《数学建模思想方法大全及方法适用范围》
数学建模常用算法和模型全集
数学建模常用算法和模型全集数学建模是一种将现实世界的问题转化为数学问题,并通过建立数学模型来求解的方法。
在数学建模中,常常会用到各种算法和模型,下面是一些常用的算法和模型的全集。
一、算法1.线性规划算法:用于求解线性规划问题,例如单纯形法、内点法等。
2.非线性规划算法:用于求解非线性规划问题,例如牛顿法、梯度下降法等。
3.整数规划算法:用于求解整数规划问题,例如分支定界法、割平面法等。
4.动态规划算法:用于求解具有最优子结构性质的问题,例如背包问题、最短路径问题等。
5.遗传算法:模拟生物进化过程,用于求解优化问题,例如遗传算法、粒子群算法等。
6.蚁群算法:模拟蚂蚁寻找食物的行为,用于求解优化问题,例如蚁群算法、人工鱼群算法等。
7.模拟退火算法:模拟固体退火过程,用于求解优化问题,例如模拟退火算法、蒙特卡罗模拟等。
8.蒙特卡罗算法:通过随机抽样的方法求解问题,例如蒙特卡罗模拟、马尔科夫链蒙特卡罗等。
9.人工神经网络:模拟人脑神经元的工作原理,用于模式识别和函数逼近等问题,例如感知机、多层感知机等。
10.支持向量机:用于分类和回归问题,通过构造最大间隔超平面实现分类或回归的算法,例如支持向量机、核函数方法等。
二、模型1.线性模型:假设模型的输出与输入之间是线性关系,例如线性回归模型、线性分类模型等。
2.非线性模型:假设模型的输出与输入之间是非线性关系,例如多项式回归模型、神经网络模型等。
3.高斯模型:假设模型的输出服从高斯分布,例如线性回归模型、高斯朴素贝叶斯模型等。
4.时间序列模型:用于对时间序列数据进行建模和预测,例如AR模型、MA模型、ARMA模型等。
5.最优化模型:用于求解优化问题,例如线性规划模型、整数规划模型等。
6.图论模型:用于处理图结构数据的问题,例如最短路径模型、旅行商问题模型等。
7.神经网络模型:用于模式识别和函数逼近等问题,例如感知机模型、多层感知机模型等。
8.隐马尔可夫模型:用于对具有隐藏状态的序列进行建模,例如语音识别、自然语言处理等。
数学建模的思想与方法
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译” 根据建模目的和信息将实际问题“翻译”成数学问 题 选择适当的数学方法求得数学模型的解答 将数学语言表述的解答“翻译” 将数学语言表述的解答“翻译”回实际对象 用现实对象的信息检验得到的解答
实践
理论
实践
作业: 作业:
请同学们仔细阅读《数学建模》 请同学们仔细阅读《数学建模》课程设 计指导书,通过阅读范例,了解建模的全过 计指导书,通过阅读范例, 并完成以下任务: 程,并完成以下任务: 1、通过上机到网上查阅数学建模有关 资料,了解数学建模网站, 资料,了解数学建模网站,熟悉数学软件的 应用,并写出上机报告. 应用,并写出上机报告.
S={(x , y)| x=0, y=0,1,2,3; | x=3, y=0,1,2,3; x=y=1,2}
y 3 2 1 0 1 2 3 x
s1
d1
d1, …,d11给出安全渡河方案 d11
评注和思考
规格化方法,易于推广 规格化方法,
sn+1
考虑4名商人各带一随从的情况 考虑 名商人各带一随从的情况
二、数学建模的方法与过程
1、数学建模的基本方法
•机理分析 机理分析 根据对客观事物特性的认识, 根据对客观事物特性的认识, 找出反映内部机理的数量规律 将对象看作“黑箱” 通过对量测数据的 将对象看作“黑箱”,通过对量测数据的 统计分析, 统计分析,找出与数据拟合最好的模型 用机理分析建立模型结构, 用机理分析建立模型结构 用测试分析确定模型参数
2、要求每个学生自选一个数学建模问 题或讨论指导书上的综合数学建模问题之一, 题或讨论指导书上的综合数学建模问题之一, 完成数学建模的全过程, 完成数学建模的全过程,用自己的语言写一 篇论文,论文一律用信纸抄写, 篇论文,论文一律用信纸抄写,并提交电子 稿.由班长统一发送到电子信 箱:zsq_tysx@ 论文主要内容包括: 论文主要内容包括: 论文题目 摘 要
数学建模常用算法及应用场景
数学建模常用算法及应用场景Mathematical modeling is a process of creating a mathematical representation of a real-world system or phenomenon. It involves the use of mathematical concepts, formulas, and algorithms to simulate and analyze the behavior of the system. Mathematical modeling is widely used in various fields, such as physics, engineering, economics, and biology, to better understand and predict the behavior of complex systems.数学建模是一种创造数学表示真实世界系统或现象的过程。
它涉及使用数学概念、公式和算法来模拟和分析系统的行为。
数学建模广泛应用于物理、工程、经济学和生物学等各个领域,以更好地理解和预测复杂系统的行为。
One of the most commonly used algorithms in mathematical modeling is the Monte Carlo method. This algorithm is based on the use of random sampling to obtain numerical results. It is used to approximate the solution to complex mathematical problems that cannot be solved using traditional analytical methods. The Monte Carlo method is commonly used in finance for option pricing, inphysics for simulating particle interactions, and in engineering for reliability analysis.数学建模中最常用的算法之一是蒙特卡洛方法。
数学建模的思想和方法的应用
中的一些 问题得到成 功的解决 ,但是 ,前提是 需进行 数学模型 的建 立。对此,本 文针 对数学建模的思想和 方法的应 用进行 相 关论述 ,望能够对大家有一定的参考价值。
关键字 :数 学建模 ;思想;方法 ;应用
地解 决现实 中存在 的一系列问展一系列 的检查 ,找 出是否是数 学推理上 的错误还 是所选 用的数学模型不适当所导致的。
有的情况下,数学模型的创建与原模型之前有着非常大的
差距 ,这种情况下则懦创建一种全新的数学模型 。 2 . 2 建模思想在定理证明 中的渗透 教 师在讲授 新课 的过程 当中 ,要 侧重于所 选择 的授 课方法 ,首先要对定理 的形成背景进行 详细的介绍 ,这样 才能够促使广大学生能够清楚地认识定理 的形成 过程 ,其 次 ,对定理形成 的时代原 因进行 简单的介绍 ,也就是 说这 个定理 的形成能够解决 怎样 的问题 ,让 广大学生打心底里 产生浓厚 的学 习兴趣 ,在做好 一切 准备工作之后 ,便进行 定理 的相 关证 明,为此 ,在证 明相 关定理上可利用 “ 淡化 形式、注重 实质 ”的方法,通 常能够 非常直观性的达到非 常好的教学成效 ,这便很好地展现 了数 学建模 的多元化显
A b s t r a c t: As a c o mp u t a i t o n a l t o o l , ma t h e ma i t c s i s a n i n d i s p e n s a b l e f a c t o r i n t h e p r o c e s s o f t h e d e v e l o p me n t o f mo d e m s c i e n c e .
数学建模方法与应用
数学建模方法与应用数学建模是一种将现实问题转化为数学模型、通过数学方法进行求解与分析的过程。
它是数学与实际问题相结合的一种高级应用领域,涉及数学、计算机科学、物理学、经济学等多个学科的知识。
本文将介绍数学建模的基本方法和一些常见的应用领域。
一、数学建模的方法1.问题描述与分析:在进行数学建模前,首先需要对实际问题进行准确的描述和分析。
这包括确定问题的目标、特征和约束条件,并明确问题的可行性和难度。
2.建立数学模型:将实际问题转化为数学问题,并建立相应的数学模型。
常见的数学模型包括线性模型、非线性模型、优化模型等。
根据实际问题的特点选择合适的模型进行建立。
3.模型求解:使用数学方法对建立的数学模型进行求解。
常见的求解方法包括解析解法、数值解法、优化算法等。
根据问题的要求和模型的特点选择合适的求解方法。
4.模型评价与验证:对求解结果进行评价和验证,判断模型对实际问题的适应性和准确性。
通过与实际数据的比较,对模型进行修正和改进,提高模型的可靠性和实用性。
二、数学建模的应用领域1.物理学与工程学:数学建模在物理学和工程学中的应用非常广泛。
例如,在物理学中,可以利用数学模型研究天体运动、电磁场分布等问题。
在工程学中,可以使用数学模型分析材料的力学性能、流体的流动规律等。
2.经济学与金融学:数学建模在经济学和金融学中有着重要的作用。
例如,可以使用数学模型分析经济增长、市场供求关系等经济问题。
在金融学中,可以利用数学模型研究股票价格预测、风险管理等问题。
3.生物学与医学:数学建模在生物学和医学领域中的应用也越来越多。
例如,在生物学研究中,可以使用数学模型探究生物体内的化学反应、生物发育等过程。
在医学领域中,可以利用数学模型帮助诊断疾病、预测病情等。
4.社会学与心理学:数学建模在社会学和心理学中的应用正在不断扩大。
例如,在社会学研究中,可以使用数学模型分析人口变动、社会网络等问题。
在心理学领域中,可以利用数学模型研究认知过程、心理评估等。
数学建模思想方法大全及方法适用范围
数学建模思想方法大全及方法适用范围第一篇:方法适用范围一、统计学方法1.1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)1.2 聚类分析1、方法概述该方法说的通俗一点就是,将 n 个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类聚类有两种类型:(1) Q 型聚类:即对样本聚类;(2) R 型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(7)可变法(8)利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
数学建模方法及其应用
数学建模方法及其应用
数学建模方法是将现实问题抽象化为数学模型,通过符号、计算、推理和实验等手段进行研究解决问题的方法。
数学建模方法的应用十分广泛,包括经济学、工程学、物理学、计算机科学、生物学等领域。
1. 经济学领域:数学建模方法在经济学中的应用包括宏观经济模型、金融市场模型、产业研究模型等,可以帮助经济学家预测经济走势、分析市场趋势、评估政策效果等。
2. 工程学领域:数学建模方法在工程学中的应用包括流体力学模型、热传导模型、结构力学模型、控制系统模型等,可以用来优化设计、预测性能、进行稳定性分析等。
3. 物理学领域:数学建模方法在物理学中的应用包括量子力学模型、场论模型、统计物理模型等,可以帮助物理学家研究物理现象、发掘物理规律、解释实验结果等。
4. 计算机科学领域:数学建模方法在计算机科学中的应用包括图论模型、优化算法模型、人工智能模型等,可以用于解决最优化问题、分类问题、自然语言处理等任务。
5. 生物学领域:数学建模方法在生物学中的应用包括遗传学模型、成因变异模
型、癌症模型等,可以用于预测疾病风险、优化治疗方案、研究基因组学等问题。
总之,数学建模方法是一种十分有价值的计算工具,在各个领域都得到广泛的应用和推广。
数学建模中常用的思想和方法
数学建模中常用的思想和方法(1)knowledge 2010-08-19 00:42:51 阅读160 评论0字号:大中小在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。
用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。
在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。
其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。
回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。
相对应的有线性回归、多元二项式回归、非线性回归。
逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直(主要用SAS 至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。
数学建模的思想和方法
已知:f(),g()是连续函数 ;对任意,
f()•g()=0;且g(0)=0,f(0)>0. 证明:存在0,使f(0)=g(0)=0.
模型求解
给出一种简单、粗糙的证明方法
数 学 建 模 的 思 想 和 方 法
将椅子旋转900,对角线AC和BD互换。由g(0)=0,
f(0)>0,知f(/2)=0, g(/2)>0.令h()=f()– g(),则h(0)>0和h(/2)<0.由f,g的连续性知h 为连续函数,据连续函数的基本性质,必存在0, 使h(0)=0,即f(0)=g(0). 因为f()•g()=0,所以f(0)=g(0)=0.
数 学 建 模 的 思 想 和 方 法
数学建模的思想和方法
主讲人:杨树国
1.数学建模的思想和方法
数 学 建 模 的 思 想 和 方 法
1.1 1.2 1.3 1.4 1.5 1.6
从现实对象到数学模型 数学建模的重要意义 数学建模示例 数学建模的方法和步骤 数学模型的特点和分类 怎样学习数学建模
2.数学建模竞赛的的思想和方法
yk--第k次渡河前此岸的随从数 sk=(xk , yk)--过程的状态
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
uk--第k次渡船上的商人数
vk--第k次渡船上的随从数
dk=(uk , vk)~决策 sk+1=sk +(-1)k dk
uk, vk=0,1,2;
数学建模无时不在,无处不在!
数 学 建 模 的 思 想 和 方 法
启示:
很多同学,尤其是非数学专业的同学,把数学 建模看得很神秘,总以为它高深莫测,其实并非 如此。实际上,数学建模就是发生在我们身边的事 情,可能你不经意间就在进行着数学建模和求解, 只不过你不知道罢了。 可以毫不夸张地说: 数学建模无时不在,无处不在!
数学建模算法分类及应用
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)1十类常用算法1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
数学建模的基本方法和应用
数学建模的基本方法和应用数学建模是将实际问题转化为数学模型,并通过数学方法进行分析、求解的过程。
它在现代科学和工程领域中发挥着重要的作用。
本文将介绍数学建模的一些基本方法和应用。
一、问题的数学建模数学建模过程通常包括问题描述、建立数学模型、求解和验证模型等步骤。
首先,对于给定的实际问题,我们需要准确地描述问题的背景和要解决的核心问题。
然后,根据问题的特点和要求,选择合适的数学模型来描述问题。
数学模型可以是方程、函数、图形或者统计模型等。
接下来,我们使用数学方法对模型进行求解,并在解的基础上得出对问题的回答。
最后,我们需要验证我们的模型和解是否符合实际情况,通过与实际数据进行比较和分析来验证模型的有效性。
二、常用的数学建模方法1. 数理统计法数理统计是利用数学统计方法对实际数据进行分析和推断的过程。
在建模过程中,我们可以使用数理统计方法对数据进行收集、整理和清洗,然后通过统计分析来描述数据的分布规律,从而得到对问题的解答。
2. 最优化方法最优化方法是寻找最优解的数学方法。
在建模过程中,我们常常需要优化某个目标函数,例如最大化利润、最小化成本等。
通过建立数学模型和应用最优化方法,我们可以求解出最优解,并得到对问题的最佳回答。
3. 微分方程模型微分方程是描述变量之间变化关系的数学模型。
在建模过程中,我们经常遇到一些动态变化的问题,例如人口增长、化学反应等。
通过建立微分方程模型,我们可以研究变量之间的关系,预测未来的发展趋势,并得出对问题的解答。
4. 离散数学模型离散数学模型是以离散对象和离散关系为基础的数学模型。
在建模过程中,我们常常需要处理离散的数据和变量,例如图论、排队论等。
通过建立离散数学模型,我们可以对离散问题进行分析和求解,得出对问题的解答。
三、数学建模的应用领域数学建模在各个领域都有广泛的应用,例如:1. 自然科学领域:物理学、化学、生物学等领域都需要通过数学建模来研究和解决实际问题,例如天体力学、药物代谢等。
数学建模方法及其应用
一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理1层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1].1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层个因素对上层一个因素的影响,每次取两个因素和,用表示和n n C C ,,1 O i C j C ij a i C 对的影响之比,全部比较结果可用成对比较阵j C O 表示,称为正互反矩阵.()1,0,ij ij ji n nijA a a a a ⨯=>=A 一般地,如果一个正互反阵满足:A (1),ij jk ik a a a ⋅=,,1,2,,i j k n = 则称为一致性矩阵,简称一致阵.容易证明阶一致阵有下列性质:A n A ①的秩为1,的唯一非零特征根为;A A n ②的任一列向量都是对应于特征根的特征向量.A n 如果得到的成对比较阵是一致阵,自然应取对应于特征根的、归一化的特征向量(即分量之和为1)表n示诸因素对上层因素的权重,这个向量称为权向量.如果成对比较阵不是一致阵,但在不一致的n C C ,,1 O A 容许范围内,用对应于最大特征根(记作)的特征向量(归一化后)作为权向量,即满足:A λw w (2)Aw w λ=直观地看,因为矩阵的特征根和特征向量连续地依赖于矩阵的元素,所以当离一致性的要求不远时,A ij a ij a 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.A 2. 比较尺度当比较两个可能具有不同性质的因素和对于一个上层因素的影响时,采用Saaty 等人提出的尺i C j C O 91-度,即的取值范围是及其互反数.ij a 9,,2,1 91,,21,1 3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根的特征向量作为被比较因素的权向量,其λ不一致程度应在容许范围内.若已经给出阶一致阵的特征根是,则阶正互反阵的最大特征根,而当时是一致阵.所以n n n A n λ≥n λ=A 比大得越多,的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用数值λn A n λ-的大小衡量的不一致程度.Saaty 将A3(3)1nCI n λ-=-定义为一致性指标.时为一致阵;越大的不一致程度越严重.注意到的个特征根之和恰好等0CI =A CI A A n 于,所以相当于除外其余个特征根的平均值.n CI λ1n -为了确定的不一致程度的容许范围,需要找到衡量的一致性指标的标准,又引入所谓随机一致性指A A CI 标,计算的过程是:对于固定的,随机地构造正互反阵,然后计算的一致性指标.RI RI n A 'A 'CI 表1 随机一致性指标的数值RI 表中时,是因为阶的1,2n =0RI =2,1正互反阵总是一致阵.对于的成对比较阵,将它3n ≥A 的一致性指标与同阶(指相同)CI n 的随机一致性指标之比称为一致性比率,当RI CR (4)0.1CICR RI=<时认为的不一致程度在容许范围之内,可用其特征向量作为权向量.A 对于利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已A 有的进行修正.A n1234567891011RI00.580.901.121.241.321.411.451.491.514. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有层,则第层对第一层(设只有个因素)的组合权向量满足:s k 1 (5)()()()1,3,4,k k k w W w k s -== 其中是以第层对第层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()k W k 1k - (6)()()()()()132sss w W W W w -= 5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第层的一致性指标为(是第层因素的数目),随机一致p ()()p n p CI CI ,,1 n 1-p 性指标为,定义()()1,,p p n RI RI ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第层的组合一致性比率为:p5(7)()()(),3,4,,pp p CI CRp s RI== 第层通过组合一致性检验的条件为.p ()0.1p CR <定义最下层(第层)对第一层的组合一致性比率为:s (8)()2*sP p CR CR ==∑对于重大项目,仅当适当地小时,才认为整个层次的比较判断通过一致性检验.*CR 层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有个因素,最下层通常为1方案或对象层,中间可以有个或几个层次,通常称为准则或指标层,当准则过多时(比如多于个)应进一19步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第层开始,对于从属于上一层每个因素的同一层诸因素,用成2对比较法和比较尺度构造成对比较阵,直到最下层.91-(3) 计算权向量并做一致性检验 对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率较大的成对比较阵.CR(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题.1.正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题.定理1对于正矩阵(的所有元素为正数)A A1)的最大特征根是正单根;Aλ2)对应正特征向量(的所有分量为正数);λwω73),其中,是对应的归一化特征向量.w IA I I A k k k =T ∞→lim ()T=1,1,1 I w λ定理2 阶正互反阵的最大特征根;当时是一致阵.n A n λ≥n λ=A 定理2和前面所述的一致阵的性质表明,阶正互反阵是一致阵的充要条件为 的最大特征根.n A A n λ=2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法.(1) 幂法 步骤如下:a .任取维归一化初始向量n ()0w b .计算()()1,0,1,2,k k wAw k +== c .归一化,即令()1k w+ ()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度,当 时,即为所求的特征向量;否则返回bε()()()1||1,2,,k k i i i n ωωε+-<= ()1k w +e.计算最大特征根()()111k n i k i in ωλω+==∑9这是求最大特征根对应特征向量的迭代法,可任选或取下面方法得到的结果.()0w (2) 和法 步骤如下:a.将的每一列向量归一化得A 1nij ij iji a aω==∑ b .对按行求和得ij ω1ni ij j ωω==∑ c .将归一化即为近似特征向量.i ω()*121,,,ni i n i w ωωωωωωT===∑ d.计算,作为最大特征根的近似值.()11n ii iAw n λω==∑这个方法实际上是将的列向量归一化后取平均值,作为的特征向量.A A (3) 根法 步骤与和法基本相同,只是将步骤b 改为对按行求积并开次方,即.根法是将和法ij ω n 11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ 中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵是一致阵时,与权向量的关系满,那么当不是一致阵时,权向量A ij a ()T =n w ωω,,1 iij ja ωω=A的选择应使得与相差尽量小.这样,如果从拟合的角度看确定可以化为如下的最小二乘问题:w ij a ijωωw (9)()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于的非线性方程组,i ω计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:(10)()21,,11min ln ln i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ 则化为求解关于的线性方程组.可以验证,如此解得的恰是前面根法计算的结果.ln i ωi ω特征根法解决这个问题的途径可通过对定理2的证明看出.4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?11一般地,由残缺阵构造修正阵的方法是令()ij A a =()ij Aa = ,,0,,1,ij ij ij ij i i a a i j a a i j m m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数,(11)表示残缺.已经证明,可以接受的残缺阵的充分必要条件是为不可约矩阵.θA A (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表 肉、面包、蔬菜三类食品所含的营养成分及单价2食品维生素A/(IU/g)维生素B/(mg/g)热量/(kJ/g)单价/(元/g )肉面包蔬菜0.3527250.00210.00060.002011.9311.511.040.02750.0060.0.007该人体重为kg,每天对各类营养的最低需求为:55维生素A 国际单位 (IU)7500维生素B mg1.6338热量 R kJ8548.5考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构②根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵13W D ED 13E311,,,主特征向量max 2λ=10CI =100.1CR =<()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=表4 比较判断矩阵D ABR A 112B 112R5.05.01,主特征向量111max 1113,0,0,0.58CI CR RI λ====()0.4,0.4,0.2W T=故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为,()()2111211112120;0.435CI CI CI W RI RI RI W ====212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出的总权重E15为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始W 的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化食品维生素A维生素B 热量R单价F肉0.0139 0.44680.48720.1051面包0.00000.12770.47020.4819蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:,结果表明,按这个人的偏好,肉、()3320.2376,0.2293,0.5331W P W T==面包和蔬菜的比例取较为合适.引入参数变量,令,,,0.2376:0.2293:0.533110.2376x k =20.2293x k =30.5331x k =代入()1LP 123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得kf 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得,故得最优解;最优值,即肉g ,面1418.1k =()*336.9350,325.1650,755.9767x T=*16.4497f =336.94g ,蔬菜g ,每日的食品费用为元.325.17755.9816.45总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容一一一研究模糊数学的理论,以及它和精确数学、随机数学的关系;一一一研究模糊语言和模糊逻辑,并能作出正确的识别和判断;一一一研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是17用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3. 数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量,其中, ,为()12,,,m b b b b =01j b <<m 可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当时,最大隶属原则最有效;而在11max 1,1nj j j n j b b ≤≤===∑()1max 01,j j nb c c ≤≤=<<时,最大隶属原则完全失效,且越大(相对于而言),最大隶属原则也越有效.由此可1njj bnc ==∑1max j j nb ≤≤1njj b=∑19认为,最大隶属原则的有效性与在中的比重有关,于是令:1max j j nb ≤≤1njj b=∑ (12)11max njjj nj b bβ≤≤==∑显然,当时,则为的最大值,当, 时,有为11max 1,1nj j j n j b b ≤≤===∑1β=β()1max 01j j nb c c ≤≤=<<1nj j b nc ==∑1n β=的最小值,即得到的取值范围为:.由于在最大隶属原则完全失效时,而不为,所以不宜ββ11n β≤≤1n β=0直接用值来判断最大隶属原则的有效性.为此设:β (13)()()11111n n n n βββ--'==--则可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与(的含义是β'j n j b ≤≤1sec j nj b ≤≤1sec 向量各分量中第二大的分量)的大小有很大关系,于是我们定义:b (14)11sec njjj nj b bγ≤≤==∑可见: 当时,取得最大值.()1,1,0,0,,0b = γ12当时,取得最小值.()0,1,0,0,,0b = γ0即的取值范围为,设.一般地,值越大最大隶属原则有效程度越高;而值越大,γ012γ≤≤()02120γγγ-'==-β'γ'最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:(15)()112121n n n n βββαγγγ'--⎛⎫===⎪'--⎝⎭使用指标能更准确地表明实施最大隶属原则的有效性.α2. 指标的使用α从指标的计算公式看出与成反比,与成正比.由与的取值范围,可以讨论的取值范围:ααγββγα当取最大值,取最小值时,将取得最小值;γβα0当取最小值,取最大值时,将取得最大值:因为 ,所以可定义时,.即:γβα0limγα→=+∞0γ=α=+∞.0α≤<+∞由以上讨论,可得如下结论:当 时,可认定施行最大隶属原则完全有效;当时,可认为α=+∞1α≤<+∞施行最大隶属原则非常有效;当时,可认为施行最大隶属原则比较有效,其有效程度即为值;当0.51α≤<α21时可认为施行最大隶属原则是最低效的;而当时,可认定施行最大隶属原则完全无效.有了测00.5α<<0α=量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级.讨论a . 在很多情况下,可根据值的大小来直接判断使用最大隶属原则的有效性而不必计算值.根据与βαα之间的关系,当,且时,一定存在.通常评价等级数取和之间,所以这一条件往往β0.7β≥4n >1α>494n >可以忽略,只要就可免算值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.0.7β≥αb . 如果对进行归一化处理而得到,则可直接根据进行最大隶属原则的有效度测量.()12,,,m b b b b = b 'b '(四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用.举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设是一个带出发点和收点的容量-费用网络,(),,,D V A c ω=s v t v 对于任意,表示弧上的容量,表示弧上通过单位流量的费用,是给定的非负数,问(),i j v v A ∈ij c (),i j v v ij ω(),i j v v 0v 怎样制定运输方案使得从到恰好运输流值为的流且总费用最小?如果希望尽可能地节省时间并提高道路s v t v 0v的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从到运送的流的值恰好为;(2)总运输费用最小;(3)在容量大的弧 上适当多运输.如果仅考虑s v t v 0v ij c (),i j v v 条件(1)和(2),易写出其数学模型为:()()()()()()()}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v A v v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑把条件(3)中的“容量大”看作上的一个模糊子集,定义其隶属函数:为:A Aμ[]0,1A →()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中(平均容量)()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑:23()()()()21,21,0,11i j i j ij v v A ij v v A A c c d A c c -∈-∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎪⎢⎥->⎪⎢⎥⎪⎣⎦⎩∑∑::建立是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量大的弧,人为地降低ij μij c (),i j v v 运价,形成“虚拟运价”,其中满足:越大,相应的的调整幅度也越大.选取为,ij ωij ωij ωij c ij ωij ω()1k ij ij ij ωωμ=-.其中是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),取值(),ijv v A ∈k k 越小;当取值足够大时,便可忽略条件(3) .一般情况下,合适的值最好通过使用一定数量的实际数据进k k 行模拟、检验和判断来决定.最后,用代替原模型中的,得到一个新的模型.用现有的方法求解这ij ωM ij ωM '个新的规划问题,可期望得到满足条件(3)的解.模型的评价此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一) 灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1. 原始数据初值化变换处理分别用时间序列的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,()k 各值均大于零,且数列有共同的起点.2. 求关联系数()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数01ρ<<254. 求关联度 ()()11ni k i k k r n ξ==∑(二) 灰色预测1. 灰色预测方法的特点(1) 灰色预测需要的原始数据少,最少只需四个数据即可建模;(2) 灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3) 灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为:(1)1-ADO :对原始数据序列进行一次累加生成序列(){}0k x ()1,2,,k n = ()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =。
数学建模方法与应用
数学建模方法与应用这些方法可以解一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势): matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。
在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。
其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划、整数规划。
2数学模型方法分析数学模型方法分析简述函数关系可以说是一种变量相依关系的数学模型.数学模型方法是处理科学理论问题的一种经典方法,也是处理各类实际问题的一般方法.掌握数学模型方法是非常必要的.在此,对数学模型方法作一简述.数学模型方法(Mathematical Modeling)称为MM方法.它是针对所视察的问题构造出相应的数学模型,通过对数学模型的研究,使问题得以解决的一种数学方法.数学模型的含义数学模型是针关于现实世界的某一特定对象,为了一个特定的目的,依据特有的内在规律,做出必要的简化和假设,运用适当的数学工具,采纳形式化语言,概括或近似地表述出来的一种数学结构.它或者能解释特定对象的现实性态,或者能猜测对象的将来状态,或者能提供处理对象的最优决策或控制.数学模型既源于现实又高于现实,不是实际原形,而是一种模拟,在数值上可以作为公式应用,可以推广到与原物相近的一类问题,可以作为某事物的数学语言,可译成算〔法语〕言,编写程序进入计算机.数学模型的建立过程建立一个实际问题的数学模型,必须要一定的洞察力和想像力,筛选、抛弃次要因素,特别主要因素,做出适当的抽象和简化.全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环.3数学建模必须要学些什么数学建模方法与应用:准备一些基本知识吧,比如线性规划、运筹学方面的东西、立即过程、微分方程的定性理论等等,技术方面学一学matlab、spss、stata、sas、maple、c/c++等等。
数学建模方法及其应用
数学建模方法及其应用
数学建模是一种通过建立数学模型来解决现实问题的方法。
它可以应用于各种领域,包括物理学、工程学、经济学、环境科学、生物学等。
以下是一些常用的数学建模方法及其应用:
1.微分方程模型:用于描述动态系统的变化规律,包括传热、传质、机械运动等。
应用领域包括物理学、化学工程、生态学等。
2.优化模型:用于最大化或最小化某个目标函数,如生产成本最小化、资源利用最大化等。
应用领域包括供应链管理、金融风险管理、交通规划等。
3.图论模型:用于描述图形结构和网络连接关系,包括最短路径、最小生成树、网络流等。
应用领域包括电力系统优化、社交网络分析、交通路线规划等。
4.概率统计模型:用于描述随机事件和概率分布,包括回归分析、假设检验、时间序列分析等。
应用领域包括经济预测、医学统计、风险评估等。
5.离散事件模型:用于描述离散事件的发生和演化过程,包括排队论、蒙特卡洛模拟等。
应用领域包括交通流量预测、物流调度、金融风险评估等。
这只是数学建模的一小部分方法和应用,实际上还有很多其他方法和领域。
数学建模可以帮助解决实际问题,优化决策,提高效率和效果。
数学建模方法和应用
数学建模方法和应用数学作为一门学科和一种工具,一直在各个领域中发挥着重要的作用。
数学建模是一种解决实际问题的方式,不仅可以帮助人们理清复杂的问题脉络,还能够精确地描述问题的本质和规律。
本文将介绍数学建模的概念、方法和应用领域。
一、数学建模的概念数学建模是指利用数学语言和方法来解决实际问题的过程。
其具体步骤一般包括问题的分析、模型的建立、模型的求解及模型的验证等。
数学建模主要涉及数学分析、统计学、概率论、图论、运筹学、优化理论等多个学科。
数学建模的核心在于建立一个恰当的模型,即根据问题的特征和需求,选择合适的数学工具和方法,将问题抽象成一个可以用数学语言和符号表示的模型。
这个模型不仅要简单明了,而且还要尽量贴近实际情况,并且具有可解性和可行性。
只有建立了一个好的模型,才能够得到一个有效的解决方案。
二、数学建模的方法数学建模的方法根据问题的类型和需求而不同。
一般来说数学建模可以分为以下几个步骤:1. 问题分析:明确问题背景、目标和限制条件等,确定问题的类型和性质。
2. 建立模型:将问题抽象成一个可以用数学方法求解的模型,选择合适的数学工具和方法。
3. 模型求解:利用数学工具和方法求解模型,得到问题的最优解或近似解。
4. 模型验证:将模型的结果与实际情况进行比较,评估模型的可靠性和适用性。
数学建模的方法需要结合具体的问题和数据来分析和处理。
在建模过程中需要注意对数据的处理,同时也要注意不要过度追求数学细节而将问题复杂化。
三、数学建模的应用数学建模可以应用于众多领域,如经济、物理、化学、医学、生物学、环境科学等。
下面介绍其中的几个应用领域:1. 生态学生态学是一门综合性学科,用数学工具和方法解决复杂的生态系统问题已成为一个重要的趋势。
生态建模可以对生态系统的结构和功能进行定量描述,从而预测生态系统的演化和变化趋势。
2. 金融数学建模在金融领域中应用广泛,主要涉及到风险管理、资产定价、投资策略、股票波动率预测等问题。
数学建模中的主要方法和应用
数学建模中的主要方法和应用数学建模是当今现代科学技术发展中的重要组成部分,它将数学方法、计算机技术与实际问题结合,通过数学模型建立、分析和求解实际问题,为人类社会的发展提供了巨大的支持和帮助。
数学建模方法丰富多彩,如最优化方法、微分方程模型、图论模型和随机过程模型等,其中最常用的是最优化方法和微分方程模型。
下面将从理论和实践两个方面展开介绍,重点讲述数学建模中最常用的方法及其应用。
一、最优化方法最优化方法是数学建模中应用广泛的一种方法,它是求解优化问题的一类数学算法。
在数学建模中,最优化方法的应用范围非常广泛,可以用于优化问题的建模与求解,如在工业生产中,我们需要在保证质量的前提下尽量节约原材料和能源,这时就可以采用最优化方法建立优化模型。
最优化方法按不同的算法分类,可以分为线性规划、非线性规划和动态规划等,其中线性规划是最为常见和基础的一种方法。
线性规划的求解一般采用单纯形法,通过计算确定最优解。
非线性规划是线性规划的扩展,它是求解目标函数不是线性函数的规划问题。
非线性规划的求解方法有牛顿法和梯度下降法等,这些方法都需要利用微积分的基础知识。
对于一个复杂的优化问题,在建立模型的过程中,最关键的就是确定目标函数。
一个好的目标函数需要具备可行性、一致性、可表达性和可求解性等特点。
在具体求解过程中,还需要对目标函数进行求导,确定优化点,并验证该点是否为全局最优解。
二、微分方程模型微分方程模型是数学建模中常用的一种方法,它是利用微积分的基础知识建立模型,解决与时间有关的问题。
在实际生活中,许多问题都与时间有关,如人口增长、物种灭绝、气候变化等,这些问题的变化过程都可以通过微分方程模型进行描述和分析。
微分方程模型按不同级别分类,可以分为一阶微分方程、二阶微分方程和高阶微分方程等,其中最为常用的是一阶微分方程。
一阶微分方程是指微分方程中未知函数的导数最高次数为一的情况,它可以描述很多与时间相关的变化问题。
常用数学建模方法及实例
常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。
常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。
一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。
它常用于资源分配、生产计划、供应链管理等领域。
例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。
产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。
工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。
公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。
二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。
整数规划常用于离散决策问题。
例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。
公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。
它广泛应用于经济、金融和工程等领域。
例3:公司通过降低售价和增加广告费用来提高销售额。
已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。
已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。
四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。
例4:求解最短路径问题。
已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。
求从起始城市到目标城市的最短路径。
五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。
数学建模思想方法大全及方法适用范围
数学建模思想方法大全及方法适用范围数学建模是指运用数学方法和技巧解决实际问题的过程。
不同的问题需要不同的建模方法和思想,下面是一些常用的数学建模思想方法及其适用范围。
1.数学规划方法:包括线性规划、整数规划、非线性规划等。
适用于有约束条件的最优化问题,如资源分配、生产计划等。
2.动态规划方法:适用于具有最优子结构的问题,通过将问题划分为子问题,并利用子问题的最优解构建原问题的最优解。
常用于路径规划、资源管理等。
3.随机过程方法:适用于具有随机特性的问题,如排队论、随机模拟等。
常用于风险评估、金融风险管理等领域。
4.图论方法:适用于用图形表示问题的结构和关系的问题,如网络优化、旅行商问题等。
5.统计建模方法:包括回归分析、时间序列分析、方差分析等。
适用于通过样本数据建立数学模型,分析和预测问题。
6.数据挖掘方法:包括聚类分析、关联规则挖掘、分类预测等。
适用于从大规模数据中发现隐藏的模式和规律。
7.模糊综合评价方法:适用于多指标评价和决策问题,通过模糊数学的方法将主观和客观指标进行综合评价,辅助决策。
8.最优化方法:包括梯度下降法、遗传算法、模拟退火等。
适用于求解无约束优化问题和非线性问题。
9.离散事件系统建模方法:适用于描述离散事件发展过程的问题,如物流调度、生产流程优化等。
10.时空建模方法:适用于描述时空变化和相互作用的问题,常用于交通流动、城市规划等领域。
11.复杂网络建模方法:适用于分析复杂系统中的网络结构和动态特性,如社交网络、生物网络等。
12.随机优化方法:将随机性引入传统的优化方法,如随机梯度下降法、遗传算法等。
以上是一些常用的数学建模思想方法及其适用范围,实际问题的建模过程中可以根据具体情况选择合适的方法,甚至可以综合运用多种方法。
数学建模的关键在于将实际问题抽象为数学问题,并选择合适的数学工具进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中国国赛专题培训(一)《数学建模思想方法大全及方法适用范围》主讲人:厚积薄发(冰强,BruceJan)第一篇:方法适用范围一、统计学方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)1.2 聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(7)可变法(8)利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
4、方法步骤(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,(3)重新计算类间距离,得到衡量矩阵(4)重复第2步,直到只剩下一个类;补充:聚类分析是一种无监督的分类,下面将介绍有监督的分类。
1.3数据分类1、方法概述数据分类是一种典型的有监督的机器学习方法,其目的是从一组已知类别的数据中发现分类模型,以预测新数据的未知类别。
这里需要说明的是:预测和分类是有区别的,预测是对数据的预测,而分类是类别的预测。
2、分类方法:(1)神经网路(2)决策树(这里不再阐述,有兴趣的同学,可以参考数据挖掘和数据仓库相关书籍)3、注意事项神经网路适用于下列情况的分类:(1)数据量比较小,缺少足够的样本建立数学模型;(2)数据的结构难以用传统的统计方法来描述(3)分类模型难以表示为传统的统计模型神经网路的优点:分类准确度高,并行分布处理能力强,对噪声数据有较强的鲁棒性和容错能力,能够充分逼近复杂的非线性关系,具备联想记忆的功能等。
神经网路缺点:需要大量的参数,不能观察中间学习过程,输出结果较难解释,会影响到结果的可信度,需要较长的学习时间,当数据量较大的时候,学习速度会制约其应用。
4、步骤(1)初始化全系数(2)输入训练样本(3)计算实际输出值(4)计算实际输出值和期望输出值之间的误差(5)用误差去修改权系数(6)判断是否满足终止条件,如果满足终止,否则进入第二步1.4判别分析1、概述其是基于已知类别的训练样本,对未知类别的样本判别的一种统计方法,也是一种有监督的学习方法,是分类的一个子方法!具体是:在研究已经过分类的样本基础上,根据某些判别分析方法建立判别式,然后对未知分类的样本进行分类!2、分类根据判别分析方法的不同,可分为下面几类:(1)距离判别法(2) Fisher判别法(3) Bayes判别法(4)逐步判别法关于这几类的方法的介绍,大家可以参考《多元统计学》,其中比较常用的是bayes判别法和逐步判别法3、注意事项:判别分析主要针对的是有监督学习的分类问题。
共有四种方法,这里重点注意其优缺点:(1)距离判别方法简单容易理解,但是它将总体等概率看待,没有差异性;(2) Bayes判别法有效地解决了距离判别法的不足,即:其考虑了先验概率——所以通常这种方法在实际中应用比较多!(3)在进行判别分析之前,应首先检验各类均值是不是有差异(因为判别分析要求给定的样本数据必须有明显的差异),如果检验后某两个总体的差异不明显,应将这两个总体合为一个总体,再由剩下的互不相同的总体重现建立判别分析函数。
(4)这里说明下Fisher判别法和bayes判别法的使用要求:两者对总体的数据的分布要求不同,具体的,Fishe要求对数据分布没有特殊要求,而bayes 则要求数据分布是多元正态分布,但实际中却没有这么严格!(5)可以利用spss,sas等软件来轻松实现4、方法步骤这里以bayes判别法为例讲述(1)计算各类中变量的均值xj及均值向量xh,各变量的总均值xi及均值向量x(2)计算类内协方差及其逆矩阵(3)计算bayes判别函数中,各个变量的系数及常数项并写出判别函数(4)计算类内协方差矩阵及各总协方差矩阵做多个变量的全体判别效果的检验(5)做各个变量的判别能力检验(6)判别样本应属于的类别1.5主成分分析1、概述主成分分析是一种降维数的数学方法,具体就是,通过降维技术立将多个变量化为少数几个主成分的统计分析方法。
在建模中,主要用于降维,系统评估,回归分析,加权分析等等。
2、分类(无)3、注意事项在应用主成分分析时候,应该注意:(1)综合指标彼此独立或者不想关(2)每个综合指标所反映的各个样本的总信息量等于对应特征向量的特征值。
通常要选取的综合指标的特征值贡献率之和应为80%以上(3)其在应用上侧重于信息贡献影响力的综合评价(4)当主成分因子负荷的符号有正也有负的时候,综合评价的函数意义就不明确!4、方法步骤1.6 因子分析1、概述其是也是将变量总和为数量较少的几个因子,是降维的一种数学技术!它和主成分分析的最大区别是:其是一种探索性分析方法,即:通过用最少个数的几个不可观察的变量来说明出现在可观察变量中的相关模型(有点类似于前面讲述的分类和聚类的区别)它提供了一种有效的利用数学模型来解释事物之间的关系,体现出数据挖掘的一点精神!他可以用来解决降维,系统评估,加权分析等方法。
2、分类因子分析是R型,即对变量研究3、注意事项(1)其不是对研究总体的变量的降维,而是根据原始变量信息构造新的变量,作为共同因子(2)它通过旋转可以使得因子变量具有可解释性(3)因子分析和主成分分析的区别和联系<1>两者都是降维数学技术,前者是后者的推广和发展<2>主成分分析只是一般的变量替换,其始终是基于原始变量研究数据的模型规律;而因子分析则是通过挖掘出新的少数变量,来研究的一种方法,有点像数据挖掘中的关联关则发现!4、方法步骤(略)大家可以去论坛上下载相关电子资源,也可以参考《多元统计学》1.7残差分析1、概述在实际问题中,由于观察人员的粗心或偶然因素的干扰。
常会使我们所得到的数据不完全可靠,即出现异常数据。
有时即使通过相关系数或F检验证实回归方程可靠,也不能排除数据存在上述问题。
残差分析的目的就在于解决这一问题。
所谓残差是指实际观察值与回归估计值的差。
2、分类无3、应用(1)通过残差分析来排除异常数据(2)通过残差分析来检验模型的可靠性还有很多应用,大家在使用过程中据情况选取,灵活应用!1.8典型相关分析1、概述前面介绍的方法主要是一个变量和多个变量之间的关系,而典型相关分析研究的是多个变量和多个变量之间的关系,或者是一组变量和一组变量之间关系!其可以揭示两组变量之间的关系,从而供大家研究两个现象之间的关系,例如:蔬菜的产出水平和影响产出水平的变量之间的关系!2、分类多对多的变量关系研究!3、注意事项(1)其可以很好地解决组合相关性的问题(2)其还局限于两组变量的研究,而且要求这两组变量都是连续变量且需服从多元正态分布1.9时间序列1、概述时间序列预测法是一种定量分析方法,它是在时间序列变量分析的基础上,运用一定的数学方法建立预测模型,使时间趋势向外延伸,从而预测未来市场的发展变化趋势,确定变量预测值。
其基本特点是:假定事物的过去趋势会延伸到未来;预测所依据的数据具有不规则性;撇开市场发展之间的因果关系。
2、分类时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。
方法分类:(1)平均数预测(简单算术平均法,加权算术平均法,几何平均数法)(2)移动平均数预测(一次移动平均法,二次移动平均法)(3)指数平滑法预测(一次,二次,三次指数平滑法)(4)趋势法预测(分割平均法,最小二乘法,三点法)(5)季节变动法(简单平均法,季节比例法)3.注意事项(1)季节变动法预测需要筹集至少三年以上的资料(2)移动平均法在短期预测中较准确,长期预测中效果较差;(3)移动平均可以消除或减少时间序列数据受偶然性因素干扰而产生的随机变动影响。
(4)一次移动平均法适用于具有明显线性趋势的时间序列数据的预测;一次移动平均法只能用来对下一期进行预测,不能用于长期预测,必须选择合理的移动跨期,跨期越大对预测的平滑影响也越大,移动平均数滞后于实际数据的偏差也越大。
跨期太小则又不能有效消除偶然因素的影响。
跨期取值可在3~20间选取。
(5)二次移动平均法与一次移动平均法相比,其优点是大大减少了滞后偏差,使预测准确性提高;二次移动平均只适用于短期预测。
而且只用于的情形。
(6还有一些注意事项,这里就不在意义罗列4.方法步骤(略)统计学的分析方法到这先告一段落!下面进入优化的方法介绍:二、优化方法1、概述在一系列的条件限制下,寻求最优方案,使得目标达到最优的问题统称为优化问题。
解决这类问题的方法,自然就称之为优化方法,又成为数学规划!其是运筹学的一个重要分支!2、分类优化问题可以归结为优化模型,按照优化模型求解方法的不同,可以分为以下类别:(1)按照有无约束条件:无约束和约束最优化问题(2)按照决策变量是否取之连续分为:a) 数学规划或连续规划:LP,NLP,QPb) 离散优化或组合优化:IP(3)单目标规划和多目标规划(4)确定性规划和不确定性规划(5)目标规划,动态规划,非线性规划,多目标规划等3、注意事项(1)约束优化问题可以转化为无约束优化问题来解决(2)多目标规划可以通过适当的方法转化为但目标规划来解决(3)非线性规划,在一定的条件下,可以近似为线性规划来解决(4)不确定性规划可以通过适当的技巧转化为确定性方法解决这些转化,大家可以参阅优秀论文,注意学取人家的经验,从而建立自己的能力提升!也可以参考相关优化书籍和运筹学书籍来学习,书上都有介绍!4、步骤简要概括(1)建立规划模型(2)选择方法(3)结果解释三、排队论1.概述在我们的生活中,经常会做和排队想关的事情,比如:银行等待取钱,医院挂号排队,理发排队等等,都会涉及到排队问题,并且2009年国赛B题第五小题就考了和排队论相关的问题。