2021高考数学教材知识点归纳《三角函数》
高考三角函数知识点总结
高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。
1弧度等于圆周的1/2π。
2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。
4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。
二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。
- sin(x) = a / c,其中a是对边,c是斜边。
- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。
2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。
- cos(x) = b / c,其中b是邻边,c是斜边。
- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。
3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。
- tan(x) = a / b,其中a是对边,b是邻边。
- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。
4.余切函数:余切函数是正切函数的倒数。
- cot(x) = 1 / tan(x)。
5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。
- sec(x) = 1 / cos(x)。
6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。
- csc(x) = 1 / sin(x)。
三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。
2021高考数学考前课本知识梳理:三角函数
asin2α+bsin αcos α+ccos2α的分式,可将分子、分母同时除以 cos2α,将正、余弦转化为正 dsin2α+esin αcos α+fcos2α 切,从而求值. (2)形如 asin2α+bsin αcos α+ccos2α的式子,可将其看成分母为 1 的分式,再将 1 变形为 sin2α +cos2α,转化为形如asin2α+bsin αcos α+ccos2α的分式求解.
2021 高考数学考前课本知识梳理
第一节 任意角和弧度制及任意角的三角函数
一、必记 4 个知识点 1.角的分类 (1)任意角可按旋转方向分为①________、②________、③________. (2)按终边位置可分为④________和终边在坐标轴上的角. (3)与角α终边相同的角连同角α在内可以用一个式子来表示,即 β=⑤________________. 2.象限角
k (1)用终边相同角的形式表示出角α的范围;
(2)再写出 kα或α的范围; k
(3)然后根据 k 的可能取值讨论确定 kα或α的终边所在位置. k
3. 应用弧度制解决问题的方法
(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.
(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.
cos α ⑦cos α ⑧-cos α ⑨cos α ⑩-cos α ⑪sin α ⑫-sin α ⑬tan α
⑭-tan α ⑮-tan α ⑯0 ⑰1⑱ 3 ⑲ 3 ⑳1 ○21 1 ○22 3 ○23 1
22
22
22
○24 -1 ○25 - 3 ○26 0 ○27 3 ○28 3
2
2
3
○29 - 3 ○30 - 3 3
2021年高考数学三角函数、平面向量知识点总结
2021年高考数学三角函数、平面向量重要知识点(公式、定理、规律等)三角函数相关1、与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.2、弧度制2.1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2.2、 rl =α. 2.3、弧长公式:R Rn l απ==180. 2.4、扇形面积公式:lR R n S 213602==π. 3、任意角的三角函数3.1、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan yxα= 3.2、特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.4.1、 平方关系:1cos sin 22=+αα. 4.2、 商数关系:αααcos sin tan =. 5、三角函数的诱导公式(概括为Z k ∈) 5.1、 诱导公式一:()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈) 5.2、 诱导公式二:()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+ 5.3、诱导公式三:()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-5.4、诱导公式四:()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5.5、诱导公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-5.6、诱导公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+6、正弦、余弦函数的图象和性质6.1、记住正弦、余弦函数图象:6.2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 7、正切函数的图象与性质7.1、记住正切函数的图象:y=tanx3π2ππ2-3π2-π-π2oyx7.2、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.8、周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.9、正弦、余弦、正切函数的图像及其性质x y sin =x y cos = x y tan =图象定义域 RR},2|{Z k k x x ∈+≠ππ值域[-1,1] [-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性 π2=Tπ2=Tπ=T奇偶性奇偶奇单调性Z k ∈ 在[2,2]22k k ππππ-+上单调递增在3[2,2]22k k ππππ++上单调递减在[2,2]k k πππ-上单调递增在[2,2]k k πππ+上单调递减 在(,)22k k ππππ-+上单调递增10、函数()ϕω+=x A y sin 的图象 10.1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .10.2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.① 先平移后伸缩:sin y x = 平移||ϕ个单位()sin y x ϕ=+ (左加右减)横坐标不变()sin y A x ϕ=+ 纵坐标变为原来的A 倍纵坐标不变()sin y A x ωϕ=+横坐标变为原来的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)② 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变为原来的A 倍纵坐标不变sin y A x ω=横坐标变为原来的1||ω倍()sin A x ωϕ=+平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)10.3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系.求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈11、两角和与差的正弦、余弦、正切公式 11.1、()βαβαβαsin cos cos sin sin +=+ 11.2、()βαβαβαsin cos cos sin sin -=- 11.3、()βαβαβαsin sin cos cos cos -=+ 11.4、()βαβαβαsin sin cos cos cos +=- 11.5、()tan tan 1tan tan tan αβαβαβ+-+=.(记不住就转化成正弦、余弦求解) 11.6、()tan tan 1tan tan tan αβαβαβ-+-=.(记不住就转化成正弦、余弦求解)12、二倍角的正弦、余弦、正切公式 12.1、αααcos sin 22sin =, 变形: .12sin cos sin 2ααα= 12.2、ααα22sin cos 2cos -=1cos 22-=α α2sin 21-=.变形如下:升幂公式:221cos 2cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩12.3、ααα2tan 1tan 22tan -=.(记不住就转化成正弦、余弦求解)13、 简单的三角恒等变换13.1、注意正切化弦、平方降次. 13.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (求最小正周期时常用)(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 平面向量1、基本概念相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量a 与b 相等,记为a b =.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量. 共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0与任一向量共线.注:共线向量又称为平行向量. 相反向量: 长度相等且方向相反的向量. 2、运算定义 运 算 图形语言符号语言坐标语言加法与减法OA --→+OB --→=OC --→OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 2,y 2) 则OA OB +=(x 1+x 2,y 1+y 2)OB OA -=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积AB a λ--→→=R λ∈记a →=(x ,y) 则()a x y λλλ→=, 两个向量的数量积cos ,a b a b a b ⋅=⋅记1122(,),(,)a x y b x y == 则a b →→⋅=x 1x 2+y 1y 23、运算律加法:①a b b a +=+(交换律); ②()()a b c a b c ++=++(结合律) 实数与向量的乘积:①()a b a b λλλ+=+; ②()a a a λμλμ+=+;③()()a a λμλμ= 两个向量的数量积:① a →·b →=b →·a →; ②(a λ→)·b →=a →·(b λ→)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →4、向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A(x ,y),则→--OA =(x ,y);当向量起点不在原点时,向量→--AB 坐标为终点坐标减去起点坐标,即若A(x 1,y 1),B(x 2,y 2),则→--AB =(x 2-x 1,y 2-y 1) 5、两个向量平行的充要条件符号语言:)0(//→→→→→→≠=⇔b b a b a λ坐标语言为:设非零向量()()1122,,,a b x y x y ==,则a →∥b →⇔(x 1,y 1)=λ(x 2,y 2),或x 1y 2-x 2y 1=0.6、两个向量垂直的充要条件符号语言:⇔⊥→→b a 0=⋅→→b a坐标语言:设非零向量()()1122,,,a b x y x y ==,则⇔⊥→→b a 02121=+y y x x 7、两个向量数量积的重要性质:①22||→→=a a 即 2||→→=a a (求线段的长度);② ⇔⊥→→b a 0=⋅→→b a (垂直的判断); ③ cos a b a bθ⋅=⋅ (求角度)④ 22122121()()PP x x y y =-+-(求两点的长度)。
高中数学三角函数知识点
高中数学三角函数知识点一、基础概念1. 三角函数三角函数是数学中的一种函数,用来描述一个直角三角形中各边和角度之间的关系。
三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
2. 角度制和弧度制角度制是指用度数来描述角度大小的一种测量方法,以“度”作为单位。
1圆周角等于360度,1度等于60分,1分等于60秒。
弧度制是指用弧长来描述角度大小的一种测量方法,以“弧度”作为单位。
1圆周角等于2π弧度,1弧度等于圆的半径所对应的弧长的长度。
3. 函数的周期与函数值域函数的周期是指函数在一段区间内重复出现的最小长度。
正弦函数和余弦函数的周期都是2π,正切函数和余切函数的周期都是π,正割函数和余割函数的周期都是π。
函数的值域是指函数所有可能的输出值所组成的集合。
正弦函数和余弦函数的值域都是[-1,1],正切函数的值域是(-∞,∞),余切函数的值域也是(-∞,∞),正割函数的值域是[1,∞),余割函数的值域也是[-∞,-1]∪[1,∞)。
4. 常用三角函数的图形正弦函数的图形是一条周期为2π、在x=π/2处取得最大值1,在x=3π/2处取得最小值-1的正弦曲线。
余弦函数的图形是一条周期为2π、在x=0处取得最大值1,在x=π处取得最小值-1的余弦曲线。
正切函数的图形是一条周期为π、在x=π/2+kπ(k∈Z)处有一个无穷大的跳跃,且在x=kπ(k∈Z)处取值为0的正切曲线。
5. 三角函数的基本关系式正弦函数和余弦函数之间满足关系式sin(x)=cos(x-π/2),cos(x)=sin(x+π/2)。
正切函数和余切函数之间满足关系式tan(x)=1/cot(x),cot(x)=1/tan(x)。
二、三角函数的运算1. 三角函数的加减法公式sin(x±y)=sinxcosy±cosxsinycos(x±y)=cosxcosy∓sinxsinytan(x±y)=(tanx±tany)/(1∓tanxtany)cot(x±y)=(cotxcoty∓1)/(cotx±coty)2. 三角函数的积化和差公式sinx+siny=2sin((x+y)/2)cos((x-y)/2)sinx-siny=2cos((x+y)/2)sin((x-y)/2)cosx+cosy=2cos((x+y)/2)cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)3. 三角函数的倍角公式和半角公式sin2x=2sinxcosxcos2x=cos^2x-sin^2xtan2x=(2tanx)/(1-tan^2x)sin(x/2)=±√[(1-cosx)/2]cos(x/2)=±√[(1+cosx)/2]tan(x/2)=±√[(1-cosx)/(1+cosx)]4. 三角函数的反函数sin(-1)x:[-1,1]→[-π/2,π/2]cos(-1)x:[-1,1]→[0,π]tan(-1)x:(-∞,∞)→(-π/2,π/2)cot(-1)x:(-∞,∞)→(0,π)三、三角函数的应用1. 三角函数在几何中的应用在直角三角形中,正弦函数和余弦函数可以用来计算任意两边和一个角的关系。
高考数学之三角函数知识点总结
高考数学之三角函数知识点总结高考数学中,三角函数是一个重要的知识点。
它在解三角形、解三角方程和求极限等方面都有广泛应用。
下面是对高考数学中三角函数的知识点进行总结:一、基本概念和性质:1.三角函数的定义:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的定义。
2.三角函数的周期性:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的周期性。
3.三角函数的奇偶性:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的奇偶性。
4.三角函数的范围:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的范围。
二、基本公式和恒等变换:1.三角函数的和差化积公式。
2.三角函数的倍角公式。
3.三角函数的半角公式。
4.三角函数的和差化积公式的逆运算。
三、极坐标与三角函数:1.极坐标下的坐标转换。
2.极坐标下的两点间距离公式。
四、三角函数的解析式:1.任意角的解析式。
2.一些特殊角的解析式。
五、三角函数的图像与性质:1.正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的图像和性质。
2.三角函数图像的平移、伸缩和翻转。
3.三角函数的性态。
六、三角函数的应用:1.三角函数在测量中的应用:测量高度、测量角度、计算地理位置等。
2.三角函数在力学中的应用:力的合成、平衡条件等。
3.三角函数在电路中的应用:交流电的正弦表达式等。
4.三角函数在几何中的应用:解三角形、求面积等。
5.三角函数在物理中的应用:波动现象、振动现象等。
以上是高考数学中三角函数的主要知识点总结。
掌握这些知识点,对于解答相关题目、理解相关概念都有很大帮助。
在备考高考数学时,应不断强化基础知识,多进行题目练习和真题训练,同时注重理解和巩固基本概念和性质,提高解题的能力和技巧。
高考三角函数知识点总结
高考三角函数知识点总结一、基本概念:1.弧度与角度:弧度是角度的一种衡量方式,1弧度等于所对应的圆心角的半径长所对应的线段长度。
角度是以度为单位的,一个圆等分360度.2.单位圆:半径为1的圆,圆心到任一点所对应的弧长为该点的角度。
二、常用三角函数:1. 正弦函数(sin):在单位圆上,对于一个角的弧度值对应的弧长与半径的比值。
2. 余弦函数(cos):在单位圆上,对于一个角的弧度值对应的横坐标与半径的比值。
3. 正切函数(tan):在单位圆上,对于一个角的弧度值对应的纵坐标与横坐标的比值。
4. 余切函数(cot)、正割函数(sec)、余割函数(csc)的定义与相关计算。
三、三角函数的性质:1. 基本关系式:sin^2x + cos^2x = 1,1 + tan^2x = sec^2x,1 + cot^2x = csc^2x。
2. 函数的周期性:sin(x+2π) = sinx,cos(x+2π) = cosx,tan(x+π) = tanx。
3. 函数的奇偶性:sin(-x) = -sinx,cos(-x) = cosx,tan(-x) =-tanx。
4. 函数的限制性:,sinx,≤ 1,cosx,≤ 1,tanx,< +∞。
5. 函数的单调性:在一个周期内,sinx、cosx、tanx的单调性。
四、三角函数的图像:1.正弦函数的图像特点:在0≤x≤2π内,图像从[0,1]上升至[1,-1],再回升至[-1,0]。
2.余弦函数的图像特点:在0≤x≤2π内,图像从[1,0]下降至[-1,0],再上升至[0,1]。
3.正切函数的图像特点:在0≤x≤2π内,图像在每个π的奇数倍处有垂直渐近线。
五、三角函数的运算:1. 三角函数的和差化积:sin(x±y)、cos(x±y)的展开公式。
2. 三角函数的倍角化简:sin2x=2sinxcosx,cos2x=cos^2x-sin^2x。
(完整版)高中三角函数知识点总结(人教版)
高中三角函数总结1.任意角的三角函数定义:设 为任意一个角,点 P( x, y) 是该角终边上的任意一点 (异于原点) , P(x, y) 到原点的距离为 rx 2 y 2 ,则:siny(正负看 y),cosx(正负看 x), tany(正负看 x y)rrx2.特别角三角函数值:0° 30° 45°60°90° sin0 12 3 122 2cos1 32 1 02 22tan13 13没心义33.同角三角函数公式:tansin , sin 2cos 21cossec1,csc 11cos,cottansin4.三角函数引诱公式:(1) sin( 2k ) sin , cos( 2k ) cos , tan( 2k ) tan ; (kZ )(2) sin( ) sin , cos( )cos , tan() tan ;(3) sin()sin , cos( )cos , tan()tan ;(函数名称不变,符号看象限)(4) sin() cos ,cos( )sin, tan() cot ;222(5) sin() cos , cos()sin , tan() cot ;222(正余互换,符号看象限)注意: tan 的值,总为 sin/cos ,便于记忆;5.三角函数两角引诱公式:(1)和差公式sin( ) sin coscos sin cos( ) cos cos sin sintantantan( )1 tan tan(2)倍角公式令上面的可得: sin( 2 ) 2 sin coscos(2 ) cos2 sin 22 tan 2 cos2 1 tan(2 )1 2sin 21 tan2 6.正弦定理:△ABC 中三边分别为a,b, c ,外接圆半径为R ,则有:a b cR sin A sin B27.余弦定理:sin C△ABC 中三边分别为a,b, c ,则有: cosC a2 b2 c22ab8.面积公式:1ab sinC(两边与夹角正弦值 ) △ABC 中三边分别为a,b, c ,面积为S,则有:S2三角函数图象:9.函数名图像单调区间y=sinx递加区间:[ 2k ,2k ]2 2递减区间:[ 2k ,2k 3], k Z2 2y=cosx递加区间:[ 2k,2k ]递减区间:[ 2k ,2k], k Zy=tanx递加区间:(k, k), k Z2 2定义域非R,为:{ x | x k}210.关于y Asin( x ) B 的性质:(1)最大值为| A | B ,最小值为| A | B ( sin( x )1时 ,得最大最小)(2)周期2 1 | |x ,初相是T ,频率 f ,相位是| | T 2(3)图像的对称轴是直线:(4)图像的对称中心为:x k (k Z ) ,可化简为x=的形式;2y A sin( x ) B B 时获取的所有交点(x,B )(5)单调区间求取:一利用引诱公式将变为正,如变为cos 等,此处假设0 ,二求出 y Asin x 的单调区间,令x分别位于单调区间地域,反解x 范围;11.图像变换:y Asin( x) B :y sin x沿x轴左移个单位y sin(x )横坐标x变为原来的1 倍xy sin( ) sin( x )1纵坐标 y变为原来的 A倍y ) y Asin( x )sin( xA沿y轴下移 B个单位y B Asin( x ) y Asin( x ) B 要点点:上 +下 -( y),左 +右 -( x),倍数相除(变为原来的n 倍,则对应的坐标都除以n)。
(完整版)高中三角函数知识点总结
(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。
三角函数最全知识点总结
三角函数最全知识点总结三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数、正切函数等。
下面将对这些三角函数的定义、性质以及常用的解题方法进行总结。
一、正弦函数(sin):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的纵坐标y即为θ的正弦值,记作sinθ。
正弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:sin(θ+2π)=sinθ,sin(θ+π)=-sinθ。
其中π为圆周率。
3. 奇偶性:sin(-θ)=-sinθ,即正弦函数关于原点对称。
4. 正负性:当θ为锐角时,sinθ>0;当θ为钝角时,sinθ<0。
5. 值域变化:当θ从0增加到π/2时,sinθ从0增加到1,然后再从1减小到0。
二、余弦函数(cos):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的横坐标x即为θ的余弦值,记作cosθ。
余弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:cos(θ+2π)=cosθ,cos(θ+π)=-cosθ。
3. 奇偶性:cos(-θ)=cosθ,即余弦函数关于y轴对称。
4. 正负性:当θ为锐角时,cosθ>0;当θ为钝角时,cosθ<0。
5. 值域变化:当θ从0增加到π/2时,cosθ从1减小到0。
三、正切函数(tan):1. 定义:正切值tanθ等于θ的正弦值除以θ的余弦值,即tanθ=sinθ/cosθ。
正切函数的定义域为实数集,值域为实数集。
2. 周期性:tan(θ+π)=tanθ。
3. 奇偶性:tan(-θ)=-tanθ,即正切函数关于原点对称。
4. 正负性:当θ为锐角时,tanθ>0;当θ为钝角时,tanθ<0。
四、反三角函数:1. 反正弦函数:定义域为[-1,1],值域为[-π/2,π/2]。
记作arcsin x或sin⁻¹x。
2. 反余弦函数:定义域为[-1,1],值域为[0,π]。
2021高考数学三角函数知识点大全
2021高考数学三角函数知识点大全数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。
数学是不变的,是客观存在的,接下来在这里给大家分享一些关于数学三角函数知识点,供大家学习和参考,希望对大家有所帮助。
数学三角函数知识点篇一:三角函数的公式关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。
如:sin30°=1/2sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1tan60°=√3[1]cot30°=√3cot45°=1cot60°=√3/3其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。
两角和公式sin(A+B)=xxxxB+xxxxBsin(A-B)=xxxxB-xxxxAcos(A+B)=xxxxB-xxxxBcos(A-B)=xxxxB+xxxxBtan(A+B)=(tanA+tanB)/(1-xxxxB)tan(A-B)=(tanA-tanB)/(1+xxxxB)ctg(A+B)=(xxxxB-1)/(ctgB+ctgA)ctg(A-B)=(xxxxB+1)/(ctgB-ctgA)除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。
所以同学们还是要好好掌握。
半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2xxxxB=sin(A+B)+sin(A-B)2xxxxB=sin(A+B)-sin(A-B)2xxxxB=cos(A+B)-sin(A-B)-2xxxxB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/xxxxBtanA-tanB=sin(A-B)/xxxxBctgA+xxxx(A+B)/xxxxB- ctgA+xxxx(A+B)/xxxxB锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA.CosACos2A=CosA -SinA =1-2SinA =2CosA -1tan2A=(2tanA)/(1-tanA )(注:SinA 是sinA的平方sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π 1-cos2α=2sin α1+sinα=(sinα/2+cosα/2)=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=xxxxsa-xxxxna=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina_sin[(60+a)/2]cos[(60°-a)/2]_sin[(60°-a)/2]cos[(60°-a)/2]=4xxxx(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa_cos[(a+30°)/2]cos[(a-30°)/2]_-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4xxxx(a+30°)sin(a-30°)=-4xxxx[90°-(60°-a)]sin[-90°+(60°+a)]=-4xxxx(60°-a)[-cos(60°+a)]=4xxxx(60°-a)cos(60°+a)上述两式相比可得tan3a=xxxx(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin (a/2)=(1-cos(a))/2cos (a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-t anα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/xxxxB=tan(A+B)(1-xxxxB)tanA-tanB=sin(A-B)/xxxxB=tan(A-B)(1+xxxxB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cos 证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-xxxxB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=xxxxBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=xxxxBtanC可得出以下结论(5)xxxxB+xxxxC+xxxxC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA) +(cosB) +(cosC) =1-2xxxxBcosC(8)(sinA) +(sinB) +(sinC) =2+2xxxxBcosC(9)sinα+sin(α+2π/n)+sin(α+2π_/n)+sin(α+2π_/n)+……+sin[α+2π_n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π_/n)+cos(α+2π_/n)+……+cos[α+2π_n-1)/n]=0 以及sin (α)+sin (α-2π/3)+sin (α+2π/3)=3/2xxxxBtan(A+B)+tanA+tanB-tan(A+B)=0篇二:同角互余角的三角函数间的关系同角三角函数间的关系:平方关系:sin (α)+cos (α)=1tan (α)+1=sec (α)cot (α)+1=csc (α)·积的关系:sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,余切等于邻边比对边互余角的三角函数间的关系:sin(90°-α)=cosα, cos(90°-α)=sinα,tan(90°-α)=cotα, cot(90°-α)=tanα.篇三:锐角三角函数锐角三角函数的定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。
完整版)三角函数知识点总结
千里之行,始于足下。
完整版)三角函数知识点总结三角函数是高中数学中的重要部分,它与几何图形的性质、三角形的边角关系、周期函数等有着密切的联系。
以下是三角函数的一些重要的知识点总结:一、三角函数的定义:1. 正弦函数(sin):在直角三角形中,对于一个锐角的角度,正弦函数的值等于对边长度与斜边长度的比值。
2. 余弦函数(cos):在直角三角形中,对于一个锐角的角度,余弦函数的值等于邻边长度与斜边长度的比值。
3. 正切函数(tan):在直角三角形中,对于一个锐角的角度,正切函数的值等于对边长度与邻边长度的比值。
二、三角函数的重要性质:1. 三角函数的周期性:sin、cos、tan函数的周期都是2π。
2. 三角函数的奇偶性:(1)正弦函数是奇函数,即sin(-x)=-sin(x)。
(2)余弦函数是偶函数,即cos(-x)=cos(x)。
(3)正切函数是奇函数,即tan(-x)=-tan(x)。
3. 三角函数的界值:(1)正弦函数的取值范围在[-1, 1]之间,即-1≤sin(x)≤1。
(2)余弦函数的取值范围也在[-1, 1]之间,即-1≤cos(x)≤1。
(3)正切函数的取值范围为全体实数。
三、三角函数的基本关系与恒等式:1. 余弦与正弦的基本关系:cos(x)=sin(x+π/2)。
2. 正切与正弦、余弦的关系:tan(x)=sin(x)/cos(x)。
3. 三角函数的和差公式:第1页/共2页锲而不舍,金石可镂。
(1)sin(x±y)=sin(x)cos(y)±cos(x)sin(y)。
(2)cos(x±y)=cos(x)cos(y)∓sin(x)sin(y)。
4. 三角函数的倍角公式:(1)sin(2x)=2sin(x)cos(x)。
(2)cos(2x)=cos^2(x)-sin^2(x)。
(3)tan(2x)=(2tan(x))/(1-tan^2(x))。
5. 三角函数的半角公式:(1)sin(x/2)=√[(1-cos(x))/2]。
高考三角函数必备知识点
s i n c o s
2
1
y sin x
0
y
sin 2 cos2 ቤተ መጻሕፍቲ ባይዱ 1
t a n
t a n c o t 1
-1
2
3 2
2 x
2
1 0 -1
y cos x
2
3 2
2 x
6、两角和与差的正弦、余弦、正切
S( ) : sin( ) sin cos cos sin C( ) : cos(a ) cos cos sin sin
(2k 1) ,2k
2k , (2k 1)
x k , k Z
3 2
y
0
0
1
6 1 2
3 2
4
2 2 2 2
1
3
3 2
2
1
2 3
3 2
3 4
2 2 2 2
1
5 6
0
1
3 2
1
2
1 2
3 2 3 3
0
1
x k
2 2 2 2 2 2 2 2
4、余弦定理 公式原形: a b c 2bc cos A , b a c 2ac cos B , c a b 2ab cos C
2
公式变形: cos A
b2 c 2 a 2 a 2 c 2 b2 a 2 b2 c 2 , cos B , cos C 2ab 2bc 2ac
1 cos 2 1 1 cos 2 2 2 2 1 cos 2 1 1 cos 2 cos 2 2 2 2 2 tan T2 : tan 2 1 tan 2 sin 2 sin cos 1 sin 2 2
三角函数相关知识点总结
三角函数相关知识点总结一、三角函数的定义。
1. 锐角三角函数。
- 在直角三角形中,设一个锐角为α。
- 正弦sinα=(对边)/(斜边)。
例如,在直角三角形ABC中,∠ C = 90^∘,∠A=α,BC为∠ A的对边,AB为斜边,则sinα=(BC)/(AB)。
- 余弦cosα=(邻边)/(斜边),对于上述三角形,AC为∠ A的邻边,cosα=(AC)/(AB)。
- 正切tanα=(对边)/(邻边)=(BC)/(AC)。
2. 任意角三角函数(单位圆定义)- 设角α终边上一点P(x,y),r=√(x^2)+y^{2}。
- sinα=(y)/(r)。
- cosα=(x)/(r)。
- tanα=(y)/(x)(x≠0)。
二、三角函数的基本性质。
1. 定义域。
- y = sin x和y=cos x的定义域都是R(全体实数)。
- y=tan x的定义域是<=ft{xx≠ kπ+(π)/(2),k∈ Z}。
2. 值域。
- y = sin x和y=cos x的值域都是[ - 1,1]。
- y=tan x的值域是R。
3. 周期性。
- y = sin x和y=cos x的最小正周期都是2π。
即sin(x + 2kπ)=sin x,cos(x +2kπ)=cos x,k∈ Z。
- y=tan x的最小正周期是π,tan(x + kπ)=tan x,k∈ Z。
4. 奇偶性。
- y=sin x是奇函数,因为sin(-x)=-sin x。
- y = cos x是偶函数,因为cos(-x)=cos x。
- y=tan x是奇函数,因为tan(-x)=-tan x。
5. 单调性。
- y=sin x在<=ft[-(π)/(2)+2kπ,(π)/(2)+2kπ](k∈ Z)上单调递增,在<=ft[(π)/(2)+2kπ,(3π)/(2)+2kπ](k∈ Z)上单调递减。
- y=cos x在[2kπ-π,2kπ](k∈ Z)上单调递增,在[2kπ,2kπ + π](k∈ Z)上单调递减。
(完整版)三角函数知识点总结
§04. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点Pxy =αtan ;(x,y )P 与原点的距离为r ,则 ry =αsin ; =αcos yx=αcot ; x r =αsec ;. y r =αcsc .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== .()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增). ②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).y=|cos2x +1/2|图象3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。
2021数学高三必修知识点三角函数
14数学高三必修知识点三角函数高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了14数学高三必修知识点,希望对大家有帮助。
三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两铲除。
诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意构造函数名,保持根本量不变,繁难向着简易变。
逆反原那么作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,本质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;。
【高中数学】2021高中数学知识点:三角函数
【高中数学】2021高中数学知识点:三角函数
2021年
高考
数学高频考点
三角函数。
三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等
价的定义为单位圆上的各种线
命题动向
三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用.本
章主要包括以下内容:
三角函数的概念、同角三角函数的基本关系、三角函数的诱导公式、两角和与差的三
角函数、三角函数的图象和性质、解斜三角形.全国各地高考都很重视对三角函数的考查,主要考查三角函数的概念、恒等变换、图象和性质、解斜三角形.
2021年高考数学知识点:三角函数
解斜三角形是平面几何研究的主体内容,是教学大纲要求熟练掌握的重点知识,也是
高考常考的题型之一,支撑这一知识板块的核心是正弦定理和余弦定理.通过对近年高考
题的分析,我们不难发现,高考一般以直接解斜三角形或者以平面向量、立体几何、解析
几何、实际生活等问题为载体考查这一问题.高考对考生应用正弦、余弦定理的考查主要
体现在以下两个方面:
其一是考查考生是否能通过对正弦、余弦定理变形技巧的熟练掌握,实现边角转换;
其二是在解斜三角形问题中,考查考生能否根据题目的条件,实现正弦、余弦定理的优化
选择,得到最佳解答.
感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第四章-三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法. 考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.(8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α•cos α=1”.§04. 三角函数 知识要点1. ①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):②终边在x 轴上的角的集合:③终边在y 轴上的角的集合:④终边在坐标轴上的角的集合:⑤终边在y =x 轴上的角的集合:⑥终边在轴上的角的集合:⑦若角与角的终边关于x 轴对称,则角与角的关系:αααβ{}Z k k ∈+⨯=,360|αββ{}Z k k ∈⨯=,180|ββ{}Z k k ∈+⨯=,90180|ββ{}Z k k ∈⨯=,90|ββ{}Z k k ∈+⨯=,45180|ββx y -={}Z k k ∈-⨯=,45180|ββαβαββα-=k360yx▲SIN \COS sinxcosx 1、2、3、4表示第一、二、三、四象限一半所在区域12341234sinxsinx sinx cosxcosx cosx⑧若角与角的终边关于y 轴对称,则角与角的关系: ⑨若角与角的终边在一条直线上,则角与角的关系: ⑩角与角的终边互相垂直,则角与角的关系:2. 角度与弧度的互换关系:360°=2 180°= 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =°≈57.30°=57°18ˊ. 1°=≈0.01745(rad )3、弧长公式:. 扇形面积公式:4、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则;; ; ;. 56、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:αβαββα-+=180360k αβαββα+=k180αβαβ90360±+=βαk πππ180180πr l ⋅=||α211||22s lr r α==⋅扇形αα=αsin r x =αcos xy =αtan yx =αcot x r =αsec αcsc 正切、余切余弦、正割正弦、余割(3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:8、同角三角函数的基本关系式:9、诱导公式:“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系公式组二 公式组三公式组四 公式组五 公式组六(二)角与角之间的互换公式组一 公式组二公式组三 公式组四 公式组五αααtan cos sin =αααcot sin cos =1cot tan =⋅αα1sin csc =α⋅α1cos sec =α⋅α1cos sin 22=+αα1tan sec 22=-αα1cot csc 22=-αα2k παα±把的三角函数化为的三角函数,概括为:x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππx x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππx x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππx x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππβαβαβαsin sin cos cos )cos(-=+αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=-ααααα2222sin 211cos 2sin cos 2cos -=-=-=βαβαβαsin cos cos sin )sin(+=+ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=-2cos 12sinαα-±=βαβαβαtan tan 1tan tan )tan(-+=+2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=-公式组一sin x ·csc x =1tan x =x x cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=,,,.反.一般地,若在上递增(减),则在上递减(增).2tan 12tan2sin 2ααα+=2tan 12tan 1cos 22ααα+-=2tan 12tan 2tan 2ααα-=42675cos 15sin -== 42615cos 75sin +== 3275cot 15tan -== 3215cot 75tan +== )(x f y =],[b a )(x f y -=],[b a ()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos2sin 2sin sin βαβαβα-+=+2sin2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-②与的周期是.③或()的周期.的周期为2(,如图,翻折无效).④的对称轴方程是(),对称中心();的对称轴方程是(),对称中心();的对称中心().⑤当·;·.⑥与是同一函数,而是偶函数,则.⑦函数在上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,为增函数,同样也是错误的].⑧定义域关于原点对称是具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:)奇偶性的单调性:奇同偶反. 例如:是奇函数,是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若的定义域,则一定有.(的定义域,则无此性质)⑨不是周期函数;为周期函数(是周期函数(如图);为周期函数(的周期为(如图),并非所有周期函数都有最小正周期,例如:.⑩ 有. 11、三角函数图象的作法:x y sin =x y cos =π)sin(ϕω+=x y )cos(ϕω+=x y 0≠ωωπ2=T 2tanx y =ππωπ2=⇒=T T )sin(ϕω+=x y 2ππ+=k x Z k ∈0,πk )cos(ϕω+=x y πk x =Z k ∈0,21ππ+k )tan(ϕω+=x y 0,2πk x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称αtan ,1tan =β)(2Z k k ∈+=+ππβααtan ,1tan -=β)(2Z k k ∈+=-ππβαx y cos =⎪⎭⎫ ⎝⎛++=ππk x y 22sin )(ϕω+=x y )cos()21sin()(x k x x y ωππωϕω±=++=+=x y tan =R x y tan =)(x f )()(x f x f =-)()(x f x f -=-x y tan =)31tan(π+=x y x ∈0)(x f 0)0(=f x ∉0x y sin =x y sin =π=T x y cos =x y cos ==T 212cos +=x y πR k k x f x f y ∈+===),(5)(ab b a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22y b a ≥+22y=|cos2x +1/2|图象1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期,频率,相位初相(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。