高一数学必修1 函数的基本性质练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修1 函数的基本性质练习题

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.下面说法正确的选项 ( )

A .函数的单调区间可以是函数的定义域

B .函数的多个单调增区间的并集也是其单调增区间

C .具有奇偶性的函数的定义域定关于原点对称

D .关于原点对称的图象一定是奇函数的图象

2.在区间)0,(-∞上为增函数的是

( ) A .1=y B .21+-=x

x y C .122---=x x y

D .21x y += 3.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 ( )

A .2-≥b

B .2-≤b

C .2->b

D . 2-

4.如果偶函数在],[b a 具有最大值,那么该函数在],[a b --有 ( )

A .最大值

B .最小值

C .没有最大值

D . 没有最小值

5.函数px x x y +=||,R x ∈是

( ) A .偶函数 B .奇函数 C .不具有奇偶函数

D .与p 有关 6.函数)(x f 在),(b a 和),(d c 都是增函数,若),(),,(21d c x b a x ∈∈,且21x x <那么( )

A .)()(21x f x f <

B .)()(21x f x f >

C .)()(21x f x f =

D .无法确定

7.函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是

( ) A .]8,3[ B . ]2,7[-- C .]5,0[ D .]3,2[-

8.函数b x k y ++=)12(在实数集上是增函数,则

( ) A .21-

>k B .21-b D .0>b

9.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则( )

A .)2()2()3(f f f <<

B .)2()3()2(f f f <<

C .)2()2()3(f f f <<

D .)3()2()2(f f f <<

10.已知)(x f 在实数集上是减函数,若0≤+b a ,则下列正确的是 ( )

A .)]()([)()(b f a f b f a f +-≤+

B . )()()()(b f a f b f a f -+-≤+

C .)]()([)()(b f a f b f a f +-≥+

D .)()()()(b f a f b f a f -+-≥+

二、填空题:请把答案填在题中横线上(每小题6分,共24分).

11.函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0

12.函数||2x x y +-=,单调递减区间为 ,最大值和最小值的情况为 .

13.定义在R 上的函数)(x s (已知)可用)(),(x g x f 的=和来表示,且)(x f 为奇函数,)(x g 为偶函数,则)(x f = .

14.构造一个满足下面三个条件的函数实例,

①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为; .

三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).

15.(12分)已知]3,1[,)2()(2-∈-=x x x f ,求函数)1(+x f 得单调递减区间.

16.(12分)判断下列函数的奇偶性

①x

x y 13+=; ②x x y 2112-+-=; ③x x y +=4; ④⎪⎩

⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y 。

17.(12分)已知8)(32005--+=x b ax x

x f ,10)2(=-f ,求)2(f .

18.(12分))函数)(),(x g x f 在区间],[b a 上都有意义,且在此区间上 ①)(x f 为增函数,0)(>x f ;

②)(x g 为减函数,0)(

判断)()(x g x f 在],[b a 的单调性,并给出证明.

相关文档
最新文档