苏教版六年级数学下《分数除法》教材分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版六年级数学下《分数除法》教材分析

下表是内容的编排。

计算法则

分数除以整数(例1)

整数除以分数(例2、例3)

分数除以分数(例4)练习十一

实际问题

分数除法应用题(例5)

两步计算/分数乘除混合运算(例6)练习十二

整理与练习

从上面的表格里,可以看到教材在编排上有三个特点。

第一,计算内容编排成两段:一是计算法则,二是乘除两步计算。两段之间穿插解决实际问题,留出了巩固法则、形成计算能力的时空。这是考虑到从理解法则到掌握法则需要一段过程,教学应遵循这个规律。结合解决实际问题应用计算知识,能起巩固知识、熟练技能的作用。在此基础上才能比较轻松地进行分数乘除混合运算。

第二,计算法则的教学编排细致,从分数除以整数到整数除以分数,再到分数除以分数,最后才形成包摄性强的法则。分数除法是转化成分数乘法计算的,转化的方法是乘除数的倒数,例1至例4都教学这样的转化。前两道例题在操作中开展形象思维,体会转化是合理的;后两道例题通过猜想与验证,理解转化是必然的。这样的编排循序渐进,使法则的教学不是被动接受,而是主动建构;不仅是形成知识技能,还是发展数学思考、培养解决问题策略的载体。

第三,单独编排例题教学应用题。本单元教学分数除法应用题,是在分数乘法概念的基础上列方程解答的。它与分数乘法应用题,在数量关系上有一致的地方,也有不同的地方,有许多可以比较、需要区分的内容。由于解法比较特殊以及教学内容比较多,单独编排有利于教学。

一、在图画上分感悟算法。

分数除以整数、整数除以分数,是分数除法中比较简单的情况。要从中初步体会,分数除法可以通过被除数乘除数的倒数进行计算。为了有利于体会,这两道例题都选择可以操作的素材。

例1呈现了4/5升果汁的图画,让学生在图中分一分,算出结果。一部分学生在直观操作中会看到4/5平均分成2份,每份是2/5,列出算式4/52=2/5。兔子卡通的思考和这部分学生的想法一致,它的4个1/5平均分成2份清楚地解释了42/5的意思。另一部分学生在直观情境的支持下,从4/5平均分成2份推理,得出就是求4/5的1/2。小鸟卡通把这样的思考用式子的恒等变换表示出来,就是4/52=4/51/2。教学例1要在鼓励独立探索和解决问题方法多样的前提下,突出小鸟卡通的方法。这是学生第一次感悟分数除法和分数乘法的联系,对继续教学分数除法有定向作用。

第55页的试一试计算4/53。表面上看,似乎只是把例1算式的除数2改成3,其实它的计算中有很丰富的思考内容。如果采用43/5这种方法,商的分子不是整数,无论是表示还是化简都很麻烦。如果采用4/51/3这种方法,能很快得到结果。挖掘试一试里的思考内容,教学要注意三点:一是让学生算一算,在教材上通过填空得到结果;二是让学生想一想,这里用了兔子卡通的方法还是小鸟的方法,为什么不用另一种算法;三是让学生说一说,计算分数除以整数的策略与过程,初步学会算法。

例2教学整数除以分数,这里的除数是1/2、1/3、1/4,这些分子都是1的分数。选择这样的除数,便于通过操作解决实际问题,感受整数除以分数的计算方法。这道例题的教学分三步进行:第一步在4个橙子可以分给几人的问题情境中引出整数除以分数的算式。先是每人吃2个橙子,求可以分给几人的算式是42。再是每人吃1/2个、1/3个、1/4个,求可以分给几人的数量关系与42相同,通过类比推理,列出41/2、41/3、41/4等算式。第二步看图计算41/2,初步感悟算法。由于每人吃1/2个橙子,因此教材把4个橙子按1/2个、1/2个画,一共画了8个1/2。小猴卡通看图知道可以分给8人,即41/2=8(人)。小鸟卡通看图时想: 1个橙子可以分给2人,4个橙子可以分给42=8(人)。41/2和4 2都是求4个橙子可以分给几人的算式,得数都是8,它们能组成等式41/2=42。教材里的想一想,1/2与2有什么关系在引导学生观察等式,研究等式从左边到右边的变化,初步发现整数除以分数可以变成这个整数乘分数的倒数,感受这可能是计算分数除法的策略和方法。因此说,41/2的教学要领是建立等式、研究变化、领悟算法。第三步通过画图操作,计算41/3和41/4。这一步以41/2的活动经验为基础,要求学生独立进行。在计算41/3时,把代表1个橙子的圆三等分,表示出每人吃1/3个。通过画图看出1个橙子给3人吃,4个橙子给43=12(人)吃。据此写出等式41/3=4(3)。用同样的操作和思考,还能写出等式41/4=4(4)。寻找整数除以分数的算法是例题的教学任务,教材要求学生思考括号里的数与除数有什么关系,引导他们再次感受整数除以分数改写成乘法的关键与要领。

二、验证猜想确认算法。

例3仍然是整数除以分数,它的除数不是几分之一那样的分数,而是几分之几的分数。如果说例2是整数除以分数的特殊情况,那么例3就是一般情况了。例4是分数除以分数,能统摄前面教学的分数除以整数和整数除以分数,因而更具代表性。编排这两道例题,要得出分数除法的计算法则。

两道例题都有示意图,从图画里看到除法算式的商。例3用一根线条表示4米彩带,其中的每1米都平均分成3份,还涂色表示出1个2/3米。学生就可以在表示4米的线条上数出一共有几个2/3米,得到42/3=6(段)。例4画了量杯的图,看着上面的刻度能够知道9/10里面有3个3/10,9/103/10=3。

两道例题都要验证分数除法可以转化成分数乘法。例1计算分数除以整数,例2计算整数除以几分之一的分数,初步知道分数除法可以变成乘法来计算。例3加强对这种转化的体验,要求学生想一想等式42/3=43/2成立吗?这个等式的出现,源自例1、例2的计算体验,是一个猜想。它是否成立?需要验证。其中左边的42/3=6,在示意图中已经知道。右边的43/2,通过计算得到6。两道算式得数相同,表示等式成立,证实了猜想是正确的。教学例4的时候,学生对分数除法转化成分数乘法的心向比较明显和强烈了,教材让他们按这样的思路试着算一算,得到与示意图相同的得数,从而确认猜想成立。

两道例题都小结算法。例3从41/2、41/3、41/4和42/3,想想整数除以分数应该怎样计算。还可以相对于例1的分数除以整数的算法,体会分数除法变成乘法,应该用被除数乘除数的倒数。例4总结算法的视野比较开阔,要得出分数除法的计算法则。因此这里可以先小结分数除以分数的算法,再联系分数除以整数和整数除以分数的计算,找出这些分数除法在计算时有相同的策略与转化方法。然后用甲数和乙数分别表示被除数和除数,准确而简明地表达分数除法的计算法则。

三、找数量关系式列方程解题的关键。

这道例题的教学重点是为什么用方程解答,以及怎样列出方程。体会列方程解的原因,就掌握了这类实际问题的特点。学会了列方程的方法,就把握了解题的关键。教材把这道例题编排在计算教学的后

相关文档
最新文档