布里渊区路径

合集下载

布里渊区1

布里渊区1

—— 简单立方格子 —— 第一布里渊区
2) 体心立方格子 —— 正格子基矢 —— 倒格子基矢
第一布里渊区 —— 边长
的面心立方格子
—— 第一布里渊区 原点和12个近邻格点连线的垂直平分面围成的正十二面体
—— 体心立方格子第一布里渊区各点的标记
3) 面心立方格子 —— 正格子基矢 —— 倒格子基矢
布里渊区和能带 —— 在k空间把原点和所 每个区域内 E ~ k 是连续变化的
而在这些区域的边界上能量E(k)发生突变 这些区域称为布里渊区
—— 布里渊区
简单立方晶格k空间的二维示意图
—— 属于同一个布里渊区的能级构成一个能带 —— 不同的布里渊区对应不同的能带 —— 每一个布里渊区的体积相同___倒格子原胞的体积 —— 每个能带的量子态数目 _____ 2N (计入自旋)
第一布里渊区 —— 边长
的体心立方格子
—— 第一布里渊区为原点和8个近邻格点连线的垂直平分 面围成的正八面体,和沿立方轴的6个次近邻格点连 线的垂直平分面割去八面体的六个角, 形成的14面体
面心立方格子 —— 第一布里渊区 —— 八个面是正六边形 —— 六个面是正四边形

布里渊区通俗理解

布里渊区通俗理解

布里渊区通俗理解-概述说明以及解释1.引言1.1 概述布里渊区是一个在物理和数学领域中具有重要意义的概念,它主要用来描述在给定条件下某一物体或物体集合的邻域。

布里渊区的概念源于法国物理学家亚历山大·布里渊的研究成果,他发现了一种描述物体在空间中的局部特性的方法。

布里渊区的概念不仅在物理学领域中被广泛应用,同时也在计算机图形学、材料科学、生物学等领域中具有重要作用。

在本文中,我们将深入探讨布里渊区的概念、应用以及重要性,希望能够对读者有所启发和帮助。

通过了解布里渊区的相关知识,我们可以更好地理解物体在空间中的局部结构和特性,为我们探索和应用这些知识提供了理论基础。

在日常生活中,布里渊区的概念也有着重要的意义,可以帮助我们更好地理解世界的复杂性,促进科学技术的发展和创新。

展望未来,布里渊区的研究和应用将会不断深化和拓展,为人类社会的进步和发展做出更大的贡献。

1.2 文章结构本文将分为三个主要部分来讨论布里渊区的通俗理解。

在引言部分,我们将简要介绍布里渊区的概念、文章结构和撰写本文的目的。

在正文部分,我们将详细探讨布里渊区的概念,其在实际应用中的情况以及在各领域中的重要性。

最后,在结论部分,我们将总结布里渊区的作用,讨论其在日常生活中的意义,并展望未来布里渊区的发展方向。

通过这样的结构安排,读者可以系统地了解布里渊区的相关知识,并深入理解其在现实生活中的应用和意义。

1.3 目的2.正文2.1 布里渊区的概念布里渊区(英文名为Boulevard区)是一种在计算机科学领域中常用的概念,用于描述一种数据结构的布局方式。

布里渊区是指内存中的一段连续地址空间,通常用来存储程序代码、全局变量和静态变量。

在操作系统中,布里渊区还可以用于存放动态链接库和共享库的代码段和数据段。

布里渊区的特点是具有一定的大小和位置,可以在运行时被操作系统动态地分配和回收。

布里渊区的概念主要用于优化内存管理和提高程序的执行效率。

布里渊区图示

布里渊区图示

a 3 正格子原胞基矢 a1 = ai, a2 = i + aj 2 2 取单位矢量k垂直于i, j 则,a1,a2和k构成的体积 3 2 Ω= a 2
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
倒格子原胞的基矢为 2π (a2 × k ) 2π 2π b1 = i− j = Ω a 3a 2π (k × a1 ) 4π b2 = = j Ω 3a
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
正方格子其它布里渊区的形成
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
正方格子其它布里渊区的形状
—— 每个布 里渊区经过适 当的平移之后 和第一布里渊 区重合
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
二维斜格子的第一布里渊区
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
二维斜格子其它布里渊区的形成
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
二维斜格子其它布里渊区的形状
—— 每个布里 渊区经过适当 的平移之后和 第一布里渊区 重合
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
平面正三角形,相邻原子间距为 求正格矢和倒格矢 求正格矢和倒格矢, 平面正三角形,相邻原子间距为a,求正格矢和倒格矢,画 出第一和第二布里渊区
的垂直平分线和第一 布里渊区边界所围成 —— 第二布里渊区大小
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
第三布里渊区 由4个倒格点 个倒格点
的垂直平分线和第二布 里渊区边界边界所围成 第三布里渊区大小
§3-4 三维晶格的振动 ——

布里渊区边界方程证明

布里渊区边界方程证明

布里渊区边界方程证明为了证明布里渊区的边界方程,我们首先需要了解什么是布里渊区。

布里渊区是准周期结构中的第一布里渊区。

准周期结构是一种具有周期性和拓扑性质的结晶结构,如多孔材料、非晶态材料等。

布里渊区类似于正常晶体的第一布里渊区,但在布里渊区中,所有传统的晶格平移矢量都是平均的,而不是具体的。

布里渊区是测量准晶体物理属性的基本单位,并且在固体物理和材料科学的研究中具有广泛的应用。

因此,描述布里渊区边界方程是重要的。

布里渊区的边界方程描述了布里渊区的边界形状,并且是通过一组数学表达式表示的。

边界方程可以用于计算布里渊区的体积、形状和边界的性质。

我们可以通过以下步骤证明布里渊区的边界方程:1.首先,我们需要定义准周期结构的一维倒格矢量。

准周期结构的一维倒格矢量定义为:G(m)=m*G(1)+G⊥其中,m是整数,G(1)是第一布里渊区的倒格矢量,G⊥是垂直于G(1)的倒格矢量。

2.接下来,我们定义一个点P的坐标为P=n1G(1)+n⊥G⊥,其中n1和n⊥是整数。

3.然后,我们定义一个准周期结构的单位胞为一个基本矩形。

单位胞的边界由四条边组成,我们将这四条边分别记为a1、a2、a3和a44.现在,我们来推导布里渊区的边界方程。

根据定义,布里渊区的边界是由单位胞的四条边和倒格矢量之间的关系确定的。

布里渊区边界的方程可以表示为:a1·G(m1)+a2·G(m2)+a3·G(m3)+a4·G(m4)=0其中,m1、m2、m3和m4是整数。

由于倒格矢量G(m)可以表示为G(m)=mG(1)+G⊥,我们可以将布里渊区的边界方程改写为:(n1a1+n2a2+n3a3+n4a4)·G(1)+(n1a1+n2a2+n3a3+n4a4)·G⊥=0由于G(1)和G⊥是相互独立的,所以上述方程可以被分解为两个方程:(n1a1+n2a2+n3a3+n4a4)·G(1)=0(n1a1+n2a2+n3a3+n4a4)·G⊥=05.最后,我们可以进一步简化上述方程以得到布里渊区的边界方程。

倒格子和布里渊区

倒格子和布里渊区

于是:
Gh1h2 h3 CA a1 a3 (h1b1 h2b2 h3b3 ) ( ) h1 h3 2 2 0
同理 Gh1h2 h3 CB 0 而且 CA, CB 都在(ABC)面上, 所以 Gh1h2h3 与晶面系 (h1h2h3 ) 正交。
三维例子:
正点阵为简 单点阵,倒 易点阵也是 简单点阵。
正格子空间中长 的基矢a3对应于 倒格子空间短的 基矢b3,反之亦 然。推广,正格 子空间长的线条 对应于倒格子空 间短的线条。
正点阵为有心点阵时,倒易点阵也是有心点阵, 但有心类型可能不同,例如:体心立方点阵的倒格子 为面心立方点阵。
而面心立方点阵的倒格子为体心立方点阵。
倒易点阵仍是简立方点阵:
2 2 2 b1 i, b2 j , b3 k, a a a
所以倒格子也是布拉菲格子。 六角点阵: 六角点阵的倒易点阵: 见Ashcroft p88 c 轴方向不变,a 轴在垂直于c 轴的 平面上旋转30度。
正格子空间六方结构,在倒格子空间亦为六方结 构。不过其基矢尺寸关系发生变化,基矢方向也转了 一个角度。
显然 : b1 a 2 a 3 , b 2 a 3 a1 , b 3 a1 a 2 ,
b1 2 2 3 a1 a 2 a3 a3 a1 b2 2 a1 a 2 a3 a1 a 2 b3 2 a1 a 2 a3

G G ( k ) 0 2
k



k
G 2
G

G 2
正方点阵布里渊区
第二到第九Brillouin区约化到第一布里渊区

布里渊区

布里渊区
固体物理 固体物理
布里渊区
主讲人: 主讲人:许本超 答疑人: 答疑人:李海龙 封福明
固体物理 固体物理
内容
• • • • • • • • • 1.倒易空间 2. 布里渊区基本概念 3. 典型格子的第一布里渊区 4.布里渊区的几何性质 5. 衍射条件在布里渊区诠释 6.布里渊区中的K点 7.布里渊区和能带的关系 8.布里渊区和费米面 9.MS计算能带实例图
14
固体物理 固体物理
7.2布里渊区和能带的关系
能带论的基本出发点: 能带论的基本出发点 固体中的电子可以在整个固体中运动 电子在运动过程中要受晶格原子势场的作用 由于周期场的微扰, 由于周期场的微扰,
E
E6
E(k)函数在布里渊区 函数在布里渊区
允许带
E5
边界k=± 边界 ±nπ/a处出现 处出现
3.2体心立方晶格的F.B.Z 体心立方晶格的F.B.Z 体心立方晶格的 体心立方晶格的倒格子为面心立方晶格
可以看出, 可以看出,面心立方倒 格子(即体心立方晶格) 格子(即体心立方晶格) 的F.B.Z为正菱形十二 为正菱形十二 面体(非正十二面体) 面体(非正十二面体)
8
固体物理 固体物理
3.3面心立方晶格的F.B.Z 面心立方晶格的 面心立方晶格的F.B.Z 面心立方晶格的倒格子为体心立方晶格
如右图所示, 如右图所示,黑框为体心立方 倒格子,取其体心(黄点) 倒格子,取其体心(黄点)作 为原点,红点(8个 为原点,红点(8个)为此原 点最相邻的倒格点,蓝点(6 点最相邻的倒格点,蓝点( 个)为此原点次相邻倒格点 可以看出, 可以看出,体心立方倒 格子(即面心立方晶格) 格子(即面心立方晶格) 的F.B.Z为截角的八面体 为截角的八面体 十四面体) (十四面体)

30 布里渊区的知识

30 布里渊区的知识
������
*简谐近似是晶格动力学处理许多物理问题的出发点!
* 对热膨胀和热传导等问题必须考虑高阶项 --- 特别是3次和4次项的作用 → 这称为非谐项或非谐作用 – V非谐 * 具体处理问题时,把非谐项看成是对起主要作用 的简谐项的微扰!
简正振动模式:在简谐近似下, 由N个原子构成的晶体的晶格振 动, 可变为3N个独立的谐振子的振动. 每个谐振子的振动模式称 为简正振动模式 简正振动模式对应着所有的原子都以该模式的频率做振动, 它是 晶格振动模式中最简单最基本的振动方式. 原子的振动 —格波振动通常是这3N个简正振动模式的线形迭加.
2


a
i
倒格矢的垂直平分面 构成第一布里渊区
a
O
一维晶格点阵
b
-π/a
O
倒格子点阵
π/a
二维晶格点阵的布里渊区 取正格子基矢为 a1 ai 和a2 a j 可求出倒格子基矢为
2 2 b1 i 和b2 j a a
作原点0至其它倒格点连线的中垂线,它们将二维倒 格子平面分割成许多区域
第三章 晶格动力学和 晶体的热学性质
固体的许多性质都可以基于静态模型来理解(即晶体点阵模型), 即认为构成固体的原子在空间做严格的周期性排列,在该框架内, 我们讨论了X 光衍射发生的条件,求出了晶体的结合能,以后还将 在此框架内,建立能带论,计算金属大量的平衡性质。然而它只 是实际原(离)子构形的一种近似,因为原子或离子是不可能严 格的固定在其平衡位置上的,而是在固体温度所控制的能量范围 内在平衡位置附近做微振动。只有深入地了解了晶格振动的规律, 更多的晶体性质才能得到理解。如:固体热容,热膨胀,热传导, 融化,声的传播,电导率,压电现象,某些光学和介电性质,位 移性相变,超导现象,晶体和辐射波的相互作用等等。

布里渊区的选取

布里渊区的选取

布里渊区的选取————————————————————————————————作者: ————————————————————————————————日期:ﻩ电子科技大学光电信息学院课程设计论文课程名称固体与半导体物理题目名称布里渊区的选取学号2905301014 2905301015 2905301016姓名李雄风寿晓峰陈光楠指导老师刘爽起止时间2011.10.1-2011.10.152011年10月1日布里渊区的选取摘要本文着重介绍了布里渊区的选取。

首先,本文给出了倒格子和布里渊区的相关概念;随后,本文以一维的简单格子、二维的有心长方格子、三维的面心立方格子和体心立方格子为例,详细说明了布里渊区的选取过程;最后,本文介绍了制作面心立方格子和体心立方格子的第一布里渊区的实物模型的方法(附上实物模型)。

一、相关概念介绍1.1倒格子假设晶格原胞基失为a 1⃑⃑⃑ 、a 2⃑⃑⃑⃑ 和a 3⃑⃑⃑⃑ ,则对应的倒格子原胞基失为b 1⃑⃑⃑⃑ 、b 2⃑⃑⃑⃑ 和b 3⃑⃑⃑⃑ ,它们满足如下关系:{ b 1⃑⃑⃑⃑ =2πΩ(a 2⃑⃑⃑⃑ ×a 3⃑⃑⃑⃑ )b 2⃑⃑⃑⃑ =2πΩ(a 3⃑⃑⃑⃑ ×a 1⃑⃑⃑ )b 3⃑⃑⃑⃑ =2πΩ(a 1⃑⃑⃑×a 2⃑⃑⃑⃑ ) 其中Ω=a 1⃑⃑⃑ ∙(a 2⃑⃑⃑⃑ ×a 3⃑⃑⃑⃑ )为原胞体积。

b 1⃑⃑⃑⃑ 、b 2⃑⃑⃑⃑ 和b 3⃑⃑⃑⃑ 是不共面的,因而由b 1⃑⃑⃑⃑ 、b 2⃑⃑⃑⃑ 和b 3⃑⃑⃑⃑ 也可以构成一个新的点阵,我们称之为倒格子。

倒格子原胞基失也可以通过下式来定义(在处理一维和二维问题时我们将用到它):b i ⃑⃑⃑ ∙a j ⃑⃑⃑ =2πδij ={2π 当i =j 0 当i ≠ji,j =1,2,3 倒格子的一个基矢是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。

简约布里渊区定义

简约布里渊区定义

简约布里渊区定义布里渊区是一种数学概念,它在函数分析和特别是测度论中扮演着重要的角色。

布里渊区是指由笛卡尔坐标系中的一个原点围成的、具有一些特殊性质的平面区域。

它是由布里渊基矢量所生成的晶格的一个基本单元。

为了更好地理解布里渊区的定义,我们需要回顾一些基础知识。

在晶体学中,布拉伐格子是一个周期性排列的点阵,用来描述晶体的结构。

而布里渊区就是由布拉伐格子所生成的晶格的倒格子所围成的区域。

布拉伐格子中的每个点都对应着倒格子中一个向量,这个向量被称为布里渊基矢量。

倒格子中相邻两个基矢量之间的距离被称为布里渊格矢。

简约布里渊区是指由布里渊基矢量所生成的布里渊格点再经过一系列的简约操作得到的最小重复单元。

简约操作包括平移、合并、旋转等操作,通过这些操作可以得到一个具有最小对称性的区域。

简约布里渊区具有许多重要的性质,如对称性、体积等,这些性质对于研究材料的电子结构等问题非常关键。

在实际应用中,布里渊区的定义对于理解材料的能带结构、光学性质等起着重要的作用。

以固体电子学为例,能带结构是描述材料中电子的能量与动量关系的重要概念。

通过布里渊区的划分,我们可以将整个能带结构分割成一些小的区域,这些区域被称为能带。

布里渊区对于分析和理解能带结构中的各种物理现象非常有帮助。

另外,布里渊区还在光学中发挥着重要的作用。

在光学中,布里渊区和能带结构密切相关,通过布里渊区的划分,我们可以得到材料在不同频率下的光学性质。

布里渊区的对称性也决定了材料对不同频率光的响应情况,这对于光学器件的设计和制造非常重要。

总结起来,简约布里渊区定义了由布里渊基矢量所生成的布里渊格点经过一系列简约操作得到的最小重复单元。

布里渊区在函数分析和测度论中具有重要的地位,它对于理解材料的能带结构、光学性质等起着关键作用。

通过对布里渊区的研究,我们可以更好地理解材料的物理性质,并应用于材料科学和工程等领域。

布里渊区

布里渊区
a
jk
,
b2

2
a
k+i
,
b3

2
a
i j




K n n1b1 n2b2 n3b3
2 a
n2 n3 i n1 n3 j n1 n2 k
20
4
a

b1
b2
b3
21
3.离原点最近的倒格点 体心立方的倒格子是面心立方,离原点最近的倒格点有十二个。在直角坐标系中的坐标分别为:
11
6.二维正方格子的能带交叠 第一布里渊区在k方向上能量最高点A,k'方向上能量最高点C。 C点的能量比第二布里渊区B点高。
12
二维(包括三维)和一维情形有一个重要的区别—不同能带在能量上不一定 分隔开而可以发生能带之间的交叠。第一布里渊区和第二布里渊区能带 的重叠。
13
7.二维斜格子的第一布里渊区
第一布里渊区—倒格子空间中的WS原胞。
1
2.布里渊区的特点 (1)各布里渊区的体积相等,都等于倒格子原胞的体积。

=b1 b2 b3
2 3

(2)波矢k的代表点是均匀分布的,每个代表点的体积为:
1 N1
b1

2 N2
b2

3 N3
b3

14
8.二维六角格子其它布里渊区的形成
15
9.二维六角格子其它布里渊区的形状 每个布里渊区经过适当的 平移之后和第一布里渊区 重合
16
10.二维格子布里渊区的特点 (1)尽管布里渊区在图中看起来好像被分割为不相连的若干小区, 但是,实际上能量 是连续的。属于一个布里渊区的能级构成一个能带。不同的布里渊区对应不同的 能带。 (2)每个布里渊区的形状尽管各异,但是面积都相等, 等于倒格子原胞的面积。 (3)计入自旋,每个能带包含2N个量子态。 (4)每个布里渊区经过适当的平移之后和第一布里渊区重合。

布里渊区

布里渊区

的Wigner-Seitz原胞给出。

金刚石结构的Si、Ge和闪锌矿结构的Ⅲ-Ⅴ族半导体等, 都具有面心立方Bravais格子, 因此都具有体心立方的倒格子, 从而也都具有相同形状的第一Brilouin区, 为截角八面体(即是由6个正方形和8个正六边形构成的14面体)。

3布里渊区的特殊k点采样问题研究介绍在各种周期性边界条件的第一原理计算方法中,需要涉及到在布里渊区的积分问题,例如总能、电荷密度分布,以及金属体系中费米面的确定等等。

如果采用普通的在布里渊区内均匀选取k点的方法,那么为了得到精确的结果点的密度必须很大,从而导致非常大的计算量。

这使得计算的效率非常低下。

因此,需要寻找一种高效的积分方法,可以通过较少的点运算取得较高的精度。

而这些k点被称之为“平均值点”(Baldereschi)或者“特殊点”(Chadi, Cohen)。

[1]基本思想Chadi和Cohen最早提出了这种特殊点的数学基础[1]。

考虑一个光滑函数,我们可以将其展为傅立叶级数:假设另有一个拥有体系全部对称性(对称性用对称群表示)的函数,满足条件,则我们可以将用展开如下:其中是对称群的阶数。

设,将上式的求和顺序重新组合可以得到其中是距离原点第近邻的球半径,按升序排列,且。

需要注意的是限制条件具有球对称性,也即高于的对称性,所以满足限制条件的格点集合并不一定都是等价的——或说可以通过中的操作联系起来的——格点。

方程(3)中的函数满足下列条件:上式中是倒格矢,是满足条件的格点数。

五个方程分别表明函数在第一布里渊区内成奇函数、具有正交性、周期性、体系对称性和完备性。

对于特殊点法而言,前两条更为重要。

注意到上面公式中的求和从1开始,因此需要对的情况进行单独定义。

我们定义,则函数的平均值为:那么该如何得到呢?注意方程(3),如果存在这样的特殊点,使其满足:>那么立刻可以得到,这样的点被称为“平均值点”。

但是普遍的讲,满足上述条件的点并不存在。

布里渊区

布里渊区

b1(h1 1, h2 1), b2(h1 1, h2 1)
通过这四个倒个是的中点,即
1 2
b1
1 2
b2
a
i
a
j
分别作四个垂直平分面,即可得到第二布里渊区的边界。
照此可以画出第二布区、第三布区等。如右图所示。 可以看出,布区的序号越大,分离的区域越多;但不论分离的区域数
目是多少,各布区的面积是相等的。
2、布里渊区
在图2.4所示的倒格子中,画出所有的倒格矢的垂直平分面, 可以得到倒格子的维格纳—赛茨(Wigner-Seitz)原胞,因为
W-S 原胞可以充分反映倒格子的宏观对称性,在固体物理学中 常采用W-S 原胞,而不是倒矢量 b为1,b边2,矢b3 量围成的平行六
面体作为倒格子的周期性结构单元。
倒格子的原胞基矢为
b1
2
a
i
b2
2
a
j
离原点最近的的倒格点有四个:
b1 , -b1 , b2 , - b2 它们的垂直平分线围成的区域 就是简约布里渊区,即第一布里渊 区.显然,第一布里渊区是一个正 方形,面积为 S*=(2π)2/a2 .
二维方格子布里渊区
可以看出,倒格子点阵也是正方点阵,点阵常数为 2
(2.4.1)
(2.4.2)
2、电荷密度的傅立叶展开(Fourier series of charge density)
在理想晶体中,电荷密度和晶格一样具有平移周期性, 也就是说,平移任意格矢的长度,电荷密度不变,即
n(r ) n(r Rl )
(2.4.3)
这种平移对称性,使得电荷密度可以倒格矢 Gh
可以展开为傅立叶级数
2
2
f (x) f0 p1 Cp cos( a

布里渊区的选取

布里渊区的选取

电子科技大学光电信息学院课程设计论文课程名称固体与半导体物理题目名称布里渊区的选取学号********** ********** **********姓名李雄风寿晓峰陈光楠指导老师刘爽起止时间2011.10.1-2011.10.152011年10月1日布里渊区的选取摘要本文着重介绍了布里渊区的选取。

首先,本文给出了倒格子和布里渊区的相关概念;随后,本文以一维的简单格子、二维的有心长方格子、三维的面心立方格子和体心立方格子为例,详细说明了布里渊区的选取过程;最后,本文介绍了制作面心立方格子和体心立方格子的第一布里渊区的实物模型的方法(附上实物模型)。

一、相关概念介绍1.1倒格子假设晶格原胞基失为a 1⃑⃑⃑ 、a 2⃑⃑⃑⃑ 和a 3⃑⃑⃑⃑ ,则对应的倒格子原胞基失为b 1⃑⃑⃑⃑ 、b 2⃑⃑⃑⃑ 和b 3⃑⃑⃑⃑ ,它们满足如下关系:{ b 1⃑⃑⃑⃑ =2πΩ(a 2⃑⃑⃑⃑ ×a 3⃑⃑⃑⃑ )b 2⃑⃑⃑⃑ =2πΩ(a 3⃑⃑⃑⃑ ×a 1⃑⃑⃑ )b 3⃑⃑⃑⃑ =2πΩ(a 1⃑⃑⃑×a 2⃑⃑⃑⃑ ) 其中Ω=a 1⃑⃑⃑ ∙(a 2⃑⃑⃑⃑ ×a 3⃑⃑⃑⃑ )为原胞体积。

b 1⃑⃑⃑⃑ 、b 2⃑⃑⃑⃑ 和b 3⃑⃑⃑⃑ 是不共面的,因而由b 1⃑⃑⃑⃑ 、b 2⃑⃑⃑⃑ 和b 3⃑⃑⃑⃑ 也可以构成一个新的点阵,我们称之为倒格子。

倒格子原胞基失也可以通过下式来定义(在处理一维和二维问题时我们将用到它):b i ⃑⃑⃑ ∙a j ⃑⃑⃑ =2πδij ={2π 当i =j 0 当i ≠ji,j =1,2,3 倒格子的一个基矢是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。

倒格子是描述晶体结构周期性的另一种类型的格子,它是在波矢空间的数学表示,它的一个基矢对应于正格子中的一族晶面,因此可将晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。

常用结构的布里渊区

常用结构的布里渊区

常用结构和布里渊区(参考书: C.J. Bradley, A.P. Cracknell, “The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups”, Oxford, Clarendon Press, 1972)1. 简单立方: Cubic Primitive, c Γ , m3m (O h )正格子:(a,0,0),(0,a,0),(0,0,a ), 正格体积 a 3倒格子: )0,0,1(2a π,)0,1,0(2a π,)1,0,0(2a π,倒格体积 338aπ 布里渊区: Fig. 3.13Γ=(0, 0, 0), X=(0, 1/2, 0), M=(1/2, 1/2, 0), R=(1/2, 1/2, 1/2) [注:以上各高对称点单位为: ),,(321b b b , 图上的i i b g=]2. 面心立方: Cubic Face-centred, c f Γ , m3m (O h )正格子:(0,a/2,a/2),(a/2,0,a/2),(a/2,a/2,0), 正格体积 a 3/4即: ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=)(2)(2)(2321j i a a i k a a k j a a(下同)倒格子: )1,1,1(2-a π,)1,1,1(2-a π,)1,1,1(2-a π,倒格体积 3332aπ 即: ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)(2321k j i a b k j i a b k j i a bπππ (下同) 布里渊区:Fig. 3.14Γ=(0, 0, 0), X=(1/2, 0, 1/2), L=(1/2, 1/2, 1/2), W=(1/2, 1/4, 3/4),K=U=(3/8, 3/8, 3/4)3. 体心立方: Cubic Body-centred, c v Γ , m3m (O h )正格子:)1,1,1(2-a ,)1,1,1(2-a , )1,1,1(2-a , 正格体积 a 3/2 倒格子: )1,1,0(2a π,)1,0,1(2a π,)0,1,1(2a π,倒格体积 3316a π 布里渊区:Fig. 3.15Γ=(0,0,0), H=(1/2,-1/2, 1/2), P=(1/4, 1/4, 1/4), N=(0, 0, 1/2)4. 简单六角: Hexagonal primitive, h Γ , 6/mmm (D 6h )正格子: )0,,0(a -,)0,21,23(a a ,),0,0(c , 正格体积 c a 223 即: ⎪⎪⎩⎪⎪⎨⎧=+=-=k c a j a i a a j a a3212123 原胞图:?重要!: 倒格子: )0,1,31(2-a π,)0,0,32(2a π,)1,0,0(2c π,倒格体积 ca 23316π 布里渊区: Fig.3.12Γ=(0, 0, 0), M=(0, 1/2, 0), A=(0, 0, 1/2), L=(0, 1/2, 1/2),K=(-1/3, 2/3, 0), H=(-1/3, 2/3, 1/2)5. 简单四角: Tetragonal primitive, q Γ, 4/mmm (D 4h )正格子: (a, 0, 0),(0, a, 0),(0, 0, c ), 正格体积 a 2c倒格子: )0,0,1(2a π,)0,1,0(2a π,)1,0,0(2c π,倒格体积 ca 238π 布里渊区: Fig. 3.9Γ=(0, 0, 0), M=(1/2, 1/2, 0), Z=(0, 0, 1/2), A=(1/2, 1/2, 1/2),R=(0, 1/2, 1/2), X=(0, 1/2, 0)6. 简单正交: Orthorhombic primitive, o Γ, mmm (D 2h )正格子: (0,-b, 0),(a,0, 0),(0, 0, c ), 正格体积 abc倒格子: )0,1,0(2-b π,)0,0,1(2a π,)1,0,0(2c π,倒格体积 abc38π 布里渊区: Fig. 3.5Γ =(0, 0, 0), Y=(-1/2, 0, 0), X=(0, 1/2, 0), Z=(0, 0, 1/2),U=(0, 1/2, 1/2), T=(-1/2, 0, 1/2), S=(-1/2, 1/2, 0), R=(-1/2, 1/2, 1/2)通常大家遇到的就是以上这些。

布里渊区

布里渊区

对称的一些原胞称为布里渊区(BZ )。

⑴第一布里渊区
由于知二维正方格子的倒格子
基矢为
找离原点最近邻的点,见图。

做原点到上述最近邻点的垂直平分线,所围成的区域为第一布里渊区。

(2)自己找出第二BZ 。

⑶布里渊区的特点i 各区面积相等
ii 其它布里渊区的任一点都可
以平移到第一布里渊区,所以把第一布里渊区称为简约布里渊区
⎩⎨
⎧≠===⋅j i j i b a ij j i 022ππδr r j
a
b i a b r
r r r ππ2221==体心立方格子的固体物理学原胞的三个基矢为
)
(k j i a a r r r r ++−=(体心立方的倒格子为面心立方)
面心立方格子的布里渊区
正格子的固体物理学原胞基矢:
(体心立方与面心立方互为倒格子)
)
(k j a a r r r +=。

二维边界条件的布里渊区路径

二维边界条件的布里渊区路径

二维边界条件的布里渊区路径
在二维材料中,布里渊区路径的确定通常需要考虑边界条件的影响。

下面提供了一种确定二维材料中边界条件的布里渊区路径的通用步骤:
1.确定边界条件:首先,确定材料所受到的边界条件。

常见的边界条件包括周期性边界条件、狄拉克边界条件、开放边界条件等。

2.构建布里渊区:根据边界条件,构建二维材料的布里渊区。

布里渊区是一个倒装的晶体结构,反映了材料的振动模式和声子色散关系。

3.确定高对称点:在布里渊区内,有一些特殊的点具有高对称性。

这些高对称点通常与材料的声子色散关系紧密相关。

4.连接高对称点:通过连接高对称点,可以形成布里渊区内的路径。

这些路径反映了不同振动模式之间的转换关系。

5.分析路径特性:分析所确定的路径特性,包括路径上的波矢、能量等参数的变化。

这些参数可以用于进一步研究材料的物理性质,如热导率、光学性质等。

6.应用与扩展:将所确定的布里渊区路径应用于具体的物理问题中,如热传导、光学散射等。

同时,也可以根据需要扩展到更复杂的二维材料体系中,探究其内在的物理机制。

通过以上步骤,可以确定二维材料中边界条件的布里渊区路径,为进一步研究其物理性质提供基础。

需要注意的是,具体的实现过程可能因材料和实验条件的不同而有所差异,需要根据具体情况进行调整和优化。

第一布里渊区

第一布里渊区

波矢空间固体的能带理论中,各种电子态按照它们的波矢分类。

在波矢空间中取某一倒易点阵为原点,作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分为一系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;在第一布里渊区之外,由于一组平面所包围的波矢区叫第二布里渊区;依次类推可得第三、四、…等布里渊区。

各布里渊区体积相等,都等于倒易点阵的元胞体积。

周期结构中的一切波在布里渊区界面上产生布拉格反射,对于电子德布罗意波,这一反射可能使电子能量在布里渊区界面上(即倒易点阵矢量的中垂面)产生不连续变化。

根据这一特点,1930年L.-N.布里渊首先提出用倒易点阵矢量的中垂面来划分波矢空间的区域,从此被称为布里渊区。

第一布里渊区第一布里渊区就是倒易点阵的维格纳-赛茨元胞,如果对每一倒易点阵作此元胞,它们会毫无缝隙的填满整个波矢空间。

由于完整晶体中运动的电子、声子、磁振子、……等元激发(见固体中的元激发)的能量和状态都是倒易点阵的周期函数,因此只需要用第一布里渊区中的波矢来描述能带电子、点阵振动和自旋波……的状态,并确定它们的能量(频率)和波矢关系。

限于第一布里渊区的波矢称为简约波矢,而第一布里渊区又叫简约区,在文献中不加定语的布里渊区指的往往就是它。

布喇菲点阵布里渊区的形状取决于晶体所属布喇菲点阵的类型。

简单立方、体心立方和面心立方点阵的简约区分别为立方体,菱十二面体和截角八面体(十四面体)。

它们都是对称的多面体,并具有相应点阵的点群对称性,这一特征使简约区中高对称点的能量求解得以简化(见晶体的对称性)。

2简约布里渊区简约布里渊区(Reduced Brillouin zone):由于晶体中的格波或者电子波的色散关系在波矢空间是周期为π/a的周期性函数(例如,E(k) = E(k+n/a),则k和k+n/a表示相同的状态;因此可把波矢限制在第一Brillouin区(-π/a < q < π/a ) 内,而将其他区域通过移动n/a而合并到第一Brilouin区;在考虑能带结构时, 只需要讨论第一Brilouin 区就够了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档