半导体物理与器件第四版课后习题答案3

合集下载

半导体物理与器件第四版课后习题集答案解析4

半导体物理与器件第四版课后习题集答案解析4

Chapter 44.1⎪⎪⎭⎫ ⎝⎛-=kTE N N n gc i exp 2υ ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=kT E T N N g O cO exp 3003υwhere cO N and O N υ are the values at 300 K.(a) SiliconT (K) kT (eV)i n (cm 3-) 200 400 600 01727.0 03453.0 0518.041068.7⨯ 121038.2⨯ 141074.9⨯(b) Germanium (c) GaAsT (K) i n (cm 3-) i n (cm 3-)200 400 600101016.2⨯ 141060.8⨯ 161082.3⨯38.1 91028.3⨯ 121072.5⨯_______________________________________ 4.2Plot_______________________________________ 4.3(a) ⎪⎪⎭⎫⎝⎛-=kT E N N n g c i exp 2υ ()()()319192113001004.1108.2105⎪⎭⎫⎝⎛⨯⨯=⨯T()()⎥⎦⎤⎢⎣⎡-⨯3000259.012.1exp T()3382330010912.2105.2⎪⎭⎫⎝⎛⨯=⨯T()()()()⎥⎦⎤⎢⎣⎡-⨯T 0259.030012.1expBy trial and error, 5.367≅T K(b)()252122105.2105⨯=⨯=i n()()()()()⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛⨯=T T 0259.030012.1exp 30010912.2338By trial and error, 5.417≅T K_______________________________________ 4.4At 200=T K, ()⎪⎭⎫⎝⎛=3002000259.0kT017267.0=eVAt 400=T K, ()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()()()17222102210025.31040.11070.7200400⨯=⨯⨯=ii nn⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=017267.0exp 034533.0exp 30020030040033g g E E⎥⎦⎤⎢⎣⎡-=034533.0017267.0exp 8g g E E()[]9578.289139.57exp 810025.317-=⨯g Eor()1714.38810025.3ln 9561.2817=⎪⎪⎭⎫⎝⎛⨯=g E or 318.1=g E eVNow ()32103004001070.7⎪⎭⎫⎝⎛=⨯o co N N υ⎪⎭⎫ ⎝⎛-⨯034533.0318.1exp ()()172110658.2370.210929.5-⨯=⨯o co N N υ so 371041.9⨯=o co N N υcm 6-_______________________________________ 4.5()()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=kT kT kT A n B n i i 20.0exp 90.0exp 10.1exp For 200=T K, 017267.0=kT eV For 300=T K, 0259.0=kT eV For 400=T K, 034533.0=kT eV (a) For 200=T K, ()()610325.9017267.020.0exp -⨯=⎪⎭⎫ ⎝⎛-=A n B n i i (b) For 300=T K, ()()41043.40259.020.0exp -⨯=⎪⎭⎫ ⎝⎛-=A n B n i i (c) For 400=T K, ()()31005.3034533.020.0exp -⨯=⎪⎭⎫ ⎝⎛-=A n B n i i _______________________________________ 4.6(a) ()⎥⎦⎤⎢⎣⎡---∝kT E E E E f g F c F c exp()⎥⎦⎤⎢⎣⎡---∝kT E E E E c c exp()⎥⎦⎤⎢⎣⎡--⨯kT E E F c exp Let x E E c =-Then ⎪⎭⎫⎝⎛-∝kT x x f g F c expTo find the maximum value: ()⎪⎭⎫⎝⎛-∝-kT x x dx f g d F c exp 212/10exp 12/1=⎪⎭⎫ ⎝⎛-⋅-kT x x kT which yields2212/12/1kTx kT x x =⇒= The maximum value occurs at2kTE E c +=(b)()()⎥⎦⎤⎢⎣⎡---∝-kT E E E E f g F F exp 1υυ()⎥⎦⎤⎢⎣⎡---∝kT E E E E υυexp()⎥⎦⎤⎢⎣⎡--⨯kT E E F υexp Let x E E =-υThen ()⎪⎭⎫ ⎝⎛-∝-kT x x f g F exp 1υTo find the maximum value()[]0exp 1=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∝-kT x x dx d dx f g d F υ Same as part (a). Maximum occurs at2kTx =or2kTE E -=υ_______________________________________ 4.7()()()()⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡---=kT E E E E kT E E E E E n E n c c c c 221121exp expwherekT E E c 41+= and 22kTE E c += Then()()()⎥⎦⎤⎢⎣⎡--=kT E E kT kTE n E n 2121exp 24()5.3exp 22214exp 22-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=or()()0854.021=E n E n_______________________________________ 4.8Plot_______________________________________ 4.9Plot_______________________________________ 4.10⎪⎪⎭⎫ ⎝⎛=-**ln 43n p midgap Fi m m kT E E Silicon: o p m m 56.0*=, o n m m 08.1*=0128.0-=-midgap Fi E E eV Germanium: o pm m 37.0*=,o n m m 55.0*=0077.0-=-midgap Fi E E eV Gallium Arsenide: o p m m 48.0*=,o n m m 067.0*= 0382.0+=-midgap Fi E E eV _______________________________________ 4.11 ()⎪⎪⎭⎫⎝⎛=-c midgap Fi N N kT E E υln 21()()kT kT 4952.0108.21004.1ln 211919-=⎪⎪⎭⎫ ⎝⎛⨯⨯=T (K) kT (eV)(midgap Fi E E -)(eV) 200 400 600 01727.0 03453.0 0518.0 0086.0- 0171.0- 0257.0-_______________________________________ 4.12(a) ⎪⎪⎭⎫ ⎝⎛=-**ln 43n p midgap Fi m m kT E E ()⎪⎭⎫⎝⎛=21.170.0ln 0259.04363.10-⇒meV(b) ()⎪⎭⎫⎝⎛=-080.075.0ln 0259.043midgap Fi E E47.43+⇒meV_______________________________________ 4.13Let ()==K E g c constant Then()()dE E fE g n FE co c⎰∞=dE kT E E Kc E F⎰∞⎪⎪⎭⎫⎝⎛-+=exp 11()dE kT E E K cE F ⎰∞⎥⎦⎤⎢⎣⎡--≅exp Let kT E E c-=η so that ηd kT dE ⋅=We can write ()()c F c F E E E E E E -+-=-so that()()()η-⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--e x p e x p e x p kT E E kT E E F c F The integral can then be written as()()ηηd kT E E kT K n F c o ⎰∞-⎥⎦⎤⎢⎣⎡--⋅⋅=0exp exp which becomes()⎥⎦⎤⎢⎣⎡--⋅⋅=kT E E kT K n F c o exp _______________________________________ 4.14Let ()()c c E E C E g -=1 for c E E ≥ Then()()dE E fE g n FE co c⎰∞=()dE kT E E E E C c E Fc ⎰∞⎪⎪⎭⎫⎝⎛-+-=exp 11()()dE kT E E E E C F E C c⎥⎦⎤⎢⎣⎡---≅⎰∞exp 1LetkTE E c-=η so that ηd kT dE ⋅= We can write()()F c c F E E E E E E -+-=-Then()⎥⎦⎤⎢⎣⎡--=kT E E C n F c o exp 1()()dE kT E E E E c E c c⎥⎦⎤⎢⎣⎡---⨯⎰∞exp or()⎥⎦⎤⎢⎣⎡--=kT E E C n F c o exp 1 ()()()[]()ηηηd kT kT -⨯⎰∞exp 0We find that()()()11exp exp 0+=---=-∞∞⎰ηηηηηdSo()()⎥⎦⎤⎢⎣⎡--=kT E E kT C n F c o exp 21 _______________________________________ 4.15We have ⎪⎪⎭⎫⎝⎛=∈*1m m a r o r o For germanium, 16=∈r , o m m 55.0*= Then()()()53.02955.01161=⎪⎭⎫⎝⎛=o a roroA r 4.151=The ionization energy can be written as ()6.132*⎪⎪⎭⎫⎝⎛∈∈⎪⎪⎭⎫ ⎝⎛=s o o m m E eV ()()029.06.131655.02=⇒=E eV_______________________________________ 4.16We have ⎪⎪⎭⎫⎝⎛=∈*1m m a r o r o For gallium arsenide, 1.13=∈r ,o m m 067.0*= Then()()oA r 10453.0067.011.131=⎪⎭⎫⎝⎛=The ionization energy is()()()6.131.13067.06.1322*=⎪⎪⎭⎫ ⎝⎛∈∈⎪⎪⎭⎫ ⎝⎛=s o o m m E or0053.0=E eV_______________________________________ 4.17(a) ⎪⎪⎭⎫⎝⎛=-o c F c n N kT E E ln()⎪⎪⎭⎫⎝⎛⨯⨯=1519107108.2ln 0259.02148.0=eV (b) ()F c g F E E E E E --=-υ90518.02148.012.1=-=eV(c) ()⎥⎦⎤⎢⎣⎡--=kT E E N p F o υυexp()⎥⎦⎤⎢⎣⎡-⨯=0259.090518.0exp 1004.119 31090.6⨯=cm 3- (d) Holes(e) ⎪⎪⎭⎫⎝⎛=-i o Fi F n n kT E E ln()⎪⎪⎭⎫⎝⎛⨯⨯=1015105.1107ln 0259.0338.0=eV_______________________________________ 4.18(a) ⎪⎪⎭⎫⎝⎛=-o F p N kT E E υυln()⎪⎪⎭⎫⎝⎛⨯⨯=16191021004.1ln 0259.0162.0=eV(b)()υE E E E E F g F c --=- 958.0162.012.1=-=eV(c) ()⎪⎭⎫⎝⎛-⨯=0259.0958.0exp 108.219o n31041.2⨯=cm 3-(d) ⎪⎪⎭⎫⎝⎛=-i o F Fi n p kT E E ln()⎪⎪⎭⎫⎝⎛⨯⨯=1016105.1102ln 0259.0365.0=eV_______________________________________ 4.19(a) ⎪⎪⎭⎫⎝⎛=-o c F c n N kT E E ln()⎪⎪⎭⎫⎝⎛⨯⨯=519102108.2ln 0259.08436.0=eV ()F c g F E E E E E --=-υ 8436.012.1-= 2764.0=-υE E F eV (b)()⎪⎭⎫⎝⎛-⨯=0259.027637.0exp 1004.119o p1410414.2⨯=cm 3-(c) p-type_______________________________________ 4.20(a) ()032375.03003750259.0=⎪⎭⎫⎝⎛=kT eV()⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛⨯=032375.028.0exp 300375107.42/317o n 141015.1⨯=cm 3-()28.042.1-=--=-F c g F E E E E E υ 14.1=eV()⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛⨯=032375.014.1exp 3003751072/318o p 31099.4⨯=cm 3-(b) ()⎪⎪⎭⎫⎝⎛⨯⨯=-14171015.1107.4ln 0259.0F c E E2154.0=eV()2154.042.1-=--=-F c g F E E E E E υ 2046.1=eV()⎥⎦⎤⎢⎣⎡-⨯=0259.02046.1exp 10718o p21042.4-⨯=cm 3-_______________________________________ 4.21(a) ()032375.03003750259.0=⎪⎭⎫⎝⎛=kT eV()⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛⨯=032375.028.0exp 300375108.22/319o n 151086.6⨯= cm 3-()28.012.1-=--=-F c g F E E E E E υ 840.0=eV()⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛⨯=032375.0840.0exp 3003751004.12/319o p 71084.7⨯=cm 3-(b) ⎪⎪⎭⎫⎝⎛=-o c F c n N kT E E ln()⎪⎪⎭⎫⎝⎛⨯⨯=151910862.6108.2ln 0259.02153.0=eV9047.02153.012.1=-=-υE E F eV()⎥⎦⎤⎢⎣⎡-⨯=0259.0904668.0exp 1004.119o p 31004.7⨯=cm 3-_______________________________________ 4.22 (a) p-type(b) 28.0412.14===-g F E E E υeV()⎥⎦⎤⎢⎣⎡--=kT E E N p F o υυexp ()⎥⎦⎤⎢⎣⎡-⨯=0259.028.0exp 1004.119141010.2⨯=cm 3- ()υE E E E E F g F c --=- 84.028.012.1=-=eV()⎥⎦⎤⎢⎣⎡--=kT E E N n F c c o exp ()⎥⎦⎤⎢⎣⎡-⨯=0259.084.0exp 108.219 51030.2⨯=cm 3-_______________________________________ 4.23(a) ⎥⎦⎤⎢⎣⎡-=kT E E n n Fi Fi o exp ()⎥⎦⎤⎢⎣⎡⨯=0259.022.0exp 105.110131033.7⨯=cm 3-⎥⎦⎤⎢⎣⎡-=kT E E n p F Fii o exp ()⎥⎦⎤⎢⎣⎡-⨯=0259.022.0exp 105.11061007.3⨯=cm 3-(b) ⎥⎦⎤⎢⎣⎡-=kT E E n n Fi F i o exp()⎥⎦⎤⎢⎣⎡⨯=0259.022.0exp 108.16 91080.8⨯=cm 3-⎥⎦⎤⎢⎣⎡-=kT E E n p F Fii o exp()⎥⎦⎤⎢⎣⎡-⨯=0259.022.0exp 108.16 21068.3⨯=cm 3-_______________________________________ 4.24(a) ⎪⎪⎭⎫⎝⎛=-o F p N kT E E υυln()⎪⎪⎭⎫⎝⎛⨯⨯=151********.1ln 0259.01979.0=eV(b)()υE E E E E F g F c --=- 92212.019788.012.1=-=eV(c) ()⎥⎦⎤⎢⎣⎡-⨯=0259.092212.0exp 108.219o n31066.9⨯=cm 3- (d) Holes(e) ⎪⎪⎭⎫⎝⎛=-i o F Fi n p kT E E ln()⎪⎪⎭⎫⎝⎛⨯⨯=1015105.1105ln 0259.03294.0=eV _______________________________________ 4.25()034533.03004000259.0=⎪⎭⎫⎝⎛=kT eV()2/3193004001004.1⎪⎭⎫⎝⎛⨯=υN1910601.1⨯=cm 3-()2/319300400108.2⎪⎭⎫⎝⎛⨯=c N19103109.4⨯=cm 3-()()1919210601.1103109.4⨯⨯=i n⎥⎦⎤⎢⎣⎡-⨯034533.012.1exp 24106702.5⨯=1210381.2⨯=⇒i n cm 3- (a)⎪⎪⎭⎫ ⎝⎛=-oF pN kT E E υυln ()⎪⎪⎭⎫⎝⎛⨯⨯=151910510601.1ln 034533.02787.0=eV (b) 84127.027873.012.1=-=-F c E E eV(c)()⎥⎦⎤⎢⎣⎡-⨯=034533.084127.0exp 103109.419o n910134.1⨯=cm 3- (d) Holes(e) ⎪⎪⎭⎫⎝⎛=-i o F Fi n p kT E E ln()⎪⎪⎭⎫⎝⎛⨯⨯=121510381.2105ln 034533.02642.0=eV _______________________________________ 4.26(a) ()⎥⎦⎤⎢⎣⎡-⨯=0259.025.0exp 10718o p141050.4⨯=cm 3-17.125.042.1=-=-F c E E eV()⎥⎦⎤⎢⎣⎡-⨯=0259.017.1exp 107.417o n21013.1-⨯=cm 3- (b) 034533.0=kT eV ()2/318300400107⎪⎭⎫ ⎝⎛⨯=υN1910078.1⨯=cm 3- ()2/317300400107.4⎪⎭⎫⎝⎛⨯=c N1710236.7⨯=cm 3- ⎪⎪⎭⎫⎝⎛=-o F p N kT E E υυln()⎪⎪⎭⎫⎝⎛⨯⨯=14191050.410078.1ln 034533.03482.0=eV072.13482.042.1=-=-F c E E eV()⎥⎦⎤⎢⎣⎡-⨯=034533.007177.1exp 10236.717o n 41040.2⨯=cm 3-_____________________________________ 4.27(a) ()⎥⎦⎤⎢⎣⎡-⨯=0259.025.0exp 1004.119o p141068.6⨯=cm 3-870.025.012.1=-=-F c E E eV()⎥⎦⎤⎢⎣⎡-⨯=0259.0870.0exp 108.219o n41023.7⨯=o n cm 3- (b)034533.0=kT eV()2/3193004001004.1⎪⎭⎫⎝⎛⨯=υN1910601.1⨯=cm 3- ()2/319300400108.2⎪⎭⎫ ⎝⎛⨯=c N1910311.4⨯=cm 3-⎪⎪⎭⎫⎝⎛=-o F p N kT E E υυln()⎪⎪⎭⎫⎝⎛⨯⨯=14191068.610601.1ln 034533.03482.0=eV7718.03482.012.1=-=-F c E E eV()⎥⎦⎤⎢⎣⎡-⨯=034533.077175.0exp 10311.419o n91049.8⨯=cm 3-_______________________________________ 4.28(a) ()F c o F N n ηπ2/12=For 2kT E E c F +=,5.02==-=kTkT kT E E c F F η Then ()0.12/1≅F F η()()0.1108.2219⨯=πo n191016.3⨯=cm 3-(b) ()F c o F N n ηπ2/12=()()0.1107.4217⨯=π171030.5⨯=cm 3-_______________________________________ 4.29()F o F N p ηπυ'=2/12()()FF ηπ'⨯=⨯2/119191004.12105So ()26.42/1='FF η We find kTE E FF-=≅'υη0.3()()0777.00259.00.3==-F E E υeV_______________________________________ 4.30(a) 44==-=kTkTkT E E c F F ηThen ()0.62/1≅F F η ()F c o F N n ηπ2/12=()()0.6108.2219⨯=π201090.1⨯=cm 3-(b) ()()0.6107.4217⨯=πo n181018.3⨯=cm 3-_______________________________________ 4.31For the electron concentration ()()()E f E g E n F c =The Boltzmann approximation applies, so ()()c nE E hm E n -=32/3*24π()⎥⎦⎤⎢⎣⎡--⨯kT E E F exp or()()()⎥⎦⎤⎢⎣⎡--=kT E E h m E n F c nexp 2432/3*π()⎥⎦⎤⎢⎣⎡---⨯kT E E kT E E kTc c exp DefinekTE E x c-= Then()()()x x K x n E n -=→exp To find maximum ()()x n E n →, set()()x x K dx x dn -⎢⎣⎡==-exp 2102/1 +()()⎥⎦⎤--x x exp 12/1or()⎥⎦⎤⎢⎣⎡--=-x x Kx 21exp 02/1which yieldskT E E kT E E x c c 2121+=⇒-==For the hole concentration ()()()[]E f E g E p F -=1υUsing the Boltzmann approximation ()()E E h m E p p-=υπ32/3*24()⎥⎦⎤⎢⎣⎡--⨯kT E E F exp or()()()⎥⎦⎤⎢⎣⎡--=kT E E h mE pF pυπexp 2432/3*()⎥⎦⎤⎢⎣⎡---⨯kT E E kT E E kTυυexp DefinekTEE x -='υThen()()x x K x p '-''='exp To find maximum value of ()()x p E p '→,set()0=''x d x dp Using the results from above,we find the maximum atkT E E 21-=υ_______________________________________4.32 (a) Silicon: We have()⎥⎦⎤⎢⎣⎡--=kT E E N n F c c o exp We can write()()F d d c F c E E E E E E -+-=- For045.0=-d c E E eV andkT E E F d 3=-eV we can write()⎥⎦⎤⎢⎣⎡--⨯=30259.0045.0exp 108.219o n()()737.4exp 108.219-⨯= or171045.2⨯=o n cm 3- We also have()⎥⎦⎤⎢⎣⎡--=kT E E N p F o υυexp Again, we can write()()υυE E E E E E a a F F -+-=- ForkT E E a F 3=- and045.0=-υE E a eV Then()⎥⎦⎤⎢⎣⎡--⨯=0259.0045.03exp 1004.119o p ()()737.4exp 1004.119-⨯= or161012.9⨯=o p cm 3- (b) GaAs: assume 0058.0=-d c E E eV Then()⎥⎦⎤⎢⎣⎡--⨯=30259.00058.0exp 107.417o n ()()224.3exp 107.417-⨯= or161087.1⨯=o n cm 3-Assume 0345.0=-υE E a eV Then()⎥⎦⎤⎢⎣⎡--⨯=30259.00345.0exp 10718o p ()()332.4exp 10718-⨯=or161020.9⨯=o p cm 3-_______________________________________ 4.33Plot_______________________________________ 4.34(a)151510310154⨯=-⨯=o p cm 3- ()415210105.7103105.1⨯=⨯⨯=o n cm 3-(b)16103⨯==d o N n cm 3-()316210105.7103105.1⨯=⨯⨯=o p cm 3-(c)10105.1⨯===i o o n p n cm 3-(d) ()()3191923003751004.1108.2⎪⎭⎫⎝⎛⨯⨯=in()()()()⎥⎦⎤⎢⎣⎡-⨯3750259.030012.1exp1110334.7⨯=⇒i n cm 3- 15104⨯==a o N p cm 3-()8152111034.110410334.7⨯=⨯⨯=on cm 3-(e) ()()3191923004501004.1108.2⎪⎭⎫⎝⎛⨯⨯=in()()()()⎥⎦⎤⎢⎣⎡-⨯4500259.030012.1exp1310722.1⨯=⇒i n cm 3-()2132141410722.1210210⨯+⎪⎪⎭⎫ ⎝⎛+=o n1410029.1⨯=cm 3-()12142131088.210029.110722.1⨯=⨯⨯=o p cm 3-_______________________________________ 4.35(a)151510104-⨯=-=d a o N N p15103⨯=cm 3-()3152621008.1103108.1-⨯=⨯⨯==o i o p n n cm 3-(b)16103⨯==d o N n cm 3-()416261008.1103108.1-⨯=⨯⨯=o p cm 3-(c)6108.1⨯===i o o n p n cm 3-(d) ()()318172300375100.7107.4⎪⎭⎫⎝⎛⨯⨯=in()()()()⎥⎦⎤⎢⎣⎡-⨯3750259.030042.1exp810580.7⨯=⇒i n cm 3- 15104⨯==a o N p cm 3-()215281044.110410580.7⨯=⨯⨯=on cm 3-(e) ()()318172300450100.7107.4⎪⎭⎫⎝⎛⨯⨯=in()()()()⎥⎦⎤⎢⎣⎡-⨯4500259.030042.1exp1010853.3⨯=⇒i n cm 3- 1410==d o N n cm 3-()7142101048.11010853.3⨯=⨯=op cm 3-_______________________________________ 4.36 (a) Ge: 13104.2⨯=i n cm 3-(i)2222i dd o n N N n +⎪⎪⎭⎫ ⎝⎛+=()21321515104.221022102⨯+⎪⎪⎭⎫ ⎝⎛⨯+⨯=or15102⨯=≅d o N n cm 3-()152132102104.2⨯⨯==o i o n n p111088.2⨯= cm 3- (ii)151610710⨯-=-≅d a o N N p 15103⨯=cm 3- ()152132103104.2⨯⨯==o i o p n n111092.1⨯=cm 3-(b) GaAs: 6108.1⨯=i n cm 3- (i)15102⨯=≅d o N n cm()315261062.1102108.1-⨯=⨯⨯=op cm 3-(ii)15103⨯=-≅d a o N N p cm 3-()315261008.1103108.1-⨯=⨯⨯=on cm 3-(c) The result implies that there is only one minority carrier in a volume of 310cm 3. _______________________________________ 4.37(a) For the donor level⎪⎪⎭⎫ ⎝⎛-+=kT E E N n F d d d exp 2111⎪⎭⎫ ⎝⎛+=0259.020.0exp 2111or41085.8-⨯=dd N n(b) We have()⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F F exp 11Now()()F c c F E E E E E E -+-=- or245.0+=-kT E E FThen()⎪⎭⎫ ⎝⎛++=0259.0245.01exp 11E f For()51087.2-⨯=E f F_______________________________________ 4.38 (a) ⇒>d a N N p-type (b) Silicon:1313101105.2⨯-⨯=-=d a o N N p or13105.1⨯=o p cm 3- Then()7132102105.1105.1105.1⨯=⨯⨯==o i o p n n cm 3- Germanium:2222i da d a o n N N N N p +⎪⎪⎭⎫ ⎝⎛-+-=()21321313104.22105.12105.1⨯+⎪⎪⎭⎫⎝⎛⨯+⎪⎪⎭⎫ ⎝⎛⨯=or131026.3⨯=o p cm 3- Then()131321321076.110264.3104.2⨯=⨯⨯==o i o p n n cm 3-Gallium Arsenide:13105.1⨯=-=d a o N N p cm 3- and()216.0105.1108.113262=⨯⨯==o i o p n n cm 3- _______________________________________ 4.39 (a) ⇒>a d N N n-type(b)1515102.1102⨯-⨯=-≅a d o N N n14108⨯=cm 3-()51421021081.2108105.1⨯=⨯⨯==o i o n n p cm 3-(c)()d a ao N N N p -+'≅ 151515102102.1104⨯-⨯+'=⨯aN 15108.4⨯='⇒aN cm 3-()41521010625.5104105.1⨯=⨯⨯=on cm 3-_______________________________________ 4.40()155210210125.1102105.1⨯=⨯⨯==o i o p n n cm 3- ⇒>o o p n n-type_______________________________________ 4.41()()318192300250100.61004.1⎪⎭⎫⎝⎛⨯⨯=i n()()⎥⎦⎤⎢⎣⎡-⨯3002500259.066.0exp24108936.1⨯=1210376.1⨯=⇒i n cm 3- 2222414i o o i o i o n n n n p n n =⇒==i o n n 21=⇒So 111088.6⨯=o n cm 3-,Then 121075.2⨯=o p cm 3-2222i aa o n N N p +⎪⎪⎭⎫ ⎝⎛+= 212210752.2⎪⎪⎭⎫ ⎝⎛-⨯a N242108936.12⨯+⎪⎪⎭⎫ ⎝⎛=a N()21224210752.2105735.7⎪⎪⎭⎫ ⎝⎛+⨯-⨯aa N N242108936.12⨯+⎪⎪⎭⎫ ⎝⎛=aN so that 1210064.2⨯=a N cm 3-_______________________________________ 4.42Plot_______________________________________ 4.43Plot_______________________________________ 4.44Plot_______________________________________ 4.452222i ad a d o n N N N N n +⎪⎪⎭⎫ ⎝⎛-+-= 2102.1102101.1141414⨯-⨯=⨯2214142102.1102i n +⎪⎪⎭⎫⎝⎛⨯-⨯+()()221321314104104101.1i n +⨯=⨯-⨯22727106.1109.4i n +⨯=⨯ so 131074.5⨯=i n cm 3-1314272103101.1103.3⨯=⨯⨯==o i o n n p cm 3- _______________________________________ 4.46 (a) ⇒>d a N N p-typeMajority carriers are holes1616105.1103⨯-⨯=-=d a o N N p16105.1⨯=cm 3-Minority carriers are electrons()4162102105.1105.1105.1⨯=⨯⨯==o i o p n n cm 3- (b) Boron atoms must be addedd a ao N N N p -+'=161616105.1103105⨯-⨯+'=⨯aN So 16105.3⨯='aN cm 3-()316210105.4105105.1⨯=⨯⨯=on cm 3-_______________________________________ 4.47 (a) ⇒<<i o n p n-type (b) oi o o i o p n n n n p 22=⇒=on ()16421010125.1102105.1⨯=⨯⨯=cm 3-⇒electrons are majority carriers4102⨯=o p cm 3-⇒holes are minority carriers (c) a d o N N n -= 151610710125.1⨯-=⨯d N so 1610825.1⨯=d N cm 3-_______________________________________ 4.48⎪⎪⎭⎫⎝⎛=-i o F Fi n p kT E E ln For Germanium T (K) kT (eV)i n (cm 3-) 200400 60001727.0 03453.0 0518.0101016.2⨯ 141060.8⨯ 161082.3⨯2222i a a o n N N p +⎪⎪⎭⎫⎝⎛+=and 1510=a N cm 3- T (K) op (cm 3-)()F Fi E E -(eV)200400 60015100.1⨯151049.1⨯ 161087.3⨯1855.0 01898.0 000674.0_______________________________________ 4.49(a) ⎪⎪⎭⎫⎝⎛=-d c F c N N kT E E ln()⎪⎪⎭⎫⎝⎛⨯=d N 19108.2ln 0259.0 For 1410cm 3-, 3249.0=-F c E E eV 1510cm 3-, 2652.0=-F c E E eV 1610cm 3-, 2056.0=-F c E E eV 1710cm 3-, 1459.0=-F c E E eV(b) ⎪⎪⎭⎫⎝⎛=-i d Fi F n N kT E E ln()⎪⎪⎭⎫⎝⎛⨯=10105.1ln 0259.0d N For 1410cm 3-, 2280.0=-Fi F E E eV 1510cm 3-, 2877.0=-Fi F E E eV 1610cm 3-, 3473.0=-Fi F E E eV 1710cm 3-, 4070.0=-Fi F E E eV _______________________________________ 4.50 (a)2222i d d o n N N n +⎪⎪⎭⎫⎝⎛+= 151005.105.1⨯==d o N n cm 3- ()21515105.01005.1⨯-⨯()2215105.0i n +⨯=so 2821025.5⨯=i nNow()()3191923001004.1108.2⎪⎭⎫ ⎝⎛⨯⨯=T n i()()⎥⎦⎤⎢⎣⎡-⨯3000259.012.1exp T()3382830010912.21025.5⎪⎭⎫ ⎝⎛⨯=⨯T⎥⎦⎤⎢⎣⎡-⨯T 973.12972exp By trial and error, 5.536=T K (b) At 300=T K,⎪⎪⎭⎫⎝⎛=-o c F c n N kT E E ln()⎪⎪⎭⎫⎝⎛⨯=-151910108.2ln 0259.0F c E E2652.0=eV At 5.536=T K,()046318.03005.5360259.0=⎪⎭⎫⎝⎛=kT eV()2/3193005.536108.2⎪⎭⎫⎝⎛⨯=c N1910696.6⨯=cm 3-⎪⎪⎭⎫⎝⎛=-o c F c n N kT E E ln()⎪⎪⎭⎫⎝⎛⨯⨯=-15191005.110696.6ln 046318.0F c E E5124.0=eV then ()2472.0=-∆F c E E eV (c) Closer to the intrinsic energy level._______________________________________ 4.51⎪⎪⎭⎫⎝⎛=-i o F Fi n p kT E E ln At 200=T K, 017267.0=kT eV 400=T K, 034533.0=kT eV 600=T K, 0518.0=kT eVAt 200=T K,()()3191923002001004.1108.2⎪⎭⎫⎝⎛⨯⨯=in⎥⎦⎤⎢⎣⎡-⨯017267.012.1exp410638.7⨯=⇒i n cm 3- At 400=T K,()()3191923004001004.1108.2⎪⎭⎫⎝⎛⨯⨯=in⎥⎦⎤⎢⎣⎡-⨯034533.012.1exp 1210381.2⨯=⇒i n cm 3- At 600=T K,()()3191923006001004.1108.2⎪⎭⎫⎝⎛⨯⨯=in⎥⎦⎤⎢⎣⎡-⨯0518.012.1exp1410740.9⨯=⇒i n cm 3- At 200=T K and 400=T K, 15103⨯==a o N p cm 3- At 600=T K,2222i a a o n N N p +⎪⎪⎭⎫⎝⎛+=()2142151510740.921032103⨯+⎪⎪⎭⎫ ⎝⎛⨯+⨯=1510288.3⨯=cm 3-Then, 200=T K, 4212.0=-F Fi E E eV 400=T K, 2465.0=-F Fi E E eV600=T K, 0630.0=-F Fi E E eV_______________________________________ 4.52(a)()⎪⎪⎭⎫⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛=-6108.1ln 0259.0ln a i a F Fi N n N kT E EFor 1410=a N cm 3-,4619.0=-F Fi E E eV1510=a N cm 3-,5215.0=-F Fi E E eV1610=a N cm 3-,5811.0=-F Fi E E eV1710=a N cm 3-,6408.0=-F Fi E E eV (b)()⎪⎪⎭⎫⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛=-a a F N N N kT E E 18100.7ln 0259.0ln υυ For 1410=a N cm 3-,2889.0=-υE E F eV1510=a N cm 3-,2293.0=-υE E F eV1610=a N cm 3-,1697.0=-υE E F eV1710=a N cm 3-,1100.0=-υE E F eV_______________________________________ 4.53(a) ⎪⎪⎭⎫ ⎝⎛=-**ln 43n p midgap Fi m m kT E E ()()10ln 0259.043= or0447.0+=-midgap Fi E E eV(b) Impurity atoms to be added so 45.0=-F midgap E E eV (i) p-type, so add acceptor atoms (ii)4947.045.00447.0=+=-F Fi E E eV Then⎪⎪⎭⎫⎝⎛-=kT E E n p F Fi i o exp()⎪⎭⎫⎝⎛=0259.04947.0exp 105or131097.1⨯==a o N p cm 3-_______________________________________4.54()⎥⎦⎤⎢⎣⎡--=-=kT E E N N N n F c c a d o exp so()⎪⎭⎫⎝⎛-⨯+⨯=0259.0215.0exp 108.21051915d N15151095.6105⨯+⨯=or16102.1⨯=d N cm 3-_______________________________________ 4.55 (a) Silicon(i)⎪⎪⎭⎫⎝⎛=-d c F c N N kT E E ln()2188.0106108.2ln 0259.01519=⎪⎪⎭⎫⎝⎛⨯⨯=eV(ii)1929.00259.02188.0=-=-F c E E eV()⎥⎦⎤⎢⎣⎡--=kT E E N N F c c d exp()⎥⎦⎤⎢⎣⎡-⨯=0259.01929.0exp 108.2191610631.1⨯=d N cm 3-15106⨯+'=dN 1610031.1⨯='⇒dN cm 3- Additionaldonor atoms (b) GaAs(i)()⎪⎪⎭⎫⎝⎛⨯=-151710107.4ln 0259.0F c E E15936.0=eV(ii)13346.00259.015936.0=-=-F c E E eV()⎥⎦⎤⎢⎣⎡-⨯=0259.013346.0exp 107.417d N1510718.2⨯=cm 3-1510+'=dN 1510718.1⨯='⇒dN cm 3- Additionaldonor atoms _______________________________________4.56 (a) ⎪⎪⎭⎫ ⎝⎛=-a F Fi N N kT E E υln()⎪⎪⎭⎫⎝⎛⨯⨯=16191021004.1ln 0259.01620.0=eV(b) ⎪⎪⎭⎫⎝⎛=-d c Fi F N N kT E E ln ()1876.0102108.2ln 0259.01619=⎪⎪⎭⎫ ⎝⎛⨯⨯=eV (c) For part (a); 16102⨯=o p cm 3-()162102102105.1⨯⨯==o i o p n n410125.1⨯=cm 3-For part (b): 16102⨯=o n cm 3-()162102102105.1⨯⨯==o i o n n p410125.1⨯=cm 3-_______________________________________4.57⎥⎦⎤⎢⎣⎡-=kT E E n n Fi F i o exp ()⎥⎦⎤⎢⎣⎡⨯=0259.055.0exp 108.1615100.3⨯=cm 3-Add additional acceptor impuritiesa d o N N n -= a N -⨯=⨯151510710315104⨯=⇒a N cm 3-_______________________________________ 4.58(a) ⎪⎪⎭⎫⎝⎛=-i o F Fi n p kT E E ln ()3161.0105.1103ln 0259.01015=⎪⎪⎭⎫⎝⎛⨯⨯=eV (b) ⎪⎪⎭⎫⎝⎛=-i o Fi F n n kT E E ln ()3758.0105.1103ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯⨯=eV(c) Fi F E E =(d) ⎪⎪⎭⎫⎝⎛=-i o F Fi n p kT E E ln ()⎪⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛=111510334.7104ln 3003750259.0 2786.0=eV(e) ⎪⎪⎭⎫ ⎝⎛=-i o Fi F n n kT E E ln()⎪⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛=131410722.110029.1ln 3004500259.0 06945.0=eV _______________________________________ 4.59 (a) ⎪⎪⎭⎫ ⎝⎛=-o F p N kT E E υυln()2009.0103100.7ln 0259.01518=⎪⎪⎭⎫ ⎝⎛⨯⨯=eV(b) ()⎪⎪⎭⎫ ⎝⎛⨯⨯=--4181008.1100.7ln 0259.0υE E F 360.1=eV(c) ()⎪⎪⎭⎫⎝⎛⨯⨯=-618108.1100.7ln 0259.0υE E F7508.0=eV(d) ()⎪⎭⎫⎝⎛=-3003750259.0υE E F()()⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯⨯152/318104300375100.7ln 2526.0=eV(e) ()⎪⎭⎫⎝⎛=-3004500259.0υE E F()()⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯⨯72/3181048.1300450100.7ln 068.1=eV_______________________________________ 4.60n-type⎪⎪⎭⎫⎝⎛=-i o Fi F n n kT E E ln()3504.0105.110125.1ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯⨯=eV ______________________________________ 4.612222i aa o n N N p +⎪⎪⎭⎫ ⎝⎛+= 21051008.51515⨯=⨯22152105i n +⎪⎪⎭⎫ ⎝⎛⨯+()21515105.21008.5⨯-⨯()2215105.2i n +⨯=230301025.6106564.6i n +⨯=⨯29210064.4⨯=⇒i n⎥⎦⎤⎢⎣⎡-=kT E N N n g c i exp 2υ()030217.03003500259.0=⎪⎭⎫⎝⎛=kT eV()1921910633.1300350102.1⨯=⎪⎭⎫ ⎝⎛⨯=c N cm 3-()192191045.2300350108.1⨯=⎪⎭⎫ ⎝⎛⨯=υN cm 3- Now()()1919291045.210633.110064.4⨯⨯=⨯⎥⎦⎤⎢⎣⎡-⨯030217.0exp g ESo()()()⎥⎦⎤⎢⎣⎡⨯⨯⨯=29191910064.41045.210633.1ln 030217.0g E 6257.0=⇒g E eV_______________________________________ 4.62 (a) Replace Ga atoms ⇒Silicon acts as adonor()()1415105.310705.0⨯=⨯=d N cm 3-Replace As atoms ⇒Silicon acts as anacceptor()()15151065.610795.0⨯=⨯=a N cm 3-(b) ⇒>d a N N p-type(c) 1415105.31065.6⨯-⨯=-=d a o N N p 15103.6⨯=cm 3-()4152621014.5103.6108.1-⨯=⨯⨯==o i o p n n cm 3- (d)⎪⎪⎭⎫⎝⎛=-i o F Fi n p kT E E ln()5692.0108.1103.6ln 0259.0615=⎪⎪⎭⎫⎝⎛⨯⨯=eV_______________________________________。

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案第一章:半导体材料与晶体1.1 半导体材料的基本特性半导体材料是一种介于导体和绝缘体之间的材料。

它的基本特性包括:1.带隙:半导体材料的价带与导带之间存在一个禁带或带隙,是电子在能量上所能占据的禁止区域。

2.拉伸系统:半导体材料的结构是由原子或分子构成的晶格结构,其中的原子或分子以确定的方式排列。

3.载流子:在半导体中,存在两种载流子,即自由电子和空穴。

自由电子是在导带上的,在外加电场存在的情况下能够自由移动的电子。

空穴是在价带上的,当一个价带上的电子从该位置离开时,会留下一个类似电子的空位,空穴可以看作电子离开后的痕迹。

4.掺杂:为了改变半导体材料的导电性能,通常会对其进行掺杂。

掺杂是将少量元素添加到半导体材料中,以改变载流子浓度和导电性质。

1.2 半导体材料的结构与晶体缺陷半导体材料的结构包括晶体结构和非晶态结构。

晶体结构是指材料具有有序的周期性排列的结构,而非晶态结构是指无序排列的结构。

晶体结构的特点包括:1.晶体结构的基本单位是晶胞,晶胞在三维空间中重复排列。

2.晶格常数是晶胞边长的倍数,用于描述晶格的大小。

3.晶体结构可分为离子晶体、共价晶体和金属晶体等不同类型。

晶体结构中可能存在各种晶体缺陷,包括:1.点缺陷:晶体中原子位置的缺陷,主要包括实际缺陷和自间隙缺陷两种类型。

2.线缺陷:晶体中存在的晶面上或晶内的线状缺陷,主要包括位错和脆性断裂两种类型。

3.面缺陷:晶体中存在的晶面上的缺陷,主要包括晶面位错和穿孔两种类型。

1.3 半导体制备与加工半导体制备与加工是指将半导体材料制备成具有特定电性能的器件的过程。

它包括晶体生长、掺杂、薄膜制备和微电子加工等步骤。

晶体生长是将半导体材料从溶液或气相中生长出来的过程。

常用的晶体生长方法包括液相外延法、分子束外延法和气相外延法等。

掺杂是为了改变半导体材料的导电性能,通常会对其进行掺杂。

常用的掺杂方法包括扩散法、离子注入和分子束外延法等。

半导体物理与器件第四版课后习题答案4复习进程

半导体物理与器件第四版课后习题答案4复习进程

m* E
mo
2
o 13.6
s
0.067 13.6
2
13.1
or E 0.0053 eV
_______________________________________
4.17 (a) E c E F
kT ln N c no
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
19
2.8 10
0.0259 ln
4.11
只供学习与交流
E E Fi
midgap
1 kT ln N
2
Nc
1
1.04 1019
kT ln 2
2.8 1019
0.4952 kT
T (K)
200 400 600
kT (eV)
0.01727 0.03453 0.0518
( E Fi E midgap )(eV)
0.0086 0.0171 0.0257
19
2.8 10 1.04 10
3
T
300
1.12 exp
0.0259 T 300
2.5 10 23 2.912 10 38
3
T
300
1.12 300 exp
0.0259 T
By trial and error, T
367.5 K
3
2.912 10 38 T exp 1.12 300
300
0.0259 T
E E Fi
midgap
0.0128 eV
*
Germanium: m p 0.37mo ,
*
m n 0.55mo
E E Fi
midgap

半导体物理与器件第四版课后习题标准答案

半导体物理与器件第四版课后习题标准答案

半导体物理与器件第四版课后习题答案————————————————————————————————作者:————————————————————————————————日期:2______________________________________________________________________________________3Chapter 33.1If o a were to increase, the bandgap energy would decrease and the material would beginto behave less like a semiconductor and morelike a metal. If o a were to decrease, the bandgap energy would increase and thematerial would begin to behave more like an insulator._______________________________________ 3.2Schrodinger's wave equation is:()()()t x x V x t x m ,,2222ψ⋅+∂ψ∂-η()tt x j ∂ψ∂=,ηAssume the solution is of the form:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x ηexp , Region I: ()0=x V . Substituting theassumed solution into the wave equation, we obtain:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m ηηexp 22 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u ηexp()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j ηηηexp which becomes()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m ηηexp 222()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jk ηexp 2()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u ηexp 22()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu ηexp This equation may be written as()()()()0222222=+∂∂+∂∂+-x u mE x x u x x u jk x u k ηSetting ()()x u x u 1= for region I, the equation becomes: ()()()()021221212=--+x u k dx x du jk dxx u d α where222ηmE=αQ.E.D.In Region II, ()O V x V =. Assume the same form of the solution:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x ηexp , Substituting into Schrodinger's wave equation, we find:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m ηηexp 222()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jk ηexp 2()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u ηexp 22()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O ηexp()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu ηexp This equation can be written as:______________________________________________________________________________________4()()()2222xx u x x u jk x u k ∂∂+∂∂+- ()()02222=+-x u mEx u mV O ηη Setting ()()x u x u 2= for region II, this equation becomes()()dx x du jkdx x u d 22222+()022222=⎪⎪⎭⎫ ⎝⎛+--x u mV k O ηα where again222ηmE=αQ.E.D._______________________________________ 3.3We have ()()()()021221212=--+x u k dx x du jk dxx u d α Assume the solution is of the form: ()()[]x k j A x u -=αexp 1 ()[]x k j B +-+αexpThe first derivative is()()()[]x k j A k j dxx du --=ααexp 1 ()()[]x k j B k j +-+-ααexpand the second derivative becomes()()[]()[]x k j A k j dxx u d --=ααexp 2212()[]()[]x k j B k j +-++ααexp 2Substituting these equations into the differential equation, we find()()[]x k j A k ---ααexp 2()()[]x k j B k +-+-ααexp 2(){()[]x k j A k j jk --+ααexp 2()()[]}x k j B k j +-+-ααexp ()()[]{x k j A k ---ααexp 22 ()[]}0exp =+-+x k j B α Combining terms, we obtain()()()[]222222αααα----+--k k k k k ()[]x k j A -⨯αexp()()()[]222222αααα--++++-+k k k k k()[]0exp =+-⨯x k j B α We find that00= Q.E.D.For the differential equation in ()x u 2 and theproposed solution, the procedure is exactly the same as above._______________________________________ 3.4We have the solutions()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp for a x <<0 and()()[]x k j C x u -=βexp 2()[]x k j D +-+βexp for 0<<-x b .The first boundary condition is ()()0021u u =which yields0=--+D C B AThe second boundary condition is201===x x dx dudx du which yields()()()C k B k A k --+--βαα ()0=++D k βThe third boundary condition is ()()b u a u -=21 which yields()[]()[]a k j B a k j A +-+-ααexp exp ()()[]b k j C --=βexp ()()[]b k j D -+-+βexp______________________________________________________________________________________5and can be written as()[]()[]a k j B a k j A +-+-ααexp exp ()[]b k j C ---βexp ()[]0exp =+-b k j D βThe fourth boundary condition isbx a x dx dudx du -===21 which yields()()[]a k j A k j --ααexp()()[]a k j B k j +-+-ααexp()()()[]b k j C k j ---=ββexp()()()[]b k j D k j -+-+-ββexp and can be written as()()[]a k j A k --ααexp()()[]a k j B k +-+-ααexp ()()[]b k j C k ----ββexp()()[]0exp =+++b k j D k ββ_______________________________________ 3.5(b) (i) First point: πα=aSecond point: By trial and error, πα729.1=a (ii) First point: πα2=aSecond point: By trial and error, πα617.2=a _______________________________________ 3.6(b) (i) First point: πα=aSecond point: By trial and error, πα515.1=a (ii) First point: πα2=aSecond point: By trial and error, πα375.2=a _______________________________________ 3.7ka a aaP cos cos sin =+'ααα Let y ka =, x a =α Theny x x xP cos cos sin =+'Consider dydof this function.()[]{}y x x x P dyd sin cos sin 1-=+⋅'- We find()()()⎭⎬⎫⎩⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 112y dydx x sin sin -=-Theny x x x x x P dy dx sin sin cos sin 12-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡+-' For πn ka y ==,...,2,1,0=n 0sin =⇒y So that, in general,()()dkd ka d a d dy dxαα===0 And22ηmE=α SodkdEm mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-22/122221ηηα This implies thatdk dE dk d ==0α for an k π= _______________________________________ 3.8(a) πα=a 1π=⋅a E m o 212η______________________________________________________________________________________6()()()()2103123422221102.41011.9210054.12---⨯⨯⨯==ππa m E o η19104114.3-⨯=J From Problem 3.5 πα729.12=aπ729.1222=⋅a E m o η()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J12E E E -=∆1918104114.3100198.1--⨯-⨯= 19107868.6-⨯=Jor 24.4106.1107868.61919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o η()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J From Problem 3.5, πα617.24=aπ617.2224=⋅a E m o η()()()()2103123424102.41011.9210054.1617.2---⨯⨯⨯=πE18103364.2-⨯=J34E E E -=∆1818103646.1103364.2--⨯-⨯= 1910718.9-⨯=Jor 07.6106.110718.91919=⨯⨯=∆--E eV_______________________________________ 3.9(a) At π=ka , πα=a 1π=⋅a E m o 212η()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα859.0=a o()()()()210312342102.41011.9210054.1859.0---⨯⨯⨯=πo E19105172.2-⨯=J o E E E -=∆11919105172.2104114.3--⨯-⨯= 2010942.8-⨯=Jor 559.0106.110942.81920=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o η()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J At π=ka . From Problem 3.5,πα729.12=aπ729.1222=⋅a E m o η()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J 23E E E -=∆1818100198.1103646.1--⨯-⨯= 19104474.3-⨯=Jor 15.2106.1104474.31919=⨯⨯=∆--E eV_____________________________________________________________________________________________________________________________73.10(a) πα=a 1π=⋅a E m o 212η()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JFrom Problem 3.6, πα515.12=aπ515.1222=⋅a E m o η()()()()2103123422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 12E E E -=∆1919104114.310830.7--⨯-⨯= 19104186.4-⨯=Jor 76.2106.1104186.41919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o η()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JFrom Problem 3.6, πα375.24=aπ375.2224=⋅a E m o η()()()()2103123424102.41011.9210054.1375.2---⨯⨯⨯=πE18109242.1-⨯=J 34E E E -=∆1818103646.1109242.1--⨯-⨯=1910597.5-⨯=Jor 50.3106.110597.51919=⨯⨯=∆--E eV _____________________________________3.11(a) At π=ka , πα=a 1π=⋅a E m o 212η()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=J At 0=ka , By trial and error, πα727.0=a o π727.022=⋅a E m o o η()()()()210312342102.41011.9210054.1727.0---⨯⨯⨯=πo E19108030.1-⨯=J o E E E -=∆11919108030.1104114.3--⨯-⨯= 19106084.1-⨯=Jor 005.1106.1106084.11919=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o η()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka , From Problem 3.6, πα515.12=aπ515.1222=⋅a E m o η()()()()2103423422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 23E E E -=∆191810830.7103646.1--⨯-⨯=______________________________________________________________________________________81910816.5-⨯=Jor 635.3106.110816.51919=⨯⨯=∆--E eV_______________________________________ 3.12For 100=T K,()()⇒+⨯-=-1006361001073.4170.124g E164.1=g E eV200=T K, 147.1=g E eV 300=T K, 125.1=g E eV 400=T K, 097.1=g E eV 500=T K, 066.1=g E eV 600=T K, 032.1=g E eV _______________________________________ 3.13The effective mass is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m ηWe have()()B curve dkEd A curve dk E d 2222>so that ()()B curve m A curve m **<_______________________________________ 3.14The effective mass for a hole is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m p η We have that()()B curve dkEd A curve dk E d 2222> so that ()()B curve m A curve m p p **<_______________________________________ 3.15Points A,B: ⇒<0dkdEvelocity in -x direction Points C,D: ⇒>0dkdEvelocity in +x directionPoints A,D: ⇒<022dk Ednegative effective massPoints B,C: ⇒>022dkEd positive effective mass_______________________________________ 3.16For A: 2k C E i =At 101008.0+⨯=k m 1-, 05.0=E eV Or()()2119108106.105.0--⨯=⨯=E JSo ()2101211008.0108⨯=⨯-C3811025.1-⨯=⇒CNow ()()38234121025.1210054.12--*⨯⨯==C m η 311044.4-⨯=kgor o m m ⋅⨯⨯=--*31311011.9104437.4 o m m 488.0=*For B: 2k C E i =At 101008.0+⨯=k m 1-, 5.0=E eV Or ()()2019108106.15.0--⨯=⨯=E JSo ()2101201008.0108⨯=⨯-C 3711025.1-⨯=⇒CNow ()()37234121025.1210054.12--*⨯⨯==C m η321044.4-⨯=kgor o m m ⋅⨯⨯=--*31321011.9104437.4o m m 0488.0=*_____________________________________________________________________________________________________________________________93.17For A: 22k C E E -=-υ()()()2102191008.0106.1025.0⨯-=⨯--C3921025.6-⨯=⇒C ()()39234221025.6210054.12--*⨯⨯-=-=C m η31108873.8-⨯-=kgor o m m ⋅⨯⨯-=--*31311011.9108873.8o m m 976.0--=* For B: 22k C E E -=-υ()()()2102191008.0106.13.0⨯-=⨯--C382105.7-⨯=⇒C()()3823422105.7210054.12--*⨯⨯-=-=C m η3210406.7-⨯-=kgor o m m ⋅⨯⨯-=--*31321011.910406.7o m m 0813.0-=*_______________________________________ 3.18(a) (i) νh E =or ()()341910625.6106.142.1--⨯⨯==h E ν1410429.3⨯=Hz(ii) 141010429.3103⨯⨯===νλc E hc 51075.8-⨯=cm 875=nm(b) (i) ()()341910625.6106.112.1--⨯⨯==h E ν 1410705.2⨯=Hz(ii) 141010705.2103⨯⨯==νλc410109.1-⨯=cm 1109=nm _______________________________________ 3.19(c) Curve A: Effective mass is a constantCurve B: Effective mass is positive around 0=k , and is negativearound 2π±=k ._______________________________________ 3.20()[]O O k k E E E --=αcos 1 Then()()()[]O k k E dkdE---=ααsin 1()[]O k k E -+=ααsin 1 and()[]O k k E dkEd -=ααcos 2122Then221222*11ηηαE dk Ed m o k k =⋅== or212*αE m η=_______________________________________ 3.21(a) ()[]3/123/24l t dnm m m =*()()[]3/123/264.1082.04o o m m =o dnm m 56.0=*(b)oo l t cn m m m m m 64.11082.02123+=+=*oo m m 6098.039.24+=o cnm m 12.0=*_______________________________________ 3.22(a) ()()[]3/22/32/3lh hh dp m m m +=*______________________________________________________________________________________10()()[]3/22/32/3082.045.0o o m m +=[]o m ⋅+=3/202348.030187.0o dpm m 473.0=*(b) ()()()()2/12/12/32/3lh hh lh hh cpm m m m m ++=* ()()()()om ⋅++=2/12/12/32/3082.045.0082.045.0 o cpm m 34.0=*_______________________________________3.23For the 3-dimensional infinite potential well, ()0=x V when a x <<0, a y <<0, and a z <<0. In this region, the wave equation is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ()0,,22=+z y x mEψηUse separation of variables technique, so let ()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we have222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂ 022=⋅+XYZ mEηDividing by XYZ , we obtain021*********=+∂∂⋅+∂∂⋅+∂∂⋅ηmE z Z Z y Y Y x X X Let01222222=+∂∂⇒-=∂∂⋅X k x X k x X X xx The solution is of the form: ()x k B x k A x X x x cos sin += Since ()0,,=z y x ψ at 0=x , then ()00=Xso that 0=B .Also, ()0,,=z y x ψ at a x =, so that()0=a X . Then πx x n a k = where...,3,2,1=x n Similarly, we have2221y k y Y Y -=∂∂⋅ and 2221z k zZ Z -=∂∂⋅From the boundary conditions, we find πy y n a k = and πz z n a k = where...,3,2,1=y n and ...,3,2,1=z n From the wave equation, we can write022222=+---ηmE k k k z y xThe energy can be written as()222222⎪⎭⎫ ⎝⎛++==a n n n m E E z y x n n n z y x πη _______________________________________ 3.24The total number of quantum states in the 3-dimensional potential well is given (in k-space) by()332a dk k dk k g T ⋅=ππ where222ηmEk =We can then writeηmEk 2=Taking the differential, we obtaindE Em dE E m dk ⋅⋅=⋅⋅⋅⋅=2112121ηηSubstituting these expressions into the densityof states function, we have()dE EmmE a dE E g T ⋅⋅⋅⎪⎭⎫ ⎝⎛=212233ηηππ Noting thatπ2h=ηthis density of states function can be simplified and written as______________________________________________________________________________________()()dE E m h a dE E g T ⋅⋅=2/33324πDividing by 3a will yield the density of states so that()()E hm E g ⋅=32/324π _______________________________________ 3.25For a one-dimensional infinite potential well,222222k an E m n ==*πη Distance between quantum states()()aa n a n k k n n πππ=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=-+11Now()⎪⎭⎫ ⎝⎛⋅=a dkdk k g T π2NowE m k n*⋅=21ηdE Em dk n⋅⋅⋅=*2211η Then()dE Em a dE E g n T ⋅⋅⋅=*2212ηπDivide by the "volume" a , so()Em E g n *⋅=21πηSo()()()()()EE g 31341011.9067.0210054.11--⨯⋅⨯=π ()EE g 1810055.1⨯=m 3-J 1-_______________________________________ 3.26(a) Silicon, o nm m 08.1=*()()c nc E E h m E g -=*32/324π()dE E E h m g kTE E c nc c c⋅-=⎰+*232/324π()()kT E E c nc cE E h m 22/332/33224+*-⋅⋅=π()()2/332/323224kT h m n⋅⋅=*π ()()[]()()2/33342/33123210625.61011.908.124kT ⋅⋅⨯⨯=--π ()()2/355210953.7kT ⨯=(i) At 300=T K, 0259.0=kT eV ()()19106.10259.0-⨯=2110144.4-⨯=J Then()()[]2/3215510144.4210953.7-⨯⨯=c g25100.6⨯=m 3- or 19100.6⨯=c g cm 3-(ii) At 400=T K, ()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()19106.1034533.0-⨯=21105253.5-⨯=J Then()()[]2/32155105253.5210953.7-⨯⨯=c g2510239.9⨯=m 3-or 191024.9⨯=c g cm 3-(b) GaAs, o nm m 067.0=*()()[]()()2/33342/33123210625.61011.9067.024kT g c ⋅⋅⨯⨯=--π ()()2/3542102288.1kT ⨯=______________________________________________________________________________________(i) At 300=T K, 2110144.4-⨯=kT J()()[]2/3215410144.42102288.1-⨯⨯=c g2310272.9⨯=m 3- or 171027.9⨯=c g cm 3-(ii) At 400=T K, 21105253.5-⨯=kT J()()[]2/32154105253.52102288.1-⨯⨯=c g2410427.1⨯=m 3- 181043.1⨯=c g cm 3-_______________________________________ 3.27(a) Silicon, o p m m 56.0=* ()()E E h mE g p-=*υυπ32/324()dE E E h m g E kTE p⋅-=⎰-*υυυυπ332/324()()υυυπE kTE pE E h m 32/332/33224-*-⎪⎭⎫ ⎝⎛-=()()[]2/332/333224kT h mp-⎪⎭⎫ ⎝⎛-=*π ()()[]()()2/33342/33133210625.61011.956.024kT ⎪⎭⎫ ⎝⎛⨯⨯=--π ()()2/355310969.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.4310969.2-⨯⨯=υg2510116.4⨯=m 3- or 191012.4⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J ()()[]2/32155105253.5310969.2-⨯⨯=υg2510337.6⨯=m 3-or 191034.6⨯=υg cm 3- (b) GaAs, o p m m 48.0=*()()[]()()2/33342/33133210625.61011.948.024kT g ⎪⎭⎫ ⎝⎛⨯⨯=--πυ ()()2/3553103564.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.43103564.2-⨯⨯=υg2510266.3⨯=m 3- or 191027.3⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.53103564.2-⨯⨯=υg2510029.5⨯=m 3-or 191003.5⨯=υg cm 3-_______________________________________ 3.28(a) ()()c nc E E h m E g -=*32/324π()()[]()c E E -⨯⨯=--3342/33110625.61011.908.124πc E E -⨯=56101929.1 For c E E =; 0=c g1.0+=c E E eV; 4610509.1⨯=c g m 3-J 1-2.0+=c E E eV;4610134.2⨯=m 3-J 1- 3.0+=c E E eV; 4610614.2⨯=m 3-J 1- 4.0+=c E E eV; 4610018.3⨯=m 3-J 1-(b) ()E E hm g p-=*υυπ32/324()()[]()E E -⨯⨯=--υπ3342/33110625.61011.956.024E E -⨯=υ55104541.4______________________________________________________________________________________For υE E =; 0=υg 1.0-=υE E eV; 4510634.5⨯=υg m 3-J 1-2.0-=υE E eV;4510968.7⨯=m 3-J 1-3.0-=υE E eV; 4510758.9⨯=m 3-J 1-4.0-=υE E eV;4610127.1⨯=m 3-J 1-_______________________________________ 3.29(a) ()()68.256.008.12/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ(b) ()()0521.048.0067.02/32/32/3=⎪⎭⎫ ⎝⎛==**pncmm g g υ_______________________________________3.30 Plot_______________________________________ 3.31(a) ()()()!710!7!10!!!-=-=i i i i i N g N g W()()()()()()()()()()()()1201238910!3!7!78910===(b) (i) ()()()()()()()()12!10!101112!1012!10!12=-=i W 66= (ii)()()()()()()()()()()()()1234!8!89101112!812!8!12=-=i W 495=_______________________________________ 3.32()⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F exp 11(a) kT E E F =-, ()()⇒+=1exp 11E f ()269.0=E f(b) kT E E F 5=-, ()()⇒+=5exp 11E f()31069.6-⨯=E f (c) kT E E F 10=-, ()()⇒+=10exp 11E f()51054.4-⨯=E f_______________________________________ 3.33()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F exp 1111or()⎪⎪⎭⎫⎝⎛-+=-kT E E E f F exp 111(a) kT E E F =-, ()269.01=-E f (b) kT E E F 5=-, ()31069.61-⨯=-E f (c) kT E E F 10=-, ()51054.41-⨯=-E f_______________________________________ 3.34(a) ()⎥⎦⎤⎢⎣⎡--≅kT E E f F F exp c E E =; 61032.90259.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f 2kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.020259.030.0exp F f 61066.5-⨯=kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.00259.030.0exp F f 61043.3-⨯=23kT E c +; ()()⎥⎦⎤⎢⎣⎡+-=0259.020259.0330.0exp F f 61008.2-⨯=kT E c 2+; ()()⎥⎦⎤⎢⎣⎡+-=0259.00259.0230.0exp F f 61026.1-⨯=______________________________________________________________________________________(b) ⎥⎦⎤⎢⎣⎡-+-=-kT E E f F F exp 1111()⎥⎦⎤⎢⎣⎡--≅kT E E F exp υE E =; ⎥⎦⎤⎢⎣⎡-=-0259.025.0exp 1F f 51043.6-⨯= 2kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.020259.025.0exp 1F f 51090.3-⨯=kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.00259.025.0exp 1F f 51036.2-⨯=23kT E -υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.020259.0325.0exp 1F f 51043.1-⨯= kT E 2-υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.00259.0225.0exp 1F f 61070.8-⨯=_______________________________________ 3.35()()⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡--=kT E kT E kT E E f F c F F exp exp and()⎥⎦⎤⎢⎣⎡--=-kT E E f F F exp 1()()⎥⎦⎤⎢⎣⎡---=kT kT E E F υexp So ()⎥⎦⎤⎢⎣⎡-+-kT E kT E F c exp()⎥⎦⎤⎢⎣⎡+--=kT kT E E F υexp Then kT E E E kT E F F c +-=-+υOr midgap c F E E E E =+=2υ_______________________________________ 3.3622222man E n πη= For 6=n , Filled state()()()()()2103122234610121011.92610054.1---⨯⨯⨯=πE18105044.1-⨯=Jor 40.9106.1105044.119186=⨯⨯=--E eVFor 7=n , Empty state()()()()()2103122234710121011.92710054.1---⨯⨯⨯=πE1810048.2-⨯=Jor 8.12106.110048.219187=⨯⨯=--E eVTherefore 8.1240.9<<F E eV_______________________________________ 3.37(a) For a 3-D infinite potential well ()222222⎪⎭⎫⎝⎛++=a n n n mE z y x πη For 5 electrons, the 5thelectron occupies the quantum state 1,2,2===z y x n n n ; so()2222252⎪⎭⎫ ⎝⎛++=a n n n m E z y x πη()()()()()21031222223410121011.9212210054.1---⨯⨯++⨯=π 1910761.3-⨯=Jor 35.2106.110761.319195=⨯⨯=--E eV For the next quantum state, which is empty, the quantum state is 2,2,1===z y x n n n . This quantum state is at the same energy, so 35.2=F E eV(b) For 13 electrons, the 13th electronoccupies the quantum state______________________________________________________________________________________3,2,3===z y x n n n ; so ()()()()()2103122222341310121011.9232310054.1---⨯⨯++⨯=πE 1910194.9-⨯=Jor 746.5106.110194.9191913=⨯⨯=--E eVThe 14th electron would occupy the quantum state 3,3,2===z y x n n n . This state is at the same energy, so 746.5=F E eV_______________________________________ 3.38The probability of a state at E E E F ∆+=1 being occupied is()⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛-+=kT E kT E E E f F exp 11exp 11111 The probability of a state at E E E F ∆-=2being empty is()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F 222exp 1111⎪⎭⎫ ⎝⎛∆-+⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-+-=kT E kT E kT E exp 1exp exp 111 or()⎪⎭⎫ ⎝⎛∆+=-kT E E f exp 11122 so ()()22111E f E f -= Q.E.D._______________________________________ 3.39(a) At energy 1E , we want01.0exp 11exp 11exp 1111=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-kT E E kT E E kT E E F F FThis expression can be written as01.01exp exp 111=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+kT E E kT E E F For()⎪⎪⎭⎫⎝⎛-=kT E E F 1exp 01.01Then()100ln 1kT E E F += orkT E E F 6.41+= (b)At kT E E F 6.4+=,()()6.4exp 11exp 1111+=⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F which yields()01.000990.01≅=E f_______________________________________ 3.40 (a)()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=0259.050.580.5exp exp kT E E f F F 61032.9-⨯=(b) ()060433.03007000259.0=⎪⎭⎫⎝⎛=kT eV31098.6060433.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f (c) ()⎥⎦⎤⎢⎣⎡--≅-kT E E f F F exp 1 ⎥⎦⎤⎢⎣⎡-=kT 25.0exp 02.0______________________________________________________________________________________or 5002.0125.0exp ==⎥⎦⎤⎢⎣⎡+kT ()50ln 25.0=kTor()()⎪⎭⎫⎝⎛===3000259.0063906.050ln 25.0T kTwhich yields 740=T K_______________________________________ 3.41 (a)()00304.00259.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 0.304%(b) At 1000=T K, 08633.0=kT eV Then()1496.008633.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 14.96%(c) ()997.00259.00.785.6exp 11=⎪⎭⎫⎝⎛-+=E for 99.7% (d)At F E E =, ()21=E f for alltemperatures_______________________________________ 3.42(a) For 1E E =()()⎥⎦⎤⎢⎣⎡--≅⎪⎪⎭⎫ ⎝⎛-+=kT E E kTE E E fF F11exp exp 11Then()611032.90259.030.0exp -⨯=⎪⎭⎫ ⎝⎛-=E fFor 2E E =,82.030.012.12=-=-E E F eV Then()⎪⎭⎫ ⎝⎛-+-=-0259.082.0exp 1111E for()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---≅-0259.082.0exp 111E f141078.10259.082.0exp -⨯=⎪⎭⎫ ⎝⎛-=(b) For 4.02=-E E F eV, 72.01=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.072.0exp exp 1kT E E E f F or()131045.8-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1⎪⎭⎫ ⎝⎛-=0259.04.0expor()71096.11-⨯=-E f_______________________________________ 3.43(a) At 1E E =()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.030.0exp exp 1kT E E E f F or()61032.9-⨯=E f At 2E E =, 12.13.042.12=-=-E E F eV So()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1⎪⎭⎫ ⎝⎛-=0259.012.1exp______________________________________________________________________________________or()191066.11-⨯=-E f(b) For 4.02=-E E F ,02.11=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.002.1exp exp 1kT E E E f F or()181088.7-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1⎪⎭⎫ ⎝⎛-=0259.04.0expor ()71096.11-⨯=-E f_______________________________________ 3.44()1exp 1-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fso()()2exp 11-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=kT E E dE E df F⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⨯kT E E kT F exp 1 or()2exp 1exp 1⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=kT E E kT E E kT dE E df F F (a) At 0=T K, For()00exp =⇒=∞-⇒<dE dfE E F()0exp =⇒+∞=∞+⇒>dEdfE E FAt -∞=⇒=dEdfE E F(b) At 300=T K, 0259.0=kT eVFor F E E <<,0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()65.91110259.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1-(c) At 500=T K, 04317.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =, ()()79.511104317.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1- _______________________________________ 3.45(a) At midgap E E =,()⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=kTE kTE E E f gF2exp 11exp 11Si: 12.1=g E eV, ()()⎥⎦⎤⎢⎣⎡+=0259.0212.1exp 11E for()101007.4-⨯=E fGe: 66.0=g E eV______________________________________________________________________________________()()⎥⎦⎤⎢⎣⎡+=0259.0266.0exp 11E for()61093.2-⨯=E f GaAs: 42.1=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0242.1exp 11E for()121024.1-⨯=E f(b) Using the results of Problem 3.38, the answers to part (b) are exactly the same as those given in part (a)._______________________________________ 3.46(a) ()⎥⎦⎤⎢⎣⎡--=kT E E f F F exp ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 108 or ()810ln 60.0+=kT()032572.010ln 60.08==kT eV()⎪⎭⎫⎝⎛=3000259.0032572.0Tso 377=T K(b) ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 106()610ln 60.0+=kT()043429.010ln 60.06==kT ()⎪⎭⎫⎝⎛=3000259.0043429.0Tor 503=T K_______________________________________ 3.47(a) At 200=T K,()017267.03002000259.0=⎪⎭⎫⎝⎛=kT eV⎪⎪⎭⎫ ⎝⎛-+==kTE E f FF exp 1105.019105.01exp =-=⎪⎪⎭⎫⎝⎛-kT E E F()()()19ln 017267.019ln ==-kT E E F 05084.0=eV By symmetry, for 95.0=F f , 05084.0-=-F E E eVThen ()1017.005084.02==∆E eV (b) 400=T K, 034533.0=kT eV For 05.0=F f , from part (a),()()()19ln 034533.019ln ==-kT E E F 10168.0=eV Then ()2034.010168.02==∆E eV_______________________________________。

半导体物理与器件第四课后习题答案3.doc

半导体物理与器件第四课后习题答案3.doc

Chapter 33.1If o a were to increase, the bandgap energy would decrease and the material would begin to behave less like a semiconductor and more like a metal. If o a were to decrease, the bandgap energy would increase and thematerial would begin to behave more like an insulator._______________________________________ 3.2Schrodinger's wave equation is:()()()t x x V xt x m ,,2222ψ⋅+∂ψ∂- ()tt x j ∂ψ∂=, Assume the solution is of the form:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Region I: ()0=x V . Substituting theassumed solution into the wave equation, we obtain:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m exp 22 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j exp which becomes()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu exp This equation may be written as()()()()0222222=+∂∂+∂∂+-x u mE x x u x x u jk x u kSetting ()()x u x u 1= for region I, the equation becomes:()()()()021221212=--+x u k dx x du jk dxx u d α where222mE=αIn Region II, ()O V x V =. Assume the same form of the solution:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Substituting into Schrodinger's wave equation, we find:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu exp This equation can be written as:()()()2222x x u x x u jk x u k ∂∂+∂∂+- ()()02222=+-x u mEx u mV OSetting ()()x u x u 2= for region II, this equation becomes()()dx x du jk dxx u d 22222+ ()022222=⎪⎪⎭⎫ ⎝⎛+--x u mV k O α where again222mE=α_______________________________________3.3We have()()()()021221212=--+x u k dx x du jk dxx u d α Assume the solution is of the form: ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp The first derivative is()()()[]x k j A k j dxx du --=ααexp 1 ()()[]x k j B k j +-+-ααexp and the second derivative becomes()()[]()[]x k j A k j dxx u d --=ααexp 2212 ()[]()[]x k j B k j +-++ααexp 2Substituting these equations into the differential equation, we find()()[]x k j A k ---ααexp 2()()[]x k j B k +-+-ααexp 2(){()[]x k j A k j jk --+ααexp 2()()[]}x k j B k j +-+-ααexp ()()[]{x k j A k ---ααexp 22 ()[]}0exp =+-+x k j B α Combining terms, we obtain()()()[]222222αααα----+--k k k k k ()[]x k j A -⨯αexp()()()[]222222αααα--++++-+k k k k k ()[]0exp =+-⨯x k j B α We find that 00=For the differential equation in ()x u 2 and the proposed solution, the procedure is exactly the same as above._______________________________________ 3.4We have the solutions ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp for a x <<0 and()()[]x k j C x u -=βexp 2()[]x k j D +-+βexp for 0<<-x b .The first boundary condition is ()()0021u u =which yields0=--+D C B AThe second boundary condition is201===x x dx dudx du which yields()()()C k B k A k --+--βαα()0=++D k β The third boundary condition is ()()b u a u -=21 which yields()[]()[]a k j B a k j A +-+-ααexp exp ()()[]b k j C --=βexp()()[]b k j D -+-+βexp and can be written as()[]()[]a k j B a k j A +-+-ααexp exp ()[]b k j C ---βexp()[]0exp =+-b k j D β The fourth boundary condition isbx a x dx dudx du -===21 which yields()()[]a k j A k j --ααexp()()[]a k j B k j +-+-ααexp ()()()[]b k j C k j ---=ββexp()()()[]b k j D k j -+-+-ββexp and can be written as ()()[]a k j A k --ααexp()()[]a k j B k +-+-ααexp()()[]b k j C k ----ββexp()()[]0exp =+++b k j D k ββ_______________________________________ 3.5(b) (i) First point: πα=aSecond point: By trial and error, πα729.1=a (ii) First point: πα2=aSecond point: By trial and error, πα617.2=a_______________________________________3.6(b) (i) First point: πα=aSecond point: By trial and error, πα515.1=a (ii) First point: πα2=aSecond point: By trial and error, πα375.2=a_______________________________________ 3.7ka a aaP cos cos sin =+'αααLet y ka =, x a =α Theny x x xP cos cos sin =+'Consider dy dof this function.()[]{}y x x x P dyd sin cos sin 1-=+⋅'- We find()()()⎭⎬⎫⎩⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 112y dydxx sin sin -=- Theny x x x x x P dy dx sin sin cos sin 12-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡+-'For πn ka y ==, ...,2,1,0=n 0sin =⇒y So that, in general,()()dk d ka d a d dy dxαα===0 And22 mE=αSodk dEm mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-22/122221 α This implies thatdk dE dk d ==0α for an k π= _______________________________________ 3.8(a) πα=a 1π=⋅a E m o 212()()()()2103123422221102.41011.9210054.12---⨯⨯⨯==ππa m E o19104114.3-⨯=J From Problem 3.5 πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J 12E E E -=∆1918104114.3100198.1--⨯-⨯= 19107868.6-⨯=Jor 24.4106.1107868.61919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J From Problem 3.5, πα617.24=aπ617.2224=⋅a E m o()()()()2103123424102.41011.9210054.1617.2---⨯⨯⨯=πE18103364.2-⨯=J 34E E E -=∆1818103646.1103364.2--⨯-⨯= 1910718.9-⨯=Jor 07.6106.110718.91919=⨯⨯=∆--E eV_______________________________________3.9(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα859.0=a o ()()()()210312342102.41011.9210054.1859.0---⨯⨯⨯=πoE19105172.2-⨯=J o E E E -=∆11919105172.2104114.3--⨯-⨯= 2010942.8-⨯=Jor 559.0106.110942.81920=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka . From Problem 3.5, πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J23E E E -=∆1818100198.1103646.1--⨯-⨯= 19104474.3-⨯=Jor 15.2106.1104474.31919=⨯⨯=∆--E eV_______________________________________3.10(a) πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JFrom Problem 3.6, πα515.12=aπ515.1222=⋅a E m o()()()()2103123422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 12E E E -=∆1919104114.310830.7--⨯-⨯= 19104186.4-⨯=Jor 76.2106.1104186.41919=⨯⨯=∆--E eV (b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JFrom Problem 3.6, πα375.24=aπ375.2224=⋅a E m o()()()()2103123424102.41011.9210054.1375.2---⨯⨯⨯=πE18109242.1-⨯=J 34E E E -=∆1818103646.1109242.1--⨯-⨯= 1910597.5-⨯=Jor 50.3106.110597.51919=⨯⨯=∆--E eV_____________________________________3.11(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα727.0=a oπ727.022=⋅a E m o o()()()()210312342102.41011.9210054.1727.0---⨯⨯⨯=πo E19108030.1-⨯=Jo E E E -=∆11919108030.1104114.3--⨯-⨯= 19106084.1-⨯=Jor 005.1106.1106084.11919=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka , From Problem 3.6,πα515.12=aπ515.1222=⋅a E m o()()()()2103423422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J23E E E -=∆191810830.7103646.1--⨯-⨯= 1910816.5-⨯=Jor 635.3106.110816.51919=⨯⨯=∆--E eV_______________________________________3.12For 100=T K, ()()⇒+⨯-=-1006361001073.4170.124gE164.1=g E eV200=T K, 147.1=g E eV 300=T K, 125.1=g E eV 400=T K, 097.1=g E eV 500=T K, 066.1=g E eV 600=T K, 032.1=g E eV_______________________________________3.13The effective mass is given by1222*1-⎪⎪⎭⎫⎝⎛⋅=dk E d mWe have()()B curve dkE d A curve dk E d 2222> so that ()()B curve m A curve m **<_______________________________________ 3.14The effective mass for a hole is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m p We have that()()B curve dkEd A curve dk E d 2222> so that ()()B curve m A curve m p p **<_______________________________________ 3.15Points A,B: ⇒<0dk dEvelocity in -x directionPoints C,D: ⇒>0dk dEvelocity in +x directionPoints A,D: ⇒<022dk Ednegative effective massPoints B,C: ⇒>022dkEd positive effective mass _______________________________________3.16For A: 2k C E i =At 101008.0+⨯=k m 1-, 05.0=E eV Or ()()2119108106.105.0--⨯=⨯=E J So ()2101211008.0108⨯=⨯-C3811025.1-⨯=⇒CNow ()()38234121025.1210054.12--*⨯⨯==C m 311044.4-⨯=kgor o m m ⋅⨯⨯=--*31311011.9104437.4o m m 488.0=* For B: 2k C E i =At 101008.0+⨯=k m 1-, 5.0=E eV Or ()()2019108106.15.0--⨯=⨯=E JSo ()2101201008.0108⨯=⨯-C 3711025.1-⨯=⇒CNow ()()37234121025.1210054.12--*⨯⨯==C m 321044.4-⨯=kg or o m m ⋅⨯⨯=--*31321011.9104437.4o m m 0488.0=*_______________________________________ 3.17For A: 22k C E E -=-υ()()()2102191008.0106.1025.0⨯-=⨯--C 3921025.6-⨯=⇒C()()39234221025.6210054.12--*⨯⨯-=-=C m31108873.8-⨯-=kgor o m m ⋅⨯⨯-=--*31311011.9108873.8o m m 976.0--=* For B: 22k C E E -=-υ()()()2102191008.0106.13.0⨯-=⨯--C 382105.7-⨯=⇒C()()3823422105.7210054.12--*⨯⨯-=-=C m3210406.7-⨯-=kgor o m m ⋅⨯⨯-=--*31321011.910406.7o m m 0813.0-=*_______________________________________ 3.18(a) (i) νh E =or ()()341910625.6106.142.1--⨯⨯==h E ν1410429.3⨯=Hz(ii) 141010429.3103⨯⨯===νλc E hc 51075.8-⨯=cm 875=nm(b) (i) ()()341910625.6106.112.1--⨯⨯==h E ν1410705.2⨯=Hz(ii) 141010705.2103⨯⨯==νλc410109.1-⨯=cm 1109=nm_______________________________________ 3.19(c) Curve A: Effective mass is a constantCurve B: Effective mass is positive around 0=k , and is negativearound 2π±=k . _______________________________________ 3.20()[]O O k k E E E --=αcos 1 Then()()()[]O k k E dkdE ---=ααsin 1()[]O k k E -+=ααsin 1 and()[]O k k E dk E d -=ααcos 2122Then221222*11 αE dk Ed m o k k =⋅== or212*αE m =_______________________________________ 3.21(a) ()[]3/123/24lt dn m m m =*()()[]3/123/264.1082.04oom m =o dn m m 56.0=*(b)o o l t cnm m m m m 64.11082.02123+=+=*oo m m 6098.039.24+=o cn m m 12.0=*_______________________________________ 3.22(a) ()()[]3/22/32/3lh hh dp m m m +=*()()[]3/22/32/3082.045.0o om m +=[]o m ⋅+=3/202348.030187.0o dp m m 473.0=*(b) ()()()()2/12/12/32/3lh hh lh hh cpm m m m m ++=*()()()()om ⋅++=2/12/12/32/3082.045.0082.045.0 o cp m m 34.0=*_______________________________________ 3.23For the 3-dimensional infinite potential well, ()0=x V when a x <<0, a y <<0, and a z <<0. In this region, the wave equation is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ()0,,22=+z y x mEψ Use separation of variables technique, so let ()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we have222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂ 022=⋅+XYZ mEDividing by XYZ , we obtain021*********=+∂∂⋅+∂∂⋅+∂∂⋅ mEz Z Z y Y Y x X XLet01222222=+∂∂⇒-=∂∂⋅X k x X k x X X xx The solution is of the form: ()x k B x k A x X x x cos sin +=Since ()0,,=z y x ψ at 0=x , then ()00=X so that 0=B .Also, ()0,,=z y x ψ at a x =, so that ()0=a X . Then πx x n a k = where ...,3,2,1=x n Similarly, we have2221y k y Y Y -=∂∂⋅ and 2221z k zZ Z -=∂∂⋅From the boundary conditions, we find πy y n a k = and πz z n a k =where...,3,2,1=y n and ...,3,2,1=z n From the wave equation, we can write022222=+---mE k k k z y xThe energy can be written as()222222⎪⎭⎫⎝⎛++==a n n n m E E z y x n n n z y x π _______________________________________ 3.24The total number of quantum states in the 3-dimensional potential well is given (in k-space) by()332a dk k dk k g T ⋅=ππ where222 mEk =We can then writemEk 2=Taking the differential, we obtaindE Em dE E m dk ⋅⋅=⋅⋅⋅⋅=2112121 Substituting these expressions into the density of states function, we have()dE E mmE a dE E g T ⋅⋅⋅⎪⎭⎫ ⎝⎛=212233 ππ Noting thatπ2h=this density of states function can be simplified and written as()()dE E m h a dE E g T ⋅⋅=2/33324π Dividing by 3a will yield the density of states so that()()E h m E g ⋅=32/324π _______________________________________ 3.25For a one-dimensional infinite potential well,222222k a n E m n ==*π Distance between quantum states()()aa n a n k k n n πππ=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=-+11Now()⎪⎭⎫ ⎝⎛⋅=a dkdk k g T π2NowE m k n *⋅=21dE Em dk n⋅⋅⋅=*2211 Then()dE Em a dE E g n T ⋅⋅⋅=*2212 π Divide by the "volume" a , so ()Em E g n *⋅=21πSo()()()()()EE g 31341011.9067.0210054.11--⨯⋅⨯=π ()EE g 1810055.1⨯=m 3-J 1-_______________________________________ 3.26(a) Silicon, o n m m 08.1=*()()c nc E E h m E g -=*32/324π()dE E E h m g kTE E c nc c c⋅-=⎰+*232/324π()()kT E E c nc cE E h m 22/332/33224+*-⋅⋅=π()()2/332/323224kT hm n⋅⋅=*π ()()[]()()2/33342/33123210625.61011.908.124kT ⋅⋅⨯⨯=--π ()()2/355210953.7kT ⨯=(i) At 300=T K, 0259.0=kT eV()()19106.10259.0-⨯= 2110144.4-⨯=J Then ()()[]2/3215510144.4210953.7-⨯⨯=c g25100.6⨯=m 3-or 19100.6⨯=c g cm 3-(ii) At 400=T K, ()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()19106.1034533.0-⨯= 21105253.5-⨯=J Then()()[]2/32155105253.5210953.7-⨯⨯=c g2510239.9⨯=m 3- or 191024.9⨯=c g cm 3-(b) GaAs, o nm m 067.0=*()()[]()()2/33342/33123210625.61011.9067.024kT g c ⋅⋅⨯⨯=--π ()()2/3542102288.1kT ⨯=(i) At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215410144.42102288.1-⨯⨯=c g2310272.9⨯=m 3- or 171027.9⨯=c g cm 3-(ii) At 400=T K, 21105253.5-⨯=kT J ()()[]2/32154105253.52102288.1-⨯⨯=c g2410427.1⨯=m 3-181043.1⨯=c g cm 3-_______________________________________ 3.27(a) Silicon, o p m m 56.0=* ()()E E h mE g p-=*υυπ32/324()dE E E h mg E kTE p⋅-=⎰-*υυυυπ332/324()()υυυπE kTE pE E hm 32/332/33224-*-⎪⎭⎫ ⎝⎛-=()()[]2/332/333224kT hmp-⎪⎭⎫ ⎝⎛-=*π ()()[]()()2/33342/33133210625.61011.956.024kT ⎪⎭⎫ ⎝⎛⨯⨯=--π ()()2/355310969.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.4310969.2-⨯⨯=υg2510116.4⨯=m3-or 191012.4⨯=υg cm 3- (ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.5310969.2-⨯⨯=υg2510337.6⨯=m3-or 191034.6⨯=υg cm 3- (b) GaAs, o p m m 48.0=*()()[]()()2/33342/33133210625.61011.948.024kT g ⎪⎭⎫ ⎝⎛⨯⨯=--πυ ()()2/3553103564.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J()()[]2/3215510144.43103564.2-⨯⨯=υg2510266.3⨯=m 3- or 191027.3⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.53103564.2-⨯⨯=υg2510029.5⨯=m 3-or 191003.5⨯=υg cm 3-_______________________________________ 3.28(a) ()()c nc E E h m E g -=*32/324π()()[]()c E E -⨯⨯=--3342/33110625.61011.908.124πc E E -⨯=56101929.1 For c E E =; 0=c g1.0+=c E E eV; 4610509.1⨯=c g m 3-J 1-2.0+=c E E eV; 4610134.2⨯=m 3-J 1-3.0+=c E E eV; 4610614.2⨯=m 3-J 1- 4.0+=c E E eV; 4610018.3⨯=m 3-J 1- (b) ()E E h m g p-=*υυπ32/324()()[]()E E -⨯⨯=--υπ3342/33110625.61011.956.024E E -⨯=υ55104541.4 For υE E =; 0=υg1.0-=υE E eV; 4510634.5⨯=υg m 3-J 1-2.0-=υE E eV; 4510968.7⨯=m 3-J 1-3.0-=υE E eV; 4510758.9⨯=m 3-J 1-4.0-=υE E eV; 4610127.1⨯=m 3-J 1-_______________________________________ 3.29(a) ()()68.256.008.12/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ(b) ()()0521.048.0067.02/32/32/3=⎪⎭⎫ ⎝⎛==**pncmm g g υ_______________________________________3.30 Plot_______________________________________ 3.31(a) ()()()!710!7!10!!!-=-=i i i i i N g N g W()()()()()()()()()()()()1201238910!3!7!78910===(b) (i) ()()()()()()()()12!10!101112!1012!10!12=-=i W 66=(ii) ()()()()()()()()()()()()1234!8!89101112!812!8!12=-=i W 495=_______________________________________ 3.32()⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F exp 11(a) kT E E F =-, ()()⇒+=1exp 11E f()269.0=E f (b) kT E E F 5=-, ()()⇒+=5exp 11E f()31069.6-⨯=E f(c) kT E E F 10=-, ()()⇒+=10exp 11E f ()51054.4-⨯=E f_______________________________________ 3.33()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F exp 1111or()⎪⎪⎭⎫ ⎝⎛-+=-kT E E E f F exp 111(a) kT E E F =-, ()269.01=-E f (b) kT E E F 5=-, ()31069.61-⨯=-E f(c) kT E E F 10=-, ()51054.41-⨯=-E f_______________________________________ 3.34(a) ()⎥⎦⎤⎢⎣⎡--≅kT E E f F F exp c E E =; 61032.90259.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f 2kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.020259.030.0exp F f 61066.5-⨯=kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.00259.030.0exp F f 61043.3-⨯=23kT E c +; ()()⎥⎦⎤⎢⎣⎡+-=0259.020259.0330.0exp F f 61008.2-⨯=kT E c 2+; ()()⎥⎦⎤⎢⎣⎡+-=0259.00259.0230.0exp F f 61026.1-⨯=(b) ⎥⎦⎤⎢⎣⎡-+-=-kT E E f F F exp 1111()⎥⎦⎤⎢⎣⎡--≅kT E E F exp υE E =; ⎥⎦⎤⎢⎣⎡-=-0259.025.0exp 1F f 51043.6-⨯= 2kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.020259.025.0exp 1F f 51090.3-⨯=kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.00259.025.0exp 1F f 51036.2-⨯=23kTE -υ; ()()⎥⎦⎤⎢⎣⎡+-=-0259.020259.0325.0exp 1F f 51043.1-⨯= kT E 2-υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.00259.0225.0exp 1F f 61070.8-⨯=_______________________________________3.35()()⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡--=kT E kT E kT E E f F c F F exp exp and()⎥⎦⎤⎢⎣⎡--=-kT E E f F F exp 1 ()()⎥⎦⎤⎢⎣⎡---=kT kT E E F υexp So ()⎥⎦⎤⎢⎣⎡-+-kT E kT E F c exp ()⎥⎦⎤⎢⎣⎡+--=kT kT E E F υexp Then kT E E E kT E F F c +-=-+υOr midgap c F E E E E =+=2υ_______________________________________ 3.3622222ma n E n π =For 6=n , Filled state()()()()()2103122234610121011.92610054.1---⨯⨯⨯=πE18105044.1-⨯=Jor 40.9106.1105044.119186=⨯⨯=--E eV For 7=n , Empty state ()()()()()2103122234710121011.92710054.1---⨯⨯⨯=πE1810048.2-⨯=Jor 8.12106.110048.219187=⨯⨯=--E eV Therefore 8.1240.9<<F E eV_______________________________________ 3.37(a) For a 3-D infinite potential well()222222⎪⎭⎫ ⎝⎛++=a n n n mE z y x π For 5 electrons, the 5th electron occupies the quantum state 1,2,2===z y x n n n ; so()2222252⎪⎭⎫ ⎝⎛++=a n n n m E z y x π()()()()()21031222223410121011.9212210054.1---⨯⨯++⨯=π1910761.3-⨯=Jor 35.2106.110761.319195=⨯⨯=--E eV For the next quantum state, which is empty, the quantum state is 2,2,1===z y x n n n . This quantum state is at the same energy, so 35.2=F E eV(b) For 13 electrons, the 13th electronoccupies the quantum state 3,2,3===z y x n n n ; so ()()()()()2103122222341310121011.9232310054.1---⨯⨯++⨯=πE 1910194.9-⨯=Jor 746.5106.110194.9191913=⨯⨯=--E eVThe 14th electron would occupy the quantum state 3,3,2===z y x n n n . This state is at the same energy, so 746.5=F E eV_______________________________________ 3.38The probability of a state at E E E F ∆+=1 being occupied is()⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛-+=kT E kT E E E f F exp 11exp 11111 The probability of a state at E E E F ∆-=2being empty is()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F 222exp 1111⎪⎭⎫ ⎝⎛∆-+⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-+-=kT E kT E kT E exp 1exp exp 111or()⎪⎭⎫ ⎝⎛∆+=-kT E E f exp 11122so ()()22111E f E f -=_______________________________________3.39(a) At energy 1E , we want01.0exp 11exp 11exp 1111=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-kT E E kT E E kT E E F F FThis expression can be written as01.01exp exp 111=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+kT E E kT E E F F or()⎪⎪⎭⎫⎝⎛-=kT E E F 1exp 01.01Then()100ln 1kT E E F += orkT E E F 6.41+= (b)At kT E E F 6.4+=, ()()6.4exp 11exp 1111+=⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F which yields()01.000990.01≅=E f_______________________________________ 3.40 (a)()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=0259.050.580.5exp exp kT E E f F F 61032.9-⨯=(b) ()060433.03007000259.0=⎪⎭⎫⎝⎛=kT eV31098.6060433.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f (c) ()⎥⎦⎤⎢⎣⎡--≅-kT E E f F F exp 1 ⎥⎦⎤⎢⎣⎡-=kT 25.0exp 02.0or 5002.0125.0exp ==⎥⎦⎤⎢⎣⎡+kT ()50ln 25.0=kTor()()⎪⎭⎫⎝⎛===3000259.0063906.050ln 25.0T kT which yields 740=T K_______________________________________ 3.41 (a)()00304.00259.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 0.304%(b) At 1000=T K, 08633.0=kT eV Then()1496.008633.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 14.96%(c) ()997.00259.00.785.6exp 11=⎪⎭⎫ ⎝⎛-+=E for 99.7% (d)At F E E =, ()21=E f for all temperatures_______________________________________ 3.42(a) For 1E E =()()⎥⎦⎤⎢⎣⎡--≅⎪⎪⎭⎫ ⎝⎛-+=kT E E kTE E E fF F11exp exp 11Then()611032.90259.030.0exp -⨯=⎪⎭⎫ ⎝⎛-=E fFor 2E E =, 82.030.012.12=-=-E E F eV Then()⎪⎭⎫ ⎝⎛-+-=-0259.082.0exp 1111E for()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---≅-0259.082.0exp 111E f141078.10259.082.0exp -⨯=⎪⎭⎫ ⎝⎛-=(b) For 4.02=-E E F eV,72.01=-F E E eVAt 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.072.0exp exp 1kT E E E f F or()131045.8-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor()71096.11-⨯=-E f_______________________________________ 3.43(a) At 1E E =()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.030.0exp exp 1kT E E E f F or()61032.9-⨯=E fAt 2E E =, 12.13.042.12=-=-E E F eV So()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.012.1expor()191066.11-⨯=-E f (b) For 4.02=-E E F ,02.11=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.002.1exp exp 1kT E E E f F or()181088.7-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor ()71096.11-⨯=-E f_______________________________________ 3.44()1exp 1-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fso()()2exp 11-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=kT E E dE E df F⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⨯kT E E kT F exp 1or()2exp 1exp 1⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=kT E E kT E E kT dE E df F F (a) At 0=T K, For()00exp =⇒=∞-⇒<dE dfE E F()0exp =⇒+∞=∞+⇒>dEdfE E FAt -∞=⇒=dEdfE E F(b) At 300=T K, 0259.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()65.91110259.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1-(c) At 500=T K, 04317.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()79.511104317.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1- _______________________________________ 3.45(a) At midgap E E =,()⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=kT E kTE E E f g F2exp 11exp 11Si: 12.1=g E eV, ()()⎥⎦⎤⎢⎣⎡+=0259.0212.1exp 11E for()101007.4-⨯=E fGe: 66.0=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0266.0exp 11E for()61093.2-⨯=E f GaAs: 42.1=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0242.1exp 11E for()121024.1-⨯=E f(b) Using the results of Problem 3.38, the answers to part (b) are exactly the same as those given in part (a)._______________________________________3.46(a) ()⎥⎦⎤⎢⎣⎡--=kT E E f F F exp ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 108or()810ln 60.0+=kT()032572.010ln 60.08==kT eV ()⎪⎭⎫⎝⎛=3000259.0032572.0Tso 377=T K(b) ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 106()610ln 60.0+=kT()043429.010ln 60.06==kT ()⎪⎭⎫⎝⎛=3000259.0043429.0Tor 503=T K_______________________________________ 3.47(a) At 200=T K,()017267.03002000259.0=⎪⎭⎫⎝⎛=kT eV⎪⎪⎭⎫ ⎝⎛-+==kT E E f F F exp 1105.019105.01exp =-=⎪⎪⎭⎫ ⎝⎛-kT E E F()()()19ln 017267.019ln ==-kT E E F 05084.0=eV By symmetry, for 95.0=F f , 05084.0-=-F E E eVThen ()1017.005084.02==∆E eV (b) 400=T K, 034533.0=kT eV For 05.0=F f , from part (a),()()()19ln 034533.019ln ==-kT E E F 10168.0=eVThen ()2034.010168.02==∆E eV _______________________________________。

半导体物理课后习题解答

半导体物理课后习题解答

半导体物理课后习题解答半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=223m k h +22)1(m k k h -和E v (k)=226m k h -223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg 根据dkk dEc )(=232m k h +12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k mh ;由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =2126m k h ;∴Eg =E min -E max =21212m k h =20248a m h=112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV②导带底电子有效质量m n02020********m h m h m h dkE d C =+=;∴ m n=22283/m dkE d h C =③价带顶电子有效质量m ’02226m h dk E d V -=,∴222'61/m dk E d h m V n-==④准动量的改变量h △k =h (k min -k max)= ah kh 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

[解] 设电场强度为E ,∵F=h dtdk =qE (取绝对值) ∴dt =qE h dk∴t=⎰t dt 0=⎰a qE h 21dk =aqE h 21代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E6103.8-⨯(s )当E =102V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。

半导体物理与器件第四版课后习题答案3

半导体物理与器件第四版课后习题答案3

Chapter 33.1If o a were to increase, the bandgap energy would decrease and the material would begin to behave less like a semiconductor and more like a metal. If o a were to decrease, the bandgap energy would increase and thematerial would begin to behave more like an insulator._______________________________________ 3.2Schrodinger's wave equation is:()()()t x x V x t x m ,,2222ψ⋅+∂ψ∂- ()tt x j ∂ψ∂=, Assume the solution is of the form:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Region I: ()0=x V . Substituting theassumed solution into the wave equation, we obtain:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m exp 22 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j exp which becomes()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu exp This equation may be written as()()()()0222222=+∂∂+∂∂+-x u mE x x u x x u jk x u kSetting ()()x u x u 1= for region I, the equation becomes:()()()()021221212=--+x u k dx x du jk dxx u d α where222mE=α Q.E.D.In Region II, ()O V x V =. Assume the same form of the solution:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Substituting into Schrodinger's wave equation, we find:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu exp This equation can be written as:()()()2222x x u x x u jk x u k ∂∂+∂∂+- ()()02222=+-x u mEx u mV OSetting ()()x u x u 2= for region II, this equation becomes()()dx x du jkdx x u d 22222+ ()022222=⎪⎪⎭⎫ ⎝⎛+--x u mV k O αwhere again222mE=α Q.E.D._______________________________________3.3We have()()()()021221212=--+x u k dx x du jk dxx u d α Assume the solution is of the form: ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp The first derivative is()()()[]x k j A k j dxx du --=ααexp 1 ()()[]x k j B k j +-+-ααexp and the second derivative becomes()()[]()[]x k j A k j dx x u d --=ααexp 2212()[]()[]x k j B k j +-++ααexp 2Substituting these equations into the differential equation, we find()()[]x k j A k ---ααexp 2()()[]x k j B k +-+-ααexp 2(){()[]x k j A k j jk --+ααexp 2()()[]}x k j B k j +-+-ααexp ()()[]{x k j A k ---ααexp 22 ()[]}0exp =+-+x k j B α Combining terms, we obtain()()()[]222222αααα----+--k k k k k ()[]x k j A -⨯αexp()()()[]222222αααα--++++-+k k k k k ()[]0exp =+-⨯x k j B α We find that00= Q.E.D. For the differential equation in ()x u 2 and the proposed solution, the procedure is exactly the same as above._______________________________________ 3.4We have the solutions ()()[]x k j A x u -=αexp 1 ()[]x k j B +-+αexp for a x <<0 and()()[]x k j C x u -=βexp 2 ()[]x k j D +-+βexpfor 0<<-x b .The first boundary condition is()()0021u u =which yields0=--+D C B AThe second boundary condition is201===x x dx du dx du which yields()()()C k B k A k --+--βαα ()0=++D k β The third boundary condition is ()()b u a u -=21 which yields()[]()[]a k j B a k j A +-+-ααexp exp ()()[]b k j C --=βexp()()[]b k j D -+-+βexp and can be written as()[]()[]a k j B a k j A +-+-ααexp exp ()[]b k j C ---βexp()[]0exp =+-b k j D β The fourth boundary condition isbx a x dx dudx du -===21 which yields()()[]a k j A k j --ααexp ()()[]a k j B k j +-+-ααexp ()()()[]b k j C k j ---=ββexp()()()[]b k j D k j -+-+-ββexp and can be written as ()()[]a k j A k --ααexp ()()[]a k j B k +-+-ααexp ()()[]b k j C k ----ββexp()()[]0exp =+++b k j D k ββ_______________________________________ 3.5(b) (i) First point: πα=aSecond point: By trial and error, πα729.1=a (ii) First point: πα2=aSecond point: By trial and error, πα617.2=a_______________________________________3.6(b) (i) First point: πα=aSecond point: By trial and error, πα515.1=a (ii) First point: πα2=aSecond point: By trial and error, πα375.2=a_______________________________________ 3.7ka a aaP cos cos sin =+'αααLet y ka =, x a =α Theny x x xP cos cos sin =+'Consider dydof this function.()[]{}y x x x P dy d sin cos sin 1-=+⋅'- We find()()()⎭⎬⎫⎩⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 112y dydxx sin sin -=-Theny x x x x x P dy dx sin sin cos sin 12-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡+-'For πn ka y ==, ...,2,1,0=n 0sin =⇒y So that, in general,()()dk d ka d a d dy dxαα===0 And 22 mE=α Sodk dEm mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-22/122221 α This implies thatdk dE dk d ==0α for an k π= _______________________________________3.8(a) πα=a 1π=⋅a E m o 212 ()()()()2103123422221102.41011.9210054.12---⨯⨯⨯==ππa m E o19104114.3-⨯=J From Problem 3.5 πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J 12E E E -=∆1918104114.3100198.1--⨯-⨯= 19107868.6-⨯=Jor 24.4106.1107868.61919=⨯⨯=∆--E eV (b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J From Problem 3.5, πα617.24=aπ617.2224=⋅a E m o()()()()2103123424102.41011.9210054.1617.2---⨯⨯⨯=πE18103364.2-⨯=J 34E E E -=∆1818103646.1103364.2--⨯-⨯= 1910718.9-⨯=Jor 07.6106.110718.91919=⨯⨯=∆--E eV_______________________________________3.9(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα859.0=a o ()()()()210312342102.41011.9210054.1859.0---⨯⨯⨯=πoE19105172.2-⨯=J o E E E -=∆11919105172.2104114.3--⨯-⨯= 2010942.8-⨯=Jor 559.0106.110942.81920=⨯⨯=∆--E eV(b) At π2=ka , πα23=a π2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka . From Problem 3.5, πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J 23E E E -=∆1818100198.1103646.1--⨯-⨯= 19104474.3-⨯=Jor 15.2106.1104474.31919=⨯⨯=∆--E eV _______________________________________3.10(a) πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JFrom Problem 3.6, πα515.12=aπ515.1222=⋅a E m o()()()()2103123422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 12E E E -=∆1919104114.310830.7--⨯-⨯= 19104186.4-⨯=Jor 76.2106.1104186.41919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JFrom Problem 3.6, πα375.24=aπ375.2224=⋅a E m o()()()()2103123424102.41011.9210054.1375.2---⨯⨯⨯=πE18109242.1-⨯=J 34E E E -=∆1818103646.1109242.1--⨯-⨯= 1910597.5-⨯=Jor 50.3106.110597.51919=⨯⨯=∆--E eV_____________________________________3.11(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα727.0=a oπ727.022=⋅a E m o o()()()()210312342102.41011.9210054.1727.0---⨯⨯⨯=πo E19108030.1-⨯=J o E E E -=∆11919108030.1104114.3--⨯-⨯= 19106084.1-⨯=Jor 005.1106.1106084.11919=⨯⨯=∆--E eV(b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka , From Problem 3.6, πα515.12=aπ515.1222=⋅a E m o()()()()2103423422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J23E E E -=∆191810830.7103646.1--⨯-⨯= 1910816.5-⨯=Jor 635.3106.110816.51919=⨯⨯=∆--E eV _______________________________________3.12For 100=T K, ()()⇒+⨯-=-1006361001073.4170.124gE164.1=g E eV200=T K, 147.1=g E eV 300=T K, 125.1=g E eV 400=T K, 097.1=g E eV 500=T K, 066.1=g E eV 600=T K, 032.1=g E eV_______________________________________ 3.13The effective mass is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d mWe have()()B curve dkE d A curve dk E d 2222>so that ()()B curve m A curve m **<_______________________________________ 3.14The effective mass for a hole is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m p We have that()()B curve dkEd A curve dk E d 2222> so that ()()B curve m A curve m p p **<_______________________________________ 3.15Points A,B: ⇒<0dk dEvelocity in -x directionPoints C,D: ⇒>0dk dEvelocity in +x directionPoints A,D: ⇒<022dk Ednegative effective massPoints B,C: ⇒>022dk Edpositive effective mass_______________________________________ 3.16For A: 2k C E i =At 101008.0+⨯=k m 1-, 05.0=E eV Or ()()2119108106.105.0--⨯=⨯=E J So ()2101211008.0108⨯=⨯-C3811025.1-⨯=⇒CNow ()()38234121025.1210054.12--*⨯⨯==C m 311044.4-⨯=kgor o m m ⋅⨯⨯=--*31311011.9104437.4 o m m 488.0=*For B: 2k C E i =At 101008.0+⨯=k m 1-, 5.0=E eV Or ()()2019108106.15.0--⨯=⨯=E JSo ()2101201008.0108⨯=⨯-C3711025.1-⨯=⇒CNow ()()37234121025.1210054.12--*⨯⨯==C m 321044.4-⨯=kgor o m m ⋅⨯⨯=--*31321011.9104437.4o m m 0488.0=*_______________________________________ 3.17For A: 22k C E E -=-υ()()()2102191008.0106.1025.0⨯-=⨯--C 3921025.6-⨯=⇒C ()()39234221025.6210054.12--*⨯⨯-=-=C m31108873.8-⨯-=kgor o m m ⋅⨯⨯-=--*31311011.9108873.8o m m 976.0--=* For B: 22k C E E -=-υ()()()2102191008.0106.13.0⨯-=⨯--C 382105.7-⨯=⇒C()()3823422105.7210054.12--*⨯⨯-=-=C m3210406.7-⨯-=kgor o m m ⋅⨯⨯-=--*31321011.910406.7o m m 0813.0-=*_______________________________________ 3.18(a) (i) νh E =or ()()341910625.6106.142.1--⨯⨯==h E ν 1410429.3⨯=Hz(ii) 141010429.3103⨯⨯===νλc E hc 51075.8-⨯=cm 875=nm(b) (i) ()()341910625.6106.112.1--⨯⨯==h E ν1410705.2⨯=Hz(ii) 141010705.2103⨯⨯==νλc410109.1-⨯=cm 1109=nm_______________________________________ 3.19(c) Curve A: Effective mass is a constantCurve B: Effective mass is positive around 0=k , and is negativearound 2π±=k ._______________________________________ 3.20()[]O O k k E E E --=αcos 1 Then()()()[]O k k E dkdE ---=ααsin 1()[]O k k E -+=ααsin 1 and()[]O k k E dk E d -=ααcos 2122Then221222*11αE dk Ed m o k k =⋅== or212*αE m = _______________________________________ 3.21(a) ()[]3/123/24l t dnm m m =*()()[]3/123/264.1082.04oo m m =o dnm m 56.0=*(b)oo l t cn m m m m m 64.11082.02123+=+=*oo m m 6098.039.24+=o cnm m 12.0=*_______________________________________ 3.22(a) ()()[]3/22/32/3lhhh dp m m m +=*()()[]3/22/32/3082.045.0oom m +=[]o m ⋅+=3/202348.030187.0o dpm m 473.0=*(b) ()()()()2/12/12/32/3lh hh lh hh cpm m m m m ++=*()()()()o m ⋅++=2/12/12/32/3082.045.0082.045.0 o cpm m 34.0=*_______________________________________3.23For the 3-dimensional infinite potential well, ()0=x V when a x <<0, a y <<0, and a z <<0. In this region, the wave equation is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ()0,,22=+z y x mEψUse separation of variables technique, so let ()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we have222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂022=⋅+XYZ mEDividing by XYZ , we obtain021*********=+∂∂⋅+∂∂⋅+∂∂⋅ mEz Z Z y Y Y x X XLet01222222=+∂∂⇒-=∂∂⋅X k x X k x X X x x The solution is of the form: ()x k B x k A x X x x cos sin +=Since ()0,,=z y x ψ at 0=x , then ()00=X so that 0=B .Also, ()0,,=z y x ψ at a x =, so that ()0=a X . Then πx x n a k = where ...,3,2,1=x n Similarly, we have2221y k y Y Y -=∂∂⋅ and 2221z k zZ Z -=∂∂⋅From the boundary conditions, we find πy y n a k = and πz z n a k = where...,3,2,1=y n and ...,3,2,1=z n From the wave equation, we can write022222=+---mE k k k z y xThe energy can be written as()222222⎪⎭⎫ ⎝⎛++==a n n n m E E z y x n n n z y x π _______________________________________ 3.24The total number of quantum states in the 3-dimensional potential well is given (in k-space) by()332a dk k dk k g T ⋅=ππ where222 mEk =We can then writemEk 2=Taking the differential, we obtaindE Em dE E m dk ⋅⋅=⋅⋅⋅⋅=2112121 Substituting these expressions into the density of states function, we have()dE EmmE a dE E g T ⋅⋅⋅⎪⎭⎫ ⎝⎛=212233 ππ Noting thatπ2h=this density of states function can be simplified and written as()()dE E m h a dE E g T ⋅⋅=2/33324πDividing by 3a will yield the density of states so that()()E hm E g ⋅=32/324π _______________________________________ 3.25For a one-dimensional infinite potential well,222222k an E m n ==*π Distance between quantum states()()aa n a n k k n n πππ=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=-+11Now()⎪⎭⎫ ⎝⎛⋅=a dkdk k g T π2NowE m k n*⋅=21dE Em dk n⋅⋅⋅=*2211Then()dE Em a dE E g n T ⋅⋅⋅=*2212 π Divide by the "volume" a , so ()Em E g n *⋅=21πSo()()()()()EE g 31341011.9067.0210054.11--⨯⋅⨯=π ()EE g 1810055.1⨯=m 3-J 1-_______________________________________ 3.26(a) Silicon, o nm m 08.1=*()()c nc E E h m E g -=*32/324π()dE E E h m g kTE E c nc c c⋅-=⎰+*232/324π()()kT E E c nc cE E h m 22/332/33224+*-⋅⋅=π()()2/332/323224kT h m n⋅⋅=*π ()()[]()()2/33342/33123210625.61011.908.124kT ⋅⋅⨯⨯=--π ()()2/355210953.7kT ⨯=(i) At 300=T K, 0259.0=kT eV()()19106.10259.0-⨯=2110144.4-⨯=J Then ()()[]2/3215510144.4210953.7-⨯⨯=c g25100.6⨯=m 3- or 19100.6⨯=c g cm 3-(ii) At 400=T K, ()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()19106.1034533.0-⨯=21105253.5-⨯=J Then()()[]2/32155105253.5210953.7-⨯⨯=c g2510239.9⨯=m 3- or 191024.9⨯=c g cm 3-(b) GaAs, o nm m 067.0=*()()[]()()2/33342/33123210625.61011.9067.024kT g c ⋅⋅⨯⨯=--π()()2/3542102288.1kT ⨯=(i) At 300=T K, 2110144.4-⨯=kT J()()[]2/3215410144.42102288.1-⨯⨯=c g2310272.9⨯=m3-or 171027.9⨯=c g cm 3- (ii) At 400=T K, 21105253.5-⨯=kT J()()[]2/32154105253.52102288.1-⨯⨯=c g2410427.1⨯=m 3-181043.1⨯=c g cm 3-_______________________________________ 3.27(a) Silicon, o p m m 56.0=* ()()E E h mE g p-=*υυπ32/324()dE E E hm g E kTE p⋅-=⎰-*υυυυπ332/324()()υυυπE kTE pE E h m32/332/33224-*-⎪⎭⎫ ⎝⎛-=()()[]2/332/333224kT h m p-⎪⎭⎫ ⎝⎛-=*π ()()[]()()2/33342/33133210625.61011.956.024kT ⎪⎭⎫ ⎝⎛⨯⨯=--π ()()2/355310969.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.4310969.2-⨯⨯=υg2510116.4⨯=m 3- or 191012.4⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J ()()[]2/32155105253.5310969.2-⨯⨯=υg2510337.6⨯=m 3-or 191034.6⨯=υg cm 3- (b) GaAs, o p m m 48.0=*()()[]()()2/33342/33133210625.61011.948.024kT g ⎪⎭⎫ ⎝⎛⨯⨯=--πυ ()()2/3553103564.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J()()[]2/3215510144.43103564.2-⨯⨯=υg2510266.3⨯=m 3- or 191027.3⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.53103564.2-⨯⨯=υg2510029.5⨯=m 3-or 191003.5⨯=υg cm 3-_______________________________________ 3.28(a) ()()c nc E E h m E g -=*32/324π()()[]()c E E -⨯⨯=--3342/33110625.61011.908.124πc E E -⨯=56101929.1 For c E E =; 0=c g1.0+=c E E eV; 4610509.1⨯=c g m 3-J 1-2.0+=c E E eV; 4610134.2⨯=m 3-J 1-3.0+=c E E eV; 4610614.2⨯=m 3-J 1- 4.0+=c E E eV; 4610018.3⨯=m 3-J 1- (b) ()E E hm g p-=*υυπ32/324()()[]()E E -⨯⨯=--υπ3342/33110625.61011.956.024E E -⨯=υ55104541.4 For υE E =; 0=υg1.0-=υE E eV; 4510634.5⨯=υg m 3-J 1-2.0-=υE E eV; 4510968.7⨯=m 3-J 1-3.0-=υE E eV; 4510758.9⨯=m 3-J 1-4.0-=υE E eV; 4610127.1⨯=m 3-J 1- _______________________________________ 3.29(a) ()()68.256.008.12/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ(b) ()()0521.048.0067.02/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ_______________________________________ 3.30 Plot_______________________________________ 3.31(a) ()()()!710!7!10!!!-=-=i i i i i N g N g W ()()()()()()()()()()()()1201238910!3!7!78910===(b) (i) ()()()()()()()()12!10!101112!1012!10!12=-=i W 66=(ii) ()()()()()()()()()()()()1234!8!89101112!812!8!12=-=i W 495=_______________________________________ 3.32()⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F exp 11(a) kT E E F =-, ()()⇒+=1exp 11E f()269.0=E f (b) kT E E F 5=-, ()()⇒+=5exp 11E f()31069.6-⨯=E f (c) kT E E F 10=-, ()()⇒+=10exp 11E f()51054.4-⨯=E f_______________________________________ 3.33()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F exp 1111or()⎪⎪⎭⎫ ⎝⎛-+=-kT E E E f F exp 111(a) kT E E F =-, ()269.01=-E f (b) kT E E F 5=-, ()31069.61-⨯=-E f(c) kT E E F 10=-, ()51054.41-⨯=-E f _______________________________________ 3.34(a) ()⎥⎦⎤⎢⎣⎡--≅kT E E f F F exp c E E =; 61032.90259.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f 2kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.020259.030.0exp F f 61066.5-⨯=kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.00259.030.0exp F f 61043.3-⨯=23kT E c +; ()()⎥⎦⎤⎢⎣⎡+-=0259.020259.0330.0exp F f 61008.2-⨯=kT E c 2+; ()()⎥⎦⎤⎢⎣⎡+-=0259.00259.0230.0exp F f 61026.1-⨯=(b) ⎥⎦⎤⎢⎣⎡-+-=-kT E E f F F exp 1111()⎥⎦⎤⎢⎣⎡--≅kT E E F exp υE E =; ⎥⎦⎤⎢⎣⎡-=-0259.025.0exp 1F f 51043.6-⨯= 2kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.020259.025.0exp 1F f 51090.3-⨯=kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.00259.025.0exp 1F f 51036.2-⨯=23kT E -υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.020259.0325.0exp 1F f 51043.1-⨯= kT E 2-υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.00259.0225.0exp 1F f 61070.8-⨯=_______________________________________ 3.35()()⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡--=kT E kT E kT E E f F c F F exp exp and()⎥⎦⎤⎢⎣⎡--=-kT E E f F F exp 1 ()()⎥⎦⎤⎢⎣⎡---=kT kT E E F υexp So ()⎥⎦⎤⎢⎣⎡-+-kT E kT E F c exp ()⎥⎦⎤⎢⎣⎡+--=kT kT E E F υexp Then kT E E E kT E F F c +-=-+υOr midgap cF E E E E =+=2υ_______________________________________ 3.3622222ma n E n π =For 6=n , Filled state ()()()()()2103122234610121011.92610054.1---⨯⨯⨯=πE18105044.1-⨯=Jor 40.9106.1105044.119186=⨯⨯=--E eV For 7=n , Empty state()()()()()2103122234710121011.92710054.1---⨯⨯⨯=πE1810048.2-⨯=Jor 8.12106.110048.219187=⨯⨯=--E eVTherefore 8.1240.9<<F E eV_______________________________________ 3.37(a) For a 3-D infinite potential well()222222⎪⎭⎫⎝⎛++=a n n n mE z y x π For 5 electrons, the 5th electron occupies the quantum state 1,2,2===z y x n n n ; so()2222252⎪⎭⎫ ⎝⎛++=a n n n m E z y x π()()()()()21031222223410121011.9212210054.1---⨯⨯++⨯=π1910761.3-⨯=Jor 35.2106.110761.319195=⨯⨯=--E eVFor the next quantum state, which is empty, the quantum state is 2,2,1===z y x n n n . This quantum state is at the same energy, so 35.2=F E eV(b) For 13 electrons, the 13th electronoccupies the quantum state 3,2,3===z y x n n n ; so ()()()()()2103122222341310121011.9232310054.1---⨯⨯++⨯=πE 1910194.9-⨯=Jor 746.5106.110194.9191913=⨯⨯=--E eVThe 14th electron would occupy the quantum state 3,3,2===z y x n n n . This state is at the same energy, so 746.5=F E eV_______________________________________ 3.38The probability of a state at E E E F ∆+=1 being occupied is()⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛-+=kT E kT E E E f F exp 11exp 11111 The probability of a state at E E E F ∆-=2being empty is()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F 222exp 1111⎪⎭⎫ ⎝⎛∆-+⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-+-=kT E kT E kT E exp 1exp exp 111or()⎪⎭⎫⎝⎛∆+=-kT E E f exp 11122so ()()22111E f E f -= Q.E.D. _______________________________________ 3.39(a) At energy 1E , we want01.0exp 11exp 11exp 1111=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-kT E E kT E E kT E E F F F This expression can be written as01.01exp exp 111=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+kT E E kT E E F For()⎪⎪⎭⎫⎝⎛-=kT E E F 1exp 01.01Then()100ln 1kT E E F += orkT E E F 6.41+= (b)At kT E E F 6.4+=, ()()6.4exp 11exp 1111+=⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F which yields()01.000990.01≅=E f_______________________________________ 3.40 (a)()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=0259.050.580.5exp exp kT E E f F F 61032.9-⨯=(b) ()060433.03007000259.0=⎪⎭⎫⎝⎛=kT eV31098.6060433.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f (c) ()⎥⎦⎤⎢⎣⎡--≅-kT E E f F F exp 1 ⎥⎦⎤⎢⎣⎡-=kT 25.0exp 02.0or 5002.0125.0exp ==⎥⎦⎤⎢⎣⎡+kT ()50ln 25.0=kTor()()⎪⎭⎫⎝⎛===3000259.0063906.050ln 25.0T kT which yields 740=T K_______________________________________ 3.41 (a)()00304.00259.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 0.304%(b) At 1000=T K, 08633.0=kT eV Then()1496.008633.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 14.96%(c) ()997.00259.00.785.6exp 11=⎪⎭⎫⎝⎛-+=E for 99.7% (d)At F E E =, ()21=E f for all temperatures_______________________________________ 3.42(a) For 1E E =()()⎥⎦⎤⎢⎣⎡--≅⎪⎪⎭⎫ ⎝⎛-+=kT E E kTE E E fF F11exp exp 11Then()611032.90259.030.0exp -⨯=⎪⎭⎫ ⎝⎛-=E fFor 2E E =, 82.030.012.12=-=-E E F eV Then()⎪⎭⎫ ⎝⎛-+-=-0259.082.0exp 1111E for()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---≅-0259.082.0exp 111E f141078.10259.082.0exp -⨯=⎪⎭⎫ ⎝⎛-=(b) For 4.02=-E E F eV,72.01=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.072.0exp exp 1kT E E E f F or()131045.8-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor()71096.11-⨯=-E f_______________________________________ 3.43(a) At 1E E = ()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.030.0exp exp 1kT E E E f F or()61032.9-⨯=E fAt 2E E =, 12.13.042.12=-=-E E F eV So()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫⎝⎛-=0259.012.1expor()191066.11-⨯=-E f(b) For 4.02=-E E F ,02.11=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.002.1exp exp 1kT E E E f F or()181088.7-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor ()71096.11-⨯=-E f_______________________________________ 3.44()1exp 1-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fso()()2exp 11-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=kT E E dE E df F⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⨯kT E E kT F exp 1 or()2exp 1exp 1⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=kT E E kT E E kT dE E df F F (a) At 0=T K, For()00exp =⇒=∞-⇒<dE dfE E F()0exp =⇒+∞=∞+⇒>dEdfE E FAt -∞=⇒=dEdfE E F(b) At 300=T K, 0259.0=kT eVFor F E E <<, 0=dEdfFor F E E >>, 0=dEdfAt F E E =,()()65.91110259.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1-(c) At 500=T K, 04317.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =, ()()79.511104317.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1- _______________________________________ 3.45(a) At midgap E E =,()⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=kTE kTE E E f gF2exp 11exp 11Si: 12.1=g E eV, ()()⎥⎦⎤⎢⎣⎡+=0259.0212.1exp 11E for()101007.4-⨯=E fGe: 66.0=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0266.0exp 11E for()61093.2-⨯=E fGaAs: 42.1=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0242.1exp 11E for()121024.1-⨯=E f(b) Using the results of Problem 3.38, the answers to part (b) are exactly the same as those given in part (a)._______________________________________ 3.46(a) ()⎥⎦⎤⎢⎣⎡--=kT E E f F F exp ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 108 or ()810ln 60.0+=kT()032572.010ln 60.08==kT eV()⎪⎭⎫⎝⎛=3000259.0032572.0Tso 377=T K(b) ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 106()610ln 60.0+=kT()043429.010ln 60.06==kT()⎪⎭⎫⎝⎛=3000259.0043429.0Tor 503=T K_______________________________________ 3.47(a) At 200=T K,()017267.03002000259.0=⎪⎭⎫⎝⎛=kT eV⎪⎪⎭⎫ ⎝⎛-+==kTE E f FF exp 1105.019105.01exp =-=⎪⎪⎭⎫⎝⎛-kT E E F()()()19ln 017267.019ln ==-kT E E F 05084.0=eV By symmetry, for 95.0=F f , 05084.0-=-F E E eVThen ()1017.005084.02==∆E eV (b) 400=T K, 034533.0=kT eV For 05.0=F f , from part (a),()()()19ln 034533.019ln ==-kT E E F 10168.0=eVThen ()2034.010168.02==∆E eV_______________________________________。

半导体物理学第四版答案

半导体物理学第四版答案

半导体物理学第四版答案【篇一:半导体物理学第四章答案】. 300k时,ge的本征电阻率为47?cm,如电子和空穴迁移率分别为3900cm2/( v.s)和1900cm/( v.s)。

试求ge 的载流子浓度。

解:在本征情况下,n?p?ni,由??1/??211知 ?nqun?pqupniq(un?up)ni?1113?3??2.29?10cm?19?q(un?up)47?1.602?10?(3900?1900)2. 试计算本征si在室温时的电导率,设电子和空穴迁移率分别为1350cm2/( v.s)和500cm2/( v.s)。

当掺入百万分之一的as后,设杂质全部电离,试计算其电导率。

比本征si的电导率增大了多少倍?解:300k时,un?1350cm2/(v?s),up?500cm2/(v?s),查表3-2或图3-7可知,室温下si的本征载流子浓度约为ni?1.0?1010cm?3。

本征情况下,??nqun?pqup?niq(un?up)?1?1010?1.602?10-19?(1350+500)?3.0?10?6s/cm11金钢石结构一个原胞内的等效原子个数为8??6??4?8个,查看附录b知si的晶格常数为820.543102nm,则其原子密度为822?3。

?5?10cm?73(0.543102?10)1?5?1016cm?3,杂质全部电离后,nd??ni,1000000掺入百万分之一的as,杂质的浓度为nd?5?1022?这种情况下,查图4-14(a)可知其多子的迁移率为800 cm2/( v.s) ??ndqun?5?1016?1.602?10-19?800?6.4s/cm?6.4??2.1?106倍比本征情况下增大了?6?3?103. 电阻率为10?.m的p型si样品,试计算室温时多数载流子和少数载流子浓度。

解:查表4-15(b)可知,室温下,10?.m的p型si样品的掺杂浓度na约为1.5?1015cm?3,查表3-2或图3-7可知,室温下si的本征载流子浓度约为ni?1.0?1010cm?3,na??nip?na?1.5?1015cm?3ni(1.0?1010)24?3n???6.7?10cm15p1.5?104. 0.1kg的ge单晶,掺有3.2?10-9kg的sb,设杂质全部电离,试求该材料的电阻率??n=0.38m2/( v.s),ge的单晶密度为5.32g/cm3,sb原子量为121.8?。

半导体物理与器件第四版答案

半导体物理与器件第四版答案

半导体物理与器件第四版答案【篇一:半导体物理第五章习题答案】>1. 一个n型半导体样品的额外空穴密度为1013cm-3,已知空穴寿命为100?s,计算空穴的复合率。

解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此1013u1017cm?3?s ?6100102. 用强光照射n型样品,假定光被均匀吸收,产生额外载流子,产生率为gp,空穴寿命为?,请①写出光照开始阶段额外载流子密度随时间变化所满足的方程;②求出光照下达到稳定状态时的额外载流子密度。

解:⑴光照下,额外载流子密度?n=?p,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率gp和复合率u的代数和构成,即 d(?p)?pgp dtd(?p)0,于是由上式得⑵稳定时额外载流子密度不再随时间变化,即 dtppp0gp3. 有一块n型硅样品,额外载流子寿命是1?s,无光照时的电阻率是10??cm。

今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm3?s,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?解:光照被均匀吸收后产生的稳定额外载流子密度pngp10221061016 cm-3取?n?1350cm2/(v?s),?p?500cm/(v?s),则额外载流子对电导率的贡献2pq(?n??p)?1016?1.6?10?19?(1350?500)?2.96 s/cm无光照时?0?10.1s/cm,因而光照下的电导率0?2.96?0.1?3.06s/cm相应的电阻率 ??110.33cm 3.06少数载流子对电导的贡献为:?p?pq?p??pq?p?gp?q?p代入数据:?p?(p0??p)q?p??pq?p?1016?1.6?10?19?500?0.8s/cm∴p00.80.2626﹪ 3.06即光电导中少数载流子的贡献为26﹪4.一块半导体样品的额外载流子寿命? =10?s,今用光照在其中产生非平衡载流子,问光照突然停止后的20?s时刻其额外载流子密度衰减到原来的百分之几?解:已知光照停止后额外载流子密度的衰减规律为p(t)p0e因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为t??p(t)e p0t当t?20?s?2?10?5s时20??p(20)e10e20.13513.5﹪ ?p05. 光照在掺杂浓度为1016cm-3的n型硅中产生的额外载流子密度为?n=?p= 1016cm-3。

半导体物理课后习题解答

半导体物理课后习题解答

半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg根据dk k dEc )(=0232m kh +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k ,由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dk E d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’2226m h dk E d V -=,∴0222'61/m dk E d h m Vn -== ④准动量的改变量h △k =h (k min -k max )= ah k h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 21dk =aqE h 21代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。

半导体物理课后习题解答

半导体物理课后习题解答

半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dk E d V -=,∴0222'61/m dk E d h m Vn-== ④准动量的改变量h △k =h (k min -k max )= ah k h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 210dk =aqE h 21 代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。

半导体物理学习题答案(有目录)

半导体物理学习题答案(有目录)

半导体物理学习题答案(有目录)半导体物理习题解答目录1-1.(P32)设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E v(k)分别为: (2)1-2.(P33)晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

(3)3-7.(P81)①在室温下,锗的有效状态密度Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试求锗的载流子有效质量mn*和mp*。

(3)3-8.(P82)利用题7所给的Nc和Nv数值及Eg=0.67eV,求温度为300k和500k时,含施主浓度ND=5×1015cm-3,受主浓度NA=2×109cm-3的锗中电子及空穴浓度为多少? (4)3-11.(P82)若锗中杂质电离能△ED=0.01eV,施主杂质浓度分别为ND=1014cm-3及1017cm-3,计算(1)99%电离,(2)90%电离,(3)50%电离时温度各为多少? (5)3-14.(P82)计算含有施主杂质浓度ND=9×1015cm-3及受主杂质浓度为1.1×1016cm-3的硅在300k 时的电子和空穴浓度以及费米能级的位置。

(6)3-18.(P82)掺磷的n型硅,已知磷的电离能为0.04eV,求室温下杂质一般电离时费米能级的位置和磷的浓度。

(7)3-19.(P82)求室温下掺锑的n型硅,使EF=(EC+ED)/2时的锑的浓度。

已知锑的电离能为0.039eV。

(7)3-20.(P82)制造晶体管一般是在高杂质浓度的n型衬底上外延一层n型的外延层,再在外延层中扩散硼、磷而成。

①设n型硅单晶衬底是掺锑的,锑的电离能为0.039eV,300k时的EF位于导带底下面0.026eV处,计算锑的浓度和导带中电子浓度。

(8)4-1.(P113)300K时,Ge的本征电阻率为47Ω.cm,如电子和空穴迁移率分别为3900cm2/V.S和1900cm2/V.S,试求本征Ge的载流子浓度。

半导体物理与器件第四版课后习题答案(供参考).doc

半导体物理与器件第四版课后习题答案(供参考).doc

Chapter 44.1n i 2E gN c N expkTT 3E gexpN cO N O300kTwhere N cO and N Oare the values at 300 K.(a) SiliconT (K) kT (eV) n i (cm 3) 200 0.01727 7.68 104 400 0.03453 2.38 1210 6000.05189.74 1014(c) GaAs(b) GermaniumT (K)n i (cm 3 ) n i (cm 3 ) 200 2.16 10101.38 4008.60 1014 3.28 109 6003.82 10165.72 1012_______________________________________ 4.2Plot_______________________________________4.3(a) n i 2 N c NexpE gkT31121919T5 2.8 1.04 101010300exp1.120.0259 T 300T 32.5 10 232.912 10 38300exp1.12 3000.0259 TBy trial and error, T 367.5 K(b)n i25 10 1222.5 10 2532.912 10 38T exp 1.12 300300 0.0259 TBy trial and error,T 417.5 K _______________________________________4.4At T200 K, kT0.02592003000. 017267eVAt T400 K, kT0.02594003000. 034533eVn i 2400 7.70 101023.025 10 17n i 2 2001.40 10 2 23400expE g3000.0345333200Egexp300 0.017267E gE g8 exp0.0345330.0172673.025 10178 exp E g 57 .9139 28.9578orE g 28.9561ln 3.025 1017 38.17148 or E g 1.318 eVNow7.70 1010N co N o340023001.318 exp0.03453321N co N o 2.370 175.929 10 2.658 10so N co N o 9.41 10 37 cm 6_______________________________________4.5exp 1.10n i kT 0.20Bexpn i A 0.90 kTexp kTFor T 200 K, kT 0.017267 eVFor T 300 K, kT 0.0259 eVFor T 400 K, kT 0.034533 eV(a) For T 200K,n i B exp 0.20 9.325 10 6n i A 0.017267(b) For T 300K,n i Bexp 0.204.43 10 4n i A 0.0259 (c) For T 400K,n i Bexp 0.203.05 10 3n i A 0.034533_______________________________________ 4.6(a) g c f FE E FE E c expkTThen g c f F x expxkTTo find the maximum value:d g c f F 1 x1 / 2 exp xdx 2 kT1 x1 /2 exp x 0kT kTwhich yields1/ 21 x kT2x1/ 2 x 2kTThe maximum value occurs atEkTE c2(b)g 1 f FE F EE E expkTE EE E expkTexpE F EkTLet E E xThen g 1 f F x expxkTTo find the maximum valued g 1 f F d xdx dxx expkTSame as part (a). Maximum occurs atxkT2E E c exp E E ckTorkTE E2E c EF expkTLet E E c x _______________________________________ 4.7E1 E c exp E1 E cn E1 kTn E2E2 E c exp E2 E c kTwhereE1 E c 4kT and E 2 E c kT 2Thenn E1 4kTexp E1 E2n E2 kT kT22 2 exp 4 12 exp 3.522orn E10.0854n E 2_______________________________________ 4.8Plot_______________________________________4.9Plot_______________________________________ 4.10E Fi E midgap 3kT ln m*pm n* 4Silicon: m*p 0.56 m o , m n* 1.08m oE Fi E midgap 0.0128 eVGermanium: m*p 0. 37m o ,*0.55m om nE Fi E midgap 0 .0077 eVGallium Arsenide: m*p 0.48m o ,m n* 0.067m oE Fi E midgap 0 .0382 eV_______________________________________ 4.11E Fi E midgap 1 kT ln N2 N c1kT ln 1.04 1019 0.4952 kT2 2.8 1019T (K) kT (eV) ( E Fi E midgap )(eV) 200 0.01727 0.0086 400 0.03453 0.0171 600 0.0518 0.0257_______________________________________4.12(a) E Fi E midgapm*p3 kT ln4 m n*3 0.0259 ln0.704 1.2110.63 meV(b) E Fi E midgap 3 0.0259 ln0.754 0.08043.47 meV_______________________________________4.13Let g c E K constantThenn o g c E f F E dEE cK1dEE E FEc 1 expkTK expE E FdEkTE cLetE E cso that dE kT dkTWe can writeE EF E c E F E E cso thatE E Fexp E c E FexpexpkTkTThe integral can then be written asn o K kT exp E c E Fexp d kTwhich becomesn o K kTE c EF expkT_______________________________________4.14Let g c E C1E E c for E E cThenn o g c E f F E dEE cC1 E E cdEE c 1exp E EF kTC1 EE E FdE E C expE ckTLetE E cdE kT dso thatkTWe can writeE EF E E c E c E FThenE c E Fn o C1 expkTE E cE E cdE expE ckT orn oE c EF C1 expkTkT exp kT d 0We find thatexp d exp 1 1So2 E c E Fn o C1 kT expkT_______________________________________4.15r1 m oWe have rm*a oFor germanium, r 16 , m* 0.55m oThenr1 16 1 a o 29 0.530.55oror1 15.4 AThe ionization energy can be written asm*2E o 13.6 eVm o s0.552 13.6 E 0.029 eV16_______________________________________ 4.16We have r1 m orm*a oFor gallium arsenide, r 13.1 , *m0.067 m o1or1 13.1 104 A0.530.067The ionization energy ism*20.067E o 13.6 13.6m o s 13.1 2orE0.0053 eV_______________________________________4.17Nc(a) E c E F kT ln2.8 10190.0259 ln 157 100.2148 eV(b) E F E E g E c E F1.12 0.2148 0.90518eV(c) p o NE F E expkT1.04 19 0.9051810 exp0.02596.90 103cm 3(d) Holesn o(e) E F E Fi kT lnn i710 150.0259 ln1.5 10100.338 eV_______________________________________4.18N(a) E F E kT lnp o190.0259 ln 1.0410210160.162 eV(b) E c E F E g E F E1.12 0.162 0.958 eV(c) n o 2.8 19 0.95810 exp0.02592.41 103cm3p o(d) E Fi E F kT lnn i2 10 160.0259 ln 101.5 100.365eV_______________________________________4.19Nc(a) E c E F kT ln0.0259 ln 2.810192 1050.8436 eVE F E E g E c E F1.12 0.8436E F E 0.2764 eV(b) p o 1.04 1019 exp 0.276370.02592.414 1014cm3(c)p-type_______________________________________4.20(a) kT3750.032375 eV0.02593003 / 2n o 4.7 10 17 375 exp 0.28300 0.0323751.15 1014cm3E F E E g E c E F 1.42 0.281.14 eV375 3 / 2 1.14 p o 7 18 exp10300 0.0323754.99 103cm 3(b) E c E F 0.0259 ln 4.7 10171.15 10 140.2154 eVE F E E g E c E F 1.42 0.21541.2046 eVp o 7 10 18 exp 1.20460.02594.42 10 2cm 3_______________________________________ 4.21(a) kT 0.0259 3750.032375 eV 300375 3 / 2 0.28n o 2.8 19 exp10300 0.0323756.86 1015cm 3E F E E g E c E F 1.12 0.280.840 eV375 3 / 20.840p o 1.04 1019 exp300 0.0323757.84 107cm 3(b) E c E F kT ln N cn o0.0259 ln2.8 10196.862 10 150.2153 eVE F E 1.12 0.2153 0.9047 eVp o 1.04 10 19 exp 0.9046680.02597.04 103 cm 3_______________________________________4.22(a) p-typeE g(b) E F E1.124 0.28 eV4p o N exp E F EkT1.04 10 19 exp 0.280.02592.10 1014cm 3E c EF E g E F E1.12 0.28 0.84 eVn o N c exp E c E FkT2.8 1019exp0.840.02592.30 105cm 3_______________________________________4.23(a) n o n iE F E FiexpkT1.5 1010 exp 0.220.02597.3313cm310p oE Fi E Fn i expkT1.5 1010 exp 0.220.02593.07 106cm 3(b) n o n iE F E FiexpkT1.8 10 6 exp 0.220.02598.80 109cm 3p o n i expE Fi E FkT1.8 106 exp 0.220.02593.68 102cm 3_______________________________________4.24(a) E F ENkT lnp o0.0259 ln1.04 10 195 10 150.1979 eV(b) E c E F E g E F E1.12 0.19788 0.92212 eV(c) n o 2.8 1019 exp 0.922120.02599.66 103cm 3(d) Holesp o(e) E Fi E F kT lnn i510 150.0259 ln1.5 10100.3294 eV _______________________________________4.25kT 0.0259 4000.034533 eV 3003 / 2N 1.04 10 19400300 1.601 1019cm 33 / 2N c 2.8 1019400300 4.3109 1019cm 30.2642 eV _______________________________________4.26(a) p o 7 1018 exp 0.250.02594.50 1014cm 3E c EF 1.42 0.25 1.17 eVn o 4.7 10 17 exp 1.170.02591.13 10 2cm 3(b)kT 0.034533eV3 / 2N 7 10184003001.078 1019cm 33 / 217 400N c 4.7 103007.236 1017cm3expn i 2 4.3109 10 19 1.601 10191.12NE F E kT lnp o19 0.0345335.67022410n i 2.381 1012 cm 3(a) E F ENkT lnp o0.034533 ln 1.601 10195 1015 0.2787 eV(b) E c E F 1.12 0.27873 0.84127 eV(c) n o 4.3109 10 19 exp 0.841270.0345331.134 109cm3(d) Holes(e) E Fi E F kT ln p on i510150.034533 ln2.381 10120.034533 ln1.078104.50 10 140.3482 eVE c EF 1.42 0.3482 1.072 eVn o 7.236 1017 exp 1 .071770. 0345332.40 104cm 3_____________________________________4.27(a) p o 1.04 1019 exp 0.250.02596.68 1014cm 3E c EF 1.12 0.25 0.870 eVn o 2.8 10 19 exp 0.8700.0259n o7.2310 4 cm 3(b)kT0.034533 eV3 / 2N 1.04 10194003001.601 1019cm 33 / 2N c 2.8 1019 4003004.311 1019cm 3NE F E kT lnp o1.60110 190.034533ln6.6810140.3482 eVE c EF 1.12 0.34820.7718 eVn o 4.311 1019 exp 0.771750.0345338.49 109cm 3_______________________________________4.282(a) n o N c F1 / 2 FFor E F E c kT 2 ,E F E c kT 2 FkT 0.5kTThen F1/ 2 F 1.0n o 2 2.8 1019 1.03.16 1019cm 3(b) n o 2 N c F1 / 2 F24.7 1017 1.05.30 1017cm 3_______________________________________ 4.29p o 2 N F1/2 F5 1019 2 1.04 1019 F1/2 FSo F1/ 2 F 4.26We find F 3.0E E FkTE EF 3.0 0.0259 0.0777 eV_______________________________________4.30E F E c 4kT(a) F 4kT kTThen F1 / 2 F 6.02N c F1 / 2n o F2 2.8 1019 6.01.90 10 20 cm 3(b) n o 2 4.7 1017 6.03.18 1018cm 3_______________________________________ 4.31For the electron concentrationn E g c E f F EThe Boltzmann approximation applies, so4 * 3 / 22m nE E cn Eh3E E FexpkTor4 2m n* 3 / 2 E c E Fexpn E h3kTE E c E E ckT expkTkTDefinexEE ckTThenn E n x K x exp xTo find maximumn E n x , setdn x 0 K 1 x 1 / 2 exp xdx 2x 1 / 21 expxorKx 1 / 2 expx1 x2which yieldsx1 E E cE E c12kTkT2For the hole concentrationp Eg E 1f F EUsing the Boltzmann approximation4 2m p * 3 / 2p EEEh 3E F EexpkT or3 / 242m *p E F Ep Eh 3expkTE E E EkTexpkTkTDefinexE EkTThenp xK x exp xTo find maximum value ofp Ep x ,setdp xUsing the results from0 dxabove,we find the maximum at1E E kT2_______________________________________4.32 (a) Silicon:We haven oN c expE cE FkTWe can writeE c E FE c E d E d E FForE c E d 0.045 eV andE dE F3kT eVwe can writen o2.8 1019 exp 0.04530.02592.8 1019exp 4.737or10 17 cm3n o2.45 We also havep oN expE F EkTAgain, we can writeE FEE FE aE aEForE FE a3kTandE aE0.045eVThenp o1.04 1019 exp 3 0.0450.02591.04 1019 exp4.737orp o9.12 10 16 cm 3(b) GaAs: assume E c E d0.0058eVThenn o4.7 1017 exp0.0058 30.025917exp 3.2244.7 10orn o1.87 1016 cm3Assume E a E 0.0345 eVThenp o71018 exp0.0345 30.02597 1018 exp 4.332orp o9.20 1016 cm 3_______________________________________ 4.33Plot_______________________________________4.34 10 151015 cm 3(a)p o415 31.5 10 10 2n o7.5 10 4 cm33 10153(b) n oN d316cm1010 2p o1.5 107.5 10 3cm 33 1016 (c)n op on i 1.5 10 10cm33(d) n i 22.8 10 19 1.041019 375300 exp1.12 3000.0259 375n i7.334 1011 cm3p o N a4 10 15 cm 37.334 10 11 2n o1.34 10 8 cm34 10 153(e) n i 22.8 10 19 1.04 10 19 4503001.12 300exp0.0259 450133n i1.722 10 cm14142n o1.722 10 1310102221.029 1014 cm 31.722 1013 2p o2.88 1012 cm 31.029 1014_______________________________________(a) p oN aN d4 101510153 1015 cm 3n i 2 1.8 10 6 2n o1.08 10 3cm 3p o3 1015(b) n oN d 3 10 16 cm 3p o1.8 10 6 2 1.08 10 4 cm33 10163(c) n o p on i1.8 10 6cm375 3(d) n i 24.7 1017 7.0 10 18300 exp1.42 3000.0259 375n i 7.580 10 8 cm 3p o N a4 1015 cm 38 2n o7.580 10 1.44 10 2 cm 34 10 153 (e) 2 4.7 10 17 7.0 18450 n i 10 300 exp1.42 3000.0259 450n i 3.853 1010 cm3n oN d10 14 cm 33.853 1010 2p o1.48 10 7 cm 310 14_______________________________________4.3610 13 cm 3(a) Ge: n i2.42(i) n oN dN dn i 22 22 10152 210152.4 13 22210or2 1015 cm 3n oN d4.35n i 2 2.4 1013 2p o2 1015n o2.88 1011 cm 3(ii) p o N a N d 10167 10153 1015 cm 32n i22.4 10 13n op o310 151.92 1011cm3(b) GaAs: n i 1.8 10 6cm3(i) n o N d2 1015 cm62p o1.8 10 1.62 10 3cm32 10 15(ii) p oN aN d3 10 15 cm 362n o1.8 101.08 10 3cm 33 1015 (c) The result implies that there is only one 33minority carrier in a volume of 10 cm ._______________________________________4.37(a) For the donor leveln d 1N d1 1exp EdE F2kT11 1 exp 0.2020.0259orn d8.85 10 4N d (b) We havef F E1E E F1expkTNowE E FE E cE c E ForE EF kT 0.245Thenf F E10.2451 exp 1 0.0259orf F E 2.87 10 5_______________________________________4.38N aN d(a) p-type(b) Silicon:10131013p oN aN d 2.5 1 or1013 cm 3p o1.5Thenn i 21.5 10 10 210 7cm 3n o1.5p o 1.5 1013 Germanium:N aN d N a N d 2p o2n i 221.5131.5 10 1322.4 101310222or3.26 10 13 cm 3p oThen2n i 22.4 10 13n o1.76 10 13p o3.264 1013cm 3Gallium Arsenide:p oN a N d1.5 10 13 cm 3and2n i 21.8 10 6n o0.216 cm 3p o1.5 1013_______________________________________4.39 (a) N d N an-type(b) n oN d N a 2 10151.2 10158 1014 cm 3n i 21.5 101022.81 10 5cm 3p o8 14n o10(c)p o N aN a N d4 1015N a 1.2 10 152 1015N a 4.8 10 15 cm31.5 10 102n o5.625 10 4cm 3 4 1015_______________________________________4.40n i21.5 101021. 153n o2 10 5 125 10cmp on o p on-type_______________________________________4.413n i 21.04 10196.0 10 18 250300 exp0.660.0259250 3001.8936 102412n i 1.376cm310 n on i 2 n i 2n o 21n i 2p o4n o 4n o1n i2Son o 6.88 1011 cm 3 ,Then p o2.75 1012cm3N a N a 2p on i 222N a22.752 10122N a21.8936 10 24227.5735 10 242.752 10 12 N aN a2N a 21.8936 10 242so that N a 2.064 1012cm 3_______________________________________4.42Plot_______________________________________4.43Plot_______________________________________4.44Plot_______________________________________ 4.45N d N aN dN a 2n o2n i 2214141.1 1014 2 10 1.2 102 2 10141.2 1014 2n i 221.1 10144 10 1324 10132n i 24.9 10 271.6 10 27n i2so n i5.74 10 13 cm 3p on i 23.3 10 273 133n o 1.1 10 1410 cm_______________________________________4.46(a)N a N d p-typeMajority carriers are holesp o N a N d16163 101.5 101.5 1016 cm 3Minority carriers are electrons210 10 2n on i 1.5 1.5 10 4 cm 3p o 1.5 1016(b) Boron atoms must be addedp o N a N aN d5 1016N a 3 10161.5 1016So N a3.5 10 16 cm 31.5 10 102n o4.5 10 3cm 35 10 16_______________________________________4.47p on i (a)n-type(b) p on i 2 n on i 2n op o1.5 10 1021016 cm3n o4 1.125 2 10electrons are majoritycarriersp o2 10 4cm3holes are minority carriers(c) n oN d N a1.125 101615N d 7 10so N d1.825 1016 cm3_______________________________________4.48E Fi E FkT lnp on iFor GermaniumT (K)kT (eV)n i (cm 3)200 0.01727 2.16 1010400 0.03453 8.60 1410 6000.05183.82 1016N aN a 2p o n i 2and22N a10 15 cm 3T (K)p o (cm3)E Fi EF (eV)200 1.0 1015 0.1855 4001.49 1015 0.01898 6003.87 10160.000674_______________________________________4.49(a) E c E FkT lnN cN d0.0259 ln 2.8 1019N dFor 1014cm 3 , E cE F 0.3249eV15 cm 3 ,E cE F0.2652eV1016cm 3, E c E F 0.2056eV 101017 cm 3 , E c E F0.1459eV(b) E F E FikT lnN dn i0.0259 lnN d1.51010For 1014cm 3 , E FE Fi 0.2280 eV15cm 3, E F E Fi 0.2877 eV10 1016 cm 3 , E F E Fi 0.3473 eV 1017 cm 3 ,E F E Fi0.4070 eV_______________________________________ 4.50N d N d 2(a) n on i 222n o1.05N d1.05 10 15 cm 31.05 10150.5 10 1520.5 10152n i2son i 25.25 10 28Now3n i 22.8 1019 1.04 1019T300exp1.120.0259 T 30035.25 10 28 2.912 10 38 T300exp 12972.973TBy trial and error, T 536.5K(b) At T 300 K,E c EF kT ln N cn oE c EF 0.0259 ln 2.8 1019 1015T 536.5 K, 0.2652 eVAt536.5kT0.02590.046318 eV3003 / 2N c 2.8 1019 536.53006.696 1019cm 3E c E FN c kT lnn oE c E F6.696 10 19 0.046318 ln10151.050.5124 eVthen E c E F 0.2472 eV(c)Closer to the intrinsic energy level._______________________________________4.51p oE Fi EF kT lnn iAt T 200K, kT 0.017267 eVT 400 K, kT 0.034533 eVT 600 K, kT 0.0518 eV At T 200K,22.8 10191019 200n i 1.04300exp1.120.017267n i 7.638 10 4 cm 3At T 400 K,3n i 2 2.8 1019 1.04 10 19 4003001.12exp0.034533n i 2.381 1012 cm 3At T 600 K,322.8 1019 19 600n i 1.04 10300exp 1.120.0518n i 9.740 1014 cm 3At T 200 K and T 400 K,p o N a 3 1015 cm 3At T 600 K,N a N a2p o n i22 23 15 3 10 15 2 9.740 10 1410 22 23.288 1015cm3Then, T 200K, E Fi E F 0.4212eVT 400K,E Fi EF 0.2465 eVT600K,E Fi EF 0.0630 eV_______________________________________4.52(a)N a N aE Fi EF kT ln 0.0259 ln6n i 1.8 10For N a10 14 cm 3 ,E FiE F0.4619 eVN a 10 15 cm 3,E FiE F0.5215 eV163,N a 10 cmE FiE F0.5811 eVN a 10 17cm 3,E FiE F 0.6408 eV(b)E FEN7.0 1018kT ln0.0259 lnN aN aFor N a10 14 cm 3 ,E F E0.2889 eVN a 10 15 cm 3 ,E FE0.2293 eV163,N a 10 cmE F E0.1697 eVN a 10 17 cm3,E F E 0.1100 eV_______________________________________ 4.53(a) E Fi3 m *p E midgapkT ln4m n *3 0.0259 ln 104 orE Fi E midgap 0.0447 eV(b) Impurity atoms to be added soE midgap EF 0.45 eV(i) p-type, so add acceptor atoms(ii)E Fi EF 0.0447 0.45 0.4947 eVThenp oE FiE Fn i expkT10 5exp 0.49470.0259 or10 13 cm3p o N a1.97_______________________________________4.54n oN d N aN c expE c E FkTsoN d 5 10 15 2.8 10 19 exp0.2150.025951015 6.95 1015orcm 3N d 1.2 1016_______________________________________4.55(a) Silicon(i) E cE F N ckT lnN d0.0259 ln 2.8 10 190.2188 eV6 1015(ii) E cE F0.2188 0.0259 0.1929 eVN dN c expE c E FkT2.8 10 19 exp0.19290.0259N d1.631 1016 cm3N d 6 1015N d1.031 10 16 cm 3Additional donor atoms(b) GaAs(i) E c E F0.0259 ln4.7101710150.15936eV(ii) E cE F0.15936 0.0259 0.13346 eVN d4.7 1017 exp0.133460.02592.718 1015 cm 3N d 1015N d1.718 10 15 cm3Additionaldonor atoms_______________________________________ 4.56(a) E Fi E FN kT lnN a0.0259 ln 1.04 10190.1620 eV2 1016(b) E F E Fi kT ln N c N d0.0259 ln 2.8 1019 0.1876 eV2 10 16(c) For part (a);p o 2 1016 cm 3n i2 1.5 1010 2n op o 2 10161.125 104cm3For part (b):3n o 2 1016 cmn i 2 1.5 1010 2p on o 2 10 161.125 104cm3_______________________________________ 4.57n oE F E Fin i expkT1.8 10 6 exp 0.550.02593.0 1015cm 3Add additional acceptor impuritiesn o N d N a3 10 15 7 10 15 N aN a 4 10 15 cm 3_______________________________________(a) E Fi E F kT lnpon i0.02593 10 150.3161 eVln10 101.5(b) E F E Fin okT lnn i0.02593 10160.3758 eVln10 101.5(c) E F E Fi(d) E Fi E Fp okT lnn i0.0259 375 ln 4 1015300 7.334 10 110.2786 eV(e) E F E Fi kT lnnon i140.0259 450 ln 1.029 10300 1.722 10 130.06945eV_______________________________________4.59(a) E F ENkT lnp o0.0259 ln7.0 10180.2009 eV3 1015(b) E F E 0.0259 l n7.0 10 181.08 10 41.360 eV(c) E F E 0.0259 l n 7.0 10181.8 10 60.7508 eV4.58(d) E F E 0.0259 375300ln 7.0 10 18 375 300 3 / 24 10 150.2526 eV(e) E F E 0.0259 450 300ln 7.0 10 18 450 300 3/ 21.48 10 71.068 eV_______________________________________4.60n-typeE F E Fi kT ln n o n i0.02591.125 10 16ln100.3504 eV1.5 10______________________________________ 4.61N a N a 2 p o 22 2 n i5.08 1015 5 101525 10 15 2n i225.08 10 15 2.5 10 15 22.5 1015 2n i26.6564 10 30 6.25 10 30 n i2n i 2 4.064 10 29n i2 N c N expE gkTkT 0.02593500.030217 eV3003502N c 1.2 10 19 1.633 1019 cm 33003502N 1.8 1019 2.45 10 19 cm 3300Now4.064 10 29 1.633 1019 2.45 1019E gexp0.030217SoE g 0.030217 ln 1.633 10 19 2.45 10 194.064 10 29E g 0.6257 eV_______________________________________4.62(a) Replace Ga atoms Silicon acts as adonorN d0.05 7 1015 3.5 10 14 cm 3Replace As atoms Silicon acts asanacceptorN a 0.95 7 1015 6.65 10 15 cm 3(b) N a N d p-type(c) p o N a N d 6.65 1015 3.5 10146.3 1015cm 3n i 2 1. 810 6 2n o 5.14 10 4 cm 3 p o 6 .3 1015(d) E Fi E F kT ln p o n i0.0259 ln 6.3 10 150.5692 eV1.8 10 6_______________________________________。

半导体物理与器件第四版答案

半导体物理与器件第四版答案

半导体物理与器件第四版答案半导体物理与器件第四版答案【篇一:半导体物理第五章习题答案】>1. 一个n型半导体样品的额外空穴密度为1013cm-3,已知空穴寿命为100?s,计算空穴的复合率。

解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此1013u1017cm?3?s ?6100?102. 用强光照射n型样品,假定光被均匀吸收,产生额外载流子,产生率为gp,空穴寿命为?,请①写出光照开始阶段额外载流子密度随时间变化所满足的方程;②求出光照下达到稳定状态时的额外载流子密度。

解:⑴光照下,额外载流子密度?n=?p,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率gp和复合率u的代数和构成,即 d(?p)?p gp? dt?d(?p)0,于是由上式得⑵稳定时额外载流子密度不再随时间变化,即dtp?p?p0?gp?3. 有一块n型硅样品,额外载流子寿命是1?s,无光照时的电阻率是10??cm。

今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm3?s,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?解:光照被均匀吸收后产生的稳定额外载流子密度p??n?gp??1022?10?6?1016 cm-3取?n?1350cm2/(v?s),?p?500cm/(v?s),则额外载流子对电导率的贡献2pq(?n??p)?1016?1.6?10?19?(1350?500)?2.96 s/cm无光照时?0?10.1s/cm,因而光照下的电导率02.96?0.1?3.06s/cm相应的电阻率 ??110.33??cm 3.06少数载流子对电导的贡献为:?p?pq?p??pq?p?gp?q?p代入数据:?p?(p0??p)q?p??pq?p?1016?1.6?10?19?500?0.8s/cm∴p?00.80.26?26﹪ 3.06即光电导中少数载流子的贡献为26﹪4.一块半导体样品的额外载流子寿命? =10?s,今用光照在其中产生非平衡载流子,问光照突然停止后的20?s时刻其额外载流子密度衰减到原来的百分之几?解:已知光照停止后额外载流子密度的衰减规律为p(t)??p0e?因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为t??p(t)e? ?p0t当t?20?s?2?10?5s时20??p(20)e10?e?2?0.135?13.5﹪ ?p05. 光照在掺杂浓度为1016cm-3的n型硅中产生的额外载流子密度为?n=?p= 1016cm-3。

半导体物理 课后习题答案解析

半导体物理 课后习题答案解析

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

半导体物理与器件第四版课后习题答案8

半导体物理与器件第四版课后习题答案8

Chapter 88.1In forward bias Then or (a)For 1021=f f I I , thenor6.5921=-V V mV 60≅mV (b)For 10021=f f I I , thenor3.11921=-V V mV 120≅mV_______________________________________ 8.2()4152102108125.2108105.1⨯=⨯⨯==a i po N n n cm 3-()515210210125.1102105.1⨯=⨯⨯==d i no N n p cm 3-(a) 45.0=a V V,121095.3⨯=cm 3- or()111088.9⨯=-p p x n cm 3- (b) 55.0=a V V,141088.1⨯=cm 3- 131069.4⨯=cm 3- (c) 55.0-=a V V_______________________________________ 8.3()516262101.8104108.1-⨯=⨯⨯==a i po N n n cm 3-()4162621024.310108.1-⨯=⨯==d i noN n p cm 3-(a) 90.0=a V V,11100.4⨯=cm 3- 10100.10⨯=cm 3- (b) 10.1=a V V141003.9⨯=cm 3-141026.2⨯=cm 3-_______________________________________ 8.43105.4⨯=cm 3-4105.4⨯=cm 3-(i)()⎪⎪⎭⎫⎝⎛=t a no n n V V p x p exp or ()⎥⎦⎤⎢⎣⎡=no n n t a p x p V V ln599.0=V (ii) n-region - lower doped side 410214.3⨯=cm 3-3105.7⨯=cm 3-(i) ()⎥⎥⎦⎤⎢⎢⎣⎡=po a t a n N V V 1.0ln6165.0=V(ii) p-region - lower doped side_______________________________________ 8.5849.1=A/cm 2()()()849.1103-=-=p n n x AJ I Aor 85.1=n I mA521.4=A/cm 2()()()521.4103-==n p p x AJ I Aor 52.4=p I mA(a) 37.652.485.1=+=+=p n I I I mA _______________________________________ 8.6For an p n + silicon diode or15108.1-⨯=S I A (a) For 5.0=a V V, or71036.4-⨯=D I A(b) For 5.0-=a V V, or15108.1-⨯-=-≅S D I I A_______________________________________ 8.7410568.1-⨯=s J A/cm 2 41044.2-⨯= A or 244.0=I mA810568.1-⨯-= A_______________________________________ 8.81110145.5-⨯=s J A/cm 2 1410029.1-⨯= A (i)()⎪⎭⎫ ⎝⎛⨯=-0259.045.0exp 10029.114I71061.3-⨯= A(ii)()⎪⎭⎫⎝⎛⨯=-0259.055.0exp 10029.114I51072.1-⨯= A (iii)()⎪⎭⎫ ⎝⎛⨯=-0259.065.0exp 10029.114I 41016.8-⨯= A_______________________________________ 8.9We haveor we can write this as so thatIn reverse bias, I is negative, so at90.0-=SI I, we haveor6.59-=V mV_______________________________________ 8.10Case 1: ⎪⎪⎭⎫⎝⎛=t a s V V I I exp1510305.6-⨯=⇒s I A 1210305.6-⨯=mA 810153.3-⨯=mA/cm 2Case 2: ⎪⎪⎭⎫⎝⎛=t a s V V I I exp or 093.1=I mA9102-⨯=mA/cm 2Case 3: ⎪⎪⎭⎫⎝⎛=t a s V V AJ I exp So ⎥⎦⎤⎢⎣⎡=s t a AJ I V V ln6502.0=a V V Then()()1174101010---===s s AJ I mACase 4: ⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0259.072.0exp 20.1exp ta s V V I I1210014.1-⨯=s I mA 51007.5-⨯=cm 2 _______________________________________ 8.1107857.0=da N Nor73.12=adN N (a) From part (a),828.2=daN N or 354.0=adN N _______________________________________ 8.12The cross-sectional area is43105201010--⨯=⨯==J I A cm 2We have which yields1010522.2-⨯=S J A/cm 2 We can write We want or=()10.010472.410071.710071.7333=⨯+⨯⨯da N Nwhich yields Now We find141009.7⨯=d N cm 3- and161001.1⨯=a N cm 3-_______________________________________ 8.13Plot_______________________________________ 8.14 (a)We have4.21==np np D D μμ and 1.01=po no ττ soor(b) Using Einstein's relation, we can write We haved n n Ne μσ= and a p p N e μσ= Also Then_______________________________________ 8.15(a) p-side; or329.0=-F Fi E E eV Also on the n-side; or407.0=-Fi F E E eV (b) We can find()()4.320259.01250==n D cm 2/s ()()29.80259.0320==p D cm 2/sNow or1110426.4-⨯=S J A/cm 2 Then or1510426.4-⨯=S I A We find or61007.1-⨯=I A μ07.1= A (c) The hole current is or⎪⎪⎭⎫⎝⎛⨯=-t D p V V I exp 10278.316 (A) Then_______________________________________ 8.161410342.1-⨯=sp I A ()()()162107419105105.110225105106.1⨯⨯⋅⨯⨯⨯=--- 1510025.4-⨯=sn I A746826.0=V()()()59746.0746826.08.08.0===bi a V V V 141056.1⨯=cm 3- 5101981.4-⨯= A 4103997.1-⨯= A 410820.1-⨯= ANow5104896.8-⨯= A Then510710.9-⨯= A_______________________________________ 8.17(a) The excess hole concentration is given byWe find()41621021025.210105.1⨯=⨯==d i no N n p cm 3- and410828.2-⨯=cm μ828.2=m Then or()⎪⎭⎫⎝⎛⨯-⨯=-41410828.2exp 1081.3x p n δ cm 3-(b) We haveAt 4103-⨯=x cm, or()5966.03=p J A/cm 2 (c) We haveWe can determine that3105.4⨯=po n cm 3- andμ72.10=n L m Then or2615.0=no J A/cm 2 We can also find724.1=po J A/cm 2Then at μ3=x m, or()39.13=n J A/cm 2_______________________________________ 8.18 (a) Problem 8.7 or()⎥⎥⎦⎤⎢⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛=a i a t po p t a N n N V n n V V 21.0ln ln 205.0=V (b) Problem 8.8or ⎥⎦⎤⎢⎣⎡=no n t a p p V V ln ()⎥⎥⎦⎤⎢⎢⎣⎡=d i d t N n N V 21.0ln623.0=V_______________________________________8.19The excess electron concentration is given byThe total number of excess electrons is We may note that ThenWe find that25=n D cm 2/s and μ0.50=n L m Also()41521021081.2108105.1⨯=⨯⨯==a i po N n n cm 3- Then orThen, we find the total number of excess electrons in the p-region to be: (a)3.0=a V V, 41051.1⨯=p N(b)4.0=a V V, 51017.7⨯=p N (c)5.0=a V V, 71040.3⨯=p N Similarly, the total number of excess holes inthe n-region is found to be We find that0.10=p D cm 2/s and μ0.10=p L mAlso()41621021025.210105.1⨯=⨯==d i no N n p cm 3- Then So(a)3.0=a V V, 31041.2⨯=n P(b)4.0=a V V, 51015.1⨯=n P (c)5.0=a V V, 61045.5⨯=n P_______________________________________ 8.20Then so orWe then have or Then or769.02=g E eV_______________________________________ 8.21(a) We havewhich can be written in the form or(b) Taking the ratioFor 3001=T K, 0259.01=kT ,61.3811=kT For 4002=T K, 03453.02=kT , 96.2812=kT (i) Germanium: 66.0=g E eV or138312=S S I I (ii) Silicon: 12.1=g E eVor5121017.1⨯=S S I I _______________________________________ 8.22Plot_______________________________________ 8.23First case: or()05049.0102ln 50.0ln 4=⨯==sf a t I I V V VNow ()⎪⎭⎫⎝⎛=3000259.005049.0T8.584=⇒T K Second case:or 272102519.8⨯=i n NowBy trial and error, 502≅T KThe reverse-bias current is limiting factor. _______________________________________ 8.24()()37101010--===po p p D L τcmor μ10=p L m; p n L W <<⇒(i)()()⎪⎪⎭⎫ ⎝⎛==tano d n n VV p N x p exp 1.0 or ()⎥⎥⎦⎤⎢⎢⎣⎡=221.0ln i d t a n N V V 5516.0=a V V(ii)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=t ad i n p p V VN n W AeD I exp 2310565.4-⨯=p I A 61026.2-⨯=n I A 310567.4-⨯= A or 567.4=I mA (b)(i)()()⎪⎪⎭⎫⎝⎛==-t a po a p p V V n N x n exp 1.0 or ()⎥⎥⎦⎤⎢⎢⎣⎡=221.0ln i a t a n N V V 5516.0=a V V (ii)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=t adi n p p V VN n W AeD I exp 2 510565.4-⨯=p I A 4102597.2-⨯=n I A 410716.2-⨯= A or 2716.0=I mA_______________________________________ 8.25(a) We can write for the n-region The general solution is of the formThe boundary condition at n x x =gives and the boundary condition at n n W x x += givesFrom this equation, we haveThen, from the first boundary condition, weobtainWe then obtainwhich can be written as We can also findThe solution can now be written as or finally (b)=⎪⎪⎭⎫⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-p n t a no p L W V V p eD sinh 1expThen_______________________________________ 8.26For the temperature range 320300≤≤T K,neglect the change in c N and υN . ThenTaking the ratio of currents, but maintainingD I a constant, we have We then have We have300=T K , 60.01=D V V and 0259.01=kT eV,0259.01=ekT V 310=T K ,02676.02=kT eV,02676.02=ekT V 320=T K ,02763.03=kT eV,02763.03=ekT V For 310=T K , which yields5827.02=D V V For 320=T K , which yields5653.03=D V V_______________________________________ 8.27(a) We can writewhere C is a constant, independent of temperature.As a first approximation, neglect the variation of c N and υN with temperatureover the range of interest. We can then writewhere 1C is another constant, independent oftemperature. We find or_______________________________________ 8.281510323.2-⨯=s I A We find7665.0=V and510109.6-⨯=W cm Then()()()()()751019410210109.6105.1106.110----⨯⨯⨯=gen I 1110331.7-⨯= A_______________________________________ 8.29(a) Set gen S I I =,so 131321050.2109528.3100545.3--⨯+⨯⨯=i n 1410734.4⨯=cm 3- ThenBy trial and error,567≅T K We have()()()()()751419410210109.610734.4106.110----⨯⨯⨯=Thengen s I I +610314.2-⨯= Aor μ314.2==gen s I I A (b) From Problem 8.281510323.2-⨯=s I A 1110331.7-⨯=gen I ASo ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=t a gen t a s V V I V V I I 2exp exp 5366.0=V_______________________________________ 8.305.142=cm 2/s()()70.52200259.0==p D cm 2/s(a)(i)⎥⎥⎦⎤⎢⎢⎣⎡+=00211p p dn nais D N D N Aen I ττ 221050.1-⨯=s I A (ii)⎪⎪⎭⎫⎝⎛=tas D VV I I exp 1210726.1-⨯= A(iii)()⎪⎭⎫⎝⎛⨯=-0259.08.0exp 1050.122D I910896.3-⨯= A(iv)()⎪⎭⎫⎝⎛⨯=-0259.00.1exp 1050.122D I610795.8-⨯= A(b)02τWAen I i gen =263.1=V 510201.4-⨯=cm (i)Then()()()()()856194102210201.4108.1106.1102----⨯⨯⨯⨯⨯=genI 1410049.6-⨯= A(ii)⎪⎪⎭⎫⎝⎛=t a ro rec V V I I 2exp 910436.6-⨯= A(iii)()()⎪⎪⎭⎫⎝⎛⨯=-0259.028.0exp 10614rec I710058.3-⨯= A(iv)()()⎪⎪⎭⎫⎝⎛⨯=-0259.020.1exp 10614rec I510453.1-⨯= A_______________________________________ 8.31Using results from Problem 8.30, we find 4.0=a V V, 161064.7-⨯=d I A, 101035.1-⨯=rec I A, 101035.1-⨯≅T I A6.0=a V V, 121073.1-⨯=d I A 91044.6-⨯=rec I A, 91044.6-⨯≅T I A8.0=a V V, 91090.3-⨯=d I A71006.3-⨯=rec I A, 71010.3-⨯=T I A0.1=a V V, 61080.8-⨯=d I A 51045.1-⨯=rec I A, 51033.2-⨯=T I A2.1=a V V. 21099.1-⨯=d I A 41090.6-⨯=rec I A,21006.2-⨯=T I A_______________________________________ 8.32Plot_______________________________________ 8.33Plot_______________________________________ 8.34We have thatLet O nO pO τττ≡= and i n p n ='='We can write andWe also have so thatThen DefinekT eV a a =η and ⎪⎪⎭⎫⎝⎛-=kT E E Fi Fn η Then the recombination rate can be written asorTo find the maximum recombination rate, setorwhich simplifies toThe denominator is not zero, so we have orThen the maximum recombination rate becomes orwhich can be written asIf ()e kT V a >>, then we can neglect the (-1)term in the numerator and the (+1) term in thedenominator, so we finally have_______________________________________ 8.35We haveIn this case, 19104⨯='=g G cm 3-s 1- and isa constant through the space charge region. Then We find or659.0=bi V V Also or41035.2-⨯=W cm Then or3105.1-⨯=gen J A/cm 2_______________________________________ 8.36 or1110638.1-⨯=S J A/cm 2 Now We want orwhich can be written as We find or548.0=D V V_______________________________________ 8.3781016.1-⨯= For 6.11=d C nF91016.1-⨯= F or 16.1=d C nF_______________________________________ 8.38(a) VQC d ∆∆=, For 2.1=D I mA101079.5-⨯= C (b) For 12.0=D I mA 111079.5-⨯= C_______________________________________ 8.39For a n p + diodet DQ d V I g =, tpODQ d V I C 2τ=Now231086.30259.010--⨯==d g Sand()()()9731093.10259.021010---⨯==d C FWe havewhere f πω2= We obtain10=f kHz , 0814.09.25j Z -=100=f kHz , 814.09.25j Z -= 1=f MHz , 41.76.23j Z -= 10=f MHz , 49.738.2j Z -= _______________________________________ 8.40Reverse bias790.0=Vr bi j V V C +⨯=-12101078.5 FR V (V) j C (pF) 10 1.555 5 2.123 3 2.624 1 3.818 0 5.74720.0- 6.650 40.0- 8.179 Forward biasFor no po d a I I N N >>⇒>> Then()⎪⎪⎭⎫⎝⎛⨯=-t a po V V I exp 10006.114A a V (V) d C (F) + j C (F)= Total C (F)_______________________________________ 8.41For a n p + diode, nO pO I I >>, then Now6105.22-⨯=tpOV τF/AThen or7103.1-⨯=pO τsAt 1 mA, or9105.2-⨯=d C F_______________________________________ 8.42(i) tp po d V I C 20τ=or ()()()7910100259.022--==p d t po C V I τ 41018.5-⨯= A or 518.0=po I mA(ii) ⎪⎪⎭⎫ ⎝⎛⋅=t a d i p ppo V V N n D Ae I exp 20τ 618.0=V(iii) Ω=⨯==-5010518.00259.03D t d I V r(b)(i)()()()790101025.00259.022--⨯==p d t po C V I τ 410295.1-⨯= Aor 1295.0=po I mA(ii) ()⎪⎪⎭⎫⎝⎛⨯⨯=--1431025.2101295.0ln 0259.0a V5821.0=V(iii) Ω=⨯=-200101295.00259.03d r_______________________________________ 8.43(a) p-region: so orn-region: so orThe total resistance is or (b)which yields 38.1=I mA_______________________________________ 8.44 orWe can write(a) (i) For 1=D I mA, or 567.0=V V (ii) For 10=D I mA, or 98.1=V V (b) Set 0=R (i) For 1=D I mA, or 417.0=V V (ii) For 10=D I mA, or 477.0=V V_______________________________________ 8.45or 41009375.8-⨯=D I A 4896.0=a V V(a) 4103167.4600259.0-⨯===d t D r V I A 4733.0=V_______________________________________ 8.46(a) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==t a t S a Dd V V V I dV dI r exp 11 orwhich yields (b)which yields_______________________________________ 8.47(a) If 2.0=FR I IThen we have orWe find(b) If 0.1=FR I I, thenwhich yields_______________________________________ 8.48(a) erf RF Fp s I I I t +=τerf 3.0= erf ()5477.0≅erf ()56332.055.0= Then FR I I +=1156332.0 (b) erf()⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-+F Rp p p II t tt 1.01exp 02022τπττ By trial and error,80.002≅p t τ_______________________________________ 8.4918=j C pF at 0=R V 2.4=j C pF at 10=R V V We have710-==pO nO ττs , 2=F I mA and 11010==≅R V I R R mA So or7101.1-⨯=s t s Also1.1122.418=+=avg C pF The time constant is71011.1-⨯=s Now, the turn-off time is or71021.2-⨯=off t s_______________________________________ 8.50()()()136.1105.1105ln 0259.0210219=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯=bi V VWe find which yields71017.6-⨯=W cm oA 7.61=_______________________________________ 8.51Sketch_______________________________________ 8.53From Figure 7.15, 15109⨯≅d N cm 3- Let 17105⨯=a N cm 3-()4152102105.2109105.1⨯=⨯⨯==d i no N n p cm 3- Then()6295.0105.2109ln 0259.0414=⎪⎪⎭⎫⎝⎛⨯⨯=a V V1210389.1-⨯= A or 21091.4-⨯=A cm 2_______________________________________。

半导体物理课后习题解答

半导体物理课后习题解答

半导体物理课后习题解答The saying "the more diligent, the more luckier you are" really should be my charm in2006.半导体物理习题解答1-1.P 32设晶格常数为a 的一维晶格,导带极小值附近能量E c k 和价带极大值附近能量E v k 分别为:E c k=0223m k h +022)1(m k k h -和E v k= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =;试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化; 解 ①禁带宽度Eg根据dk k dEc )(=0232m kh +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k ,由题中E C 式可得:E min =E C K|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V k|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h=112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯= ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’2226m h dk E d V -=,∴0222'61/m dk E d h m Vn -== ④准动量的改变量h △k =h k min -k max = ah k h 83431=毕1-2.P 33晶格常数为的一维晶格,当外加102V/m,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间; 解 设电场强度为E,∵F =hdtdk=q E 取绝对值 ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 210dk =aqE h 21 代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯s当E =102 V/m 时,t =×10-8s ;E =107V/m 时,t =×10-13s; 毕3-7.P 81①在室温下,锗的有效状态密度Nc =×1019cm -3,Nv =×1018cm -3,试求锗的载流子有效质量m n 和m p ;计算77k 时的Nc 和Nv;已知300k 时,Eg =;77k 时Eg =;求这两个温度时锗的本征载流子浓度;②77k,锗的电子浓度为1017cm -3,假定浓度为零,而Ec -E D =,求锗中施主浓度N D 为多少解 ①室温下,T=300k27℃,k 0=×10-23J/K,h=×10-34J·S , 对于锗:Nc =×1019cm -3,Nv=×1018cm -3: ﹟求300k 时的Nc 和Nv : 根据3-18式:Kg T k Nc h m h T k m Nc n n 312332192340322*3230*100968.53001038.114.32)21005.1()10625.6(2)2()2(2---⨯=⨯⨯⨯⨯⨯⨯=⋅=⇒⋅=ππ根据3-23式:Kg T k Nv h m h T k m Nv p p 312332182340322*3230*1039173.33001038.114.32)2107.5()10625.6(2)2()2(2---⨯=⨯⨯⨯⨯⨯⨯=⋅=⇒⋅=ππ﹟求77k 时的Nc 和Nv : 同理:﹟求300k 时的n i : 求77k 时的n i :72319181902110094.1)771038.12106.176.0exp()107.51005.1()2exp()(---⨯=⨯⨯⨯⨯⨯-⨯⨯⨯=-=T k Eg NcNv n i ②77k 时,由3-46式得到:Ec -E D ==××10-19;T =77k ;k 0=×10-23;n 0=1017;Nc =×1019cm -3;;==-16192231917200106.610365.12)]771038.12106.101.0ex p(10[2)]2ex p([⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-=-Nc T k E Ec n N D D 毕3-8.P 82利用题7所给的Nc 和Nv 数值及Eg =,求温度为300k 和500k 时,含施主浓度N D =5×1015cm -3,受主浓度N A =2×109cm -3的锗中电子及空穴浓度为多少 解1 T =300k 时,对于锗:N D =5×1015cm -3,N A =2×109cm -3:3130211096.1)2exp()(-⨯=-=cm Tk EgNcNv n i ;159150105102105⨯≈⨯-⨯=-=A D N N n ;i n n >>0;1015213020107.7105)1096.1(⨯≈⨯⨯==n n p i ; 2T =300k 时:eV T T Eg Eg 58132.023550050010774.47437.0)0()500(242≈+⨯⨯-=+⋅-=-βα;查图3-7P 61可得:16102.2⨯≈i n ,属于过渡区,162122010464.22]4)[()(⨯=+-+-=iA D A D n N N N N n ;1602010964.1p ⨯==n n i ;此题中,也可以用另外的方法得到n i :)2exp()(500300)(500300)(0212323300'2323300'Tk EgNcNv n Nv N Nc N i k vk c-=⨯=⨯=;;求得n i 毕3-11.P 82若锗中杂质电离能△E D =,施主杂质浓度分别为N D =1014cm -3及1017cm -3,计算199%电离,290%电离,350%电离时温度各为多少 解未电离杂质占的百分比为:DD D D N NcD T kE T k E Nc N D 2_ln ex p 2_00=∆⇒∆=; 求得:116106.11038.101.019230=⨯⨯⨯=∆--T k E D ; ∴)_10ln()2102_ln(2_ln 11623152315T D N N T D N Nc D T D D D =⨯⨯⨯==(1) N D =1014cm -3,99%电离,即D_=1-99%= 即:3.2ln 23116-=T T 将N D =1017cm -3,D_=代入得:即:2.9ln 23116-=T T (2) 90%时,D_=即:T T ln 23116= N D =1017cm -3得:10ln 3ln 23116-=T T即:9.6ln 23116-=T T ;(3) 50%电离不能再用上式 ∵2DD D N n n ==+即:)exp(21)exp(21100Tk E E N T k E E N F D DF D D --+=-+ ∴)ex p(4)ex p(00Tk E E T k E E FD F D --=- 即:2ln 0T kE E DF -= 取对数后得:整理得下式:Nc N T k E D D 2ln 2ln 0=-∆-∴ NcNT k E D D ln 0=∆- 即:DD N NcT k E ln 0=∆ 当N D =1014cm -3时,得3ln 23116+=T T当N D =1017cm -3时9.3ln 23116-=T T此对数方程可用图解法或迭代法解出; 毕3-14.P 82计算含有施主杂质浓度N D =9×1015cm -3及受主杂质浓度为×1016cm -3的硅在300k 时的电子和空穴浓度以及费米能级的位置;解对于硅材料:N D =9×1015cm -3;N A =×1016cm -3;T =300k 时 n i =×1010cm -3:3150102-⨯=-=cm N N p D A ;∵D A N N p -=0且)(ex p Nv 00TK E E p FV -⋅= ∴)ex p(0Tk E E Nv N N F V DA -=-∴eV Ev eV Ev Nv N N T k Ev E D A F 224.0)(101.1102.0ln 026.0ln 19160-=⨯⨯-=--= 毕3-18.P 82掺磷的n 型硅,已知磷的电离能为,求室温下杂质一般电离时费米能级的位置和磷的浓度;解n 型硅,△E D =,依题意得: ∴D FD DN Tk E E N 5.0)exp(210=--+∴21)ex p(2)ex p(2100=--⇒=--+T k E E T k E E F D F D ∴2ln 2ln 21ln000T k E E E E T k T k E E F C C D F D =-+-⇒=-=- ∵044.0=-=∆D C D E E E∴eV T k E E T k E E C F C F 062.0044.02ln 044.02ln 00=--=-⇒--=毕3-19.P 82求室温下掺锑的n 型硅,使E F =E C +E D /2时的锑的浓度;已知锑的电离能为; 解由2DC F E E E +=可知,E F >E D ,∵EF 标志电子的填充水平,故ED 上几乎全被电子占据,又∵在室温下,故此n 型Si 应为高掺杂,而且已经简并了; ∵eV E E E D C D 039.0=-=∆ 即200<-<Tk E E FC ;故此n 型Si 应为弱简并情况; ∴)exp(21)exp(21000T k E N T k E E N n n DDD F D D ∆+=-+==+∴)(106.6)026.00195.0()]026.00195.0exp(21[108.22)026.00195.0()]026.0039.0exp()026.00195.0exp(21[2)()]exp()exp(21[2)()]exp(21[2319211921021000210-⨯≈-⨯+⨯⨯=-⨯-+=-⨯∆-+=-⨯-+=cm F F NcT k E E F T k ET k E E NcT k E E F T k E E NcN C F D c F C F DF D ππππ其中4.0)75.0(21=-F毕3-20.P 82制造晶体管一般是在高杂质浓度的n 型衬底上外延一层n 型的外延层,再在外延层中扩散硼、磷而成;①设n 型硅单晶衬底是掺锑的,锑的电离能为,300k 时的E F 位于导带底下面处,计算锑的浓度和导带中电子浓度;解 ①根据第19题讨论,此时Ti 为高掺杂,未完全电离:T k E E F C 02052.0026.00=<=-<,即此时为弱简并∵)exp(2100Tk E E N n n DF DD -+=≈+其中3.0)1(21=-F毕4-1.P 113300K 时,Ge 的本征电阻率为47Ω·cm,如电子和空穴迁移率分别为3900cm 2/V ·S 和1900cm 2/V ·S,试求本征Ge 的载流子浓度;解T=300K,ρ=47Ω·cm,μn =3900cm 2/V ·S,μp =1900 cm 2/V ·S313191029.2)19003900(10602.1471)(1)(1--⨯=+⨯⨯=+=⇒+=cm q n q n p n i p n i μμρμμρ毕4-2.P 113试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V ·S 和500cm 2/V ·S;当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率;比本征Si 的电导率增大了多少倍解T=300K,,μn =1350cm 2/V ·S,μp =500 cm 2/V ·S 掺入As 浓度为N D =×1022×10-6=×1016cm -3杂质全部电离,2i D n N >>,查P 89页,图4-14可查此时μn =900cm 2/V ·S毕4-13.P 114掺有×1016 cm -3硼原子和9×1015 cm -3磷原子的Si 样品,试计算室温时多数载流子和少数载流子浓度及样品的电阻率; 解N A =×1016 cm -3,N D =9×1015 cm -3 可查图4-15得到7=ρΩ·cm根据316cm 102-⨯=+D A N N ,查图4-14得ρ,然后计算可得;毕4-15.P 114施主浓度分别为1013和1017cm -3的两个Si 样品,设杂质全部电离,分别计算:①室温时的电导率;解n 1=1013 cm -3,T =300K,n 2=1017cm -3时,查图可得cm n ⋅Ω=800μ 毕5-5.P 144n 型硅中,掺杂浓度N D =1016cm -3,光注入的非平衡载流子浓度Δn =Δp =1014cm -3;计算无光照和有光照时的电导率; 解n-Si,N D =1016cm -3,Δn =Δp =1014cm -3,查表4-14得到:400,1200=≈p n μμ: 无光照:)/(92.1120010602.1101916cm S q N nq n D n ≈⨯⨯⨯===-μμσΔn =Δp<<N D ,为小注入: 有光照: 毕5-7.P 144掺施主杂质的N D =1015cm -3n 型硅,由于光的照射产生了非平衡载流子Δn =Δp =1014cm -3;试计算这种情况下准费米能级的位置,并和原来的费米能级做比较; 解n-Si,N D =1015cm -3,Δn =Δp =1014cm -3, 光照后的半导体处于非平衡状态: 室温下,Eg Si =; 比较:由于光照的影响,非平衡多子的准费米能级nF E 与原来的费米能级F E 相比较偏离不多,而非平衡勺子的费米能级p F E 与原来的费米能级F E 相比较偏离很大;毕5-16.P 145一块电阻率为3Ω·cm 的n 型硅样品,空穴寿命s p μτ5=,再其平面形的表面处有稳定的空穴注入,过剩空穴浓度313010)(-=∆cm p ,计算从这个表面扩散进入半导体内部的空穴电流密度,以及在离表面多远处过剩空穴浓度等于1012cm -3 解 cm ⋅Ω=3ρ;s p μτ5=,313010)(-=∆cm p : 由cm ⋅Ω=3ρ查图4-15可得:3151075.1-⨯≈cm N D , 又查图4-14可得:S V cm p ⋅≈/5002μ 由爱因斯坦关系式可得:S cm S cm q T k D p p /5.12/500401220=⋅==μ 所求)exp()()()(0pp p p p D xp D D q x p Lp Dp q Jp ττ-∆=∆=扩 而cm D Lp p p 36109057.7cm 1055.12-⨯≈⨯⨯==-τ 毕。

半导体物理课后习题答案(1-12章)

半导体物理课后习题答案(1-12章)
h2 k12 h 2 k12 h2 并且 Emin=EV(k)|k=kmax= ;∴Eg=Emin-Emax= = 48m0 a 2 12m0 6 m0

(6.62 × 10 − 27 ) 2 =0.64eV 48 × 9.1 × 10 − 28 × (3.14 × 10 − 8 ) 2 × 1.6 × 10 − 11
② 77k 时,由(3-46)式得到: Ec - ED = 0.01eV ; T = 77k ; k0 = 1.38×10-23J/K; n0 = 1017 cm − 3 ; Nc = 1.365×1019cm-3; Po 可忽略不计,由于 n 0 = n D ,即
° m0 q 4 ε 0 h2 = 13.6 e V a = = 0.53A , 0 8ε r2 h2 m0 e2π
∗ 当 ε r = 11.1 , m p = 0.86m0 时
m∗p E0 13.6 ∆ EA = � 2 � 0.86 m0 ε r 11.12 r1, p = ε r (
9.49 10− 2 eV
( 2mdn ) 4π V
h3
32
(E−
Ec ) 2
1

E1
E2
dZ = 4π
32
( 2mdn )
h3
32
骣 h2 Ec + 100 琪 ∗ 2 琪8 m L 桫 n Ec 3 2
(E−
Ec ) 2 dE
1
( 2mdn )
h3
2 骣 h2 创 琪100 ∗ 2 3 桫 8mn L
故: Z=1000π 3L3 7. ① 在室温下,锗的有效状态密度 Nc=1.05×1019cm-3,Nv=5.7×1018cm-3, 试求锗的载流子有效质量 mn*和 mp*。计算 77k 时的 Nc 和 Nv。已知 300k 时,Eg=

半导体物理课后习题解答(刘恩科第四版)

半导体物理课后习题解答(刘恩科第四版)
半导体物理习题解答
1-1. (P32)设晶格常数为 a 的一维晶格,导带极小值附近能量 Ec(k)和价带极大值附近能量 E v(k)分 别为: Ec(k)=
h 2 k 2 h 2 (k k1) 2 h2k 2 3h 2 k 2 + 和 Ev(k)= - ; 3m0 m0 6m0 m0
m0 为电子惯性质量,k1= 1/2a; a=0.314nm。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解 ] ①禁带宽度 Eg 根据
h2 (
的 Nc 和 Nv:
2(2 m k T ' ) 3 3 3 N T' 2 ' T' 2 77 2 h ( ) ; Nc ( ) Nc ( ) 1.05 1019 1.365 1019 3 Nc T T 300 * 2(2 mn k 0T ) 2 h3
2)T=300k 时:
T 2 4.774 10 4 500 2 Eg (500) Eg (0) 0.7437 0.58132eV ; T 500 235
查图 3-7(P 61)可得: ni 2.2 10 ,属于过渡区,
16
1
( N D N A ) [( N D N A ) 2 4ni2 ] 2 n0 2.464 1016 ; 2
∴ exp(
即: E F E D k 0T ln 2
n0 Nc exp(
取对数后得:
Ec E F N ) D k 0T 2

整理得下式:
EC E D k 0T ln 2 N ln D k 0T 2 Nc
E D N ln D k 0T Nc
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 33.1Ifoa were to increase, the bandgap energywould decrease and the material would begin to behave less like a semiconductor and morelike a metal. Ifoa were to decrease, thebandgap energy would increase and the material would begin to behave morelike aninsulator.________________________ _______________3.2Schrodinger's wave equation is:()()()txxVxtxm,,2222ψ⋅+∂ψ∂-()ttxj∂ψ∂=,Assume the solution is of the form:AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF ()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Region I: ()0=x V . Substituting the assumed solution into the wave equation,weobtain:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m exp 22 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j exp which becomes()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu exp This equation may be written as()()()()0222222=+∂∂+∂∂+-x u mEx x u x x u jk x u kSetting ()()x u x u 1= forregion I, the equationbecomes:()()()()021221212=--+x u k dxx du jkdx x u d α where 222 mE=αQ.E.D.In Region II, ()OV x V =.Assume the sameAHA12GAGGAGAGGAFFFFAFAF form of the solution:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Substituting into Schrodinger's wave equation, we find:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu exp This equation can be written as:()()()2222x x u x x u jk x u k ∂∂+∂∂+- ()()02222=+-x u mEx u mV OSetting ()()x u x u 2= forregion II, thisequation becomes()()dxx du jkdx x u d 22222+()022222=⎪⎪⎭⎫⎝⎛+--x u mV k O α where againAHA12GAGGAGAGGAFFFFAFAF 222 mE=α Q.E.D._______________________________________3.3We have()()()()021221212=--+x u k dxx du jkdx x u d α Assume the solution is of the form:()()[]x k j A x u -=αexp 1()[]x k j B +-+αexpThe first derivative is()()()[]x k j A k j dx x du --=ααexp 1()()[]x k j B k j +-+-ααexpand the second derivative becomes()()[]()[]x k j A k j dxx u d --=ααexp 2212()[]()[]x k j B k j +-++ααexp 2Substituting these equations into the differentialequation, we find()()[]x k j A k ---ααexp 2()()[]x k j B k +-+-ααexp 2(){()[]x k j A k j jk --+ααexp 2()()[]}x k j B k j +-+-ααexp ()()[]{x k j A k ---ααexp 22 ()[]}0exp =+-+x k j B αCombining terms, we obtain()()()[]222222αααα----+--k k k k k ()[]x k j A -⨯αexp()()()[]222222αααα--++++-+k k k k kAHA12GAGGAGAGGAFFFFAFAF ()[]0exp =+-⨯x k j B αWe find that00=Q.E.D.For thedifferential equation in()x u 2 and theproposed solution, the procedure is exactly the same as above. _______________________________________3.4We have thesolutions()()[]x k j A x u -=αexp 1()[]x k j B +-+αexpfor a x <<0 and()()[]x k j C x u -=βexp 2()[]x k j D +-+βexpfor 0<<-x b .The first boundary condition is()()0021u u =which yields0=--+D C B AThe second boundary condition is201===x x dxdu dxduwhich yieldsAHA12GAGGAGAGGAFFFFAFAF ()()()C k B k A k --+--βαα()0=++D k βThe third boundary condition is()()b u a u -=21which yields()[]()[]a k j B a k j A +-+-ααexp exp ()()[]b k j C --=βexp()()[]b k j D -+-+βexpand can be written as()[]()[]a k j B a k j A +-+-ααexp exp ()[]b k j C ---βexp()[]0exp =+-b k j D βThe fourth boundary condition isbx ax dxdu dxdu -===21which yields()()[]a k j A k j --ααexp()()[]a k j B k j +-+-ααexp()()()[]b k j C k j ---=ββexp()()()[]b k j D k j -+-+-ββexpand can be written as()()[]a k j A k --ααexp()()[]a k j B k +-+-ααexp ()()[]b k j C k ----ββexp()()[]0exp =+++b k j D k ββ_______________________________________3.5(b) (i) First point:πα=aSecondpoint: By trial and error,πα729.1=a(ii) Firstpoint: πα2=aSecond point: By trial and error,πα617.2=a________________________ _______________3.6(b) (i) First point:πα=aSecond point: By trial and error,πα515.1=a(ii) Firstpoint: πα2=aSecond point: By trial and error,πα375.2=aAHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF _______________________________________3.7ka a aaP cos cos sin =+'ααα Let y ka =, x a =α Theny x xxP cos cos sin =+'Consider dydof thisfunction.()[]{}y x x x P dyd sin cos sin 1-=+⋅'- We find()()()⎭⎬⎫⎩⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 112y dydxx sin sin -=- Theny x x x x x P dy dx sin sin cos sin 12-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡+-'For πn ka y ==,...,2,1,0=n 0sin =⇒ySo that, in general,()()dkd ka d a d dy dxαα===0 And22mE=α SodkdEm mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=-22/122221 α This implies thatdkdE dkd ==0α for an k π=_______________________________________AHA12GAGGAGAGGAFFFFAFAF 3.8(a) πα=a 1π=⋅a E m o 212 ()()()()2103123422221102.41011.9210054.12---⨯⨯⨯==ππa m E o19104114.3-⨯=JFrom Problem 3.5πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J12E E E -=∆1918104114.3100198.1--⨯-⨯=19107868.6-⨯=Jor 24.4106.1107868.61919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πEAHA12GAGGAGAGGAFFFFAFAF 18103646.1-⨯=JFrom Problem 3.5,πα617.24=aπ617.2224=⋅a E m o()()()()2103123424102.41011.9210054.1617.2---⨯⨯⨯=πE18103364.2-⨯=J34E E E -=∆1818103646.1103364.2--⨯-⨯=1910718.9-⨯=Jor 07.6106.110718.91919=⨯⨯=∆--E eV_______________________________________3.9(a)At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , Bytrial and error,πα859.0=a o()()()()210312342102.41011.9210054.1859.0---⨯⨯⨯=πo E19105172.2-⨯=Jo E E E -=∆11919105172.2104114.3--⨯-⨯=2010942.8-⨯=Jor559.0106.110942.81920=⨯⨯=∆--E eV(b)At π2=ka , πα23=aπ2223=⋅a E m oAHA12GAGGAGAGGAFFFFAFAF ()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka . From Problem 3.5,πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J23E E E -=∆1818100198.1103646.1--⨯-⨯=19104474.3-⨯=Jor 15.2106.1104474.31919=⨯⨯=∆--E eV _______________________________________3.10(a) πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JFrom Problem 3.6,πα515.12=aπ515.1222=⋅a E m o()()()()2103123422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J12E E E -=∆1919104114.310830.7--⨯-⨯=19104186.4-⨯=Jor 76.2106.1104186.41919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m oAHA12GAGGAGAGGAFFFFAFAF ()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JFrom Problem 3.6,πα375.24=aπ375.2224=⋅a E m o()()()()2103123424102.41011.9210054.1375.2---⨯⨯⨯=πE18109242.1-⨯=J34E E E -=∆1818103646.1109242.1--⨯-⨯=1910597.5-⨯=Jor50.3106.110597.51919=⨯⨯=∆--E eV _____________________________________3.11(a)At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error,πα727.0=a oπ727.022=⋅a E m o o()()()()210312342102.41011.9210054.1727.0---⨯⨯⨯=πo E19108030.1-⨯=Jo E E E -=∆11919108030.1104114.3--⨯-⨯=AHA12GAGGAGAGGAFFFFAFAF19106084.1-⨯=Jor005.1106.1106084.11919=⨯⨯=∆--E eV(b)At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka , FromProblem 3.6,πα515.12=aπ515.1222=⋅a E m o()()()()2103423422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J23E E E -=∆191810830.7103646.1--⨯-⨯=1910816.5-⨯=Jor635.3106.110816.51919=⨯⨯=∆--E eV_______________________________________3.12For 100=T K,()()⇒+⨯-=-1006361001073.4170.124gE164.1=g E eV200=T K,147.1=g E eV300=T K, 125.1=gE eV400=T K, 097.1=gE eV500=T K, 066.1=gE eV600=T K, 032.1=gE eV________________________ _______________3.13The effective mass is given by1222*1-⎪⎪⎭⎫⎝⎛⋅=dkEdmWe have()()BcurvedkEdAcurvedkEd2222>AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF so that()()B curve m A curve m **<_______________________________________3.14The effective massfor a hole is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m p We have that()()B curve dkEd A curve dk E d 2222> so that()()B curve m A curve m p p **<_______________________________________3.15Points A,B:⇒<0dkdEvelocity in -x directionPoints C,D:⇒>0dkdEvelocity in +x directionPoints A,D: ⇒<022dkEdnegative effective massPoints B,C:⇒>022dk EdAHA12GAGGAGAGGAFFFFAFAF positive effective mass _______________________________________3.16For A: 2kC E i=At 101008.0+⨯=k m 1-,05.0=E eVOr()()2119108106.105.0--⨯=⨯=E JSo ()2101211008.0108⨯=⨯-C3811025.1-⨯=⇒CNow ()()38234121025.1210054.12--*⨯⨯==C m311044.4-⨯=kgoro m m ⋅⨯⨯=--*31311011.9104437.4o m m 488.0=*For B: 2kC E i=At 101008.0+⨯=k m 1-,5.0=E eVOr()()2019108106.15.0--⨯=⨯=E JSo ()2101201008.0108⨯=⨯-C3711025.1-⨯=⇒CAHA12GAGGAGAGGAFFFFAFAF Now()()37234121025.1210054.12--*⨯⨯==C m321044.4-⨯=kgoro m m ⋅⨯⨯=--*31321011.9104437.4o m m 0488.0=*_______________________________________3.17For A: 22k C EE -=-υ()()()2102191008.0106.1025.0⨯-=⨯--C3921025.6-⨯=⇒C ()()39234221025.6210054.12--*⨯⨯-=-=C m31108873.8-⨯-=kgor o m m ⋅⨯⨯-=--*31311011.9108873.8o m m 976.0--=*For B: 22k C EE -=-υ()()()2102191008.0106.13.0⨯-=⨯--C382105.7-⨯=⇒C()()3823422105.7210054.12--*⨯⨯-=-=C m3210406.7-⨯-=kgor o m m ⋅⨯⨯-=--*31321011.910406.7o m m 0813.0-=*_______________________________________3.18AHA12GAGGAGAGGAFFFFAFAF (a)(i) νh E =or ()()341910625.6106.142.1--⨯⨯==h E ν 1410429.3⨯=Hz(ii)141010429.3103⨯⨯===νλc E hc51075.8-⨯=cm 875=nmAHA12GAGGAGAGGAFFFFAFAF (b) (i) ()()341910625.6106.112.1--⨯⨯==h E ν1410705.2⨯=Hz(ii) 141010705.2103⨯⨯==νλc410109.1-⨯=cm 1109=nm_______________________________________3.19(c)Curve A: Effective mass is a constant Curve B: Effective mass is positivearound 0=k , and is negativearound 2π±=k ._______________________________________3.20()[]O O k k E E E --=αcos 1Then()()()[]O k k E dkdE---=ααsin 1 ()[]O k k E -+=ααsin 1and()[]O k k E dk E d -=ααcos 2122AHA12GAGGAGAGGAFFFFAFAFThen221222*11 αE dk Ed m ok k =⋅==or212*αE m=_______________________________________3.21(a) ()[]3/123/24l t dnm m m =*()()[]3/123/264.1082.04oo m m =o dnm m 56.0=*(b)o o l t cnm m m m m 64.11082.02123+=+=*oo m m 6098.039.24+=o cnm m 12.0=*_______________________________________3.22(a) ()()[]3/22/32/3lh hh dp m m m +=*()()[]3/22/32/3082.045.0o om m +=[]o m ⋅+=3/202348.030187.0o dpm m 473.0=*(b) ()()()()2/12/12/32/3lh hh lh hh cpm m m m m ++=* ()()()()om ⋅++=2/12/12/32/3082.045.0082.045.0 o cpm m 34.0=*_______________________________________3.23For the 3-dimensional infinitepotential well,()0=x V when a x <<0,a y <<0, andAHA12GAGGAGAGGAFFFFAFAF a z <<0. In this region, the waveequation is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ()0,,22=+z y x mEψUse separation of variables technique, so let()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we have222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂ 022=⋅+XYZ mEDividing by XYZ , we obtain021*********=+∂∂⋅+∂∂⋅+∂∂⋅mEz Z Z y Y Y x X XLetAHA12GAGGAGAGGAFFFFAFAF 01222222=+∂∂⇒-=∂∂⋅X k xX k x X X x x The solution is of the form:()x k B x k A x X x x cos sin +=Since ()0,,=z y x ψ at0=x , then ()00=Xso that 0=B . Also, ()0,,=z y x ψ atax =, so that()0=a X . Thenπx x n a k = where...,3,2,1=x nSimilarly, we have2221yk y YY-=∂∂⋅ and 2221z k zZZ -=∂∂⋅ From the boundary conditions, we findπy yn a k= andπz z n a k =where ...,3,2,1=ynand...,3,2,1=z nFrom the waveequation, we can write022222=+--- mEk k k z y x The energy can be written as()222222⎪⎭⎫ ⎝⎛++==a n n n m E E z y x n n n zy x π _______________________________________AHA12GAGGAGAGGAFFFFAFAF3.24The total number ofquantum states in the3-dimensionalpotential well is given(in k-space) by()332a dk k dk k g T ⋅=ππwhere222 mEk =We can then writemEk 2=Taking the differential, we obtaindE Em dE E m dk ⋅⋅=⋅⋅⋅⋅=2112121 Substituting these expressions into thedensityof states function,we have()dE EmmE a dE E g T ⋅⋅⋅⎪⎭⎫ ⎝⎛=212233 ππ Noting thatπ2h =this density of states function can besimplified and written as()()dE E m ha dE E g T ⋅⋅=2/33324πAHA12GAGGAGAGGAFFFFAFAF Dividing by 3a willyield the density of states so that()()E h m E g ⋅=32/324π_______________________________________3.25For a one-dimensional infinite potential well,222222ka n Em n ==*π Distance between quantum states()()aa n a n k k n n πππ=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=-+11Now()⎪⎭⎫ ⎝⎛⋅=a dkdk k g T π2 NowE m k n *⋅=21dE Em dk n⋅⋅⋅=*2211Then()dE Em a dE E g n T ⋅⋅⋅=*2212 πDivide by the "volume" a , so()Em E g n *⋅=21πSoAHA12GAGGAGAGGAFFFFAFAF ()()()()()EE g 31341011.9067.0210054.11--⨯⋅⨯=π ()EE g 1810055.1⨯=m 3-J1-_______________________________________3.26(a) Silicon, o nm m08.1=*()()c nc E E h m E g -=*32/324π()dE E E h m g kTE E c nc c c⋅-=⎰+*232/324π()()kT E E c nc cE E hm 22/332/33224+*-⋅⋅=π()()2/332/323224kT hm n⋅⋅=*π ()()[]()()2/33342/33123210625.61011.908.124kT ⋅⋅⨯⨯=--π ()()2/355210953.7kT ⨯=(i) At 300=T K, 0259.0=kT eV()()19106.10259.0-⨯=2110144.4-⨯=JThen()()[]2/3215510144.4210953.7-⨯⨯=c g25100.6⨯=m 3-or 19100.6⨯=cgcm3-(ii) At 400=T K,()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()19106.1034533.0-⨯=21105253.5-⨯=JAHA12GAGGAGAGGAFFFFAFAF Then()()[]2/32155105253.5210953.7-⨯⨯=c g2510239.9⨯=m 3-or 191024.9⨯=cgcm3-(b) GaAs, o nm m067.0=*()()[]()()2/33342/33123210625.61011.9067.024kT g c ⋅⋅⨯⨯=--π ()()2/3542102288.1kT ⨯=(i) At 300=T K,2110144.4-⨯=kT J()()[]2/3215410144.42102288.1-⨯⨯=c g2310272.9⨯=m3-or 171027.9⨯=cgcm3-(ii) At 400=T K,21105253.5-⨯=kT J()()[]2/32154105253.52102288.1-⨯⨯=c g2410427.1⨯=m 3-181043.1⨯=cgcm3-_______________________________________3.27(a)Silicon, o pm m56.0=*()()E E h m E g p-=*υυπ32/324()dE E E hm g E kTE p⋅-=⎰-*υυυυπ332/324()()υυυπE kTE pE E h m 32/332/33224-*-⎪⎭⎫ ⎝⎛-=()()[]2/332/333224kT h m p-⎪⎭⎫ ⎝⎛-=*π ()()[]()()2/33342/33133210625.61011.956.024kT ⎪⎭⎫ ⎝⎛⨯⨯=--π ()()2/355310969.2kT ⨯= (i)At 300=T K,2110144.4-⨯=kT J()()[]2/3215510144.4310969.2-⨯⨯=υgAHA12GAGGAGAGGAFFFFAFAF 2510116.4⨯=m3-or 191012.4⨯=υgcm3-(ii)At 400=T K,21105253.5-⨯=kT J()()[]2/32155105253.5310969.2-⨯⨯=υg 2510337.6⨯=m3-or 191034.6⨯=υgcm3-(b)GaAs, o pm m48.0=*()()[]()()2/33342/33133210625.61011.948.024kT g ⎪⎭⎫ ⎝⎛⨯⨯=--πυ ()()2/3553103564.2kT ⨯=AHA12GAGGAGAGGAFFFFAFAF (i)At 300=T K,2110144.4-⨯=kT J()()[]2/3215510144.43103564.2-⨯⨯=υg2510266.3⨯=m 3-or 191027.3⨯=υgcm3-(ii)At 400=T K,21105253.5-⨯=kT J()()[]2/32155105253.53103564.2-⨯⨯=υg2510029.5⨯=m 3-or 191003.5⨯=υgcm3-_______________________________________3.28(a) ()()c nc E E h m E g -=*32/324π()()[]()c E E -⨯⨯=--3342/33110625.61011.908.124πc E E -⨯=56101929.1For cE E =;0=c g1.0+=cEE eV;4610509.1⨯=c g m 3-J1-2.0+=cEE eV;4610134.2⨯=m 3-J 1-3.0+=cEE eV;4610614.2⨯=m 3-J 1-4.0+=cEE eV;4610018.3⨯=m 3-J 1-AHA12GAGGAGAGGAFFFFAFAF (b) ()E E h m g p-=*υυπ32/324()()[]()E E -⨯⨯=--υπ3342/33110625.61011.956.024E E -⨯=υ55104541.4For υE E =;0=υg1.0-=υEE eV;4510634.5⨯=υg m 3-J1-2.0-=υEE eV;4510968.7⨯=m 3-J 1-3.0-=υEE eV;4510758.9⨯=m 3-J 1-4.0-=υEE eV;4610127.1⨯=m 3-J 1-_______________________________________3.29(a) ()()68.256.008.12/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ(b) ()()0521.048.0067.02/32/32/3=⎪⎭⎫ ⎝⎛==**pncmm g g υ_______________________________________3.30Plot_______________________________________3.31(a) ()()()!710!7!10!!!-=-=i i i i i N g N g W()()()()()()()()()()()()1201238910!3!7!78910===(b) (i) ()()()()()()()()12!10!101112!1012!10!12=-=i W 66=AHA12GAGGAGAGGAFFFFAFAF (ii)()()()()()()()()()()()()1234!8!89101112!812!8!12=-=i W 495=_______________________________________3.32()⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fexp 11(a) kTE EF =-, ()()⇒+=1exp 11E f()269.0=E f (b) kTE EF 5=-, ()()⇒+=5exp 11E f()31069.6-⨯=E f (c) kTE EF 10=-,()()⇒+=10exp 11E f()51054.4-⨯=E f_______________________________________3.33()⎪⎪⎭⎫ ⎝⎛-+-=-kTE E E f Fexp 1111or()⎪⎪⎭⎫ ⎝⎛-+=-kT E E E f F exp 111(a) kTE EF =-, ()269.01=-E f (b) kTE EF 5=-, ()31069.61-⨯=-E f(c) kTE EF 10=-, ()51054.41-⨯=-E fAHA12GAGGAGAGGAFFFFAFAF _______________________________________3.34(a) ()⎥⎦⎤⎢⎣⎡--≅kT E E f F F exp c E E =; 61032.90259.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f 2kTE c +; ()⎥⎦⎤⎢⎣⎡+-=0259.020259.030.0exp Ff61066.5-⨯=kT E c +;()⎥⎦⎤⎢⎣⎡+-=0259.00259.030.0exp F f 61043.3-⨯=23kT E c +;()()⎥⎦⎤⎢⎣⎡+-=0259.020259.0330.0exp F f 61008.2-⨯=kT E c 2+;()()⎥⎦⎤⎢⎣⎡+-=0259.00259.0230.0exp F f 61026.1-⨯=(b) ⎥⎦⎤⎢⎣⎡-+-=-kT E E f F F exp 1111()⎥⎦⎤⎢⎣⎡--≅kT E E F exp υE E =;⎥⎦⎤⎢⎣⎡-=-0259.025.0exp 1F f 51043.6-⨯= 2kT E -υ;()⎥⎦⎤⎢⎣⎡+-=-0259.020259.025.0exp 1F f 51090.3-⨯=kT E -υ;()⎥⎦⎤⎢⎣⎡+-=-0259.00259.025.0exp 1F f 51036.2-⨯=23kT E -υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.020259.0325.0exp 1F f 51043.1-⨯=kT E 2-υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.00259.0225.0exp 1F f 61070.8-⨯=AHA12GAGGAGAGGAFFFFAFAF _______________________________________3.35()()⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡--=kT E kT E kT E E f F c F F exp exp and()⎥⎦⎤⎢⎣⎡--=-kT E E f F F exp 1 ()()⎥⎦⎤⎢⎣⎡---=kT kT E E F υexp So()⎥⎦⎤⎢⎣⎡-+-kT E kT E F c exp ()⎥⎦⎤⎢⎣⎡+--=kT kT E E F υexp Then kT E E E kT E F F c+-=-+υOr midgap c FE E E E=+=2υ_______________________________________3.3622222man E n π = For 6=n , Filledstate()()()()()2103122234610121011.92610054.1---⨯⨯⨯=πE18105044.1-⨯=Jor40.9106.1105044.119186=⨯⨯=--E eV For 7=n , Empty state()()()()()2103122234710121011.92710054.1---⨯⨯⨯=πE1810048.2-⨯=JAHA12GAGGAGAGGAFFFFAFAF or8.12106.110048.219187=⨯⨯=--E eV Therefore8.1240.9<<F E eV_______________________________________3.37(a)For a 3-D infinite potential wellAHA12GAGGAGAGGAFFFFAFAF ()222222⎪⎭⎫ ⎝⎛++=a n n n mE z y x π For 5 electrons,the 5thelectronoccupies the quantumstate 1,2,2===z y xn n n; so()2222252⎪⎭⎫⎝⎛++=a n n n m E z y x π()()()()()21031222223410121011.9212210054.1---⨯⨯++⨯=π1910761.3-⨯=Jor 35.2106.110761.319195=⨯⨯=--EeV For the next quantum state, which is empty, the quantum state is2,2,1===z y x n n n . Thisquantum state is at thesame energy, so35.2=FEeV(b)For 13 electrons, the 13thelectron occupiesthe quantum state 3,2,3===z y xn n n; so()()()()()2103122222341310121011.9232310054.1---⨯⨯++⨯=πE1910194.9-⨯=Jor 746.5106.110194.9191913=⨯⨯=--E eV The 14thelectron would occupy the quantumAHA12GAGGAGAGGAFFFFAFAF state 3,3,2===z y xn n n.This state is at the same energy, so 746.5=FEeV_______________________________________3.38The probability of a state at E E EF ∆+=1being occupied is()⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛-+=kT E kTE E E f Fexp 11exp 11111 The probability of a state at E E EF ∆-=2being empty is()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F 222exp 1111⎪⎭⎫ ⎝⎛∆-+⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-+-=kT E kT E kT E exp 1exp exp 111or()⎪⎭⎫⎝⎛∆+=-kT E E f exp 11122 so ()()22111E f E f -= Q.E.D._______________________________________3.39(a)At energy 1E , we wantAHA12GAGGAGAGGAFFFFAFAF01.0exp 11exp 11exp 1111=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-kT E E kT E E kT E E F F FThis expression can be written as01.01exp exp 111=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+kT E E kT E E F For()⎪⎪⎭⎫ ⎝⎛-=kTE E F1exp 01.01 Then()100ln 1kT E E F +=orkT E E F 6.41+=(b)At kTEE F6.4+=,()()6.4exp 11exp 1111+=⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fwhich yields()01.000990.01≅=E f_______________________________________3.40 (a)AHA12GAGGAGAGGAFFFFAFAF ()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=0259.050.580.5exp exp kT E E f F F 61032.9-⨯=(b) ()060433.03007000259.0=⎪⎭⎫ ⎝⎛=kT eV31098.6060433.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f (c) ()⎥⎦⎤⎢⎣⎡--≅-kT E E f F F exp 1 ⎥⎦⎤⎢⎣⎡-=kT 25.0exp 02.0or5002.0125.0exp ==⎥⎦⎤⎢⎣⎡+kT()50ln 25.0=kTor()()⎪⎭⎫⎝⎛===3000259.0063906.050ln 25.0T kT which yields 740=T K _______________________________________3.41(a)()00304.00259.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 0.304%(b)At 1000=T K, 08633.0=kT eVThen()1496.008633.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 14.96%(c) ()997.00259.00.785.6exp 11=⎪⎭⎫ ⎝⎛-+=E for 99.7% (d)At FE E =, ()21=E f for all temperaturesAHA12GAGGAGAGGAFFFFAFAF _______________________________________3.42(a)For 1E E =()()⎥⎦⎤⎢⎣⎡--≅⎪⎪⎭⎫ ⎝⎛-+=kT E E kTE E E fF F11exp exp 11Then()611032.90259.030.0exp -⨯=⎪⎭⎫ ⎝⎛-=E fFor 2E E =,82.030.012.12=-=-E E F eVThen()⎪⎭⎫ ⎝⎛-+-=-0259.082.0exp 1111E for()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---≅-0259.082.0exp 111E f141078.10259.082.0exp -⨯=⎪⎭⎫ ⎝⎛-=(b)For 4.02=-E EFeV,72.01=-F E E eVAt 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.072.0exp exp 1kT E E E f F or()131045.8-⨯=E fAt 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor()71096.11-⨯=-E fAHA12GAGGAGAGGAFFFFAFAF_______________________________________3.43(a)At 1E E =()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.030.0exp exp 1kT E E E f FAHA12GAGGAGAGGAFFFFAFAF or()61032.9-⨯=E fAt 2E E =,12.13.042.12=-=-E E F eVSo()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.012.1expor()191066.11-⨯=-E f (b)For 4.02=-E EF,02.11=-F E E eVAt 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.002.1exp exp 1kT E E E f F or()181088.7-⨯=E fAt 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor ()71096.11-⨯=-E f_______________________________________3.44()1exp 1-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fso()()2exp 11-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=kT E E dE E df F⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛⨯kTE E kTF exp 1 or()2exp 1exp 1⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=kTE E kT E E kT dE E df FF(a)At 0=T K, For。

相关文档
最新文档