平行线性质的综合应用

合集下载

平行线的判定与性质的综合应用 专题练习

平行线的判定与性质的综合应用 专题练习

平行线的判定与性质的综合应用专题练习平行线的判定与性质的综合运用专题一、推理填空题1.已知:如图,DE∥BC,∠ADE=∠XXX,将说明∠1=∠2成立的理由填写完整。

解:因为DE∥BC,所以∠ADE=∠XXX。

又因为DE∥BC,所以DB∥EF。

由平行线性质可知,∠1=∠ADE=∠XXX∠2.2.已知:如图所示,∠1=∠2,∠A=∠3.求证:XXX。

证明:因为∠1=∠2,所以XXX。

又因为∠A=∠3,所以AC∥BD。

由平行线性质可知,AC∥DE。

3.已知:如图,∠XXX∠ADC,BF、DE分别平分∠ABC 与∠ADC,且∠1=∠3.求证:AB∥DC。

证明:因为∠XXX∠ADC,所以∠XXX∠ADC。

又因为BF、DE分别平分∠ABC与∠ADC,所以∠1=∠ABC,∠3=∠ADC。

由∠1=∠3可得,∠2=∠ADC。

由平行线性质可知,AB∥DC。

二、证明题4.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数。

证明:因为AB∥CD,所以∠A+∠D=180º。

又因为DE⊥AE,所以∠ADE=90º。

由∠A=37º可得,∠ADE=53º。

由三角形内角和定理可得,∠D=80º。

5.如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α的度数。

证明:因为AB∥CD,所以∠1+∠α+∠2=180º。

由∠1=100º,∠2=120º可得,∠α= -40º。

由于∠α是角度,所以∠α=320º。

6.如图,XXX,AE平分∠BAD,求证:XXX与AE相交于F,∠XXX∠EAF。

证明:因为XXX,所以∠BAD=∠ACD。

又因为AE平分∠BAD,所以∠XXX∠DAF。

由相邻角的性质可得,∠EAF+∠DAF=∠BAD=∠ACD。

又因为CD与AE相交于F,所以∠CFE+∠EAF+∠ACD=180º。

八年级数学(上册)专题突破平行线性质的综合应用折叠问题试题

八年级数学(上册)专题突破平行线性质的综合应用折叠问题试题

八年级数学上册专题突破平行线性质的综合应用折叠问题试题平行线性质的综合应用:折叠问题一、平行线的性质方法归纳:平行关系数量关系(由“线”推“角”)由“线”的位置关系(平行),定“角”的数量关系(相等或互补)如(1)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为()A.30°B.45°c.60°D.120°解:∵a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∴∠2=∠3=60°。

故选c。

(2)如图,直线c与a、b均相交,当a∥b时,则()A.∠1>∠2B.∠1<∠2c.∠1=∠2D.∠1+∠2=90°解:∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故选:c。

二、折叠问题(翻折变换)1.折叠问题(翻折变换)实质上就是轴对称变换。

2.折叠是一种对称变换,它属于轴对称。

(1)对称轴是对应点的连线的垂直平分线;(2)折叠前后图形的形状和大小不变,位置变化;(3)对应边和对应角相等。

3.对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系。

例题1如图所示。

已知AB∥cD,∠B=100°,EF平分∠BEc,EG⊥EF。

求∠BEG和∠DEG。

解析:根据平行线的性质及角平分线的性质可求出∠BEc、∠BED的度数,再根据EG⊥EF可得出要求的两角的度数。

答案:解:由题意得:∠BEc=80°,∠BED=100°,∠BEF=∠BEc=40°,∴∠BEG=90°-∠BEF=50°,∠DEG=∠BED-50°=50°。

∴∠BEG和∠DEG都为50°。

点拨:解答此类题目要熟悉平行线的性质,注意掌握两直线平行内错角相等,同旁内角互补。

例题2如图所示,将宽为4厘米的纸条折叠,折痕为AB,如果∠AcB=30°,折叠后重叠部分的面积为多少平方厘米?解析:根据翻折不变性,得到∠α=∠cAB,从而求出∠ABc=∠BAc,再得出△AcB为等腰三角形,求出AD和cB 的长,进而求出△ABc的面积。

平行线的性质和判定及其综合运用

平行线的性质和判定及其综合运用

. 22
A
F1 F2 Fn
B E1
E2
Em
几何画板:探究平行线中动点问题.gsp
C
D
当左边有n个角,右边有m个角时: ∠A+∠F1 + ∠ F2 +…+ ∠Fn= ∠E1 +∠E2 +…+ ∠Em+ ∠D
. 16
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
2 F
(平行于同一条直线的两条直线平行).
∴ ∠3= ∠E(两直线平行,同位角相等).
. 20
5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD
的度数.
C
解:∵EF∥AD, (已知)
∴∠2=∠3.(两直线平行,同位角相等) D 1 G
F
又∵∠1=∠2, (已知) ∴∠1=∠3.(等量代换)
解:作∠PCE =∠APC,交AB于E.
∴ AP∥CE ∴ ∠AEC=∠A,∠P=∠PCE.
∴ ∠A+∠P=∠PCE+∠AEC,
A
∵AB∥CD ∴ ∠ECD=∠AEC,
∴∠A+∠P =∠PCE+∠ECD=∠PCD. C
P EB
D
. 9
还可以怎样作辅助线?
例2:如图,AB∥CD,猜想∠BAP、∠APC 、∠PCD 的数量关系,并说明理由.
例1:如图,三角形ABC中,D是AB上一点,E是AC上
一点,∠ADE=60°,∠B = 60°,∠AED=40°.
(1)DE和BC平行吗?为什么?
(2)∠C是多少度?为什么?
D
A E

平行线性质和判定的综合应用

平行线性质和判定的综合应用

平行线性质和判定的综合应用
平行线性质的认知一直是数学和几何学中极其重要的部分。

它可以被用来定义
和分析几何空间中的形状和性质,也可以被用来判断某个几何形式是否是平行线性空间。

有时,甚至可以用它来表示某些非几何情况,如一起事件、一类经济趋势等。

平行线性质的应用是十分多样的,涉及到的领域几乎涵盖了各个学科。

在线性代数领域,平行线性质是其中一种最重要的数学方法,它可以帮助我们更好地理解线性系统;在几何学中,它可以帮助我们更加准确地判断几何形状是否是平行线性空间;而在物理学中,平行线性质也可以用于力学中质量等等。

在工程和实际应用中,平行线性质和判断也发挥了重要作用。

比如在建筑领域,需要准确判断复杂几何形状的平面、立面是否是平行的;在军事领域,军事装备的精确放置也需要正确的平行判断;在精密制造业中,平行线性判断也是基本技巧之一。

总之,平行线性质和判定十分重要,它不仅是数学和几何学领域中非常普遍的
技术,更是诸多工程和实际应用中不可或缺的方法,其在各个领域的应用可谓是多种多样。

平行线的性质与判定综合应用

平行线的性质与判定综合应用

平行线的判定与性质综合应用
类型一:证角相等
1.如图,已知 AB// CD,AD // BC.求证:∠A=∠C.
2.(中考·武汉)如图,点A,B,C,D在一条直线上,CE与BF交于点G,∠A=∠1, CE //DF,试说明:∠E=∠F.
3.如图,AB// CD,AE 平分∠BAD,CD与AE 相交点 F,∠CFE=∠ E.
求证:∠ADC=∠DCE.
类型二:证角平分线
4.如图,AD⊥B C于点D,EG⊥BC于点G,∠E=∠1,求证:AD 平分∠BAC.
5.如图,BE 平分∠ ABC,DE // BC,∠ FDE=∠DEB.求证:DF平分∠ ADE.
类型三:证两直线平行
6.如图 A,B,C三点在同一直线上∠1=∠2,∠3=∠D,试判断 BD与CF的位置关系系,并说明理由.
7.如图,∠D=∠A,∠ B=∠FCB,求证:ED// CF.
8.如图,∠ABC=∠ ACB, BD平分∠ABC, CE平分∠ACB,且∠1=∠F,试猜想 CE与DF的位置关系,并说明理由.
类型四:证两直线垂直
9.如图,AB//CD,EF交AB, CD于点E,F, ∠BEF和∠CFE的平分线相交于点H.求证:EH⊥FH.
10.如图,CD⊥AB于点D,DE // BC,∠1=∠2.
求证:GF⊥AB.
类型五:拐角模型
11.(1)如图, AB// CD, 若∠B=130°,∠C=30°,求∠BEC的度数
(2)如图, AB//CD,探究∠B,∠C,∠BEC三者之间有怎样的数量关系?试说明理由.。

河北省平山县回舍中学七年级数学下册《平行线的性质和判定综合应用》教案

河北省平山县回舍中学七年级数学下册《平行线的性质和判定综合应用》教案
河北省平山县回舍中学七年级数学下册《平行线的性质和判定综合应用》教案
一、教学内容
《平行线的性质和判定综合应用》选自河北省平山县回舍中学七年级数学下册教材第四章第四节。本节课主要包括以下内容:1.复习平行线的性质,如同位角、内错角、同旁内角相等;2.回顾平行线的判定方法,如同位角相等、内错角相等、同旁内角互补;3.综合应用平行线的性质和判定解决实际问题,包括在图形中识别和构造平行线,以及运用平行线性质解决角度和线段相关问题。通过本节课的学习,使学生能够熟练掌握平行线的性质和判定方法,并能将其应用于解决实际问题,提高学生的几何解题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的性质和判定综合应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(例如,铁轨、桌面边缘等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
(2)角度关系的识别:在实际图形中,准确地识别同位角、内错角、同旁内角等角度关系。
难点解析:学生可能在复杂的图形中难以找到对应的角度,需要通过练习和指导来提高识别能力。
(3)综合应用能力:将平行线的性质和判定方法灵活运用于解决实际问题,尤其是涉及多个平行线或复杂图形的问题。
难点解析:学生可能在面对多个平行线或复杂图形时,难以找到解题思路,需要通过案例分析、解题示范等方式提高综合应用能力。
在接下来的教学中,我认为我们需要在以下几个方面进行改进:
1.加强对学生的个别辅导,尤其是对于那些他们克服困难。
2.丰富教学手段,通过多媒体、实物模型等方式,让学生更加直观地理解平行线的性质和判定方法。

平行线性质定理和判定定理的综合应用

平行线性质定理和判定定理的综合应用

6、如图,木工师傅用角尺画出
长方形工件边缘的两条垂线,这两
条垂线是否平行( 是 )。口述理
由。(3分)
理由:
同一平面内,垂
图12
直于同一条直线的
两条直线互相平行。
(二)选择题(每题1分)
7、如图7:当AC//BD时,可以
判断∠A等于哪个角。( c )
A.∠D
B.∠C
C.∠B
D.∠AOC
图7
(二)选择题(每题1分)
C
同位角有
_____∠__1_和__∠__5___
4
A
1
____________,
3
2
B
内错角有
_____∠__3_和__∠__5___
F
D
5
____________ ,
图2
同旁内角有
______∠_2__和_∠__5_
_____________ 。
二、抢答题,分组竞赛(答对加分,答错不扣分)。
2、如图4,如果∠1=∠2,那么 ___A_D__//___B_C__,根据 内__错_角__相__等_,__两_直__线__平_行_______。
求证:AB//DF。
1
C
2
证明:
A E3
B
∵AEB为一直线(已知)
D
F
∴∠1+∠2=180°(邻补角定义)
∵∠1+∠D=180°(已知)
∴∠2=∠D(同角的补角相等)
∴AB//DF(同位角相等,两直线平行)
三、综合应用题
16.已知:如右图,BE平分∠ABC, ∠1=∠2,求证:①∠2=∠3;
②∠4=∠C
8、如图8,已知∠1=∠2 ,且

平行线的性质

平行线的性质

平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.【典型例题】类型一、平行线的性质1.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.【思路点拨】(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.【答案与解析】解:(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.【总结升华】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.举一反三:【变式】(2015•青海)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=.【答案】32°类型二、两平行线间的距离2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、尺规作图3. 如图所示,已知∠α和∠β,利用尺规作∠AOB,使∠AOB=2(∠α-∠β).【答案与解析】作法:如图所示.(1)作∠COD=∠α;(2)以射线OD为一边,在∠COD 的外部作∠DOA,使∠DOA=∠α;(3)以射线OC为一边,在∠COA的内部作∠COE,使∠COE=∠β;(4)以射线OE为一边,在∠EOA内部作∠EOB,使∠EOB=∠β,则∠AOB就是所求作的角.【总结升华】本题考查作一个差角的倍数角,本题的做法有两种:一种可以先做倍数角再做差角,如本题提供的答案;另一种也可以先做差角再做倍数角.4. (苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m 的道路,余下的部分种植花草,求种植花草部分的面积.【思路点拨】因种植花草部分比较分散,且有的是不规则的图形,所以直接求其面积较困难.因小路都是宽度相同的长方形,所以可想到把小路平移到一起,这样种植花草部分将汇集成一个长方形,问题便迎刃而解.【答案与解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).【总结升华】若分步计算则较繁琐.但采用“平移”的手段从整体上把握,问题便迅速求解.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2【答案】B类型四、平行的性质与判定综合应用5.(黄冈调考)如图所示,AB∥CD,分别写出下面四个图形中∠A与∠P,∠C的数量关系,请你从所得到的关系中任选一图的结论加以说明.【思路点拨】过P点作AB的平行线,问题便会迅速得到求解.【答案与解析】解: (1)∠A+∠C=∠P;(2)∠A+∠P+∠C=360°;(3)∠A=∠P+∠C;(4)∠C=∠P+∠A.现以(3)的结论加以证明如下:如上图,过点P作PH∥AB ,因为AB∥CD,所以PH∥AB∥CD.所以∠HPA+∠A=180°,即∠HPA=180°-∠A;∠HPA+∠P+∠C=180°,即180°-∠A+∠P+∠C=180°,也即∠A=∠P+∠C.【总结升华】随着折点的不同,结论也会不同,但解法却如出一辙.都是过折点作平行线求解.举一反三:【变式1】如图,AB∥CD,∠ABG=42°,∠CDE=68°,∠DEF=26°.求证:BG∥EF.【答案】如图,分别过点G、F、E作GP∥AB,FQ∥AB,ER∥CD,又因为AB∥CD,所以AB∥GP∥FQ∥CD∥FQ.∴∠1=42°,∠2=∠3,∠4=∠5,∠5+26°=68°,∴∠5=68°-26°=42°,且∠4=∠5=42°.∴∠1+∠2=42°+∠2;∠4+∠3=42°+∠3.∴∠1+∠2=42°+∠3,即∠BGF=∠GFE.∴BG∥EF.【变式2】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().A.120°B.130°C.140°D.150°【答案】D平行线的性质及尺规作图(提高)巩固练习【巩固练习】一、选择题1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是()A.45°B.135°C.45°或135°D.不能确定2.(2016•安徽模拟)如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60° B.80°C.75° D.70°3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°4.如图,OP∥QR∥ST,则下列等式中正确的是()A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有()A.5个B.4个C.3个D.2个6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°7.如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是()A.3:4 B.5:8 C.9:16 D.1:2二、填空题8.(2016春•江苏月考)如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A=.9.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BEC=________.10.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3=.11.一个人从点A出发向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.12.如图所示,过点P画直线a的平行线b的作法的依据是_.13.如图,已知ED∥AC,DF∥AB,有以下命题:①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)三、解答题14.如图所示,AD⊥BC,EF⊥BC,∠3=∠C,则∠1和∠2什么关系?并说明理由.15.已知如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.16.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.【答案与解析】一、选择题1. 【答案】D;【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的. 2. 【答案】D;【解析】∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选D.3. 【答案】C;【解析】解:如图,∠3=30°,∠1=∠2=30°,∠C=180°-30°-30°=120°.4. 【答案】B;【解析】反向延长射线ST交PR于点M,则在△MSR中,180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.5. 【答案】A【解析】与∠AOE相等的角有:∠DCA,∠ACB,∠COF,∠CAB,∠DAC.6. 【答案】C;【解析】解:∵AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,∴∠BCD =∠ABC =46°,∠FEC +∠ECD =180°,∴∠ECD =180°—∠FEC =26°,∴∠BCE =∠BCD —∠ECD =46°—26°=20°.7. 【答案】B ;【解析】=22+312=10S ⨯⨯⨯阴,=44=16S ⨯正ABCD ,所以ABCD S =10:165:8S =正阴:.二.填空题8. 【答案】70°;【解析】∵AD⊥DF,∴∠ADF=90°.∵∠1=30°,∴∠ADE=90°﹣30°=60°.∵BC∥DE,∴∠ABC=∠ADE=60°,∵△ABC 中,∠ABC=60°,∠2=50°,∴∠A=180°﹣60°﹣50°=70°.故答案为:70°.9.【答案】95°;【解析】如图,过点E 作EF ∥AB .所以∠ABE +∠FEB =180°(两直线平行,同旁内角互补),所以∠FEB =180°-120°=60°.又因为AB ∥CD ,EF ∥AB ,所以EF ∥CD ,所以∠FEC =∠DCE =35°(两直线平行,内错角相等),所以∠BEC =∠FEB +∠FEC =60°+35°=95°.10.【答案】60°;【解析】解:如图所示:∵l 1∥l 2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC 中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.11.【答案】20°;【解析】根据题意画出示意图,可得:∠ABC =80°-60°=20°.12.【答案】内错角相等,两直线平行;13.【答案】①②③④;【解析】由已知可证出:∠A=∠1=∠3=∠EDF,又∠EDF与∠1和∠3互补.三.解答题14.【解析】解:∠1=∠2.理由如下:∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°.∴AD∥EF(同位角相等,两直线平行),∴∠1=∠4(两直线平行,同位角相等).又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行).∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2.15.【解析】解:如图,过点D作DE∥AB交BC于点E.∴∠A+∠2=180°,∠B+∠3=180°(两直线平行,同旁内角互补).又∵∠3=∠1+∠C,∴∠A+∠B+∠C+∠1+∠2=360°,即∠A+∠B+∠C+∠ADC=360°.16.【解析】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,11∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).12。

《平行线的性质和判定的综合应用》教案

《平行线的性质和判定的综合应用》教案

《平行线的性质和判定的综合应用》教案清华附中大兴学校初一数学组教学目标:(1)平行线的性质与判定的综合应用.(2)经历例题的分析过程,从中体会转化的思想和分析问题的方法,在教学活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法.并在证明的过程中体会转化等数学思想; 进一步培养推理能力,体会数学在实际生活中的应用.教学重点:1.综合应用平行线的性质与判定解决问题.2.渗透数学模型的思想,体会转化的思想和分析问题的方法.教学难点:典型例题分析和综合运用.【教学过程】一、知识回顾对顶角的性质:__________________________.平行线的性质:性质1 :两直线平行,________________________.性质2 :两直线平行,________________________.性质3 :两直线平行,_______________________.平行线的判定:判定1: _________________,两直线平行.判定2: _________________,两直线平行.判定3: _________________,两直线平行.判定4:如果两条直线都与第三条直线平行,那么这条直线也互相________.学生活动——根据定理填空,画出相应的几何图形,写出几何语言.设计意图:以填空形式复习所有新学习的知识点,可以结合各定理的几何图形和几何语言进行复习,目的是加深对定理的认识和熟练掌握.二、例题讲解【例1】(1)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.解:∵∠1=72°,∠2=72°(已知)∴_______________∴_______________(______________________)∴_______________(______________________)又∵∠3=60°(已知)∴∠4=_______________.(2)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠5的度数.(3)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠6的度数.学生活动——认真分析条件,用彩色笔在图中标注,独立完成第1小题填空,和第2小题规范过程的书写.用多种方法解决第三题并说出做每步推理的依据. 教师活动——以填空形式给出第一题,注重理由填写,引导学生用多种方法解决第三题.设计意图:第一套题组非常简单,是平行线性质与判定最简单的综合运用,第三小题加入了对顶角和邻补角知识点,强化综合分析的方法,强化推导和书写的规范性.提炼平行线的性质与判定定理间的关系,形成解题策略.三、深入探究【例2】(1)已知:如图,DG ∥BC ,∠1=∠2求证:EF ∥CD证明:∵DG ∥BC (已知)∴∠1=_______(________________________) 又∵∠1=∠2(已知)∴____________ ∴EF ∥CD.(________________________)(2)已知:如图,∠ADG=∠B ,∠1=∠2求证:∠BEF=∠BDC.21EG D AB C21EGD ABC(3)已知:如图,CD ⊥AB ,EF ⊥AB,∠1=∠2求证:∠AGD=∠ACB.学生活动——独立完成对第1小题填空的填写,和老师一起思考、分析、讨论第二题,完成逻辑推理和书写过程.结合前两道题的思考尝试独立解决第三题. 教师活动——教师主要以讲第二题为主,画推导图,从已知条件出发,层层推理,直到得出结论.设计意图:如果直接给出第三题,对于初学平行线性质和判定的学生来说太难了,通过前两题的分析,逐步递进,化简难度.四、拓展提高【问题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?解读:已知条件:如图,AB ∥CD ,∠1=∠2,∠3=∠4.猜想:(1)∠2和∠3有什么关系,并说明理由;(2)试说明:PM ∥NQ .解:(1)答:∠2____∠3.理由如下: ∵ AB ∥CD ,∴ ∠2____∠3(两直线平行,_______________) 学生活动——将实际问题转化为几何问题,用所学几何知识来解决.教师活动——引导学生如何把实际问题转化为几何问题,并运用所学知识来解决.设计意图:提升学生利用所学几何知识解决实际问题的意识,培养学生将实际问题转化为数学知识及几何语言的能力,拓展学生应用能力.21EGDB C五、自我评价(1)平行线的性质与判定的区别是什么?(2)在解决具体问题过程中,你能区别什么时候需要使用平行线的性质,什么时候需要使用平行线的判定吗?。

《平行线的性质和判定及其综合运用》教案 (公开课)2022年人教版数学

《平行线的性质和判定及其综合运用》教案 (公开课)2022年人教版数学

第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,表达民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决方法〔一〕重点平行线的性质公理及平行线性质定理的推导.〔二〕难点平行线性质与判定的区别及推导过程.〔三〕解决方法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习稳固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤〔一〕明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.〔二〕整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习稳固新知.〔三〕教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题〔出示投影片1〕.1.如图1,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.2.如图2,〔1〕,那么与有什么关系?为什么?〔2〕,那么与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又效劳于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形〔见图4〕,当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,答复出不管怎样画截线,所得的同位角都相等.根据学生的答复,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的根底上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手答复.【教法说明】在前面复习引入的第2题的根底上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也鼓励了学生的学习兴趣.教师根据学生答复,给予肯定或指正的同时板书.[板书]∵〔〕,∴〔两条直线平行,同位角相等〕.∵〔对项角相等〕,∴〔等量代换〕.师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手答复以下问题.教师根据学生表达,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵〔〕,∴〔两直线平行,同位角相等〕.∵〔邻补角定义〕,∴〔等量代换〕.即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵〔见图6〕,∴〔两直线平行,同位角相等〕.∵〔〕,∴〔两直线平行,内错角相等〕.∵〔〕,∴.〔两直线平行,同旁内角互补〕〔板书在三条性质对应位置上.〕尝试反响,稳固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习〔出示投影片2〕:如图7,平行线、被直线所截:图7〔1〕从,可以知道是多少度?为什么?〔2〕从,可以知道是多少度?为什么?〔3〕从,可以知道是多少度,为什么?【教法说明】练习目的是稳固平行线的三条性质.变式训练,培养能力完成练习〔出示投影片3〕.如图8是梯形有上底的一局部,量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师防止包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,标准学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵〔梯形定义〕,∴,〔两直线平行,同旁内角互补〕.∴.∴.变式练习〔出示投影片4〕1.如图9,直线经过点,,,.〔1〕等于多少度?为什么?〔2〕等于多少度?为什么?〔3〕、各等于多少度?2.如图10,、、、在一条直线上,.〔1〕时,、各等于多少度?为什么?〔2〕时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言表达,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,假设学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.〔四〕总结、扩展〔出示投影片1第1题和投影片5〕完成并比较.如图11,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.学生活动:学生答复上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.〔出示投影6〕学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的根底上上升到理性认识,总结出平行线性质与判定的不同.稳固练习〔出示投影片7〕1.如图12,是上的一点,是上的一点,,,.〔1〕和平行吗?为什么?图12〔2〕是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了稳固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业〔一〕必做题课本第99~100页A组第11、12题.〔二〕选做题课本第101页B组第2、3题.作业答案A组11.〔1〕两直线平行,内错角相等.〔2〕同位角相等,两直线平行.两直线平行,同旁内角互补.〔3〕两直线平行,同位角相等.对顶角相等.12.〔1〕∵〔〕,∴〔内错角相等,两直线平行〕.〔2〕∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,同位角相等〕.B组2.∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,内错角相等〕.∵〔〕,∴〔两直线平行,同位角相等〕,〔同上〕.又∵〔已证〕,∴.∴.又∵〔平角定义〕,∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

平行线的判定和性质(综合篇)

平行线的判定和性质(综合篇)

平行线的判定和性质(综合篇)一、重点和难点:重点:平行线的判定性质。

难点:①平行线的性质与平行线的判定的区分②把握推理论证的格式。

二、例题:这部份内容所涉及的题目主若是从已知图形中识别出对顶角、同位角、内错角或同旁内角。

解答这种题目的前提是熟练地把握这些角的概念,关键是把握住这些角的大体图形特点,有时还需添加必要的辅助线,用以突出大体图形的特点。

上述类型题目大致可分为两大类。

一类题目是判定两个角相等或互补及与之有关的一些角的运算问题。

其方式是“由线定角”,即运用平行线的性质来推出两个角相等或互补。

另一类题目主若是“由角定线”,也确实是依照某些角的相等或互补关系来判定两直线平行,解此类题目必需要把握好平行线的判定方式。

例1.如图,已知直线a,b,c被直线d所截,假设∠1=∠2,∠2+∠3=180°,求证:∠1=∠7分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。

∠1与∠7是直线a和c被d所截得的同位角。

须证a//c。

法(一)证明:∵d是直线(已知)∴∠1+∠4=180°(平角概念)∵∠2+∠3=180°,∠1=∠2(已知)∴∠3=∠4(等角的补角相等)∴a//c(同位角相等,两直线平行)∴∠1=∠7(两直线平行,同位角相等)法(二)证明:∵∠2+∠3=180°,∠1=∠2(已知)∴∠1+∠3=180°(等量代换)∵∠5=∠1,∠6=∠3(对顶角相等)∴∠5+∠6=180°(等量代换)∴a//c (同旁内角互补,两直线平行)∴∠1=∠7(两直线平行,同位角相等)。

例2.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。

分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而∠C=∠A于是可得∠A=∠EBC。

平行线的性质与判定的综合应用教学设计

平行线的性质与判定的综合应用教学设计

课题 5.3.1平行线的性质授课人教学目标知识技能使学生理解平行线的性质,能知道平行线的性质与判定的区别,能初步利用平行线的性质进行有关计算.数学思考让学生经历观察、猜想、操作、交流、归纳、推理等活动,培养学生的概括和逻辑思维能力.问题解决使学生体会观察、猜想、实验、归纳、验证的研究问题方法.情感态度让学生经历观察、猜想、操作、交流、归纳、推理等活动,感受数学活动充满了探索性和创造性,激发学生乐于探究的热情.教学重点平行线的性质.教学难点平行线的性质及性质与判定的区别.授课类型新授课课时教具三线相交模型(续表)教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】图5-3-13如图5-3-13,已知公路c分别与两条互相平行的公路a,b相交.情景导入增强学生的直观效果,激发学生的求知欲.两辆汽车在公路a,b上同向行驶拐弯后上公路c 又同向行驶,那么两辆汽车行驶路径所夹的角有什么数量关系?活动二:实践探究交流新知【探究1】两直线平行,同位角相等图5-3-14问题1:如图5-3-14,直线a∥b,直线c与a,b相交,图中∠1与∠2之间有什么关系?你有什么猜想?学生画出图形,根据图形观察、讨论,教师可以启发学生用量角器量角的大小;或剪一组同位角中的一个,把它贴到另一个上面,观察两个角是否重合.鼓励学生尽可能多的利用其他方法进行探索.问题2:如图5-3-15,直线a∥b,直线c与a,b相交,图中其他同位角之间有什么关系?图5-3-15图5-3-16问题3:如图5-3-16,在图5-3-16中再任意画一条直线d与a,b相交,选择一对同位角比较它们的数量关系,你的猜想还成立吗?由此你能得出什么结论?师生共同归纳平行线的性质1:两直线平行,同位角相等.【探究2】两直线平行,内错角相等;两直线平行,同旁内角互补图5-3-17问题1:如图5-3-17,如果a∥b,直线c与a,b相交,那么∠2与∠3,∠2与∠4在数量上有什1.提出问题激发学生的探究欲望,学生亲手验证结论,体验数学活动充满探索性,体验解决问题的多样性.2.根据平行线的性质一推理证明性质2,3,再利用探究1的思路与方法对平行线的另两条性质进行验证,以加深对性质的认识.么关系?并说明理由.以小组为单位探讨推导过程,由小组推荐一人在班上交流,评出叙述最好的两名同学板书说理过程,教师给予评析,引导学生进行初步的逻辑推理.问题2:根据以上结论,你能说出平行线还有什么性质吗?引导学生类比性质1,归纳出平行线的性质2、性质3.问题3:你能动手验证一下平行线的性质2与性质3吗?学生独立思考,动手操作验证平行线的性质2与性质3.最后师生共同总结:平行线的性质2:两直线平行,内错角相等.平行线的性质3:两直线平行,同旁内角互补.(续表)活动三:开放训练体现应用【应用举例】例1图5-3-18是一块梯形铁片,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?图5-3-18解:因为梯形上、下两底AB,DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B和∠C互补.于是∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.利用新知解决问题,根据相关性质进行推理.图5-3-19【拓展提升】例2光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时会发生折射.由于折射率相同,所以在水中平行的光线,在空气中也互相平行,若∠1=45°,∠2=122°,求图中其他角的度数.巩固新知,在复杂图形中确定各种角的位置关系.活动四:课堂总结反思【当堂训练】课本第20页练习第1,2题.课后作业:课本第22页习题5.3第1,2,3,4,5题.进一步巩固平行线的性质.【板书设计】5.3.1平行线的性质通过知识框图浓缩本节知识,易于学生理解.【教学反思】①[授课流程反思]由平行公路上的汽车同向转弯后两辆汽车行驶路径所夹的角的数量关系引入课题——平行线的性质,体现了数学来源于生活的理念,从而激发学生的探究欲望.授课过程中鼓励学生通过多角度合作探究完成结论的验证与证明,既开拓了学生的思维,又提高了学生的合作探究的意识与能力.②[讲授效果反思]平行线的性质把图形间的数量关系与位置关系紧密结合在一起,通过本节授课学生基本掌握了平行线的三条性质,能结合图形运用三条性质进行简单的推理及计算.③[师生互动反思]________________________________________________________________________④[习题反思]好题题号回顾反思,找出差距与不足,形成知识及数学体系,更进一步提升教师教学能力.。

人教版七年级数学下册试题:第五章 平行线的性质和判定的综合应用 专题

人教版七年级数学下册试题:第五章 平行线的性质和判定的综合应用 专题

平行线的性质与判定的综合应用类型一平行线的性质与判定直接应用1.如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为( D )A.30° B.50° C.80° D.100°2.如图,AB∥CD,那么(C )A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD 与∠D互补3.如图,AB∥CD,直线F分别与AB、CD交于点G、H、GM⊥EF、HN⊥EF,交AB 于点N、∠1=50°、、1)求∠2的度数;、2)求∠HNG的度数【详解】(1(∵AB∥CD(∴∠EHD=∠1=50°(∴∠2=∠EHD=50°((2(∵HN⊥EF(∴∠NHG=90°∵∠NGH=∠1=50°(∴∠HNG=90°(50°=40°(类型二平行线的性质与判定的实际应用(1)、直角三角板与平行线问题4.将直角三角板与直尺按如图方式摆放,则∠1+∠2等于( D )试卷第2页,总8页A . 60°B . 70°C . 80°D . 90°5.如图,已知a//b ,小明把三角板的直角顶点放在直线b 上.若∠1=30∘,则∠2的度数为( C )100∘ B . 110∘ C . 120∘ D . 140∘7.已知直线m//n ,将一块含30∘角的6、直角三角板ABC 按如图方式放置 (∠ABC =90∘),其中A 、B 两点分别落在直线m 、n 上,若∠2=52∘,则∠1的度数为__22°____、(2)、运动问题(折叠、平移等)7.将一条两边沿平行的纸带如图折叠,若∠1=62∘,则∠2等于( B )A . 62∘B . 56∘C . 45∘D . 30∘8.如图所示,把长方形ABCD 沿EF 对折,若∠AEF=110°,则∠1=___40__°.9.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C、D,直线l 3上有一点P.(1)如图1,点P 在C、D 之间运动时,∠PAC、、APB、、PBD 之间有什么关系?并说明理由。

平行线判定和性质的应用课件

平行线判定和性质的应用课件

条件
图形
结论.
定义、判定
定义、判定
知3-练
• 1 (202X·十堰)如图,AB∥EF,CD⊥EF于点D, 若∠ABC=40°,则∠BCD等于( ) •A.140° •B.130° •C.120° •D.110°
知3-练
2 如图,如果AB∥DE,∠1=∠2,那么AE∥DC, 请说明理由.
从图形中得出结论是图形的性质;而从具备什么条 件推理出图形是图形的判定;特别说明,图形的定义既 是图形的判定,也是图形的性质;即:
所以∠ABC=∠BCD(两直线平行,内错角相等).
因为∠1=∠2(已知),
所以∠ABC-∠1=∠BCD-∠2(等式的性质),
即∠PBC=∠BCQ.
所以PB∥CQ(内错角相等,两直线平行).
所以∠P=∠Q(两直线平行,内错角相等).
总结
知3-讲
一个数学问题的构成含有四个要素:题目的条件、 解题的根据、解题的方法、题目的结论,如果题目所 含的四个要素解题者已经知道或者结论虽未指明,但 它是完全确定的,这样的问题就是封闭性的数学问题.
例2 •如图,将一张长方形的纸片沿EF折叠后,点D, •C分别落在D′,C′位置上,ED′与BC的交点为点 •G,若∠EFG=50°,求∠EGB的度数.
知1-讲
导引:本题根据长方形的定义得出其对边是平行的, 利用平行线的性质:两直线平行,内错角相等, 先求∠DEF=50°, 再根据折叠前后的对应角相等求得∠D′EF=50°, 然后根据平角的定义得∠AEG=80°, 最后根据两直线平行,同旁内角互补求得∠EGB =100°.
知1-讲
•所以∠AEG=180°-∠DEF-∠D′EF=80°(平 • 角的定义). •又因为AD∥BC, •所以∠AEG+∠EGB=180°(两直线平行,同旁 内 • 角互补), •即∠EGB=180°-∠AEG=180°-80°= 100°.

(完整版)《平行线的判定与性质的综合运用》教学课件

(完整版)《平行线的判定与性质的综合运用》教学课件

6.如图,AB,CD,EF,MN均为直线,∠2=∠3=70°, ∠GPC=80°,GH平分∠MGB,求∠1的度数.
解:∵∠2=∠3=70°(已知), ∴AB∥CD(内错角相等,两直线平行), ∴∠BGP=∠GPC(两直线平行,内错角相等), ∵∠GPC=80°(已知), ∴∠BGP=80°(等量代换), ∴∠BGM=180°-∠BGP=100°(平角的定 义),
(完整版)《平行线的判定与性质的综合运用》教学课件
平行线的性质
第2课时 平行线的判定与性质的综合运用
导入新课
讲授新课
当堂练习
课堂小结
三、平行线的基本性质3
思考:类似地,已知两直线平行,能否得到同旁内角
之间的数量关系? 如图,已知a//b,那么2与4有什么关系呢?为什么?
解: ∵a//b (已知),
A.80° B.65° C.60°
D.55°
3.如图,BD⊥AB,BD⊥CD,则∠a的度 数是( A ) A.50° B.40° C.60° D.45°
4.已知AB∥DE,试问∠B,∠E,∠BCE有什么关系.请
完成填空:
A 解:过点C作CF∥AB, 则_∠__B__=_∠__1__ ( 两直线平行,内错角相等 ). C
B
1
F
2
又∵AB∥DE,AB∥CF,
D
E
∴__C_F__∥__D_E____(平行于同一直线的两条直线平行 ).
∴∠E=∠__2__(两直线平行,内错角相等).
∴∠B+∠E=∠1+∠2(等式的性质),
即∠B+∠E=∠BCE.
5.已知:如图,AD⊥BC于D,EG⊥BC与G, ∠E=∠3,试问:AD是∠BAC的平分线吗?若是, 请说明理由.

平行线的判定与性质(含答案)-

平行线的判定与性质(含答案)-

22.平行线的判定与性质知识纵横在同一平面内,不相交的两条直线叫做平行线(parallel lines).角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、•数量关系角等角的知识。

当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用。

与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1.由角定角 已知角的关系−−−→判定两直线平行−−−→性质确定其他角的关系.2.由线定线 已知两直线平行−−−→性质角的关系−−−→判定确定其他两直线平行.例题求解【例1】如图,AB ∥CD,AC ⊥BC,图中与∠CAB 互余的角有_______个.(2003年安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断。

解:3个 提示:分别为∠BCD,∠ABC,∠EBF. 【例2】如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( • ).A.4对B.8对C.12对D.16对 (第11届“希望杯”邀请赛试题) 思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解入手。

解:选D 提示:原图形可分解出如下8个基本图形.BFDG E C AB FHD GECA【例3】如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,求证:AB∥EF思路点拨解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB或CD平行的直线。

解:过C点作CG∥AB,过点D作DH∥AB,可证得∠HDE=10°=∠DEF,故HD∥EF,•又HD∥AB,所以AB∥EF.【例4】如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线.•求证:∠EDF=∠BDF.思路点拨综合运用角平分线、垂直(vertical)的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.解:提示:由DF∥CE得,∠BDF=∠BCE,∠FDE=∠DEC,由AC∥DE得,∠DEC=∠ECA【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?B F DE CAB FDECAB (a)DE CA B (b)DEC A(c)B D EC A B (d)F DG E C A F 2E nE 2F n-1F 1B(e)DE 1CA思路点拨:已知AB ∥CD,连结AB 、CD 的折线内折或外折;或改变E 点位置、•或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间。

《平行线的性质和判定及其综合运用》教案

《平行线的性质和判定及其综合运用》教案

板书设计
5.3.1 平行线的性质(2)
错误!两直线平行
教学设计流程 图
导入新课
明确目标
研读课文
知识体验
基础训练
强化训练
归纳小结
课堂检测
教学反思
本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“ ∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻 辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容 的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于 学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别 和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已 知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平 行,得出角的关系,就是平行线的性质
教学目标 教学重难点
1.分清平行线的性质和判定.
2.已知平行用性质,要证平行用判定.
3.能够综合运用平行线性质和判定解题.
重点
平行线性质和判定综合应用
难点
平行线性质和判定灵活运用
本节课我的设计理念是:重组教材,恰当的创设情境,激发学生对教学内容
教学策略与
设计说明
的好奇心和 求知欲,通过独立思考,不断发问和提出问题,让学生在探究
授权书
本人对执教课例《初中数学
人教版
5.3.1平行线的性质
第2课时》拥有全部著作权,同意授权北京继教网教育科技发展有限公司永久使用。使用范
围:北京继教网教育科技发展有限公司所有经营范围(包括但不限于:其他专家主讲课程 中作为课例使用,在资源平台中展示等)。
本授权书自本人签字之日起生效。 授权人(签字): 2018 年 4 月 26 日
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线相交线
教学目标
1.经历基础知识梳理的过程,进一步体会数学知识中数量关系和位置关系的一个有效数学模型
2.能够利用基础知识解答一些简单问题,帮助学生认识到运用基础知识解答一些简单问题的关键是理解定义、定理蕴含的关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;
3.经历运用“平行线的判定方法”和“平行线的性质”解决有关几何问题过程,在活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法。

并在证明的过程中体会转化等数学思想;
教材分析
本节课是相交线与平行线的复习课,是对《平行线与相交线》的整个单元的知识进行梳理和复习,故以梳理、巩固基础知识为起点,对邻补角、对顶角以及两直线平行知识进行梳理,提升学生的基本应用技能。

故教学呈现仍注重以实践归纳为主,从简单的问题入手,通过学生的自主体验,结合说理推证的途径,逐步提炼来实现对本章相关知识的掌握,解决在学生中存在的易错点与混淆点,逐步加深对建模思想的理解.
学生分析
学生已经完整的学习了《平行线与相交线》的整个单元的知识,但对基本概念和基本技能的掌握方面不够系统,故教学要引导学生通过操作、观察、归纳来获取知识,体会用动态的观点来看待静态的图形,感知几何变换的思想. 采用的是“操作、探究、启发、交流、引导”的教学方法。

根据学生的认知规律,创设符合学生实际的情境,引导学生自主探索,积极参与课堂活动,培养学生的探究能力. 对推理能力的培养要有一个循序渐进的过程,要鼓励学生用自己的语言说明理由,在书写格式上不作统一要求,可以用自然语言,可以结合图形进行说明,可以用箭头等形式表明自己的思路,也可以用数学符号语言表示说理、简单推理的过程。

总之,要注意逐步提高、不要急于要求学生用数学符号语言书写.
重点难点
教学重点:
1.相交线平行线知识的综合应用;
2. 渗透数学模型的思想,引导学生构建知识结构图. 教学难点:典型例题和综合运用.
教学过程
2.如图,AB∥DE
1)度量并计算∠A+∠
的度数;
2)你发现了什么?能说明其合理性吗?
3. 如图,若AB//CD
定∠B、∠D与∠BED的大小关系吗?说说你的看法.
应用拓展:。

相关文档
最新文档