2015年全国高中数学联赛试题及解答(一试、加试)

合集下载

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

2015年全国 数学联赛江苏赛区 初赛参考答案和评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 . 解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 . 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)和椭圆x 2b 2+y 2c 2=1有相同的离心率e ,则e 的值是 .解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c 2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 和平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是 .解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }和B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素A BCDE(第6题图) A B 1C 1D 1(第6题图)A CDE OA B 1C 1D 1之积的值是 .解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为 .解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 . 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 . 解:区域D 中整点的个数为1+2+3+…+10=55. 二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n)1-q 2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.(第9题图) 12 2015(第9题图) e c d ab1 2 2015x综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线和△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆. 证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA , 所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都和直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴和直线l 的角平分线上.若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0. ……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分A BCDP(第12题图)E A BC DP (第12题图)EFxOyO 1l(第13题图) O 2P所以 k =2t 1-t2=11-14=43,直线l :y =43x . ……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个错误!未指定书签。

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

20XX 年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是.解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是.解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是. 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是.解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c 2=1有相同的离心率e ,则e 的值是.解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是.(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是.解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为.解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为. 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为. 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n)1-q 2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA ,ABCDP(第12题图)EA BC DP (第12题图)EF所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0.……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分 所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t2=11-14=43,直线l :y =43x .……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2,①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得x 1+x 2=12[k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。

2015年全国高中数学联赛试卷解析汇报

2015年全国高中数学联赛试卷解析汇报

2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。

分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q 满足条件BQ DP =,则PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t P Q t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2s in s in =+b a ωω知,1s in s in ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。

2015年高中数学竞赛试题精选及答案

2015年高中数学竞赛试题精选及答案

已知1111ABCD A BC D -是一个棱长为1的正方体,1O 是底面1111A B C D 的中心,M 是棱1BB 上的点,且:2:3S S =11△DBM△O B M ,则四面体1O ADM 的体积为748(江苏2007夏令营)在正方体1111D C B A ABCD -中,P 是侧面C C BB 11内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是抛物线 已知x 为锐角,则22cos sin33=+x x 是4π=x 的(充要条件)同信一寝室的四名女生,她们当中有一人在修指甲,一人在看书,一人在梳头发,另一人在听音乐。

①A 既不在修指甲,也不在看书;②B 既不在听音乐,也不在修指甲;③如果A 不在听音乐,那么C 不在修指甲;④D 既不在看书,也不在修指甲;⑤C 既不在看书,也不在听音乐。

若上面的命题都是真命题,问她们各在干什么?答:ABCD 分别在听音乐;看书;修指甲;梳头发 已知)1(3tan m +=α,且βαββα,,0t a n )t a n (t a n 3=++⋅m 为锐角,则βα+的值为3π=︒-︒︒-︒︒+)5tan 5(cot 10sin 20sin 220cos 12330cos =︒=函数d cx bx ax x x f ++++=234)(,若3)3(,2)2(,1)1(===f f f ,那么)4()0(f f +的值为(28 )在ABC ∆中,角A 、B 、C 所对的边分别为c b a ,,,且31cos =A 。

(1)求A CB 2cos 2sin2++的值;(2)若3=a ,求bc 的最大值。

(-1/9; 9/4) 若m 、{}22101010n x x aa a ∈=⨯+⨯+,其中{}1234567i a ∈,,,,,,,012i =,,,并且 636m n +=,则实数对(,)m n 表示平面上不同点的个数为( 90 )圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2.斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===.求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离. 515满足20073+++=x x y 的正整数数对(x ,y )恰有两对设集合M={-2,0,1},N={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有)()(x xf x f x ++是奇数,则这样的映射f 的个数是(45)将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若和中没有一个数字是偶数,则称这个数为“奇和数”。

2015年全国高中数学联赛试题及答案详解(B卷)

2015年全国高中数学联赛试题及答案详解(B卷)
k, l(1 ≤ k < l ≤ m) ,使得 ak > al ,则称 a1, a2 ,⋅⋅⋅, am 是一个“好排列”,试确定所有好排列
的个数。
2015 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明:
1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不要增加其他中间档次.
则 OAi + OAj ≥ 1的概率为
二、解答题
9:(本题满分 16 分)数列 {an}满足 a1 = 3, 对任意正整数 m, n ,均有 am+n = am + an + 2mn (1)求 {an}的通项公式;
∑k
(2)如果存在实数 c 使得
1 < c 对所有正整数 k 都成立,求 c 的取值范围
k 1 k 3
的半径 2 ,故
2.
k2 1
结合图像,应取较小根 k 2 3 .
M(1,1) Γ
O
x
7. 在平面直角坐标系 xOy 中, P 是椭圆 y2 x2 1 上的一个动点,点 A, B 的坐标分 43
别为 (1, 1), (0, 1) ,则 PA PB 最大值为
1)
100
.
a1
a1
16
解得 kmin 34 .
6. 设 k 为实数,在平面直角坐标系 xOy 中有两个点集 A (x, y) | x2 y2 2(x y) 和

2015年全国高中数学联赛试题及答案详解(A卷)

2015年全国高中数学联赛试题及答案详解(A卷)

(i ) 5 2 ,此时 1 且 5 ,无解;
22
2
4
(ii) 5 9 2 ,此时有 9 5 ;
件等价于:存在整数 k, l (k l) ,使得
2k 2l 2 .

2
2
当 4 时,区间[, 2]的长度不小于 4 ,故必存在 k, l 满足①式.
当 0 4 时,注意到[, 2] (0, 8) ,故仅需考虑如下几种情况:


答案: 2015 1007i .
解:由已知得,对一切正整数 n ,有
zn2 zn1 1n 1i zn 1 ni 1n 1i zn 2 i , 于是 z2015 z1 10072 i 2015 1007i .
4. 在矩形 ABCD 中, AB 2, AD 1 ,边 DC 上(包含点 D 、 C )的动点 P 与 CB 延 长线上(包含点 B )的动点 Q 满足 DP BQ ,则向量 PA 与向量 PQ 的数量积 PA PQ 的
6. 在平面直角坐标系 xOy 中,点集 K (x, y) x 3y 6 3x y 6 0所对
应的平面区域的面积为

答案:24.
解:设 K1 (x, y) x 3y 6 0 .先考虑 K1
在第一象限中的部分,此时有 x 3y 6 ,故这些点对
应于图中的 OCD 及其内部.由对称性知, K1 对应的 区域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 (x, y) 3x y 6 0 ,则 K2 对
应的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知, K 所对应的平面区域是被

2015年全国高中数学联赛试题答案

2015年全国高中数学联赛试题答案
1≤i ≤ k
…………………20 分
包含 a1 的集合至少有
n− s −t 个.又由于 A1 ⊆ Ci ( i = 1, , t ) ,故 C1 , C2 , , Ct 都 k
n− s −t ,即在剩下的 n − s − t 个集合中, k
包含 a1 ,因此包含 a1 的集合个数至少为
n− s −t n − s + (k − 1)t n − s + t (利用 k ≥ 2 ) = +t ≥ k k k n . ……………40 分 ≥ (利用 t ≥ s ) k
n ≤ (n + 1) ∑ห้องสมุดไป่ตู้ai2 , i =1 所以①得证,从而本题得证.
…………………40 分
证法二:首先,由于问题中 a1 , a2 , , an 的对称性,可设 a1 ≥ a2 ≥ ≥ an .此 n 外,若将 a1 , a2 , , an 中的负数均改变符号,则问题中的不等式左边的 ∑ ai 不 i =1 减,而右边的 ∑ ai2 不变,并且这一手续不影响 ε i = ±1 的选取,因此我们可进一
2t u − 1 2u − 1 m 1 2αt ⋅ 1 2αt ⋅ 1 + 2u + + 2(t −1)u ) =+ =+ ( q q q
…………………10 分
n + 2 ∑ aj n = j +1 2
2
2
n 2 n n n 2 2 ≤ 2 ∑ ai + 2 n − ∑ a j (柯西不等式) …………30 分 2 i =1 2 = n j +1 2 n n 2 2 n + 1 n n n + 1 2 a j (利用 n − = = 2 ∑ ai + 2 ) ∑ 2 2 2 i =1 2 = n j +1 2 n n 2 2 2 ≤ n ∑ ai + (n + 1) ∑ a j (利用 [ x ] ≤ x ) n = i =1 j +1 2

2015年全国高中数学联赛试题及答案解析

2015年全国高中数学联赛试题及答案解析



5. 已知点 P (1, 2, 5) 是空间直角坐标系 O xyz 内一定点,过 P 作一平面与三坐标轴的正半轴分别交于 A, B, C 三点,则所有这样的四面体 OABC 的体积的最小值为 . x y z 解:设此平面的方程为 1 , a, b, c 0 分别是该平面在 x, y, z 轴上的截距,又点 P 在平面 ABC 内, a b c 3 1 2 5 1 10 1 1 2 5 1 1 2 5 1 2 5 ,即 ,得 VOABC abc 45 .当 , 故 1 ,由于 1 3 a b c a b c 27 abc a b c 3 a b c 6 即 (a, b, c) (3, 6,15) 时, VOABC 的最小值为 45.
2015 年全国高中数学联赛模拟试题 04 第一试参考解答 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 集合 A = {x, y} 与 B = {1, log 3 ( x + 2)} 恰有一个公共元为正数 1 + x ,则 A B = 解:由于 1 + x ¹ x ,故 1 + x = y .由 log 3 ( x + 2) ¹ 1 知 x ¹ 1 ,又因为 1 + x > 0 ,所以 3

2

1 tan tan
tan tan
tan .
2 tan 1 3tan 2
2 1 3tan tan

3 , u 的最大值为 . 6 3
4.在单调递增数列 an 中,已知 a1 2 , a2 4 ,且 a2 n 1 , a2 n , a2 n 1 成等差数列, a2 n , a2 n 1 , a2 n 2 成 解:因为 an 单调递增, a1 0 ,所以 an 0 .因为 a2 n 1 , a2 n , a2 n 1 成等差数列, a2 n , a2 n 1 , a2 n 2 成等 比数列,所以 所以 a2 n 所以 a2 n 等比数列, n 1, 2,3, .那么, a100 _________.

2015年全国高中数学联合竞赛一试试题(A卷)解析

2015年全国高中数学联合竞赛一试试题(A卷)解析

33 ,
.
22
于是每个小三角形的面积为
1 2
×4×
3 2
= 3,
所以阴影部分的面积为 3 × 8 = 24.
y
33 A,
22
O
x
7. 设 ω 为正实数,若存在 a, b(π ⩽ a < b ⩽ 2π),使得 sin ωa + sin ωb = 2,则 ω
的取值范围是
.
解答
依题意,存在
k, l

Z,使得
设 A(x1, y1), B(x2, y2), F1(−1, 0),则
y1
+
y2
=
2km −k2 + 2,
y1y2
=
m2 − 2. k2 + 2
且 ∆ = 4k2m2 − 4(k2 + 2)(m2 − 2) = 8(k2 − m2 + 2) > 0.
于是
kAF1
+
kBF1
=
y1 x1 +
1
+
y2 x2 +

1 2
=
1007

z2015
=
2015
+
1007i.
4. 在矩形 ABCD 中,AB = 2, AD = 1,边 DC 上 (包含点 D、C) 的动点 P 与
CB 延长线上 (包含点 B) 的动点 Q 满足 |D# P»| = |B# Q»|,则向量 P# A» 与向量
#» PQ
的数量积
#» #» PA · PQ
为满足 d = 0 的 P 类数的个数,记 A 为满足 d = 0 的 P 类数的集合.

2015年全国高中数学联合竞赛试题及解答.(A卷)

2015年全国高中数学联合竞赛试题及解答.(A卷)

2k 2 1 m2 .②
由直线
AF1, l, BF1
的斜率
y1 , k, y2 x1 1 x2 1
依次成等差数列知,
y1 x1 1
y2 2k x2 1
,又
y1 kx1 m, y2 kx2 m ,所以 (kx1 m)(x2 1) (kx2 m)(x1 1) 2k(x1 1)(x2 1) ,化简并
棱两两异面的取法数为 4×2=8,故所求概率为 8 2 . 220 55
2015A6、在平面直角坐标系 xOy 中,点集 K (x, y) | ( x 3 y 6)( 3x y 6) 0 所对应的平
面区域(如图所示)的面积为
◆答案: 24 ★解析:设 K1 {(x, y) || x | | 3y | 6 0} . 先考虑 K1 在第一象限中的部分,此时有 x 3y 6 ,故这些点
对应于图中的△OCD 及其内部.由对称性知, K1 对应的区
域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 {(x, y) || 3x | | y | 6 0} ,则 K2 对应
的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知,K 所对应的平面区域是被 K1 、K2
1 sin
cos4

cos 2 sin 2 sin
sin 2

(1 sin )(1 cos2 )

2 sin
cos2

2.
2015A 3、已知复数数列 zn 满足 z1 1,zn1 zn 1 ni (n 1,2,) ,其中 i 为虚数单位,zn 表

2015年全国高中数学联赛试题及解答(一试、加试)

2015年全国高中数学联赛试题及解答(一试、加试)

二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过程 或演算步骤.
9.(本题满分 16 分)若实数 a, b, c 满足 2a 4b 2c , 4a 2b 4c ,求 c 的最小值. 解:将 2a , 2b , 2c 分别记为 x, y, z ,则 x, y, z 0 . 由条件知, x y2 z, x2 y z2 ,故
因此必有
x1
x2
2
0
,故由方程①及韦达定理知,
4km 2k2 1
( x1
x2
)
2
,即
mk 1 .

2k
由②、③知,
2k
2
1
m2
k
1 2k
2
,化简得
k
2
1 4k
2
,这等价于
k
2 .
2
2 反之,当 m, k 满足③及 k 2 时,l 必不经过点 F1(否则将导致 m k ,与③矛盾),
而此时 m, k 满足②,故 l 与椭圆有两个不同的交点 A 、 B ,同时也保证了 AF1 、 BF1 的斜率
当 0 4 时,注意到[, 2] (0, 8) ,故仅需考虑如下几种情况:
(i ) 5 2 ,此时 1 且 5 ,无解;
22
2
4
(ii) 5 9 2 ,此时有 9 5 ;
22
4
2
(iii) 9 13 2 ,此时有 13 9 ,得 13 4 .
依次成等差数列知, y1 x1 1
y2 x2 1
2k

又 y1 kx1 m, y2 kx2 m ,所以
(kx1 m)(x2 1) (kx2 m)(x1 1) 2k(x1 1)(x2 1) .

2015年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)(定稿).pdf

2015年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)(定稿).pdf

C
F
K
D
B
E
R
C
F
K
D
ER. 同理, CD = FK ,所以 BC= CD .
AC AD CD 由 AB= AC= BC= 1,得△ ABC≌△ ADC ,于是 AB= AC= AD ,
即 A 为△ BCD 外接圆的外心. .....................................
40 分
若 b=pt, 1≤ t≤ α- 1,则 a= pα-t, (c, p)= 1,1≤ c≤ b;若 b= pα,则
因此, f(pα)= 1 α-1 t + pα= pα-1+ pα. (这里 φ(x)为 Euler 函数 ). + φ(p )
t=1
a= 1, 1≤c≤ b.
……………………………… 20 分
所以 ER∥AC.
A
同理 FK ∥AC,
于是 ER∥FK . 又因为 RK∥ EF ,
………………………… 20 分
所以四边形 EFKR 为平行四边形,从而 ER=
FK . 因为 ER∥AC,所以∠ REC=∠ ECA= ∠ ECB. 又因为∠ EBC=∠ ERC, EC= EC,
所以△ BEC≌△ ECR,从而 BC=
……………………………… 40 分
显然 (a1, b1, c)= (a1, b1, c1)= 1, (a2, b2, c)= (a2, b2, c2)= 1, 从而 (a, b, c)= (( a,b), c)= (( a1, b1)(a2, b2), c)= (a1, b1, c) ( a2,b2 ,c) =
的外心.
B
E
R
A
证明:如图,连接 ER, FK . 因为∠ BAC=∠ CAD, AC2= AB· AD ,

2015年全国高中数学联合竞赛加试解答(B卷)

2015年全国高中数学联合竞赛加试解答(B卷)
a | bc − 1, b | ac + 1, c | ab + 1 .
A
I
D C
O
E
F
三、 (本题满分 50 分) 证明: 存在无穷多个正整数组 (a, b, c) (a, b, c > 2015) ,
c ab + 1 的特殊情况,此时 c | ab + 1 成立. 证明:考虑=பைடு நூலகம்
由 a | bc − 1 知, a | b(ab + 1) − 1 ,故
A
圆.过点 C 作 BD 的平行线,与 AD 的延长线交于点 E . 2 求证: CD = BD ⋅ CE . 证明:连接 BI , CI .设 I , B, C , D 四点在圆 O 上,延长 DE 交圆 O 于 F ,连接 FB, FC . 180° − ∠BDC = ∠BFC . 因为 BD∥CE , 所以 ∠DCE = 又 由于 ∠CDE = ∠CDF = ∠CBF , 所以 BFC ∽ DCE ,从而 DC BF . = CE FC
n m 中任取 m 2
下面来求坏排列的个数. 设 P 是坏排列全体,Q 是在 1, 2, , 项组成的单调递增数列的全体. 对于 P 中的任意一个排列 a1 , a2 , , am ,定义
a1 1 a2 2 a m , , , m f (a1 , a2 , , am ) . 2 2 2
因 为 ak ≤ n, k ≤ m , 故 由 条 件 ( 1 ) 可 知 , 所 有 的
ak + k 均属于集合 2
n + m ak + k 1, 2, , .再由条件(2)可知, (k = 1, 2, , m) 单调递增.故如 2 2

2015年全国高中数学联赛试卷解析汇报

2015年全国高中数学联赛试卷解析汇报

2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。

分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。

2015年全国高中数学联合竞赛试题(A卷)与答案

2015年全国高中数学联合竞赛试题(A卷)与答案


bn+1

1 (n
2
+
1)
+
1 4
=
−bn
+
n

1 (n
2
+
1)
+
1 4
=
−bn
+
1 n
2

1 4
=−
11
bn

n 2
+
4

bn

1 n
2
+
1 4
=
− 1 (−1)n−1 4
=
1 (−1)n 4

bn
=
1 n
2
+
1 [(−1)n 4

1](n

N∗).
所以
a2015
=
2015, b2015
=
2015 2
= 4t2 − 2t + 1 = 4
1 t−
2
+
3

3 ,等号成立时
#» DP
=
1D# C».
4 44
4
所以向量 P# A» 与向量 P# Q» 的数量积 P# A» · P# Q» 的最小值为 3.
4
5. 在正方体中随机取 3 条棱,它们两两异面的概率为
.
解答
正方体 12 条棱共有 3 种方向 (左右,上下,前后),每种方向对应 4 条棱.
=
a
+
b

b
=
−2a,
22
于是 f (x) = x2 + ax − 2a ⇒ f (2) = 4 + 2a − 2a = 4.

2015年全国高中数学联赛福建赛区预赛试题和参考答案

2015年全国高中数学联赛福建赛区预赛试题和参考答案

2015年福建省高中数学竞赛暨2015年全国高中数学联赛(福建省赛区)预赛试卷(考试时间:2015年5月24日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。

请直接将答案写在题中的横线上) 1.设集合403x Ax x Z x +⎧⎫=≤∈⎨⎬-⎩⎭,,从集合A 中随机抽取一个元素x ,记2xξ=,则随机变量ξ的数学期望E ξ=。

2.已知()()f x x g x =+,其中()g x 是定义在R 上,最小正周期为2的函数。

若()f x 在区间[)24,上的最大值为1,则()f x 在区间[)1012,上的最大值为 。

3.1F 、2F 为椭圆C :22221x y ab+=(0a b >>)的左、右焦点,若椭圆C 上存在一点P ,使得12P F P F ⊥,则椭圆离心率e 的取值范围为 。

4.已知实数x ,y ,z 满足2222324x y z++=,则23x y z++的最小值为 。

5.已知函数2()c o s 2xf x x π=,数列{}na 中,()(1)na f n f n =++(*n N∈),则数列{}na 的前100项之和100S =。

6.如图,在四面体A B C D 中,2D A D B D C ===,D AD B⊥,D AD C⊥,且D A 与平面A B C3R=。

7.在复平面内,复数1z 、2z 、3z 的对应点分别为1Z 、2Z 、3Z 。

若12z z ==,120O Z O Z ⋅=uuu r uuur,1231z z z +-=,则3z 的取值范围是 。

8.已知函数()()xxf x ex a e=-恰有两个极值点1x ,2x (12x x <),则a 的取值范围为 。

9.已知2()2xf x m x n x=⋅++,若{}{}()0(())0xf x x f f x φ===≠,则m n +的取值范围为 。

2015年全国高中数学联赛江苏赛区

2015年全国高中数学联赛江苏赛区

2015年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 . 解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 . 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c 2=1有相同的离心率e ,则e 的值是 .解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是 .(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为 .解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 . 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 . 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n)1-q 2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA ,ABCDP(第12题图)EA BC DP (第12题图)EF所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0. ……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分 所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t2=11-14=43,直线l :y =43x . ……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2, ①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得 3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得 x 1+x 2=12[ k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
f (2) 4 2a b 4 .
2. 若实数 满足 cos tan ,则 1 cos4 的值为

sin
答案:2.
解:由条件知, cos2 sin ,反复利用此结论,并注意到 cos2 sin2 1 ,得
1 cos4 cos2 sin2 sin2
sin
解:由条件知,点 F1 、 F2 的坐标分别为 (1, 0) 和 (1, 0) .
设直线 l 的方程为 y kx m ,点 A 、 B 的坐标分别为 (x1, y1) 和 (x2, y2 ) ,则 x1, x2 满 足方程 x2 (kx m)2 1,即
2
(2k 2 1)x2 4kmx (2m2 2) 0 .
(t
)
(2
t)
(1)
(t
1)
t
2
t
1
tHale Waihona Puke 1 223 4
3 4

当 t 1 时, PA PQ 3 .
2
min 4
5. 在正方体中随机取 3 条棱,它们两两异面的概率为

答案: 2 . 55
解:设正方体为 ABCD EFGH ,它共有 12 条棱,从中任意取出 3 条棱的方法共有
C132 220 种.
2015 年全国高中数学联合竞赛一试(A 卷) 参考答案及评分标准
说明:
1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不要增加其他中间档次.
2
1 k2
1,
则 t (1,
3) ,上式可改写为
d
1 t
t2 2
32
1 2
t
3t .
………15 分 ④
考虑到函数
f
(t)
1 2
t
3t 在[1,
3] 上单调递减,故由④得, f ( 3) d f (1) ,即
d ( 3, 2) .
…………………20 分
2015 年全国高中数学联合竞赛加试(A 卷) 参考答案及评分标准
依次成等差数列知, y1 x1 1
y2 x2 1
2k

又 y1 kx1 m, y2 kx2 m ,所以
(kx1 m)(x2 1) (kx2 m)(x1 1) 2k(x1 1)(x2 1) .
化简并整理得,
(m k)(x1 x2 2) 0 .
假如 m k ,则直线 l 的方程为 y kx k ,即 l 经过点 F1 (1, 0) ,不符合条件.
sin
(1 sin ) (1 cos2 ) 2 sin cos2 2 .
3. 已知复数数列{zn} 满足 z1 1, zn1 zn 1 ni (n 1, 2, ) ,其中 i 为虚数单位, zn
表示 zn 的共轭复数,则 z2015 的值为

答案: 2015 1007i .
解:由已知得,对一切正整数 n ,有
只能是 CG 或 DH . 由上可知,3 条棱两两异面的取法数为 42 8 ,故所求概率为 8 2 . 220 55
6. 在平面直角坐标系 xOy 中,点集 K (x, y) x 3y 6 3x y 6 0所对
应的平面区域的面积为

答案:24.
解:设 K1 (x, y) x 3y 6 0 .先考虑 K1
zn2 zn1 1n 1i zn 1 ni 1n 1i zn 2 i , 于是 z2015 z1 10072 i 2015 1007i .
4. 在矩形 ABCD 中, AB 2, AD 1 ,边 DC 上(包含点 D 、 C )的动点 P 与 CB 延 长线上(包含点 B )的动点 Q 满足 DP BQ ,则向量 PA 与向量 PQ 的数量积 PA PQ 的
存在(否则 x1, x2 中的某一个为 1,结合 x1 x2 2 0 知 x1 x2 1,与方程①有两个不
同的实根矛盾).
…………………10 分
点 F2 (1, 0) 到直线 l : y kx m 的距离为
km
d
1 k2
1
1
2k
1 k2
2k
1
1 k2
1
2
1 2k
2

注意到 k
2 ,令 t
一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分. 1. 设 a, b 为不相等的实数,若二次函数 f (x) x2 ax b 满足 f (a) f (b) ,则 f (2)
的值为

答案:4.
解:由已知条件及二次函数图像的轴对称性,可得 a b a ,即 2a b 0 ,所以
最小值为

答案: 3 . 4
解 :不 妨设 A(0, 0), B (2, 0), D (0, 1) . 设 P 的 坐 标为 (t, 1) ( 其 中 0 ≤ t ≤ 2 ), 则由
DP BQ 得 Q 的坐标为 (2, t) ,故 PA (t, 1), PQ (2t, t 1) ,因此
PA
PQ
K1 、 K2 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积 S .
由于直线 CD 的方程为 x 3y 6 ,直线 GH 的方程为 3x y 6 ,故它们的交点 P 的
坐标为
3 2
,
3 2
.由对称性知,
S
8SCPG
8
1 2
4
3 2
24

7. 设 为正实数,若存在 a, b ( a b 2) ,使得 sin a sin b 2 ,则 的取值
在第一象限中的部分,此时有 x 3y 6 ,故这些点对
应于图中的 OCD 及其内部.由对称性知, K1 对应的 区域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 (x, y) 3x y 6 0 ,则 K2 对
应的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知, K 所对应的平面区域是被
因此必有
x1
x2
2
0
,故由方程①及韦达定理知,
4km 2k2 1
( x1
x2
)
2
,即
mk 1 .

2k
由②、③知,
2k
2
1
m2
k
1 2k
2
,化简得
k
2
1 4k
2
,这等价于
k
2 .
2
2 反之,当 m, k 满足③及 k 2 时,l 必不经过点 F1(否则将导致 m k ,与③矛盾),
而此时 m, k 满足②,故 l 与椭圆有两个不同的交点 A 、 B ,同时也保证了 AF1 、 BF1 的斜率
a1
1 4
.
由此易知 a1
1, 4
a2
1, 2
a3
4,
a4
6 或者 a1
1, 4
a2
1, 2
a3
4,
a4
6 .经
检验知这两组解均满足问题的条件.

a1
a2
a3
a4
9 4
.
…………………20 分
11.
(本题满分
20
分)在平面直角坐标系
xOy
中,F1
、F2
分别是椭圆
x2 2
y2
1 的左、
右焦点.设不经过焦点 F1 的直线 l 与椭圆交于两个不同的点 A 、 B ,焦点 F2 到直线 l 的距离 为 d .如果直线 AF1 、 l 、 BF1 的斜率依次成等差数列,求 d 的取值范围.
当 0 4 时,注意到[, 2] (0, 8) ,故仅需考虑如下几种情况:
(i ) 5 2 ,此时 1 且 5 ,无解;
22
2
4
(ii) 5 9 2 ,此时有 9 5 ;
22
4
2
(iii) 9 13 2 ,此时有 13 9 ,得 13 4 .
z2 y x2 (z y2 )2 z2 2 y2z y4 . …………………8 分
因此,结合平均值不等式可得,
z
y4 y 2y2
1 4
2
y
2
1 y
1 y
13 3
4
2y2
11 yy
3 4
3
2

…………………12 分
当 2y2
1 y
,即
y
1 32
时,
z
的最小值为
3 4
3
2
(此时相应的
二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过程 或演算步骤.
9.(本题满分 16 分)若实数 a, b, c 满足 2a 4b 2c , 4a 2b 4c ,求 c 的最小值. 解:将 2a , 2b , 2c 分别记为 x, y, z ,则 x, y, z 0 . 由条件知, x y2 z, x2 y z2 ,故
范围是

答案:
9 4
,
5 2
13 4
,

解:由 sin a sin b 2 知,sin a sin b 1 ,而[a, b] [, 2] ,故题目条
件等价于:存在整数 k, l (k l) ,使得
2k 2l 2 .

2
2
当 4 时,区间[, 2]的长度不小于 4 ,故必存在 k, l 满足①式.
相关文档
最新文档