关于高级高中物理模型总结归纳

合集下载

高中物理 高中物理22个经典模型汇总 清晰实用

高中物理 高中物理22个经典模型汇总 清晰实用

高中物理高中物理22个经典模型汇总清晰实用高中物理22个经典模型汇总与清晰实用一、引言高中物理作为理科学科的重要组成部分,是学生们接触自然科学的第一步,也是理解世界的窗口。

在学习高中物理的过程中,掌握经典模型是至关重要的。

经典模型能够帮助我们理解自然界的规律,为我们解决问题提供了基本的思路,更好地认识自然界的奥秘,也更好地应对未来的挑战。

本文将汇总高中物理22个经典模型,并探讨它们的清晰实用之处。

二、运动学1. 位移、速度、加速度模型位移、速度、加速度是运动的基本概念,它们之间的关系能够帮助我们描述物体的运动状态,从而解释各种日常运动现象。

2. 牛顿三定律牛顿三定律是力学的基础,这个模型能够帮助我们理解物体受力的情况,进而分析物体的运动状态。

3. 万有引力万有引力模型是物理学中重要的一部分,它描述了物体之间的引力大小与距离的关系,解释了宇宙中广泛存在的引力现象。

4. 匀变速直线运动匀变速直线运动模型描述了物体在力作用下的匀变速直线运动规律,让我们能够准确预测物体的位置随时间的变化。

5. 抛体运动抛体运动模型适用于空中物体在重力作用下的运动,可以帮助我们分析和计算各种投掷运动。

6. 圆周运动圆周运动模型帮助我们理解物体在圆周运动中受力的情况,解释了各种圆周运动中发生的现象。

7. 谐振谐振模型能够帮助我们理解谐振现象产生的原因,也让我们在实际应用中更好地利用谐振的特性。

三、动能和势能8. 动能与势能转化动能和势能的转化模型描述了物体在力的作用下,动能和势能之间相互转化的规律,为我们解释各种能量转化现象提供了理论依据。

9. 机械能守恒机械能守恒模型说明了在某些力场内,物体的机械能守恒,这个规律被广泛应用于各种动力学计算中。

四、波动10. 机械波机械波模型帮助我们理解机械波的传播规律,解释了声音、水波等机械波的传播特性。

11. 光的直线传播光的直线传播模型适用于介质中光的传播规律,让我们能够更好地理解光的传播路径。

高考常用24个物理模型【高考必备】

高考常用24个物理模型【高考必备】

高考常用 24 个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三, 把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的 24 个解题 模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个 方面。

主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度 向上超重 (加速向上或减速向下 )F=m(g+a); 向下失重 (加速向下或减速上升 )F=m(g-a) 难点:一个物体的运动导致系统重心的运动斜面对地面的压力 ? 地面对斜面摩擦力 ? 导致系统重心如何运动?模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定=tg 物体沿斜面匀速下滑或静止 > tg 物体静止于斜面< tg 物体沿斜面加速下滑 a=g(sin 一 cos )(或此方向的分量 a y )绳剪断后台称示数 系统重心向下加速铁木球的运动 用同体积的水去补充F 1>F 2 m 1>m 2 N 1<N 2例如:N 5对6=m F (m 为第 6个以后的质量 ) 第 12对13的作用力 MN 12对13=(n -12)m Fnm模型三:连接体是指运动中几个物体或叠放在一起、 或并排挤放在一起、或用细绳、细杆联 系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法 :指连接体内的物体间无相对运动时 ,可以把物体组作为整体, 对整体用 牛二定律列方程。

隔离法 :指在需要求连接体内各部分间的相互作用 (如求相互间的压力或相互间 的摩擦力等 )时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动: 两球有相同的角速度; 两球构成的系统机械能守恒 (单个球 机械能不守恒 ) 与运动方向和有无摩擦 (μ 相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

高中物理24个经典模型

高中物理24个经典模型

高中物理24个经典模型高中物理中有许多经典的模型,这些模型帮助我们理解物理世界的运作原理。

本文将介绍高中物理中的24个经典模型,让我们一起来了解它们吧!1.单摆模型:单摆模型用来研究摆动的物体的运动规律。

它包括一个质点和一个细线,可以通过改变细线长度或质点的质量来研究摆动的周期和频率。

2.平抛运动模型:平抛运动模型用来研究水平投掷物体的运动轨迹和速度。

它假设没有空气阻力,只有重力作用。

可以通过改变初速度和仰角来研究物体的落点和飞行距离。

3.牛顿第一定律模型:牛顿第一定律模型认为在没有外力作用下物体将保持匀速直线运动或静止。

这个模型帮助我们理解惯性的概念和物体运动状态的变化。

4.牛顿第二定律模型:牛顿第二定律模型描述了物体受力和加速度之间的关系。

它的数学表达式为F=ma,其中F表示物体受力,m表示物体质量,a表示物体加速度。

5.牛顿第三定律模型:牛顿第三定律模型表明对于每个作用力都存在一个等大反向的相互作用力。

这个模型帮助我们理解力的概念和物体之间的相互作用。

6.阻力模型:阻力模型用来研究运动物体与介质之间的相互作用。

它的大小与速度和物体形状有关,在物体运动时会减小其速度。

7.功率模型:功率模型描述了物体转化能量的速度和效率。

它等于功的大小除以时间,可以帮助我们理解物体能量的转变和利用。

8.热传导模型:热传导模型描述了热量在物体间传递的过程。

它通过研究热导率和温度差来解释热量传递的速率和方向。

9.摩擦力模型:摩擦力模型用来描述物体在接触面上滑动或滚动时的相互作用。

它的大小与物体之间的粗糙程度和压力有关,可以通过摩擦力模型来研究物体的运动和停止。

10.力矩模型:力矩模型用来研究物体旋转的平衡和加速度。

它的数学表达式为M=rF,其中M表示力矩,r表示力臂,F表示作用力。

11.浮力模型:浮力模型用来研究物体在液体或气体中的浮力。

它的大小等于液体或气体对物体的推力,可以帮助我们理解物体在液体中的浮沉和船只的浮力原理。

高中物理模型总结汇总

高中物理模型总结汇总
●案例探究
[例1]如图2-4,轻弹簧和一根细线共同拉住一质量为m的物体,平衡时细线水平,弹簧与竖直夹角为θ,若突然剪断细线,刚刚剪断细线的瞬间,物体的加速度多大?
命题意图:考查理解能力及推理判断能力.B级要求.
错解分析:对弹簧模型与绳模型瞬态变化的特征不能加以区分,误认为"弹簧弹力在细线剪断的瞬间发生突变"从而导致错解.
1.金属块在板上滑动过程中,统动量守恒。金属块最终停在什么位置要进行判断。假设金属块最终停在A上。三者有相同速度v,相对位移为x,则有 解得: ,因此假定不合理,金属块一定会滑上B。
设x为金属块相对B的位移,v1、v2表示A、B最后的速度,v0′为金属块离开A滑上B瞬间的速度。有:在A上 全过程
联立解得: ∴
(1)使木块A竖直做匀加速运动的过程中,力F的最大值;
(2)若木块由静止开始做匀加速运动,直到A、B分离的过
程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.
命题意图:考查对物理过程、 状态的综合分析能力.B级要求.
错解分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力N=0时,恰好分离.
即Fm=mA(g+a)=4.41 N
又当N=0时,A、B开始分离,由③式知,
此时,弹簧压缩量kx′=mB(a+g)
x′=mB(a+g)/k④
AB共同速度v2=2a(x-x′)⑤
由题知,此过程弹性势能减少了WP=EP=0.248 J
设F力功WF,对这一过程应用动能定理或功能原理
WF+EP-(mA+mB)g(x-x′)= (mA+mB)v2⑥

高中物理模型总结归纳

高中物理模型总结归纳

高中物理模型总结归纳在高中物理学习中,模型是一个非常重要的概念。

通过模型,我们可以更好地理解和描述自然现象。

本文将对高中物理学习中常用的模型进行总结归纳,以帮助同学们更好地理解和应用这些模型。

第一部分:力学模型1. 牛顿运动定律牛顿运动定律是力学领域中最基本的模型之一。

它包括了三条定律,即惯性定律、动量定律和作用-反作用定律。

通过运用这些定律,我们可以准确地描述物体的运动状态和相互作用。

2. 牛顿力学模型牛顿力学模型描述了物体在外力作用下的运动规律。

其中包括了质点力学、刚体力学和弹性力学等内容。

通过使用牛顿的运动定律和力的概念,我们可以解决各种物体在力的作用下的运动问题。

3. 弹簧振子模型弹簧振子模型是描述弹簧振动的重要模型。

它包括了弹簧劲度系数、振动周期和频率等概念。

通过这个模型,我们可以更好地理解和计算弹簧的振动特性。

第二部分:电磁学模型1. 电场模型电场模型描述了电荷之间相互作用的规律。

其中包括了库仑定律和电场强度等概念。

通过这个模型,我们可以预测和计算电荷之间的相互作用力。

2. 磁场模型磁场模型描述了磁荷之间相互作用的规律。

其中包括了洛伦兹力和磁感应强度等概念。

通过这个模型,我们可以解释和计算磁场对物体的作用力。

3. 电磁感应模型电磁感应模型描述了磁场变化对电荷的影响。

其中包括了法拉第电磁感应定律和楞次定律等概念。

通过这个模型,我们可以解释和计算由磁场变化引起的感应电流和感应电动势。

第三部分:光学模型1. 光的几何模型光的几何模型描述了光的传播和反射规律。

其中包括了折射定律、焦距和成像等概念。

通过这个模型,我们可以解释和计算光的传播路径和成像特性。

2. 光的波动模型光的波动模型描述了光的干涉、衍射和偏振等现象。

其中包括了惠更斯-菲涅耳原理和双缝干涉等概念。

通过这个模型,我们可以解释和计算光的波动特性和干涉衍射效应。

第四部分:量子力学模型1. 波粒二象性模型波粒二象性模型是描述微观粒子行为的重要模型。

高中物理常考18个模型总结

高中物理常考18个模型总结

高中物理常考18个模型总结
1.牛顿第一定律:物体静止或匀速直线运动,不受力或受力平衡。

2. 牛顿第二定律:物体受力后加速度与力成正比,与物体质量
成反比。

3. 牛顿第三定律:对于两个相互作用的物体,它们施加在彼此
上的力大小相等,方向相反。

4. 转动定律:物体的转动惯量与质量成正比,与几何形状有关。

5. 动量定理:物体的动量变化量等于所受的合外力作用时间的
积分。

6. 守恒定律:系统总动量、总能量、总角动量守恒。

7. 能量转化:机械能守恒,势能与动能可以相互转化。

8. 功与功率:功是力在距离上的积分,功率是功对时间的导数。

9. 简单谐振动:物体做周期性的简谐振动,振动方程为
x=Acos(ωt+φ)。

10. 阻尼振动:物体在阻力作用下的振动,振动幅度逐渐减小。

11. 受迫振动:外力作用下的振动,振动频率为外力频率。

12. 热力学第一定律:内能变化等于热量传递和功对系统做的功之和。

13. 热力学第二定律:热量不能从低温物体自发地流向高温物体,热力学效率不可能达到100%。

14. 热力学循环:在热源与冷源之间循环进行的过程,包括卡诺循环、斯特林循环等。

15. 理想气体状态方程:PV=nRT,P为压强,V为体积,n为物质量,T为温度,R为气体常数。

16. 理想气体的热力学规律:等压过程、等体过程、等温过程、绝热过程。

17. 光的干涉与衍射:光的波动性,干涉是光的波峰和波谷叠加的结果,衍射是光通过小孔或物体边缘后发生弯曲和扩散。

18. 电路:欧姆定律、基尔霍夫定律、电容器电路、电感器电路、交流电路等。

高中物理模型汇总

高中物理模型汇总

高中物理模型汇总大全模型组合讲解——爆炸反冲模型[模型概述]“爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。

[模型讲解]例. 如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M ,每颗炮弹质量为m ,当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?解析:两次发射转化为动能的化学能E 是相同的。

第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式m p E k 22=知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能E mM M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:mM Mv v s s +==122,所以m M M s s 2+=。

思考:有一辆炮车总质量为M ,静止在水平光滑地面上,当把质量为m 的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为0v ,求炮车后退的速度。

提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为θcos 0v ,设炮车后退方向为正方向,则mM mv v mv v m M -==--θθcos 0cos )(00,评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。

[模型要点]内力远大于外力,故系统动量守恒21p p =,有其他形式的能单向转化为动能。

所以“爆炸”时,机械能增加,增加的机械能由化学能(其他形式的能)转化而来。

[误区点拨]忽视动量守恒定律的系统性、忽视动量守恒定律的相对性、同时性。

[模型演练]( 物理高考科研测试)在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车上,已知炮车及炮身的质量为M ,炮弹的质量为m ;发射炮弹时,炸药提供给炮身和炮弹的总机械能E 0是不变的。

高考物理模型专题归纳总结

高考物理模型专题归纳总结

高考物理模型专题归纳总结一、引言高考物理考试中的物理模型是学生们备考的重点内容之一。

物理模型的理解和应用能力是解题的关键。

在高考物理考试中,常见的物理模型包括力学模型、电磁感应模型、光学模型等等。

本文将对这些物理模型进行归纳总结,帮助广大考生更好地掌握和应用这些知识。

二、力学模型1. 牛顿运动定律模型牛顿第一定律、牛顿第二定律、牛顿第三定律是力学模型中最基础的内容。

牛顿第一定律指出物体如果没有外力作用,将保持匀速直线运动或静止状态。

牛顿第二定律则给出了物体力学模型的数学表达式F=ma,其中F为物体所受合力,m为物体质量,a为物体加速度。

牛顿第三定律则说明了作用力与反作用力相等并方向相反的关系。

2. 弹性模型弹簧弹性模型是高考中常见的题型,通过应用胡克定律和弹簧势能公式进行计算。

胡克定律描述了弹簧伸长或缩短的变形与所受力的关系,F=kx,其中F为作用在弹簧上的力,k为弹簧的劲度系数,x为弹簧的伸长或缩短量。

弹簧势能公式为E=1/2kx²,其中E为弹簧的势能。

3. 圆周运动模型圆周运动模型中,角速度、角加速度、圆周位移与线位移的关系是基础内容。

角速度ω定义为角位移θ与时间t的比值,单位为弧度/秒。

角加速度α定义为角速度的变化率,单位为弧度/秒²。

圆周位移和线位移之间的关系为s=rθ,其中s为圆周位移,r为半径,θ为角位移。

三、电磁感应模型1. 法拉第电磁感应模型法拉第电磁感应模型是高考物理中的重要内容,应用于电磁感应的计算和分析。

法拉第电磁感应定律指出,通过导线的磁通量的变化率产生感应电动势,其大小和方向由导线所围成的回路和磁场变化率决定。

可以通过Faraday公式ε=-dΦ/dt进行计算,其中ε为感应电动势,Φ为磁通量,t为时间。

2. 毕奥-萨伐尔定律毕奥-萨伐尔定律描述了通过导体的电流所产生的磁场与导体所受磁场力的关系。

根据该定律,通过导体的电流所产生的磁场方向垂直于电流方向,其大小与电流强度和导线到磁场中心的距离正比。

高中物理常见模型归纳_高中物理板块模型归纳

高中物理常见模型归纳_高中物理板块模型归纳

高中物理常见模型归纳_高中物理板块模型归纳高中物理的绝大部分题目都是有原始模型的,考生需要时刻总结归纳这些模型,掌握物理常见模型,下面店铺给大家带来高中物理常见模型,希望对你有帮助。

高中物理常见模型【力学常见物理模型】“子弹打木块”模型:三大定律、摩擦生热、临界问题、数理问题。

“爆炸”模型:动量守恒定律、能量守恒定律。

“单摆”模型:简谐运动、圆周运动中的力和能问题、对称法、图象法。

“质心”模型:质心(多种体育运动)、集中典型运动规律、力能角度。

“绳件、弹簧、杆件”三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

“挂件”模型:平衡问题、死结与活结问题,采用正交分解法、图解法、三角形法则和极值法。

“追碰”模型:运动规律、碰撞规律、临界问题、数学法(函数极值法、图像法等)和物理方法(参照物变换法、守恒法)等。

“皮带”模型:摩擦力、牛顿运动定律、功能及摩擦生热等问题。

“行星”模型:向心力(各种力)、相关物理量、功能问题、数理问题(圆心、半径、临界问题)。

“人船”模型:动量守恒定律、能量守恒定律、数理问题。

【电磁学常见物理模型】“限流与分压器”模型:电路设计。

串并联电路规律及闭合电路的欧姆定律、电能、电功率、实际应用。

“电路的动态变化”模型:闭合电路的欧姆定律。

判断方法和变压器的三个制约问题。

“磁流发电机”模型:平衡与偏转,力和能问题。

电磁场中的单杆模型:棒与电阻、棒与电容、棒与电感、棒与弹簧组合、平面导轨、竖直导轨等,处理角度为力电角度、电学度、力能角度。

电磁场中的”双电源”模型:顺接与反接、力学中的三大定律、闭合电路的欧姆定律、电磁感应定律。

“回旋加速器”模型:加速模型(力能规律)、回旋模型(圆周运动)、数理问题。

高中物理学习方法(1)课前认真预习。

想提高物理考试成绩,基础一定要掌握的牢。

很多基础差的学生,听课很吃力,主要是因为前面落下了很多内容。

因此,请做好预习工作,在这一点上,不要学班里的学霸们,他们不预习,是因为他们考点掌握的很牢固了。

高中物理经典解题模型归纳

高中物理经典解题模型归纳

高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

(完整版)高考常用24个物理模型

(完整版)高考常用24个物理模型

高考常用 24 个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三, 把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的 24 个解题 模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个 方面。

主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度 向上超重 (加速向上或减速向下 )F=m(g+a); 向下失重(加速向下或减速上升 )F=m(g-a) 难点:一个物体的运动导致系统重心的运动(或此方向的分量 a y )斜面对地面的压力 ? 地面对斜面摩擦力 ? 导致系统重心如何运动?模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定=tg 物体沿斜面匀速下滑或静止 > tg 物体静止于斜面 < tg 物体沿斜面加速下滑 a=g(sin 一 cos ) 绳剪断后台称示数 系统重心向下加速 铁木球的运动 用同体积的水去补充模型三:连接体是指运动中几个物体或叠放在一起、 或并排挤放在一起、或用细绳、细杆联 系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法 :指连接体内的物体间无相对运动时 ,可以把物体组作为整体, 对整体用 牛二定律列方程。

隔离法 :指在需要求连接体内各部分间的相互作用 (如求相互间的压力或相互间 的摩擦力等 )时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动: 两球有相同的角速度; 两球构成的系统机械能守恒 (单个球 机械能不守恒 ) 与运动方向和有无摩擦 (μ 相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止m 1m2F 1>F 2 m 1>m 2 N 1<N 2例如: N 5对6=mF(m 为第 6 个以后的质量 ) 第 12对 13的作用力 MN 12对 13=(n -12)mFnm记住: N= m 2F 1m 1F2 (N 为两物体间相互作用力 ),起加速运动的物体的分子 m 1F 2 和 m 2F 1两项的规律并能应用讨论: ①F 1≠0 F 2=0F=(m 1+m 2)aN=m 2aN= m2Fm 1 m 2② F 1≠0; F 2≠ 0 m 2F1 m 1F2 m1 m2 0是上面的情 N=( F2况)Fm 1 m 2m 1 m 2F= m 1 (m 2 g) m 2(m 1gsin ) m 1 m 2m2 m 1m 2FF= m 1 (m 2g) m 2 (m 1g)m 1 m 2F=m A (m B g) m B F模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

高考物理模型知识点总结

高考物理模型知识点总结

高考物理模型知识点总结物理作为一门自然科学,是研究物质、能量和它们之间相互作用的学科。

在高中物理教学中,学生需要掌握和运用多种模型来解释和预测自然现象。

下面将对高考物理模型知识点进行总结,以帮助同学们更好地复习和应对高考。

一、粒子模型粒子模型是描述宏观物质行为的基础,它假设物质由微观的粒子组成,可以看作是一些实际物质在特定条件下简化而得的模型。

在物理学中,常用的粒子模型有质点模型和准质点模型。

质点模型假设物体无限小、没有形状和体积,只有质量和位置。

通过质点模型可以解释机械运动、碰撞、受力等问题。

准质点模型是质点模型的一种延伸,它认为物体在具有分子结构的条件下,可以近似看作由质点组成的。

准质点模型广泛应用于热学问题、电学问题和物态变化等领域。

二、简谐振动模型简谐振动模型是描述周期性振动的一种模型,在物理中有广泛的应用。

简谐振动包括了弹性势能和动能之间的转化。

在动力学平衡位置附近,物体受到的力可以近似表示为与位移成正比的力,即恢复力。

这种情况下,物体的振动可以用简谐振动模型进行描述。

简谐振动模型常用于描述弹簧振子、摆钟等。

三、电路模型电路模型是描述电流和电压分布的一种模型。

在电路中,电流通过导线流动,而电压代表电荷在电路中的移动能力。

电路可以采用电路图的形式来进行表示。

其中,电阻用符号表示,电源和电压表用直线段表示,导线用直线表示。

电路模型常用于解决电阻的并联和串联问题,以及与电阻并联的元件的工作原理等问题。

四、光学模型光学模型是解释光的传播和反射折射的理论依据。

光学模型包括了几何光学模型和波动光学模型。

几何光学模型假设光是由一条直线构成的,用于描述光的透射、反射等现象。

几何光学模型中,光线在光学器件表面的传播方式可以用光的反射和折射规律来描述。

波动光学模型基于光是一种波动现象的假设,用于描述光的干涉、衍射等现象。

波动光学模型常用于解决光的单缝、双缝干涉问题,以及杨氏双缝实验等。

五、力学模型力学模型是描述力学运动的一种模型,其中包含了牛顿力学模型和相对论力学模型。

高中物理最全模型归纳总结

高中物理最全模型归纳总结

高中物理最全模型归纳总结在高中物理学习过程中,我们掌握了众多物理模型,这些模型为我们解释自然现象提供了便利。

本文将对高中物理学习中最常用的模型进行归纳总结,旨在帮助同学们更好地理解和应用这些模型。

第一部分:力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律表明物体在没有外力作用时保持静止或匀速直线运动。

这个模型可以解释为何我们在车上突然刹车时会向前倾斜。

2. 牛顿第二定律(运动定律)牛顿第二定律描述了力、质量和加速度之间的关系,即力等于质量乘以加速度。

这个模型可以帮助我们计算物体受到的合力以及其加速度。

3. 牛顿第三定律(作用-反作用定律)牛顿第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。

这个模型可以解释为何我们划船时推水就能向后移动。

4. 牛顿万有引力定律牛顿万有引力定律描述了两个物体之间的引力与它们的质量和距离的平方成正比,与引力的方向成反比。

这个模型可以帮助我们理解行星的椭圆轨道和天体之间的相互作用。

第二部分:热力学模型1. 理想气体状态方程理想气体状态方程描述了理想气体的压强、体积和温度之间的关系。

这个模型可以帮助我们在气体过程中计算温度、压强和体积的变化。

2. 热传导模型热传导模型用于描述热量在物体之间传递的过程。

它遵循热量自高温物体向低温物体传递的规律。

这个模型可以解释为何我们触摸金属杯时会感觉更冷。

3. 热辐射模型热辐射模型用于解释物体通过辐射的方式传递热量。

热辐射是指物体由于其温度而产生的电磁波辐射。

这个模型可以帮助我们理解太阳能的产生和传递。

第三部分:电磁学模型1. 静电模型静电模型用于描述带电物体之间的相互作用。

根据电荷的性质,带电物体可能相互吸引或者相互排斥。

这个模型可以解释为何我们的头发梳理之后会挑起纸片。

2. 电流模型电流模型用于描述电荷在导体中流动的现象。

根据导体的电阻和电压差,电流的大小和方向也会发生变化。

这个模型可以帮助我们计算电路中的电流和电压。

高中物理版块模型归纳总结

高中物理版块模型归纳总结

高中物理版块模型归纳总结在高中物理学习中,各个版块的模型是我们理解和应用物理概念的基础。

通过模型,我们可以更好地理解物理规律,并将其应用于解决实际问题。

本文将对高中物理中常见的版块模型进行归纳总结,旨在帮助同学们更好地理解和掌握这些重要的模型。

一、运动学模型运动学模型用于描述物体的运动状态和规律。

其中,最基本的模型是匀速直线运动模型。

在匀速直线运动中,物体在相等时间内的位移相等,速度保持恒定。

该模型可以通过以下公式来描述:s = v * t其中,s表示位移,v表示速度,t表示时间。

除了匀速直线运动模型,我们还有匀加速度直线运动模型。

在匀加速直线运动中,物体在相等时间内的加速度保持恒定,速度按照等差数列增加。

该模型可以通过以下公式来描述:s = v0 * t + (1/2) * a * t^2v = v0 + a * t其中,s表示位移,v表示速度,t表示时间,v0表示初始速度,a 表示加速度。

二、力学模型力学模型用于描述物体受力和力的作用规律。

最基本的力学模型是牛顿第二定律模型。

根据牛顿第二定律,物体所受合力等于物体的质量乘以加速度,可以用以下公式来描述:F = m * a其中,F表示力,m表示物体的质量,a表示加速度。

除了牛顿第二定律模型,还有其他常见的力学模型,如弹簧模型、摩擦力模型等,这些模型在物理学习中起到了重要的作用。

通过这些模型,我们能够更好地理解和应用力学概念。

三、热学模型热学模型用于描述热量的传递和变化规律。

其中,最基本的热学模型是热传导模型。

根据热传导定律,热量的传递速率正比于温度差,可以用以下公式来描述:Q = k * A * △T / d其中,Q表示热量,k表示导热系数,A表示传热面积,△T表示温度差,d表示物体的厚度。

除了热传导模型,我们还有热辐射模型、热对流模型等,这些模型帮助我们理解和分析热学现象,并应用于实际问题的解决。

四、电学模型电学模型用于描述电荷、电场和电流的运动规律。

物理必背高中物理解题模型详解归纳

物理必背高中物理解题模型详解归纳

高考物理解题模型目录第一章运动和力 (1)一、追及、相遇模型 (1)二、先加快后减速模型 (4)三、斜面模型 (6)四、挂件模型 (11)五、弹簧模型(动力学) (18)第二章圆周运动 (20)一、水平方向的圆盘模型 (20)二、行星模型 (23)第三章功和能 (1)一、水平方向的弹性碰撞 (1)二、水平方向的非弹性碰撞 (6)三、人船模型 (9)四、爆炸反冲模型 (11)第四章力学综合 (13)一、解题模型: (13)二、滑轮模型 (19)三、渡河模型 (23)第五章电路 (1)一、电路的动向变化 (1)二、交变电流 (6)第六章电磁场 (10)一、电磁场中的单杆模型 (10)二、电磁流量计模型 (16)三、盘旋加快模型 (19)四、磁偏转模型 (24)第一章运动和力一、追及、相遇模型模型解说:1.火车甲正以速度v1向前行驶,司机忽然发现前面距甲 d 处有火车乙正以较小速度v2同向匀速行驶,于是他立刻刹车,使火车做匀减速运动。

为了使两车不相撞,加快度 a 应知足什么条件?分析:设以火车乙为参照物,则甲相对乙做初速为(v1v2 ) 、加快度为 a 的匀减速运动。

若甲相对乙的速度为零时两车不相撞,则今后就不会相撞。

所以,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d。

即: 0 (v1 v2 ) 2 2ad, a (v1 v2 ) 2 ,2d故不相撞的条件为a(v1v2) 22d2.甲、乙两物体相距s,在同向来线上同方向做匀减速运动,速度减为零后就保持静止不动。

甲物体在前,初速度为 v1,加快度大小为a1。

乙物体在后,初速度为v2,加快度大小为a2且知 v1<v 2,但两物体向来没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少?分析:若是v1v2,说明甲物体先停止运动或甲、乙同时停止运动。

在运动过程中,乙的速度a1a2向来大于甲的速度,只有两物体都停止运动时,才相距近来,可得近来距离为s s v12 v22 2a1 2a2若是v1 v2 ,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时a2 a2两物体相距近来,依据v共v1 a1t v2 a2 t ,求得t v2 v1 a2 a1在 t 时间内第1 页甲的位移 s1 v共v1t2乙的位移 s2 v共v2t2代入表达式s s s1s2求得s s(v2v1)2(a2a1 )3.如图 1.01 所示,声源S 和察看者 A 都沿x 轴正方向运动,相对于地面的速率分别为v S和v A。

高中物理68个解题模型

高中物理68个解题模型

高中物理68个解题模型物理作为一门自然科学,研究的是物质和能量之间的相互关系。

在高中物理学习中,解题是一个重要的环节。

为了帮助同学们更好地掌握物理知识,提高解题能力,本文将介绍高中物理中常见的68个解题模型。

一、力学部分1. 牛顿第一定律模型:物体静止或匀速直线运动时,合外力为零。

2. 牛顿第二定律模型:物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。

3. 牛顿第三定律模型:任何两个物体之间的相互作用力大小相等、方向相反。

4. 重力模型:物体受到的重力与物体的质量成正比。

5. 弹簧模型:弹簧的伸长或缩短与外力的大小成正比。

6. 摩擦力模型:物体受到的摩擦力与物体受到的压力成正比。

7. 斜面模型:物体在斜面上滑动时,重力分解为平行于斜面的分力和垂直于斜面的分力。

8. 动量守恒模型:在没有外力作用下,物体的总动量保持不变。

9. 能量守恒模型:在一个封闭系统中,能量的总量保持不变。

二、热学部分10. 热传导模型:热量从高温物体传递到低温物体。

11. 热膨胀模型:物体受热后会膨胀,受冷后会收缩。

12. 热平衡模型:两个物体处于热平衡时,它们的温度相等。

13. 热容模型:物体吸收或释放的热量与物体的质量和温度变化成正比。

14. 理想气体状态方程模型:PV = nRT,描述了理想气体的状态。

15. 热力学第一定律模型:热量的增加等于物体内能的增加与对外做功的总和。

三、光学部分16. 光的直线传播模型:光在均匀介质中直线传播。

17. 光的反射模型:光线与平面镜或曲面镜相交时,遵循入射角等于反射角的规律。

18. 光的折射模型:光线从一种介质射入另一种介质时,遵循折射定律。

19. 光的色散模型:光在经过棱镜等介质时,会发生色散现象。

20. 光的干涉模型:两束相干光叠加时,会出现干涉现象。

21. 光的衍射模型:光通过狭缝或物体边缘时,会发生衍射现象。

22. 光的偏振模型:光的振动方向只在一个平面上。

四、电学部分23. 电流模型:电流的大小等于单位时间内通过导体横截面的电荷量。

最全面高中物理模型汇总

最全面高中物理模型汇总

最全面高中物理模型汇总经典力学:1、质点:是指由一个物理量组成的一体物,没有内部结构,其受到的外力可以用向量的思想来描述。

2、运动学:描述物体运动的性质和关系,如速度、加速度、距离、时间等变化的规律。

3、动量:指上时间变化的质量和速度之积,它决定了物体运动的各种特性,是基本定律力学中的重要概念。

4、功和能量:是指一种物质或物理量在发生变化时所消耗的能量。

5、库仑定律:物体任一点上受外力的大小和方向同沿着任一虚拟空间,同一方向绕该点旋转一周后,外力和原来大小和方向相等,此定律是力学的基本定律。

电学:1、回路:指电流从一点经过一定电阻、电容或电感等设备后又返回至原点的系统,电路的基本组成单位是线路和电子器件。

2、电压和电流:是指流过导体中的电荷的速度和数量,单位分别是伏特和安培,它们也是电路的基本量。

3、电容:是指电介质中存在的一种气体电荷,它可以把电流储存起来,是电路中常用的设备。

4、电感:是指一个电路中由于电流产生磁场,以抗影响电流流动的装置。

5、磁学:是指用磁场理论解释电磁相关现象的科学,它可以用来研究电磁感应和电磁干扰的原理。

光学:1、衍射:是指光线在不同材料介质间发生折射时所观察到的现象,它可以用来研究光波传播过程中不同物质之间的光学折射现象。

2、反射:是指当光线照射到不同方向时,它们会反向发射,这种现象就是反射,它可以帮助我们了解光在不同物质间的传播、折射和反射等现象。

3、折射:是指当光线穿过不同物质介质时产生的现象,这种现象是由物质的光学性质决定的,它可以提高我们对光的理解。

4、几何光学:是指在特定环境条件下,光的运动规律及其与物体运动的关系,可以用全局几何的方法来描述它们的相互作用,这些规律也是光的传播的基础。

5、量子光学:是指用量子理论来研究光的行为,可以帮助我们更好地理解光的特性,如电磁相互作用、波动特性等。

物态变化:1、电离:是指温度、压力等能量介质作用,使原子或分子电荷分布发生变化,而原子或分子中电子由原子团脱离,形成新的原子或分子体系,这种现象叫做电离。

高中物理模型归纳整理

高中物理模型归纳整理

高中物理模型归纳整理
一、力的概念
力:指在一定距离内互相作用的两个或两个以上物体之间的一种相互影响的能力、作用。

力的种类:根据物体之间的作用形式,力可以分为以下几种:重力、弹力、摩擦力、
斥力、电场等力。

二、动量定理
动量定理:物体对外部作用力的受力,等于物体质量和物体内发生作用力之比例。

动量定理式形:ΣF=m·ΔV/Δt
即:各内力和外力抵消时,总力等于物体质量乘以物体加速度;或总力等于物体质量
乘以物体在单位时间内的速度变化量。

三、弹性
弹性是指某物经受外力作用后,能够恢复原状的能量。

四、物体运动的特性
1、直线运动:指物体的位置自相对于某一参考点在某一方向上不断变化,而在相反
方向上始终不变的运动。

2、回转运动:指物体的位置绕一定的轨道运动的现象。

3、中心矩运动:指物体的位置不断变化,但它的旋转角速度和旋转角加速度都为零,并且其轨道质点始终沿着一直线运动的运动。

4、组合运动:指物体的位置既有直线又有回转运动的运动。

五、气体的温度、压强和状态
1、气体温度:气体温度即指气体的热力学温度。

它是一种物理量,可通过温度计测量,是描述一个物质由冷到热的过程的一种物理量。

2、压强:压力,指气体施加在物体表面每单位面积上的力。

它也是一种物理量,可
以通过压力传感器来测量。

3、气体状态:指气体受温压影响而呈现的实际物理状态,其包括气体、液态气体、
固态气体和可凝结态等。

高中物理模型总结

高中物理模型总结

lv 0vSv 0A B滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。

μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。

②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。

小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。

例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。

解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。

水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ② 对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -• ④ ②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。

即Q=f l ,l 为子弹现木块的相对位移。

结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。

即 Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属v 0A B v 0lA 2v 0 v 0 BC A v 05m BL v 0 m v块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、追及、相遇模型火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。

为了使两车不相撞,加速度a 应满足什么条件?故不相撞的条件为dv v a 2)(221-≥2、传送带问题1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为,g=10m/s 2,求: (1)若传送带静止,物块滑到B 端作平抛运动的水平距离S 0。

(2)当皮带轮匀速转动,角速度为ω,物体平抛运动水平位移s ;以不同的角速度ω值重复上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。

解:(1))(12110m g h v t v s ===(2)综上s —ω关系为:⎪⎩⎪⎨⎧≥≤≤≤srad s rad srad s /707/70101.0/101ωωωω 2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以的工恒定的速率s m v /2=运送质量为kgm 5.0=件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求:(1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功 (4)每个工件与传送带之间由于摩擦产生的内能解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02120=-=-=② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=⨯==∆ ③(3)J J mv mv W 75.0)12(5.021212122202=-⨯⨯=-= ④(4)工件停止相对滑动前相对于传送带滑行的距离)21(20at t v vt s +-=m )5.02215.01(5.022⨯⨯+⨯-⨯=m m 25.0)75.01(=-=⑤J mgs fs E 25.0===μ内 ⑥3、汽车启动问题 匀加速启动 恒定功率启动4、行星运动问题[例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?5、微元法问题微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。

例1:如图3—1所示,一个身高为h的人在灯以悟空速度v沿水平直线行走。

设灯距地面高为H ,求证人影的顶端C点是做匀速直线运动。

设某一时间人经过AB处,再经过一微小过程Δt (Δt→0),则人由AB到达A′B′,人影顶端C点到达C′点,由于ΔSAA′= vΔt则人影顶端的移动速度:v C =CCt0Slimt'∆→∆∆=AAt0HSH hlimt'∆→∆-∆=HH h-v可见vc与所取时间Δt的长短无关,所以人影的顶端C点做匀速直线运动。

6、等效法问题例1:如图4—1所示,水平面上,有两个竖直的光滑墙壁A和B ,相距为d ,一个小球以初速度v从两墙之间的O点斜向上抛出,与A和B各发生一次弹性碰撞后,正好落回抛出点,求小球的抛射角θ。

由题意得:2d = vcosθ⋅t =v0cosθ⋅02v singθ可解得抛射角:θ =12arcsin22gdv例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0 ,加速度为a ,如果将L 分成相等的n 段,质点每通过L n的距离加速度均增加a n,求质点到达B 时的速度。

因加速度随通过的距离均匀增加,则此运动中的平均加速度为: a 平 =a a 2+初末=(n 1)a a a n 2-++=3an a 2n-=(3n 1)a 2n-由匀变速运动的导出公式得:2a 平L =2Bv -20v 解得:v B7、超重失重问题【例4】如图24-3所示,在一升降机中,物体A 置于斜面上,当升降机处于静止状态时,物体A 恰好静止不动,若升降机以加速度g 竖直向下做匀加速运动时,以下关于物体受力的说法中正确的是[ ]A .物体仍然相对斜面静止,物体所受的各个力均不变B .因物体处于失重状态,所以物体不受任何力作用C .因物体处于失重状态,所以物体所受重力变为零,其它力不变D .物体处于失重状态,物体除了受到的重力不变以外,不受其它力的作用点拨:(1)当物体以加速度g 向下做匀加速运动时,物体处于完全失重状态,其视重为零,因而支持物对其的作用力亦为零.(2)处于完全失重状态的物体,地球对它的引力即重力依然存在. 答案:D4.如图24-5所示,质量为M 的框架放在水平地面上,一根轻质弹簧的上端固定在框架上,下端拴着一个质量为m 的小球,在小球上下振动时,框架始终没有跳起地面.当框架对地面压力为零的瞬间,小球加速度的大小为[ D ]8、万有引力问题例、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。

经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。

若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。

已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。

求该星球的质量M 。

例、小球A 用不可伸长的细绳悬于O 点,在O 点的正下方有一固定的钉子B ,OB=d ,初始时小球A 与O 同水平面无初速度释放,绳长为L ,为使小球能绕B 点做完整的圆周运动,如图9所示。

试求d 的取值范围。

解.为使小球能绕B 点做完整的圆周运动,则小球在D 对绳的拉力F 1应该大于或等于零,即有:d L V m mg D -≤2 根据机械能守恒定律可得[])(212d L d mg mV D --=由以上两式可求得:L d L ≤≤539、天体运动问题7.(16分)火星和地球绕太阳的运动可以近似看作为同一平面内同方向的匀速圆周运动,已知火星的轨道半径m r 11105.1⨯=火,地球的轨道半径m r 11100.1⨯=地,从如图所示的火星与地球相距最近的时刻开始计时,估算火星再次与地球相距最近需多少地球年?(保留两位有效数字m图910、牛顿第二定律问题例3 为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速 v=120km /h ,假设前方车辆突然停下,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=.刹车时汽车受到阻力的大小f 为汽车重力的倍,该高速公路上汽车间的距离s 至少应为多少?取 g=10m /s 2.11、平抛问题10.如图所示,在一次空地演习中,离地H 高处的飞机以水平速度1v 发射一颗炮弹欲轰炸地面目标P ,反应灵敏的地面拦截系统同时以速度2v 竖直向上发射炮弹拦截. 设拦截系统与飞机的水平距离为s ,若拦截成功,不计空气阻力,则1v 、2v 的关系应满足( )A .1v =2vB .1v =2v sHC .1v =s H 2v D .1v =2v Hs 12、曲线运动问题17.(10分)如图所示,支架质量M ,放在水平地面上,在转轴O 处用一长为l 的细绳悬挂一质量为m 的小球。

求:(1)小球从水平位置释放后,当它运动到最低点时地面对支架的支持力多大? (2)若小球在竖直平面内摆动到最高点时,支架恰对地面无压力,则小球在最高点的速度是多大?13、图线问题1. 质量为的m 物体放在A 地的水平地面上,用竖直向上的力拉物体,物体的加速度a 和拉力F 关系的a-F 图线如图中A 所示。

质量为m’的另一物体在B 地做类似实验所得a-F 图线如图中B 所示。

A 、B 两线延长线交Oa 轴于同一点P 。

设A 、B 两地重力加速度分别为g 和g’ ( )2. A 、m’>m g’=g B、m’<m g’=g3. C 、m’=m g’<g D、m’>m g’<g[提示:由a=g mF-可知斜率、纵横坐标的物理意义] 4. 物体A 、B 、C 均静止在同一水平面上,它们的质量分别为m A ,m B 和m C ,与水平面间的动摩擦因数分别为?A ,?B 和?C ,用平行于水平面的拉力F ,分别拉物体A 、B 、C ,它们的加速度a 与拉力F 的关系图线如图所示,A 、B 、C 对应的直线分别为甲、乙、丙,甲、乙两直线平行,则下列说法正确的是:( ) 5. A 、?A =?B ,m A =m B ; B 、?B =?C ,m A =m B ; 6. C 、?A >?B ,m A >m B ; D 、?B <?C ,m A <m B 。

14、直线运动问题推论1.物体作初速度为零的匀加速直线运动,从开始(t =0)计时起,在连续相邻相等的时间间隔(△t=1s )内的位移比为连续奇数比。

即:S 第1s 内∶S 第2s 内∶S 第3s 内…=1∶3∶5∶…推论2.物体作匀加速(加速度为a )直线运动,它经历的两个相邻相等的时间间隔为T ,它在这两个相邻相等的时间间隔内的位移差为△S ,则有△S=aT 2推论3.物体作初速度为零的匀加速直线运动,从初始位置(S=0)开始,它通过连续相邻相等的位移所需的时间之比为15、共点力平衡问题1.如图所示,轻质光滑滑轮两侧用细绳连着两个物体A 与B ,物体B 放在水平地面上,A 、B 均静止.已知A 和B 的质量分别为m A 、m B ,,绳与水平方向的夹角为θ,则( BD )A .物体B 受到的摩擦力可能为0 B .物体B 受到的摩擦力为mg A cos θC.物体B 对地面的压力可能为0 D .物体B 对地面的压力为m B -m A gsin θ 16、功和动量结合问题[例题1] 一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S ,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.17、碰撞问题弹性碰撞 完全非弹性碰撞 完全弹性碰撞 18、多物体动量守恒1.(14分)如图所示,A 、B 质量分别为,2,121kg m kg m ==置于小车C 上。

相关文档
最新文档