填空题. 1. 1.5 2. 9, 9, 3. 2, 4三、解答题. 1.(1)8 (2)37.5 2.(1)260 240 (2)不合理,因为大部分工人的月加工零件数小于260个§21.2平均数、中位数和众数的选用(二)一、选择题. 1.C 2.B二、填空题. 1.众数 2. 中位数 3. 1.70米三、解答题. 1.(1)众数:0.03,中位数:0.03 (2)不符合,因为平均数为0.03>0.0252. (1)3,5,2,2 (2)26,25,24 (3)不能,因为众数为26,只有9个人达到目标,没有到一半.§21.3 极差、方差与标准差(一)一、选择题. 1.D 2.B二、填空题. 1. 70 2. 4 3.甲三、解答题. 1.甲:6 乙:4 2. (1) 甲:4 乙:4 (2) 甲的销售更稳定一些,因为甲的方差约为0.57,乙的方差约为1.14,甲的方差较小,故甲的销售更稳定一些。
八年级上数学作业本[人教版]答案
参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得∠ADG=12∠ADE,∠ABF=12∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE(同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB与CD不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180°7.略【1.3(1)】1.D2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵AB∥CD,∴α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)×(2)×3.(1)DAB(2)BCD4.∵∠1=∠2=100°,∴m∥n(内错角相等,两直线平行).∴∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP,∴∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴∠AEB′=∠AEB=12∠BEB′=65°1.2第2章特殊三角形2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.14.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵AE∥CF,∴∠AEB=∠CFD.∴△AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴AE=CF3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AM⊥l5.如图,答案不唯一,图中点C1,C2,C3均可2于M,BN⊥l3于N,则△ABM≌△BCN,得AB=BC6.(1)略(2)CF=1m7.AP平分∠BAC.理由如下:由AP是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1)∠4(2)∠3(3)∠1∴∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70°(2)100°,40°2.3,90°,50°3.略4.(1)90°(2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50°5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题)∠BDC=∠CEB=90°,BC=CB,∴△BDC≌△CEB(AAS).∴BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本题也可用面积法求解)∴∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D【2.3】8.不正确,画图略1.70°,等腰2.33.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平50分线,得∠DBC=∠DCB.则DB=DC【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF和△EFC都是等腰三角形.理由如下:1.C2.45°,45°,63.5∵△ADE和△FDE重合,∴∠ADE=∠FDE.4.∵∠B+∠C=90°,∴△ABC是直角三角形∵DE∥BC,∴∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴∠B=∠DFB.∴DB=DF,即△DBF是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC是等腰三角形∴DE=DF.∠ECD=45°,∴∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100°(2)把60°分成20°和40°∴∠EDF=90°,即DE⊥DF【2.4】【2.5(2)】1.(1)3(2)51.D2.33°3.∠A=65°,∠B=25°4.DE=DF=3m2.△ADE是等边三角形.理由如下:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12(3)槡52.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP,∴∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4.槡22cm(或槡8cm)5.169cm26.18米∴∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)·BD′=1(a+b)2,6.△DEF是等边三角形.理由如下:由∠ABE+∠FCB=∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°.∴∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴△DEF是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能2.是直角三角形,因为满足m2=p2+n23.符合4.∠BAC,∠ADB,∠ADC都是直角(第7题)5.连结BD,则∠ADB=45°,BD=槡32.∴BD2+CD2=BC2,∴∠BDC=90°.∴∠ADC=135°第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)2.8,12,6,长方形1.BC=EF或AC=DF或∠A=∠D或∠B=∠E2.略3.直五棱柱,7,10,34.B3.全等,依据是“HL”5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴∠AEC=90°,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴Rt△ABD≌Rt△BAC(HL).∴∠CAB=∠DBA,7.正多面体顶点数(V)面数(F)棱数(E)V+F-E∴OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72°,72°,48.槡79.64°10.∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC.【3.2】又∵BD=EC,∴△ABD≌△ACE.∴AB=AC1.C11.42.直四棱柱3.6,712.B13.连结BC.∵AB=AC,∴∠ABC=∠ACB.4.(1)2条(2)槡55.C又∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD6.表面展开图如图.它的侧面积是14.25(πcm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB,∴∠ACB=∠DBC,从而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+12×1可得BE=4cm.在Rt△BED中,42+CD2=(8-CD)2,解得CD=3cm【3.3】(第6题)1.②,③,④,①2.C523.圆柱圆锥球4.b5.B6.B7.示意图如图从正面看长方形三角形圆8.D9.(1)面F(2)面C(3)面A从侧面看长方形三角形圆10.蓝,黄从上面看圆圆和圆心圆4.B5.示意图如图6.示意图如图11.如图(第11题)(第7题)第4章样本与数据分析初步【4.1】(第1.抽样调查5题)(第6题)2.D3.B4.(1)抽样调查(2)普查(3)抽样调查【3.4】5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.15.如图40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】1.22.2,不正确,因为样本容量太小3.C4.120千瓦·时小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分最高复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.(1)平均身高为161cm1162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不唯一.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为90人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这一角度看,乙组成绩更好(2)甲公司运用了众数,乙公司运用了中位数6.(1)x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2).(3)此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、【4.4】舒服1.C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选取的样本具有代表性7.(1)3.平均数为14众数都是14岁6.D7.A8.A9.10,32004年(万元)510.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提高,但差距拉大(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是7标准差2.400(2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不唯一,只要分析有道理即可1.①⑥2.C第5章一元一次不等式3.(1)x>3(2)x<-3(3)无数;如x=9,x槡=3,x=-3等8【5.1】(4)x≥槡-24.(1)x≥1(2)x<45.x>2.最小整数解为31.(1)>(2)>(3)<(4)<(5)≥2.(1)x+2>0(2)x2-7<5(3)5+x≤3x(4)m2+n2≥2mn6.共3组:0,1,2;1,2,3;2,3,47.a<-323.(1)<(2)>(3)<(4)>(5)>【5.3(2)】4.1.(1)x≤0(2)x<43(3)x<3(第4题)2.(1)x>2(2)x<-73.(1)x≤5(2)x<-35.C56.(1)80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.(1)x<165(2)x<-1【6.(1)买普通门票需540元,买团体票需480元,买团体票便宜5.2】(2)设(2)×(4)×票更便宜2.(1)≥(2)≥(3)≤(4)≥(5)≤(6)≥【5.3(3)】3.(1)x<22,不等式的基本性质2(2)m≥-2,不等式的基本性质3(3)x≥2,不等式的基本性质2(4)y<-1,不等式的基本性质1.B2.设能买x支钢笔,则5x≤324,解得x≤644335.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x)≥450,解得x≤6.所以304.-45x+3>-45y+35.a≥2座的客车至多租6辆6.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则4.设加工服装x套,则200+5x≥1200,∴45y≤x<y5.设小颖家这个月用水量为x(m3),数学八年级上至3750元之间6.(1)140-11x95.设该班在这次活动中计划分x组,则3x+10≥5(x-1),{解得3x+10≤5(x-1)+1,(2)设甲厂每天处理垃圾x时,则550x+495×140-11x7≤x≤7.5.即计划分7个组,该班共有学生31人9≤7370,解得x6.设购买A型x台,B型(10-x)台,则100≤12x+10(1可取0,1,2,有三种购买方案:①购A型0台,B型10台;7.(1)设购买钢笔x(x>30)支时按乙种方式付款便宜,则②购A型1台,B型9台;③购A型2台,B型8台30×45+6(x-30)>(30×45>757.(1)x>2或x<-2(2)-2≤x≤0(2)全部按甲种方式需:30×45+6×10=1410(元);全种方式买30台计算复习题器,则商场送30支钢笔,再按乙种方式买10支钢钱1.x<122.7cm<x<13cm3.x≥24.82【5.4(1)】5.x=1,2,3,46.0,17.(1)3x-2<-1(2)y+12x≤0(3)2x>-x21.B2.(1)x>0(2)x<13(3)-2≤x<槡3(4)无解8.(1)x>73.(1)1≤x<4(2)x>-14.无解5.C2(2)x≥1116.设从甲地到乙地的路程为x千米,则26<8+3(x-3)≤29,解得9<x≤9.(1)-4<x<-2(2)-0.81≤x<-0.7610.m≥310.在9千米到10千米之间,不包含9千米,包含10千米11.-2<x<17.(1)-3<a≤-1(2)412.设小林家每月“峰电”用电量为x0,解得x≤125.即当“峰电”用电量不超过125千瓦时使用“峰【5.4(2)】谷电”比较合算3x-2>0,烄13.m≥21.1烅,解得2(3<x≤42.24或3514.设这个班有x名学生,则x-1()x<6,解得x<56.23x-2)×4≤烆202x+14x+17∵x是2,4,7的倍数,∴x=28.即这个班共有28名学生3.设小明答对了x题,则81≤4x≤85,解得2014≤x≤2114.所以小明答15.设甲种鱼苗的投放量为x吨,则乙种鱼苗的投放量为(50-x)吨,得对了21题9x+4(50-x)≤360,{解得30≤x≤32,即甲种鱼苗的投放量应控制在3x+10(50-x)≤290,4.设电脑的售价定为x元,则x-3000>10%x,{解得33331x-3000≤20%x,3<x≤30吨到32吨之间(包含30吨与32吨)563.略4.略5.C6.如图第6章图形与坐标【6.3(1)】【6.1】1.A(-2,1),B(2,1),C(2,-1),D(-2,-1)1.C2.A′(3,5),A″(-3,-5)2.(3,3)3.(1)东(北),350(350),北(东),350(350)3.点A与B,点C与D的横坐标相等,纵坐(2)495标互为相反数4.A(2,1),C(4,0),D(4,3).点F的坐标为(4,-1)5.(1)横排括号内依次填A,B,C,D,E;竖排括号内由下往上依次填1,2,4.(1)A(1,6),B(3,2),C(1,2),它们关于(第y轴对称的点的坐标分别为6题)3,4,5((2)略-1,6),(-3,2),(-1,2)(6.(1)星期一、星期三、星期四、星期五的最高气温分别记做(1,21),(3,5),2)略(4,12),(5,13);其中(6,18)表示星期六的最高气温,这一天的最高5.(1)略(2)B6.(1)略(2)相同;相似变换气温是18℃【6.3(2)】(2)本周内,星期天的最高气温最高;由于冷空气的影响,星期一、二气温降幅最大1.(1)右,3(2)(-3,3)(3)(x,1)(0≤x≤3)2.略7.在(2,7)处落子3.(1)把点A向下平移6个单位得到点B(2)把点A向右平移4个单位,再向下平移4个单位得到点C【6.2(1)】(3)把点C向左平移4个单位,再向下平移2个单位得到点B1.(2,-3),3,22.C3.(1)平行(2)平行(4)点(-3,-1)向右平移3个单位,再向上平移2个单位,得到点(0,1)4.(1)A(1,4),B(-1,2),C(1,0)(2)略(3)分别在一、二、三、四象限4.(1)(-3,m+4)(2)-25.(1)(-2,2)(2)m=-35.图略,A′,B′,C′的坐标分别为(-1,0),(1,0),(0,1)6.(1)训兽馆,海狮馆,鸟馆6.(1)C(-2,-3),D(-2,3),图略(2)A代表“长颈鹿馆”(8,9),B代表“大象馆”(4,2)(2)将AB向左平移4个单位,或以y轴为对称轴作一次对称变换7.图略.使点A变换后所得的三角形仍是等腰直角三角形的变换有:【6.2(2)】①把点A向下平移4个单位到点(1,-2);1.-4,(-8,0)②把点A先向右平移2个单位,再向下平移4个单位到点(3,-2);2.过点A且垂直于AB的直线为y轴建立坐标系,A(0,0),B(5,0),C(5,③把点A向右平移2个单位到点(3,2);5),D(0,5)④把点A先向右平移1个单位,再向下平移1个单位到点(2,1);⑤把点A先向右平移1个单位,再向下平移3个单位到点(2,-1)数学八年级上复习题5.(1)s=360-70t(2)220,表示汽车行驶2时后距离B地220km6.(1)R,I(2)是(3)16Ω1.(1)四(2)(0,1)(3)12.(2,5,2)7.(1)(从下至上)8,32(2)573.(1)k=2,t=2(2)k=-2,t=-2(3)是,因为风速随时间的变化而变化,且对于确定的时间都有一个确定4.图形略.直角三角形的风速5.图略,直线l上的点的纵坐标不变;向上平移3个单位后所得直线l′上任【7.2(2)】意一点的坐标表示为(x,1)6.±27.光线从点A到点B数(2)t≠-1的任何实数8.(1)A(0,-1),B(0,2),C(4,2),D(4,-1)(2)1429.南偏东20°方向,距离小华86米2.(1)-4;5(2)x=1(2y+3);-110.(1)图略3.(1)y=x+14,4<x<14(2)20cm(2)图案Ⅱ各顶点的坐标分别为(-2,-1),(-4,-1),(-1,-3)(3)不能,因为以9,5,15为边不能组成三角形(3)①各顶点的横坐标、纵坐标分别互为相反数;②△ABC绕原点旋转4.(1)v=2t,0≤t≤20(2)v=16180°后,得到图案Ⅱ5.y=1第2x2,0≤x≤107章一次函数6.(1)y=x2槡+9,x>0(2)5cm(3)8cm【7.1】【7.3(1)】1.s,t;60千米/时3,0;-1,-1;-3,13.常量是p,变量是m,q2.(1)y=13岁x,是一次函数,但不是正比例函数5.(1)T,t是变量(2)t,W是变量6.f,x是变量,k是常量3.(1)Q=-4t(2)20(3)-172【7.2(1)】4.(1)y=2000x+12000(2)22(2)80元,122元5153元6.(1)T=-4.8h+24(2)9.6℃(3)6km7.(1)是(2)23.85元;65.7元;129.4元2.(1)瓜子质量x3.(1)-4(2)43(3)44.(1)4.9m;122.5m(2)4s58【7.3(2)】3.(1)y=600x+400(2)1120元4.(1)Q=95x+32(2)实数(2)1(3)9立方米26.20,904.(1)y=53x+253(2)不配套【7.5(2)】5.(1)84cm(2)y=27x+3(3)11张x=3,6.(1)可用一次函数来描述该山区气温与海拔的关系.y=-x1.{200+22y=2(2)400≤x≤8002.(1)2(2)2,80(3)40千米(4)y=20x(5)y=40x-80【x=17.4(1)】3.{(近似值也可)y=21.(1)(3,0);(0,6)(2)-2(3)一,三;一,三,四2.D4.(1)2;6(2)3(3)y=3x(4)y=-x+8(5)1~5(包括1和5)3.(1)y=-3x+3(2)不在4.图略5.设参加人数为x人,则选择甲旅行社需游费:75%×500x=375x(元),选择5.(1)y=16-2x,0<x<4(2)图略乙旅行社需游费:80%×500(x-1)=(400x-400)(元).当375x=400x-6.(1)y1=50+0.4x;y2=0.6x(2)略400时,x=16.故当10≤x<16时,选择乙旅行社费用较少;当人数x=16(3)(250,150).当通话时间为250分时,两种方式的每月话费都为150元时,两家旅行社费用相同;当16<x≤25时,选择甲旅行社费用较少7.(1)不过第四象限(2)m>3课题学习【7.4(2)】2.5<s<113.y1<y2处理费用越高,利润越小,因此应选择处理费用较低的方案.当产品的月生产4.(1)B(0,-3)(2)A8,()量小于400件时应选方案二;等于400件时两方案均可,大于400件时,选方30,k=98案一5.(1)1000万m3(2)40天6.(1)y=320000-2000x复习题(2)方案为A型车厢26节,B型车厢14节,总运费为268000元1.s,,()02.在2.如y=-x+1等4.x≠35.B6.A7.(1)y=-52x(2)y=2x+4598.y=0.5x+15(0≤x≤18),图略9.y=-2x-1x+y>10,{①10.(1)2(2)y=2x+30(3)10个0.9x+y=10-0.8.②11.(1)S=-4x+40(2)0<x<10(3)P(7,3)由②,得y=9.2-0.9x.③12.(1)24分(2)12千米(3)38分把③代入①,得x+9.2-0.9x>10,解得x>8.又由x≤10且为整数,得x=9,或x=10.总复习题把x=9代入③,得y=1.1;把x=10代入③,得y=0的标价2.D3.D4.B5.B6.B7.D为每9.3010.x>-511.40°12.等腰三角形底边上的中线、顶角的平分线和底边上的高互相重合;直角27.7三角形斜边上的中线等于斜边的一半;等边对等角;28.(1)1500元∠BAD;内错角相等,两直线平行(2)印刷费为(2.2×4+0.7×6)×2000=26000(元),总费用为26000+1500=27500(元)13.12≤x<214.图略15.516.4(3)设印数为x千册.17.由已知可得Rt△BFD≌Rt△CED(HL),得∠B=∠C.所以△ABC是①若4≤x<5,由题意,得1000×(2.2×4+0.7×6)x+1500≤等腰三角形60000,解得x≤4.5.∴4≤x≤4.5;18.10米19.D20.C21.C22.D23.C24.B②若x≥5,由题意,得1000×(2.0×4+0.6×6)x+1500≤60000,解得x≤5.04.∴5≤x≤5.04.25.(1)A(1,槡3)(2)槡334综上所述,符合要求的印数x(千册)的取值范围为4≤x≤4.5或26.设饼干的标价为每盒x元,牛奶的标价为每袋y元,则5≤x≤5.04。
最新[定稿]八上数学作业本答案_人教版名师优秀教案
[定稿]八上数学作业本答案_人教版参考答案第,章平行线【,(,】,(?,,?,,?,,?, ,(,,,,,,,, ,(,,(?,与?,相等,?,与?,互补(理由略,(同位角是?,,, 和?,,,,同旁内角是?,,, 和?,,,,(各,对(同位角有?, 与?,,,,?, 与?,,,,?, 与?,,,,?, 与?,,,;内错角有?, 与?,,,,?, 与?,,,,?, 与?,,,,?, 与?,,,;同旁内角有?, 与?,,,,?, 与?,,,,?, 与?,,,,?,与?,,,【,(,(,)】,((,),,,,, (,)?,,同位角相等,两直线平行 ,(略,(,,?,,,理由略 ,(已知,?,,,,同位角相等,两直线平行,(,与,平行(理由略,(,,?,,(理由如下:由,,,,, 分别是?,,, 和?,,, 的角平分线,得?,,,,,,?,,,,?,,,, ,, ?,,,,则?,,,,?,,,,所以由同位角相等,两直线平行,得,,?,,【,(,(,)】,((,),,,,内错角相等,两直线平行 (,),,,,内错角相等,两直线平行,(,,((,),?;,同位角相等,两直线平行 (,),?;,内错角相等,两直线平行(,),?,,因为?,,?,的对顶角是同旁内角且互补,所以两直线平行,(平行(理由如下:由?,,,,,,,?,?,,,,,,?,可得?,,,,,,?(所以?,,,,?,,,,,,,?,,,?,, (同旁内角互补,两直线平行),((,),,,?;,,;,,(,),, 与,, 不一定平行(若加上条件?,,,,,,?,或?,,?,,,,?等都可说明,,?,,,(,,?,,(由已知可得?,,,,?,,,,,,,? ,(略【,(,(,)】,(, ,(?,,,,?,?,,,,?,?,,,,,?,(?,,?,(理由如下:由?,,?,,得,,?,,(同位角相等,两直线平行),? ?,,?,(两直线平行,同位角相等),(垂直的意义;已知;两直线平行,同位角相等;,,,(β,,,?( ? ,,?,,, ? α,β,((,)?,,?, (,)由,,,,,,,,,,,解得,,,,,所以?,,,,? 【,(,(,)】,((,)两直线平行,同位角相等 (,)两直线平行,内错角相等,((,)× (,)× ,((,),,,(,),,,,(? ?,,?,,,,,?, ? ,?,(内错角相等,两直线平行)(? ?,,?,,,,,?(两直线平行,同位角相等),(能(举例略,(?,,,,?,,,,?,,,(理由:连结,,,则?,,,,?,,,,,,,?(? ?,,,,?,,,,,,,?,?,,,,?,,,(,,((,),′,?,,(理由是?,,′,,?,,,,?,?,又?,,,,,,,?,?,,,,?,,,, ? ?,,,,?,,,,?,,,(,)由,′,?,,,得?,,,′,?,,,,,?(【,(,】? ?,,,′,?,,,,,,?,,,′,,,?,(,第,章特殊三角形,(,, 与,, 平行(量得线段,, 的长约为,;,,所以两电线杆间的距离约为,,,,【,(,】,(, ,;, ,(略,(由,?,,,,?,,,,?,,知,,,,,,?,,,,?,,,,,,?(,(,? ,,?,,, ? ?,,,,?,,,( ? ?,,,??,,,,,(,个;?,,,,?,,,,?,,,;?,,,;?,,,,?,;,,,,,;,,? ,,,,,,(,,;,,,,;,,,;, ,(,,或,,,(,,,,,(理由如下:作 ,, ?,,(如图,答案不唯一,图中点,,,,,,,,均可,于 ,,,, ?,,于 ,,则 ?,,, ??,,,,得,,,,,,((,)略 (,),,,, ,;,,(,, 平分?,,,(理由如下:由 ,, 是中线,得 ,,,复习题,,(又,,,,,,,,,,,,得?,,,??,,,(,,,)(,(,, ,((,)?, (,)?, (,)?, ? ?,,,,?,,,(第,题),((,)?,,两直线平行,同位角相等【,(,】(,)?,,内错角相等,两直线平行(,)?,,,,,,,同旁内角互补,两直线平行,((,),,?,,,? (,),,,?,,,? ,(,,,,?,,,? ,(略,((,),,? (,),,?,(?,,,,?,?,,,,?,?,,,,,,?,?,,,,,,? ,(,,?或,,?,(,,?,,(理由:如图,由?,,?,,,,,?,得,(,,,,,(理由:由,,,,,,得?,,,,?,,,((第又??,,,,?,?,,题) ?,,,,?,,,,,,?,,,,,,,? ?,,,??,,,(,,,)( ? ,,,,,,(由,,?,,,得?,,?,,,,,?(由,,?,,,得?,,?,,,,,?((本题也可用面积法求解)? ?,,,,?,(?,,?,,,,,?,?,,?,,,,,?,?,,?,【,(,】,(不正确,画图略,(,,?,等腰 ,(, ,(,,?或,,?,(因为?,,,,?,,?,,所以,,?,,(所以?,,,,?,,,,?,(?,,, 是等腰三角形(理由如下:由,,,,, 分别是?,,,,?,,, 的平,, 分线,得?,,,,?,,,(则,,,,,【,(,(,)】,(?,,,,?,,,,,,,,,,,,(?,,, 和?,,, 都是等腰三角形(理由如下:,(, ,(,,?,,,?,, ,(,? ?,,, 和?,,, 重合, ? ?,,,,?,,,(,(? ?,,?,,,,?, ? ?,,, 是直角三角形? ,,?,,, ? ?,,,,?,,?,,,,?,,,,,(由已知可求得?,,,,?,?,,,,,,?? ?,,?,,,( ? ,,,,,,即?,,, 是等腰三角形(,(,,?,,,,,,,,(理由如下:由已知可得?,,,??,,,,同理可知?,,, 是等腰三角形? ,,,,,(?,,,,,,?, ? ?,,,,,,?(同理,?,,,,,,?,,((,)把,,,?分成,,?和,,,? (,)把,,?分成,,?和,,?? ?,,,,,,?,即,,?,,【,(,(,)】,((,),(,),,(, ,(,,? ,(?,,,,?,?,,,,? ,(,,,,,,,,,(?,,, 是等边三角形(理由如下: ? ?,,, 是等边三角形,? ?,,?,,?,,,,?( ? ,,?,,, ? ?,,,,?,,,,?,,(由,,,,,,,,,,,,,,,,得,,,,, ,(,,,,?,,,,?,,,,?,即?,,,,?,,,,?,,,,?,(略【,(,(,)】,((,),,?,,(因为?,,,,?,,,,,,?,((,), (,),, (,)槡, ,(,,,,,(,),,?,,(因为,,,,,,?,,,,?,,,,(由,,,,,,,,,得?,,, 是等边三角形(则?,,,,,,?(而 ,,,,(作一个直角边分别为,;,和,;,的直角三角形,其斜边长为槡,;,,,, ? ?,,?,,,,,,?(同理可得?,,?,,,,,,?(,( 槡, ,;, (或槡,;,) ,(,,,;,, ,(,,米? ?,,,,,,,?,(,梯形,,,′,′,,(,′,′,,,)?,,′,,(,,,),,,(?,,, 是等边三角形(理由如下:由 ?,,,, ?,,,, ?,,,,,,?,,,?,,,,?,,,,得?,,,,?,,,,,,?( ? ?,,,,,,?(同理可,梯形,,,′,′,,?,,′,′,,?,,,′,,?,,,,,,,,,;,(得?,,,,,,?, ? ?,,, 是等边三角形由,(,,,),,,,,,,(解答不唯一,如图,,;,,得,,,,,,;,。
八年级上册数学作业本答案
⼋年级上册数学作业本答案 做⼋年级数学作业本习题时,⾸先要认真审题,看清题意;认认真真做题,⼩编整理了关于⼋年级上册数学作业本答案,希望对⼤家有帮助! ⼋年级上册数学作业本答案(⼀) 认识三⾓形(1) 认识三⾓形(1)第1题答案(1)△ABD,△ADC,△ABC (2)∠B,∠BAD,∠ADB;AB,AD,BD (3)85,55 认识三⾓形(1)第2题答案 (1) < (2) > 认识三⾓形(1)第3题答案 (1)2 (2)3 (3)1 认识三⾓形(1)第4题答案 (1)能 (2)不能 (3)不能 (4)能 认识三⾓形(1)第5题答案有两种不同选法:4 cm,9 cm,10 cm;5 cm,9 cm,10 cm 认识三⾓形(1)第6题答案有两种不同的摆法,各边的⽕柴棒根数分别为2,4,4;3,3,4 ⼋年级上册数学作业本答案(⼆) 定义与命题(1) 定义与命题(1)第1题答案C 定义与命题(1)第2题答案C 定义与命题(1)第3题答案(1)如果两直线平⾏,那么内错⾓相等 (2)如果⼀个数是⽆限⼩数,那么它是个⽆理数 定义与命题(1)第4题答案(1)(2)(3)(4)(5)(8)是命题;(6)(7)不是命题 定义与命题(1)第5题答案答案不唯⼀,如:如果两条直线平⾏,那么同位⾓相等;如果a > b,b > c,那么a > c 定义与命题(1)第6题答案三⾓形中有两条边相等(或有两个⾓相等),有两条边相等(或有两个⾓相等)的三⾓形叫做等腰三⾓形 ⼋年级上册数学作业本答案(三) 证明(1) 证明(1)第1题答案已知;两直线平⾏,内错⾓相等;已知;AED,2;内错⾓相等,两直线平⾏ 证明(1)第2题答案由∠ACB = 90°,得∠A + ∠B = 90° 由CD ⊥ AB,得∠B + ∠DCB = 90°,从⽽∠A = ∠DCB 证明(1)第3题答案由已知得1/2(∠EFC + ∠AEF) = 90°,即∠EFC + ∠AEF = 180°,得AB∥CD 证明(1)第4题答案由DE∥BC,得∠CDE = ∠DCB。