【精选】全等三角形专题练习(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学全等三角形解答题压轴题(难)
1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .
(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;
(2)如图2,请写出AF 与DG 之间的关系并证明.
【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.
【解析】
【分析】
(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.
(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.
【详解】
解:(1)证明:设BE 与AD 交于点H..如图,
∵AD,BE 分别为BC,AC 边上的高,
∴∠BEA=∠ADB=90°.
∵∠ABC=45°,
∴△ABD 是等腰直角三角形.
∴AD=BD.
∵∠AHE=∠BHD,
∴∠DAC=∠DBH.
∵∠ADB=∠FDE=90°,
∴∠ADE=∠BDF.
∴△DAE ≌△DBF.
∴BF=AE,DF=DE.
∴△FDE 是等腰直角三角形.
∴∠DFE=45°.
∵G 为BE 中点,
∴BF=EF.
∴AE=EF.
∴△AEF 是等腰直角三角形.
∴∠AFE=45°.
∴∠AFD=90°,即AF ⊥DF.
(2)AF=2DG,且AF ⊥DG.理由:延长DG 至点M,使GM=DG,交AF 于点H,连接BM,
∵点G 为BE 的中点,BG=GE.
∵∠BGM ∠EGD,
∴△BGM ≌△EGD.
∴∠MBE=∠FED=45°,BM=DE.
∴∠MBE=∠EFD,BM=DF.
∵∠DAC=∠DBE,
∴∠MBD=∠MBE+∠DBE=45°+∠DBE.
∵∠EFD=45°=∠DBE+∠BDF,
∴∠BDF=45°-∠DBE.
∵∠ADE=∠BDF,
∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.
∵BD=AD,
∴△BDM ≌△DAF.
∴DM=AF=2DG,∠FAD=∠BDM.
∵∠BDM+∠MDA=90°,
∴∠MDA+∠FAD=90°.
∴∠AHD=90°.
∴AF ⊥DG.
∴AF=2DG,且AF ⊥DG
【点睛】
本题考查三角形全等的判定和性质,关键在于灵活运用性质.
2.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为
EC 的中点.
(1)求证:BMD ∆为等腰直角三角形;
(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;
(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.
【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.
【解析】
【分析】
()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,
90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出
22290BMD BCM ACM BCA ∠∠∠∠=+==即可.
()2延长ED 交AC 于F ,求出12
DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.
()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出
BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.
【详解】
()1证明:ABC 和ADE 都是等腰直角三角形,
45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠=== 点M 为EC 的中点,
12BM EC ∴=,12
DM EC =, BM DM ∴=,BM CM =,DM CM =,
BCM MBC ∠∠∴=,DCM MDC ∠∠=,
2BME BCM MBC BCE ∠∠∠∠∴=+=,
同理2DME ACM ∠∠=,
22224590BMD BCM ACM BCA ∠∠∠∠∴=+==⨯=
BMD ∴是等腰直角三角形.
()2解:如图2,BDM是等腰直角三角形,
理由是:延长ED交AC 于F,
ADE和ABC
△是等腰直角三角形,
45
BAC EAD
∠∠
∴==,
AD ED
⊥,
ED DF
∴=,
M为EC中点,
EM MC
∴=,
1
2
DM FC
∴=,//
DM FC,
45
BDN BND BAC
∠∠∠
∴===,
ED AB
⊥,BC AB
⊥,
//
ED BC
∴,
DEM NCM
∠
∴=,
在EDM和CNM中
DEM NCM
EM CM
EMD CMN
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
EDM
∴≌()
CNM ASA,
DM MN
∴=,
BM DN
∴⊥,
BMD
∴是等腰直角三角形.
()3BDM是等腰直角三角形,
理由是:过点C作//
CF ED,与DM的延长线交于点F,连接BF,可证得MDE≌MFC,
DM FM
∴=,DE FC
=,
AD ED FC
∴==,