主成分分析法概念及例题
主成分分析法精华讲义及实例
主成分分析类型:一种处理高维数据的方法。
降维思想:在实际问题的研究中,往往会涉及众多有关的变量。
但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。
一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。
因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。
一、总体主成分1.1 定义设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。
记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为()[(())(())],T ij p p E X E X X E X σ⨯∑==--它是一个 p 阶非负定矩阵。
设1111112212221122221122Tp p Tp pT pp p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X⎧==+++⎪==+++⎪⎨⎪⎪==+++⎩ (1) 则有()(),1,2,...,,(,)(,),1,2,...,.T T i i i i TT T i j ijij Var Y Var l X l l i p Cov Y Y Cov l X l X l l j p ==∑===∑= (2)第 i 个主成分: 一般地,在约束条件1T i i l l =及(,)0,1,2,..., 1.T i k i k Cov Y Y l l k i =∑==-下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的T i i Y l X =称为 X 1,X 2,…,X p 的第 i 个主成分。
1.2 总体主成分的计算设 ∑是12(,,...,)T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特征向量分别为120p λλλ≥≥≥≥及12,,...,,p e e e则 X 的第 i 个主成分为1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3)此时(),1,2,...,,(,)0,.Ti i i i Ti k i k Var Y e e i p Cov Y Y e e i k λ⎧=∑==⎪⎨=∑=≠⎪⎩ 1.3 总体主成分的性质1.3.1 主成分的协方差矩阵及总方差记 12(,,...,)T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ=由此得主成分的总方差为111()()()()(),p ppTTiii i i i Var Y tr P P tr PP tr Var X λ=====∑=∑=∑=∑∑∑即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差1()pii Var X =∑分解成 p 个互不相关变量 Y 1,Y 2,…,Y p 的方差之和,即1()pii Var Y =∑而 ()k k Var Y λ=。
主成分分析
一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有 n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,x11x12 x1px21 x22 x2p Xxn 1xn2xnp记原变量指标为x1,x2,,,xp ,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,,,zm(m ≤p),则z 1l11x 1 l 12x 2l1p xpz 2 l 21x1 l22x2l2p xp ............ z mlm1x 1 l m2x 2lmp xp系数lij 的确定原则:①zi 与zj (i ≠j ;i ,j=1,2,,,m )相互无关;②z 是x 1 ,x ,,,x 的一切线性组合中方差最大者,z 是与z 不相关的x ,x ,,,1 2P2 1 1 2 xP 的所有线性组合中方差最大者;zm 是与z1,z2,,,, zm -1都不相关的x1,x ,,x P ,的所有线性组合中方差最大者。
2新变量指标z1,z2,,,zm 分别称为原变量指标x1,x2,,,xP 的第1,第2,,,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量xj (j=1,2 ,,,p )在诸主成分zi (i=1,2,,,m )上的荷载lij (i=1,2,,,m ;j=1,2,,,p )。
从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。
二、主成分分析的计算步骤1、计算相关系数矩阵r11 r12 r1 pr21 r22 r2 pRrp1 rp2 rpprij(i,j=1,2,,,p)为原变量xi与xj的相关系数,rij=rji,其计算公式为n(x ki x i)(x kj x j)r ijk1n n(x ki2(x kj x j)2 x i)k1k12、计算特征值与特征向量解特征方程I R0,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列1 2 p0;p 分别求出对应于特征值i的特征向量e i(i1,2,L,p),要求ei=1,即e ij21j1其中e ij表示向量e i的第j 个分量。
主成分分析实例和含义讲解
• 这x文6来个)表表,示说hism明toa六rtyh(个(历变数史量学)和),因,e子pnhg的ylis关s(h(系物英。理语为))简,等单ch变记em量,(。我化这们学样用)因x1,,子xli2ft,1e和xr3a,ft2x(与4,语这x5, 些原变量之间的关系是(注意,和主成分分析不同,这里把成分(因
• 主成分分析与因子分析的公式上的区别
y1 a11x1 a12 x2 a1 p x p y2 a21x1 a22 x2 a2 p x p
y p a p1x1 a p2 x2 a pp xp
主成分分析
x1 a11 f1 a12 f2 a1m fm 1 x2 a21 f1 a22 f2 a2m fm 2
2 .353
3 -.040
4 .468
5 .021
6 .068
PHYS
-.674
.531 -.454 -.240 -.001 -.006
CHEM
-.675
.513
.499 -.181
.002
.003
LITERAT .893
.306 -.004 -.037
.077
.320
HISTORY .825
.435
子)写在方程的右边,把原变量写在左边;但相应的系数还是主成分 和各个变量的线性相关系数,也称为因子载荷):
x1 -0 .3 8 7 f1 0 .7 9 0 f2; x2 -0 .1 7 2 f1 0 .8 4 1 f2 ; x3 -0 .1 8 4 f1 0 .8 2 7 f2 x4 0 .8 7 9 f1 - 0 .3 4 3 f2; x5 0 .9 1 1 f1 - 0 .2 0 1 f2; x6 0 .9 1 3 f1 - 0 .2 1 6 f2
主成分分析例题
主成分分析例题主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的数据分析方法,它可以有效分析数据中的多元特征,将多维特征空间映射到低维空间,使得数据的特征可以更加清晰和深入地分析。
主成分分析方法经常用于多元数据的特征提取、因素分析以及因子结构研究,是多元数据分析中常用的统计分析方法之一。
下面介绍一个典型的主成分分析例题,其中涉及因子分析、因子结构分析以及多元统计分析方法等:一个某大学的护士教学实践中心,设有4个实验室,每实验室有自己的实验内容和服务对象,实验室类型主要有医学实验室、护理实验室、外科实验室以及诊断室。
某护士教学实践中心向500名护士学生收集了有关这4类实验室实验内容和服务对象的信息,以下为收集到的具体信息:(1)医学实验室:主要是负责护士学生的临床实习和医学教育,针对的对象为护理学生。
(2)护理实验室:主要的护理实验内容有护理实践、护理研究和护理技能培训,服务对象是护理学生、护理人员和护理专业的其他相关人群。
(3)外科实验室:主要的外科实验内容包括外科实践、外科技能培训及新型外科手术训练,服务对象是护理学生、护理人员和护理专业的其他相关人群。
(4)诊断实验室:主要是负责护士学生的护理诊断和护理诊断教学,服务对象是护理学生。
为了更加清楚地分析护士教学实践中心的护士学生对这4类实验室的实验内容和服务对象的看法,因此将采用主成分分析方法对这500名护士学生收集到的信息进行分析。
首先,通过SPSS对500名护士学生收集到的信息,进行因子分析,提取4个实验室相关的因子,并得出以下结果:表1.子质量统计|子 |差贡献率 |积方差贡献率 ||-----|-----------|--------------|| 1 | 0.717 | 0.717 || 2 | 0.122 | 0.839 || 3 | 0.056 | 0.895 || 4 | 0.004 | 0.899 |从表1中可以看出,前3个因子共计可以解释89.5%的方差,因此可以将前3个因子作为主成分进行处理。
主成分分析法概念及例题
主成分分析法主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法目录[显示]1 什么是主成分分析法2 主成分分析的基本思想3 主成分分析法的基本原理4 主成分分析的主要作用5 主成分分析法的计算步骤6 主成分分析法的应用分析o案例一:主成分分析法在啤酒风味评价分析中的应用[1]1 材料与方法2 主成分分析法的基本原理3 主成分分析法在啤酒质量一致性评价中的应用4 结论7 参考文献[编辑]什么是主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
[编辑]主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
主成分分析法
四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
主成分分析法案例
主成分分析法案例主成分分析法(Principal Component Analysis, PCA)是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。
在本文中,我们将通过一个实际案例来介绍主成分分析法的应用。
案例背景。
假设我们有一个包含多个变量的数据集,我们希望通过主成分分析法来找出其中的主要特征,并将数据进行降维,以便更好地理解和解释数据。
数据准备。
首先,我们需要对数据进行预处理,包括数据清洗、缺失值处理、标准化等操作。
在这个案例中,我们假设数据已经经过了预处理,并且符合主成分分析的基本要求。
主成分分析。
接下来,我们将利用主成分分析法来分析数据。
主成分分析的基本思想是通过线性变换将原始变量转化为一组线性无关的新变量,这些新变量被称为主成分,它们能够最大程度地保留原始数据的信息。
在进行主成分分析之前,我们需要计算数据的协方差矩阵,并对其进行特征值分解。
通过特征值分解,我们可以得到数据的主成分和对应的特征值,从而找出数据中的主要特征。
案例分析。
假设我们得到了数据的前三个主成分,我们可以通过观察主成分的载荷(loadings)来理解数据中的结构。
载荷可以帮助我们理解每个主成分与原始变量之间的关系,从而解释数据的特点和规律。
通过主成分分析,我们可以发现数据中的主要特征和结构,从而更好地理解数据。
同时,我们还可以利用主成分分析的结果进行数据的降维,从而简化数据集并减少信息丢失。
结论。
通过以上案例分析,我们可以看到主成分分析法在多变量数据分析中的重要作用。
通过主成分分析,我们可以发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。
同时,主成分分析还可以帮助我们更好地理解和解释数据,为后续的分析和应用提供有力支持。
总结。
在本文中,我们通过一个实际案例介绍了主成分分析法的基本原理和应用。
主成分分析是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。
主成分分析例题详解
主成分分析例题详解主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,用于发现数据中的主要模式和结构。
本文将通过一个例题详细介绍主成分分析的原理和应用。
1. 问题描述假设我们有一个包含10个变量的数据集,每个变量都与某个特定的因素相关。
我们希望通过主成分分析来降低数据的维度,并找出对总体方差贡献最大的主成分。
2. 数据预处理在进行主成分分析之前,我们需要对数据进行预处理。
首先,我们需要对数据进行标准化,使得每个变量具有相同的尺度。
这样可以避免某些变量的值对主成分分析结果造成过大的影响。
其次,我们计算数据的协方差矩阵。
协方差矩阵描述了各个变量之间的线性关系。
通过计算协方差矩阵,我们可以得到数据中的主要结构和模式。
3. 特征值分解在得到协方差矩阵之后,我们对其进行特征值分解。
特征值分解可以将协方差矩阵分解为特征值和特征向量的乘积。
特征值表示了每个特征向量对应的主成分解释的方差。
特征向量则表示了每个主成分的权重。
对于该例题,我们得到了10个特征值和10个特征向量。
我们可以通过排序特征值的大小,找出贡献最大的主成分。
4. 主成分的选择通常情况下,我们选择前k个特征值对应的特征向量作为主成分。
这样可以保留数据中大部分的结构和模式。
在该例题中,假设前3个特征值分别为λ1、λ2和λ3,并对应的特征向量分别为v1、v2和v3。
我们选择前3个特征值对应的特征向量作为主成分。
5. 降维和重构通过选择主成分,我们可以将数据从原先的10维降到3维。
其中,每个样本在新的3维空间中的坐标可以通过与主成分的内积计算得到。
此外,我们还可以通过主成分将数据从降维空间重新投影回原始空间。
这样可以保留主成分中所包含的结构和模式。
6. 结论通过主成分分析,我们成功地降低了数据的维度,并找到了对总体方差贡献最大的主成分。
这样的降维操作可以减少特征空间的维度,并提取出数据中的重要信息。
主成分分析法
举例说明PCA方法
儿童的身高(h)和体重(w)是两个变量,其关系如表1所示, 用一个直角坐标系表示出来如图1,这两个变量之间存在一 个线性关系,数据(hi,wi)就散布在直线的周围。
变量 观测值 身高h 体重w
1
2 3 4 … n
h1
h2 h3 h4 … hn
w1
w2 w3 w4 … wn
表1 身高与体重
p1 l11 x1 l12 x2 l13 x3 l1m xm p l x l x l x l x 2m m 2 21 1 22 2 23 3 p3 l31 x1 l32 x2 l33 x3 l3 m xm pm lm1 x1 lm 2 x2 lm 3 x3 lmm xm
PCA 中的统计量
使得方差最大的l个相互正交的的方向和沿着些方向的方差 是一个某个矩阵的特征向量和特征值。这些特征值和特征 向量是特征方程
的解,其中A为样本协方差阵或样本相关矩阵。如果A为样 本相关阵,可以避免因为量纲不同而产生的错误;如果利 用协方差阵,则需要对原始数据进行标准化。
PCA 主要步骤
图1 直角坐标系
图2 重新选择坐标系
现在以该直线作为一个坐标轴,记为p1,以该直线的垂 线作为另外一个坐标轴,记为p2,观测点分布在p1的两侧, 而p1与p2垂直,因此彼此不相关。
原观测点可以表示为(p1i,p2i),i=1,2,…,n。可以认为n个观 测值的差异主要表现在p1轴方向上,在p2方向上差异很小。 由此得出结论,可以用p1一个指标来代替原始变量h、w 研究n个观测对象的差异, p1与p2可以用原始变量的线性组 合来表示:
1 r12 R XX ' ... r 1p r12 1 ... r2 p ... r1 p ... r2 p ... ... ... 1
主成分分析实例和含义讲解
主成分分析实例和含义讲解1.数据标准化:对原始数据进行标准化处理,使得每个变量的均值为0,方差为1、这一步是为了将不同量级的变量进行比较。
2.计算协方差矩阵:根据标准化后的数据,计算协方差矩阵。
协方差矩阵反映了各个变量之间的线性关系。
3.特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
特征值表示了各个特征向量的重要程度。
4.选择主成分:根据特征值的大小,选择前k个特征向量作为主成分,k通常是根据主成分所解释的方差比例进行确定。
5.数据投影:将原始数据投影到选取的主成分上,得到降维后的数据。
主成分分析的含义可以从两个方面来解释。
一方面,主成分分析表示了原始数据在新坐标系下的投影,可以帮助我们理解数据的结构和变化。
通过选择前几个主成分,我们可以找到最能够代表原始数据的几个因素,从而实现数据的降维。
例如,在一个包含多个变量的数据集中,如果我们选择了前两个主成分,那么我们可以通过绘制数据在这两个主成分上的投影,来理解数据的分布和变化规律。
同时,主成分的累计方差贡献率可以帮助我们评估所选择的主成分对原始数据方差的解释程度,从而确定降维的精度。
另一方面,主成分分析还可以用于数据的预处理和异常值检测。
通过计算每个变量在主成分上的权重,我们可以判断每个变量对主成分的贡献大小。
如果一些变量的权重很小,那么可以考虑将其从数据集中剔除,从而减少数据的维度和复杂度。
此外,主成分分析还可以检测数据集中的异常值。
在降维的过程中,异常值对主成分的计算结果会产生较大的影响,因此可以通过比较各个主成分的方差贡献率,来识别可能存在的异常值。
总之,主成分分析是一种常用的数据降维方法,它能够帮助我们理解数据集的结构,并鉴别对数据变化影响最大的因素。
通过选择适当的主成分,我们可以实现数据的降维和可视化,并对异常值进行检测。
在实际应用中,主成分分析常常与其他数据挖掘和机器学习方法结合使用,从而发现数据的隐藏模式和关联规则,提高数据分析的效果和准确性。
主成分分析法例子
从以上的分析可以看出,主成分分析的
实质就是确定原来变量xj(j=1,2 ,…, p) 在诸主成分zi(i=1,2,…,m)上的载荷 lij ( i=1,2,…,m; j=1,2 ,…,p)。
33.205 1436.12 354.26 17.486 11.805 1.892 17.534
16.607 1405.09 586.59 40.683 14.401 0.303 22.932
6 68.337 2.032 7 95.416 0.801 8 62.901 1.652 9 86.624 0.841 10 91.394 0.812 11 76.912 0.858 12 51.274 1.041 13 68.831 0.836 14 77.301 0.623 15 76.948 1.022 16 99.265 0.654 17 118.505 0.661 18 141.473 0.737 19 137.761 0.598 20 117.612 1.245 21 122.781 0.731
3 100.7 1.067
4 143.74 1.336
5 131.41 1.623
x 3:森 林覆盖 率(%)
16.101
x 4:农 民人均 纯收入 (元/人)
192.11
x 5:人 均粮食 产量 (kg/
人)
295.34
x 6:经济 作物占农 作物播面 比例(%)
26.724
x 7:耕地 占土地面 积比率
二主成分z2代表了人均资源量。
主成分分析法实例
1、主成分法:用主成分法寻找公共因子的方法如下:假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。
将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系:11111221221122221122....................p p p p pp p pp p Y X X X Y X X X Y X X Xγγγγγγγγγ=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到X 得转换关系为:11112121212122221122....................p p p p pp p pp p X Y Y Y X Y Y Y X Y Y Yγγγγγγγγγ=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为:1111212112121222221122....................m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。
为完成此变换,必须将i Y 除以其标准差,由主成分分析的知识知其标准差即为特征根的平方根/i i F Y =,12m ,则式子变为:1111122112211222221122....................m m m m p p p pm m p X a F a F a F X a F a F a F X a F a F a F εεε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩这与因子模型完全一致,这样,就得到了载荷A 矩阵和 初始公因子(未旋转)。
主成分分析法概念及例题
主成分分析法概念及例题主成分分析法主成分分析principal components analysisPCA又称主分量分析主成分回归分析法目归归示??1 什归是主成分分析法??2 主成分分析的基本思想??3 主成分分析法的基本原理??4 主成分分析的主要作用??5 主成分分析法的归算步归??6 主成分分析法的归用分析 o 6.1 案例一主成分分析法在酒归味归价分析中的归用啤1 6.1.1 1 材料方法与6.1.2 2 主成分分析法的基本原理6.1.3 3 主成分分析法在酒归量一致性归价中的归用啤6.1.4 4 归归??7 考文参献归归什归是主成分分析法主成分分析也称主分量分析旨在利用降归的思想把多指归归化归少归合指归。
数几个在归归学中主成分分析principal components analysisPCA是一归归化据集的技归。
数它是一归性归归。
归归归把据归归到一新的坐归系归中使得任何据投影的第一大个个数个数方差在第一坐个归归第一主成分称上第二大方差在第二坐归个第二主成分上依次归推。
主成分分析归常用减少据集的归同归保持据集的归数数数方差归最大的特征。
归是通归保留低归主成分忽略高归主成分献做到的。
归归低归成分往往能归保留住据的最重要方面。
但是归也不是一定的要归具归用而定。
数体归归主成分分析的基本思想在归归归归究中归了全面、系归地分析归归我归必归考归多影因素。
归些涉及的因素一般归指研众响称归在多元归归分析中也归称归量。
因归每归量都在不同程度上反映了所究归归的某些信息且指归个研并之归彼此有一定的相归性因而所得的归归据数反映的信息在一定程度上有重。
在用叠归归方法究多研1归量归归归归量太多增加归算量和增加分析归归的归归性人归希望在归行会定量分析的归程中涉及的归量归少得到的信息量归多。
主成分分析正是适归归一要求归生的是解归归归的理想工具。
决同归在科普效果归的归程中也存在着归归的归归。
科普效果是归具量化的。
在归归归工作中估很体估我归常常归用有代表性的归合指归采用打分的方法归行归故归合指归的归取是重点和归会几个来估个点。
主成分分析案例
Y2得分
-2.06481 2.32993 -1.47145 0.66326 -0.87181 1.25757 -1.40987 -0.36439 0.04577 -2.04139 -0.42078 0.33126 0.07660 0.86909 0.45974 -0.83575
主成分分析在 市场研究中的应用
1——5 组表示男性,6——10 组表示女性 1——5, 6——10 年龄从小到大排序
假若你是该食品加工业决策部 门的高级顾问,为了对食品生 产作出合理决策,请你对以上 的调查资料进行分析,为决策 者提供建议。
特征向量
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
特征根 i
方差贡献率
女性喜欢
一般喜欢
孩子 咖喱饭
炸肉饼、火腿面包
成人 鸡蛋烩饭、炸猪排 酸汤、大头鱼
一般不喜欢 特别不喜欢
孩子 干咖喱、浓汤 成人 煮牛肉、生蛋
菜粥、清汤
饼干、带馅面包 酱面条、烧鱼
服装的定型分类问题
为了较好地满足市场的需要,服装生产厂 要了解所生产的一种服装究竟设计几种型号合 适?这些型号的服装应按怎样的比例分配生产 计划才能达到较好的经济效益?
4、取每一组的中心 ( y1*k , y2*k ) (k=1,2,…,g) 作为该组的 代表点。
相应原16个指标的尺寸:
x1' r11 y1*k r12 y2*k x2' r21 y1*k r22 y2*k
x1' 6 r16,1 y1*k r16,2 y2*k
5、各种型号的比例按 该组样品数/128 确定。
Y2
0.513225 0.203116 -0.182858 0.193618 0.217290 0.113642 -0.164527 -0.114637 -0.509240 -0.025832 0.083471 0.132592 0.105402 0.199407 -0.181330 -0.261367 -0.295756
主成分分析实例及含义讲解
• 对于我们的数据,SPSS输出为
Total Variance Explained
Initial Eigenvalues
Component Total % of Variance Cumulative %
1
3.735
62.254
62.254
2
1.133
18.887
81.142
3
.457
7.619
• 这些系数称为主成分载荷(loading),它表示主成分和相应 的原先变量的相关系数。
• 比学变如量y1表的示相式关中系x数1的为系-0数.80为6。-0.806,这就是说第一主成分和数 • 相关系数(绝对值)越大,主成分对该变量的代表性也越大。
可以看得出,第一主成分对各个变量解释得都很充分。而最 后的几个主成分和原先的变量就不那么相关了。
88.761
4
.323
5.376
94.137
5
.199
3.320
97.457
6
.153
2.543
100.000
Extraction Method: Principal Component Analysis.
Extraction Sums of Squared Loadings
Total % of Variance Cumulative %
.353
-.040
.468
PHYS
-.674
.531
-.454
-.240
CHEM
-.675
.513
.499
-.181
LITERAT
.893
.306
-.004
-.037
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分分析法[ 编辑 ] 什么是主成分分析法主成分分析也称 主分量分析 ,旨在利用降维的思想,把多 指标 转化为少数几个综合指标。
在 统计学 中,主成分分析( principal components analysis,PCA )是一种简化数据集的技 术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中, 使得任何数据投影的第一 大方差 在第一个坐标 (称为第一主成分 )上,第二大方差在第二个坐标 (第二主成分 )上,依次类推。
主成分分析经常用减少数据集的维数, 同时保持数据集的对 方差 贡献最大的特征。
这是通过保留 低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是, 这也不是一定的,要视具体应用而定。
[ 编辑 ], PCA ) 又称: 主分量分析,主成分回归分析法主成分分析( principal components analysis主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
如上所述,主成分分析法正是解决这一问题的理想工具。
因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。
根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。
这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。
上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。
对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。
的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。
由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。
例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。
经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。
[ 编辑]主成分分析法的基本原理主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。
[ 编辑]主成分分析的主要作用概括起来说,主成分分析主要由以下几个方面的作用1.主成分分析能降低所研究的数据空间的维数。
即用研究 m 维的 Y 空间代替 p 维的 X 空间(m < p ) ,而低维的 Y 空间代替 高维的 x 空间所损失的信息很少。
即:使只有一个主成分 Y l (即 m =1)时,这个 Y l 仍是使用全部 X 变量(p 个)得到的。
例如要计算 Yl 的均值也得使用全部 x 的均 值。
在所选的前 m 个主成分中,如果某个 X i 的系数全部近似于零的话,就可以把这个X i删除, 这也是一种删除多余变量的方法。
2.有时可通过因子负荷 a ij 的结论,弄清 X 变量间的某些关系3.多维数据的一种图形表示方法。
我们知道当维数大于 3 时便不能画出几何图形,多元统计研究的问题大都多于 3 个变量。
要把研究的问题用图形表示出来是不可能的。
然而, 经过主成 分分析后, 我们可以选取前两个主成分或其中某两个主成分, 根据主成分的得分, 画出 n 个 样品在二维平面上的分布况, 由图形可直观地看出各样品在主分量中的地位, 进而还可以对样本进行 分类处理,可以由图形发现远离大多数样本点的离群点。
4.由主成分分析法构造回归模型。
即把各主成分作为新自变量代替原来自变量 5.用主成分分析筛选回归变量。
回归变量的选择有着重的实际意义,为了使模型本身易于 做结构分析、控制和预报,好从原始变量所构成的子集合中选择最佳变量,构成最佳变量集合。
用主成分分析筛选变量,可以用较少的计算量来选择量,获得选择最佳变量子集合的效果。
[ 编辑 ] 主成分分析法的计算步骤1、原始指标数据的 标准化 采集 p 维随机向量 x = ( x 1, X 2,..., X p ) T )n 个样品 x i = (x i 1,x i 2,..., x ip ) T,i=1,2, ⋯,n ,n > p ,构造样本阵,对样本阵元进行如下标准化变换:2、对标准化阵 Z 求 相关系数 矩阵x 做 回归分 其中,得标准化阵 Z3、解样本相关矩阵R 的特征方程得p 个特征根, 确定主成分确定m 值,使信息的利用率达85%以上,对每个λ j, j=1,2,...,m,解方程组Rb = λj b 得单位特征向量4、将标准化后的指标变量转换为主成分U1 称为第一主成分, U2 称为第二主成分, ⋯, U p 称为第p 主成分。
5 、对m 个主成分进行综合评价对m 个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率。
[ 编辑]主成分分析法的应用分析[ 编辑]案例一:主成分分析法在啤酒风味评价分析中的应用[1]啤酒是个多指标风味食品, 为了全面了解啤酒的风味, 啤酒企业开发了大量的检测方法用于分析啤酒的指标, 但是面对大量的指标数据, 大多数企业又感到茫然, 不知道如何利用这些大量的数据, 由上面的介绍可知,在这种情况下, 主成分分析法能够派上用场。
近年来,科研人员为了获得对啤酒风味更好的理解, 多元统计技术的使用越来越多。
这主要有以下两方面的原因: ① 在啤酒领域里, 几乎没有一个问题能够使用单变量(单指标)就能反映事物的属性, 例如啤酒的好坏、一致性, 不能通过双乙酰一个指标说明问题; ②另一个重要的原因就是, 近年来大量数学统计软件的不断出现和个人电脑的普及促进了多元统计分析技术的应用。
多元统计技术在啤酒风味研究中的一个重要任务就是找出啤酒风格和啤酒理化指标(风味成分指标也属于理化指标)之间的相关性。
例如可以用多元统计技术来找出啤酒的风味指标和啤酒风味的关系或不同啤酒的风味差异性。
经常使用的多元统计技术有聚类分析、判别分析、主成分分析和回归分析等。
其中主成分分析能够用于多指标产品, 主成分分析可以按照事物的相似性区分产品, 结果可用一维、二维或三维平面坐标图标示, 特别直观。
使用主成分分析法可以研究隐藏在不同变量背后的关系,而且根据这些变量能够获得主成分的背景解释。
鉴于主成分分析在啤酒风味质量应用中的强大作用, 本文简单介绍主成分分析的基本原理及其在啤酒一致性监控中的应用,以引起我国啤酒同行的广泛关注。
[ 编辑]1 材料与方法仪器HP6 890 毛细管气相色谱仪( 美国安捷伦公司),FID 检测器, HP 7694E 顶空自动进样器, HP 气相色谱化学工作站。
分析方法样品制备啤酒于5 ℃冷藏, 量取5 mL 酒液于20 mL 顶空瓶中, 添加g/L 正丁醇溶液mL, 加密封垫及铝盖密封,振荡混匀以供顶空气相色谱测定。
色谱条件毛细管色谱柱(DB- WAXETR3 0 m× mm, 膜厚μm);柱温:起始温度为35 ℃, 以10 ℃/min 程序升温至150 ℃, 再以20 ℃/min 升温到180 ℃, 并继续恒温5 min; 进样口温度150 ℃; 检测器温度200 ℃; 载气为高纯氮气, 流速为5 mL/min; 氢气30 mL/min; 空气400 mL/min; 采用分流进样,分流比为1∶1。
[ 编辑]2 主成分分析法的基本原理主成分分析法在啤酒研究中应用的必要性这里通过一个例子说明, 主成分分析在啤酒研究中的必要性。
假如有6 个啤酒样品, 分别标为A- F,每个啤酒样品用3 个指标来描述。
这些指标可以是仪器的分析数据、感官分析数据或两者都用。
为了便于讨论, 假设这3 个指标分别为苦味值(BU) 、DMS和酒精浓度。
为了解这6 个样品两两之间的相似性, 便于将这6 个样品进行分类, 可以把这6 个样品画在三维空间中, 见图1。
显然在这个简单的例子中, 这6 个样品倾向于形成两类, 即分别是A- C 和D- F 。
通过所测的指标可以解释这种分类, 例如, 第一组(A- C) 有较高的苦味值和较低的酒精浓度。
这个例子中只涉及到6 个样品和3 个指标。
但是实际上, 样品数量和指标数量都会很大, 例如, 有20 个指标, 这时, 样品不能在20 维的坐标系中画出。
为了解决多指标的样品的比较问题, 可以使用主成分分析法。
主成分分析法的基本原理主成分分析的第一步是将所有的指标数据进行标准化, 标准化的一般方法为: (x ij - x j mean) / δ j, 这里x ij 是样品j 的第i 个指标, x j mean 和δ j 是第j 个指标的平均值和标准偏差, 通过标准化后, 每个变量的平均值变成0, 标准偏差为1。
标准化的好处是可以消除不同指标间的量纲差异和数量级间的差异。
第二步求出指标间的相关矩阵, 通过相关矩阵, 可以确定具有高度相关性的指标, 这些指标间的协方差可以通过另一个变量替代, 这个变量叫作第一成分。
去掉第一成分后, 计算残留相关阵, 通过残留相关阵, 第二组高度相关的变量也可以发现, 它们的协方差可以用第二成分替代, 第二成分和第一成分是正交的。