函数图像及其变换
函数与图像的性质与变换
函数与图像的性质与变换函数与图像是数学中的重要概念,它们之间存在着密不可分的关系。
本文将探讨函数与图像的性质以及它们之间的变换。
一、函数的性质函数是一种关系,它把一个集合中的每个元素映射到另一个集合中的唯一元素。
函数的性质包括定义域、值域、单调性、奇偶性、对称轴等。
1. 定义域:函数的定义域是指函数的自变量可能取值的范围。
例如,对于函数f(x)=√(x+2),其定义域为x≥-2。
2. 值域:函数的值域是指函数的因变量可能取值的范围。
继续以f(x)=√(x+2)为例,其值域为y≥0。
3. 单调性:函数的单调性是指函数在定义域上的增减性。
分为单调递增和单调递减两种情况。
例如,函数f(x)=x^2在定义域上是单调递增的。
4. 奇偶性:函数的奇偶性是指函数在对称中心的性质。
如果函数f(x)=f(-x),则为偶函数;如果函数f(x)=-f(-x),则为奇函数。
5. 对称轴:函数的对称轴是指函数图像关于某一直线对称。
对于偶函数,其对称轴为y轴;对于奇函数,其对称轴为原点。
二、图像的性质函数的图像是函数在坐标系中的表示,具有一些特定的性质。
这些性质包括图像的开口方向、拐点、渐近线等。
1. 开口方向:对于二次函数,开口的方向与二次项系数的正负相关。
当二次项系数大于0时,开口向上;当二次项系数小于0时,开口向下。
2. 拐点:拐点是指函数图像的曲线由凹变凸或由凸变凹的点。
对于二次函数,拐点即为抛物线的顶点。
3. 渐近线:函数图像的渐近线是指函数曲线接近某一直线,但不与其相交。
对于有理函数而言,它可能有水平渐近线、垂直渐近线或者斜渐近线。
三、函数图像的变换函数的图像可以通过一系列变换得到新的图像,这些变换包括平移、伸缩和翻转等。
1. 平移:函数图像的平移是指将函数图像沿横轴或者纵轴方向移动一定的单位。
例如,将函数f(x)平移h个单位,则新函数为f(x-h);将函数f(x)平移k个单位,则新函数为f(x)+k。
2. 伸缩:函数图像的伸缩是指将函数图像在横轴或者纵轴方向进行拉伸或压缩。
函数图像变换与旋转
函数图像变换与旋转一.平移变换:1.y=f (x )→y=f(x±a )(a>0) 原图像横向平移a 个单位(左+右-)2.y=f (x )→y=f(x)±b(b>0) 原图像纵向平移b 个单位(上+下-)3.若将函数y=f (x )的图像右移a ,上移b 个单位,得到函数y=f (x-a )+b二.对称变换:1.y=f (x )→y=f(-x) 原图像与新图像关于y 轴对称;对比:若f=(-x )=f (x ) 则函数自身的图像关于y 轴对称;2.y=f (x )→y=-f(x) 原图像与新图像关于x 轴对称;3.y=f (x )→y=-f(-x) 原图像与新图像关于原点对称;对比:若f (-x )=-f (x ) 则函数自身的图像关于原点对称;4.y=f (x )→y=f -1(x ) 原图像与新图像关于直线y=x 对称;5.y=f (x )→y=f -1(-x ) 原图像与新图像关于直线y=-x 对称;6.y=f (x )→y=f(2a-x ) 原图像与新图像关于直线x=a 对称;7.y=f (x )→y=2b-f (x ) 原图像与新图像关于直线y=b 对称;8.y=f (x )→y=2b-f (2a-x ) 原图像与新图像关于点(a ,b )对称; 三.翻折变换:1. y=f (x )→y=f(|x|)的图像在y 轴右侧(x>0)的部分与y=f (x )的图像相同,在y 轴的左侧部分与其右侧部分关于y 轴对称;2. y=f (x )→y=|f(x)|的图像在x 轴上方部分与y=f (x )的图像相同,其他部分图像为y=f (x )图像下方部分关于x 轴的对称图像;3. y=f (x )→y=f(|x+a|)变换步骤:法1:先平移|a|个单位(左+右-)保留直线x=a 右边图像,后去掉直线x=a 左边图像并作关于直线x=a 对称图像y=f (x )→y=f(x+a )→y=f(|x+a|)法2:先保留y 轴右边图像,去掉y 轴左边图像,并作关于y 轴对称图像,后平移|a|个单位(左+右-)y=f (x )→y=f(|x|)→y=f(|x+a|)四.伸缩变换:1.y=f (x )→y=af(x)(a>0) 原图像上所有点的纵坐标变为原来的a 倍,横坐标不变;2.y=f (x )→y=f(ax)(a>0) 原图像上所有的横坐标变为原来的1a ,纵坐标不变;五.对称性:1.函数自身对称性之轴对称:(1).若f (x )=f (2a-x )(或f (a+x )=f (a-x )或f (-x )=f (2a+x ))则函数自身关于直线x=a 对称;(2).若y=f (x )的图像关于直线x =a+b 2对称 等价于f (a+mx )=f (b-mx )等价于 f (a+b-mx )=f (mx );2.函数自身对称性之中心对称:(1).若f (mx+a )=-f (b-mx ),则函数自身关于点(a+b 2,0)对称; (2).若f (mx+a )+f (b-mx )=c ,则函数自身关于点(a+b 2,c 2)对称; (3).若f(a+x)+f(a-x)=2b (或f (x )+f(2a-x)=2b 或f (-x )+f(2a+x)=2b则函数自身关于点(a,b )对称;3.不同函数之间的对称性:(1).函数y=f (a+x ),y=f (b-x )的图像关于直线x =b−a 2对称;推论:函数y=f(a+x)与f(a-x)的图像关于直线x=0对称;函数y=f(x)与y=f(2a-x)的图像关于直线x=a 对称;函数y=f(-x)与y=f(2a+x)的图像关于直线x=-a 对称;特例:函数y=f (a+x ),y=f (a-x )的图像关于直线x=0对称;(2).函数y=f (a+x ),y=-f (b-x )的图像关于点(b−a 2,0)对称;特例:函数y=f (a+x )与y=-f (a-x )关于原点中心对称4.抽象函数的对称性:(1).性质一:若函数y=f(x)关于直线x=a 轴对称,则以下三个时式子成立切等价: f(a+x)=f(a-x); f(2a-x)=f(x); f(2a+x)=f(-x);(2).性质二:若函数y=f(x)关于点(a ,0)中心对称,则以下三个式子成立且等价: f(a+x)=-f(a-x); f(2a-x)=-f(x); f(2a+x)=-f(-x);易知,y=f (x )为偶(或奇)函数分别为性质一(或二)当a=0时的特例;六.周期性;1.f (x+a )=f (x ) 周期:|a|2.f (x+a )=-f (x ) 周期:2|a|3.f (x+a )=±1f (x )(或−11+f (x )) 周期:2|a| 4.f (x+a )=f (x-a ) 周期:2|a|5.f (x+a )=-f (x-a ) 周期:4|a|6.f (x+a )=1−f (x )1+f (x )(或1+f (x )1−f (x )) 周期:4|a|7.f(x+2a)=f(x+a)-f(x) 周期:6|a|8.若p>0,f(px)=f(px-p 2) 周期:p 2 七.对称性与周期性:1.若y=f (x )的图像关于直线x=a ,x=b 对称(a 不等于b ),则f (x )是周期函数, 且周期T=2|a-b|;特例:若y=f (x )是偶函数且其图像关于直线x=a 对称,则周期T=2|a|;2.若y=f (x )关于点(a ,0),(b ,0)对称,则f (x )是周期函数,且周期T=2|a-b|;3.若y=f (x )的图像关于直线x=a ,对称中心(b ,0)对称(a 不等于b )则f (x )为周 期函数,且周期T=4|a-b|;特例;若y=f (x )是奇函数且其图像关于直线x=a 对称,则周期T=4|a|;综上:若函数的图像同时具备两种对称性,两条对称轴或两个对称中心,或一条对称轴一个对称中心,则函数必定为周期函数。
函数图像变换(整理)
函数的图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。
由函数y = f (x)可得到如下函数的图象1. 平移:(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。
(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。
2. 对称:✧ 关于直线对称(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。
(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。
(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。
(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。
(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。
(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。
(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。
(留正去负,正左翻(关于y 轴对称));(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。
(留正去负,负上翻;)一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m2a b x -=对称。
✧ 关于点对称(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。
(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。
3. 伸缩(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。
高考数学中的函数图像变换及其应用
高考数学中的函数图像变换及其应用高考数学作为广大学生面临的一大挑战,其中数学分值占比不容忽视,其中函数图像变换的相关知识成为了考生备考重点之一。
本文将介绍这些知识,并探讨其相关应用。
一、函数图像的平移平移是函数图像变换中最基本的一种,它是通过改变函数图像与坐标轴的相对位置来实现的。
其中,平移的方向与距离是决定平移效果的两个重要因素。
对于一般的函数y=f(x),将它的图像向右平移a个单位长度的方法如下:设新函数为y=f(x-a),则各个点的实际位置为(x+a,y),根据平移的原理,需要将这些点在坐标系中向左平移a个单位长度即可实现。
类似地,将函数图像向左平移a个单位长度的方法就是y=f(x+a),而将其上移或下移b个单位长度的方法分别为y=f(x)+b 和y=f(x)-b。
函数图像的平移主要应用于研究函数图像的周期性,以及改变其输出值区间、控制其渐进线等方面。
二、函数图像的伸缩伸缩也是函数图像变换中常用的一种方法,它是通过改变函数图像沿x、y轴的长度比例来实现的。
对于一般的函数y=f(x),将其图像沿x轴方向压缩k倍的方法如下:设新函数为y=f(kx),则每个点的实际位置为(x/k,y),因此只需将这些点在坐标系中沿x轴方向伸缩k倍即可。
类似地,函数图像沿y轴方向压缩k倍的方法为y=kf(x),而沿x、y轴方向伸缩k倍的方法分别为y=f(x/k)和y=kf(kx)。
函数图像的伸缩主要应用于研究函数图像的单调性、极值、导数等性质,以及折线图、曲线图的绘制等方面。
三、函数图像的旋转旋转是函数图像变换中相对复杂的一种,它是通过改变函数图像与坐标轴的相对位置和形状来实现的。
对于一般的函数y=f(x),将其图像沿原点逆时针旋转α角的方法如下:设新函数为y=f(xcosα+ysinα),则原函数中每个点的坐标(x,y)将变为(xcosα+ysinα,-xsinα+ycosα),按照旋转的原理,需要将这些点在坐标系中沿逆时针方向旋转α角度即可实现。
数学中的函数图像分析与变换
数学中的函数图像分析与变换函数是数学中一种非常重要的概念,它描述了数值之间的关系。
在数学中,函数图像分析与变换是研究函数图像的性质、形状以及如何通过变换改变函数图像的过程。
本文将介绍函数图像分析与变换的基本概念和方法。
一、函数图像分析函数图像分析是研究函数图像的性质和特点,通过分析函数图像可以了解函数的增减性、极值点、拐点等重要信息。
1. 函数的增减性分析函数的增减性描述了函数在定义域上的增减趋势。
要分析函数的增减性,可以通过求函数的导数来确定。
当函数的导数大于零时,函数在该区间上是递增的;当函数的导数小于零时,函数在该区间上是递减的。
2. 函数的极值点分析函数的极值点是函数图像上的局部最大值或最小值点。
要找到函数的极值点,可以通过求函数的导数和导数的零点来确定。
当导数的零点为函数的极值点,且导数在该点的左侧由正变负或由负变正时,该点为函数的极大值点或极小值点。
3. 函数的拐点分析函数的拐点是函数图像上的曲线由凹转凸或由凸转凹的点。
要确定函数的拐点,可以通过求函数的二阶导数来判断。
当函数的二阶导数大于零时,函数的图像是凸的;当函数的二阶导数小于零时,函数的图像是凹的。
而函数的拐点就是二阶导数等于零的点。
二、函数图像变换函数图像变换是通过对函数进行平移、伸缩、翻转等操作,改变函数图像的形状和位置。
常见的函数图像变换包括平移变换、纵向伸缩变换和横向伸缩变换。
1. 平移变换平移变换是将函数图像沿横轴或纵轴方向移动一定的距离。
对于函数y=f(x),进行平移变换后得到y=f(x-a),表示函数图像沿横轴正方向平移a个单位;y=f(x)+b,表示函数图像沿纵轴正方向平移b个单位。
2. 纵向伸缩变换纵向伸缩变换是改变函数图像在纵向上的形状。
对于函数y=f(x),进行纵向伸缩变换后得到y=a*f(x),其中a为正数,表示函数图像在纵向上被压缩,a为大于1的数;a为小于1的数时,表示函数图像在纵向上被拉伸。
3. 横向伸缩变换横向伸缩变换是改变函数图像在横向上的形状。
三种图象变换:平移变换、对称变换和伸缩变换
三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。
③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。
函数图像的变换PPT
当函数图像在y轴方向上伸缩时,其形状和位置会发生变化,但对称性保持不变。
详细描述
沿y轴伸缩是指保持x轴不变,只改变y轴的长度。当y增大时,整个函数图像向上平移;当y减小时, 整个函数图像向下平移。这种变换不会改变函数的值,只是改变了图像在y轴上的位置。
同时沿x轴和y轴伸缩
总结词
当函数图像在x轴和y轴方向上都发生 伸缩时,其形状和位置会发生变化, 但对称性保持不变。
03
伸缩变换
沿x轴伸缩
总结词
当函数图像在x轴方向上伸缩时,其 形状和位置会发生变化,但对称性保 持不变。
详细描述
沿x轴伸缩是指保持y轴不变,只改变x 轴的长度。当x增大时,整个函数图像 向右平移;当x减小时,整个函数图像 向左平移。这种变换不会改变函数的 值,只是改变了图像在x轴上的位置。
沿y轴伸缩
详细描述
旋转角度的大小对函数图像的形状和位置有 直接影响。例如,当一个正弦函数图像顺时 针旋转90度时,它将变成一个余弦函数图像 ;而当它逆时针旋转90度时,它将变成一个 正切函数图像。此外,旋转角度也会影响图 像的位置,例如,当图像逆时针旋转30度时 ,图像上的所有点都会沿着顺时针方向移动
30度。
旋转变换实例
总结词
旋转变换是指函数图像绕原点旋转的过程。
详细描述
旋转变换可以通过将直角坐标转换为极坐标 来实现。例如,函数$y = f(x)$的图像绕原 点逆时针旋转$theta$角度后,新的函数可 以表示为$y = f(rcostheta), x = rsintheta$。
复合变换实例
总结词
复合变换是指同时进行平移、伸缩和旋转变换的过程 。
与顺时针旋转相反,如果函数图像按照逆时针方向旋转 ,那么图像上的每一个点都会沿着顺时针方向移动。例 如,如果一个函数图像是关于x轴对称的,那么当它逆时 针旋转90度时,原来的对称轴将变成垂直轴,而原来的y 轴将变成水平轴。
函数图像的变换法则
( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a
a ax a a a
x
ax a ax
1 y 1
a a a
x
a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
16 函数,的图像及其变换
y f ( x)
y f ( x)
y f (| x |)
(4)伸缩变换:
①y=f(x)
f(ax) y= ______; ②y=f(x) af(x) y= ______.
1.思考辨析
静心思考
判一判
基础训练
( )
(1)函数y=f(x)的图像关于原点对称与函数y=f(x)与 y=-f(-x)的图象关于原点对称一致.
考点3:复合函数的零点
1 2. (2015· 日照一模)已知
2
|lg x|,x>0, f(x)= |x| 2 ,x≤0,
则函数 y=2f2(x)-3f(x)
5 . +1 的零点个数是___
1 解析:方程2f (x)-3f(x)+1=0的解为f(x)= 或1.作出y=f(x) 2 的图象,由图象知零点的个数为5.
B. y 2 sin 2 x
C. y 2 cos(2 x
4
)
x D. y 2 cos( ) 2 4
(4)由函数y=log2x的图像经过( y=log2(2-x)的图像 ( )
)的变化,就变为
A.先关于x轴对称,再向左平移2个单位
B.先关于x轴对称,再向右平移2个单位
C.先关于y轴对称,再向左平移2个单位 D.先关于y轴对称,再向右平移2个单位
角度四:求不等式的解集
4.函数f(x)是定义在[-4,4]上的偶函数, 其在[0,4]上的图象如图所示,那么不等 fx 式 <0的解集为______. cos x
π 解析:在0,2 上y=cos
π x>0,在2,4上y=cos
x<0.
π fx 由f(x)的图象知在1,2上 <0, cos x
高考复习函数图象及其变换
高考复习函数图象及其变换.几种函数的图像基本初等函数及图象(大致图像)函数图像一次函数y=kxb二次函数y=axbxc指数函数y=ax对数函数y=logaxy =f(x+h)y=f(mx+h)f(x)+kf(ωx)Af(x)②上下平移:y=eqo(――→,sup(k>时上移k个单位),sdo(k<时下移|k|个单位))f(x)y=()对称变换①y=f(x)与y=-f(x)的图象关于对称②y=f(x)与y=f(-x)的图象关于对称③y=f(x)与y=-f(-x)的图象关于对称x轴y轴原点④y=f(x)与y=f-(x)的图象关于直线对称⑤y=f(x)与y=-f-(-x)的图象关于直线对称⑥y=f(x)与y=f(a-x)的图象关于直线对称.y=xy =-xx=a()翻折变换①作出y=f(x)的图象将图象位于x轴下方的部分以x轴为对称轴翻折到上方其余部分不变得到的图象②作出y=f(x)在y轴上及y轴右边的图象部分并作y轴右边的图象关于y轴对称的图象即得的图象.y=|f(x)|y=f(|x|)()伸缩变换①y=Af(x)(A)的图象可将y=f(x)的图象上所有点的纵坐标变为原来的倍横坐标而得到②y=f(ax)(a)的图象可将y=f(x)的图象上所有点的横坐标变为原来的倍纵坐标而得到A不变不变【答案】B【解析】.f(x)=|x-|的图象为如下图所示中的().为了得到函数y=x--的图象只需把函数y=x的图象上所有的点()A.向右平移个单位长度再向下平移个单位长度B.向左平移个单位长度再向下平移个单位长度C.向右平移个单位长度再向上平移个单位长度D.向左平移个单位长度再向上平移个单位长度【解析】由y=x得到y=x--需用x-换x用y+换y即eqblc{rc(avsalco(x′=x+,y′=y-))∴按平移向量(-)平移即向右平移个单位向下平移个单位.【答案】A.函数f(x)=ax-b的图象如右图所示其中a、b 为常数则下列结论正确的是()A.abB.abC.abD.ab【解析】因图象是递减的故a又图象是将y =ax的图象向左平移了故b∴选D【答案】D设奇函数f(x)的定义域为,.若当x∈,时f(x)的图像如图所示则不等式f(x)的解集是【解析】由奇函数的图象关于原点对称画出x∈,的图象可知不等式f(x)的解集是(,)∪(,.【答案】(,)∪(,作出下列各个函数的图像:()y=-x()y=logeqf(,)(x+)()y=|logeqf(,)(-x)|()作函数y=x的图象关于x轴对称的图象得到y=-x的图象再将图象向上平移个单位可得y=-x的图象.如图()因为y=logeqf(,)(x+)=-log(x+)=-log(x+)-所以可以先将函数y=logx的图象向左平移个单位可得y=log(x+)的图象再作图象关于x轴对称的图象得y=-log(x+)的图象最后将图象向下平移个单位得y=-log(x+)-的图象即为y=logeqf(,)(x+)的图象.如图()作y=logeqf(,)x的图象关于y轴对称的图象得y=logeqf(,)(-x)的图象再把x轴下方的部分翻折到x轴上方可得到y=|logeqf(,)(-x)|的图象.如图作函数图象的一般步骤为:()确定函数的定义域.()化简函数解析式.()讨论函数的性质(如函数的单调性、奇偶性、周期性、最值、极限等)以及图象上的特殊点(如最值点、与坐标轴的交点、间断点等)、线(如对称轴、渐近线等).()选择描点法或图象变换法作出相应的函数图象..采用图象变换法时变换后的函数图象要标出特殊的线(如渐近线)和特殊的点以显示图象的主要特征处理这类问题的关键是找出基本函数将函数的解析式分解为只有单一变换的函数链然后依次进行单一变换最终得到所要的函数图象.作出下列函数的图像解作出的图象将的图象向右平移一个单位再向上平移个单位得的图象()作出的图象保留图象中x≥的部分加上的图象中x的部分关于y轴的对称部分即得的图象其图象依次如下:()若函数解析式中含绝对值可先通过讨论去绝对值再分段作图()利用图象变换作图探究提高作出下列函数的大致图像:()y=eqf(x,|x|)()y=eqf(x+,x-)()y =|logx-|()y=|x-|【解析】()y=eqblc{rc(avsalco(x(x>),-x(x<)))利用二次函数的图象作出其图象如图①()先作出y=logx的图象再将其图象向下平移一个单位保留x轴上及x轴上方的部分将x轴下方的图象翻折到x轴上方即得y=|logx|的图象如图③()先作出y=x的图象再将其图象在y轴左边的部分去掉并作出y轴右边的图象关于y轴对称的图象即得y=|x|的图象再将y=|x|的图象向右平移一个单位即得y=|x|的图象如图④eqx(由图象求解析式)如图所示函数的图象由两条射线及抛物线的一部分组成求函数解析式.【思路点拨】分段求函数解析式再合成分段函数形式本题分别设为一次函数和二次函数形式应抓住特殊点(,)(,)(,)(,)和(,).设左侧射线对应的解析式为y=kx+b(x≤)∵点(,)(,)在此射线上.∴eqblc{rc(avsalco(k+b=,b=))⇒eqblc{rc(avsalco(k=-,b=))∴左侧射线对应的解析式为y =-x+(x≤).同理当x≥时右侧射线对应的解析式为y=x-(x≥).设抛物线对应的解析式为y=a(x-)+(≤x≤a<).将点(,)代入得a+=∴a=-∴抛物线对应的解析式为y=-x+x-(≤x≤)综上所述所求函数解析式为y=eqblc{rc(avsalco(-x+(x<),-x+x-(≤x≤),x -(x>)))由函数图象求其解析式要注意观察各段函数所属的基本函数模型常用待定系数法抓住特殊点从而确定系数..现有四个函数:()y=x·sinx()y=x·cosx()y=x·|cosx|()y=x·x的图象(部分)如下但顺序被打乱则图象()()()()对应的函数序号安排正确的一组是( )A.()()()()B.()()()()C.()()()()D.()()()()【解析】题图①对应的是偶函数图象对应()题图②对应的函数是非奇非偶函数对应()题图③对应的函数当x>时存在函数值为负数对应()故选C【答案】C 例设ab,函数y=(xa)(xb)的图象可能是()解析当xb时y,xb时y≤故选CC()函数y=的图象大致为()A如图所示液体从一圆锥形漏斗漏入一圆柱形桶中开始时漏斗盛满液体经分钟漏完已知圆柱中液面上升的速度是一个常量H是圆锥形漏斗中液面下落的距离则H与下落时间t(分)的函数关系表示的图象只可能是()Bf(x)=|xx|a与x轴恰有三个交点则a=解析y=|xx|,y=a 则两函数图象恰有三个不同的交点如图所示当a=时满足条件已知函数f(x)=|x-x+|()求函数f(x)的单调区间并指出其增减性()求集合M ={m|使方程f(x)=mx有四个不相等的实根}.【思路点拨】()画出f(x)的图象根据图象写出单调区间.()画出两个函数的图象令两个图象有四个交点得m的范围得集合M【解析】f(x)=eqblc{rc(avsalco((x-)-x∈(-∞∪+∞),-(x-)+x∈()))作出图象如图所示.()递增区间为,∞)递减区间为(∞,.()由图象可知y=f(x)与y=mx图象有四个不同的交点直线y=mx应介于x轴与切线l之间.函数的图象形象地显示了函数的性质为研究数量关系问题提供了“形”的直观性它是探求解题途径、获得问题结果、检验解答是否正确的重要工具也是运用数形结合思想解题的前提.从图象的左右分布分析函数的定义域从图象的上下分布分析函数的值域从图象的最高点、最低点分析函数的最值、极值从图象的对称性分析函数的奇偶性从图象的走向趋势分析函数的单调性、周期性等..已知x是方程xlgx=的根x是方程xx=的根则xx等于()A.B.C.D.【答案】D【解析】(分)已知函数f(x)=eqf(ax+,bx +c)(a>b>c∈R)是奇函数当x>时f(x)有最小值其中b∈N*且f()<eqf(,)()试求函数f(x)的解析式()问函数f(x)图象上是否存在关于点(,)对称的两点?若存在求出点的坐标若不存在说明理由.【思路点拨】()根据下列条件:①f(x)为奇函数②当x>时f(x)有最小值③b∈N*且f()<eqf(,)可求abc的值从而可以确定函数f(x)的解析式.()可先假设存在然后根据对称性来解决.【规范解答】()∵f(x)是奇函数∴f(-)=-f()∴eqf(a+,-b+c)=-eqf(a+,b+c)∴c=-c∴c=此时f(x)=eqf(ax+,bx)显然是奇函数分∵a>b>x>∴f(x)=eqf(a,b)x+eqf(,bx)≥eqr(f(a,b))当且仅当x=eqr(f(,a))时等号成立.于是eqr(f(a,b))=∴a =b分由f()<eqf(,)得eqf(a+,b)<eqf(,)即eqf(b+,b)<eqf(,)∴b-b+<解得eqf(,)<b<又b∈N*∴b=∴a=∴f(x)=x+eqf(,x)分()设存在一点(xy)在y=f(x)的图象上并且关于点(,)的对称点(-x-y)也在y=f(x)的图象上.则eqf(xoal(,)+,x)=yeqf((-x)+,-x)=-y分消去y 得xeqoal(,)-x-=∴x=±eqr()∴y=f(x)的图象上存在两点(+eqr()eqr())(-eqr()-eqr())关于点(,)对称分函数的奇偶性、周期性与函数图象的对称性常会放置在一起综合考查.函数f(x)上的某点A(xy)关于点(ab)的对称点为A′(a-x,b-y)利用此关系可求点的坐标或证明函数关于某点的对称问题..要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数等各种基本初等函数的图象..掌握函数作图的两种基本方法:()描点法()图象变换法包括平移变换、对称变换、伸缩变换.理解对数的概念及其运算性质了解对数换底公式能将一般对数转化成自然对数或常用对数了解对数的概念理解对数函数的性质会画对数函数的图象了解指数函数与对数函数互为反函数..对数函数的图象与性质若aa≠xyn∈N则下列各式:①(logax)n=nlogax②(logax)n=logaxn③logax=-logaeqf(,x)④eqr(n,logax)=eqf(,n)logax⑤eqf(logax,n)=logaeqr(n,x)⑥logaeqf(x-y,x+y)=-logaeqf(x+y,x-y)其中正确的个数有()A.个B.个C.个D.个【解析】只有③⑤⑥正确故选B已知loga=mloga=n则am +n=【解析】因为loga=mloga=n所以am=an=所以am+n=(am)·an =×=计算:(lgeqf(,)-lg)÷-eqf(,)=-【解析】原式=-(lg +lg)×eqf(,)=-lg×=-×=-若函数y=f(x)是函数y=ax(a且a≠)的反函数且f()=则f(x)=logx【解析】因为y=ax的反函数为y =f(x)=logax又f()=loga=所以a=所以f(x)=logx已知函数f(x)=eqf(,r(logf(,)x+))则函数f(x)的定义域是()A.(-eqf(,))B.(-eqf(,)C.(-eqf(,)+∞)D.(+∞)【解析】由logeqf(,)(x+)=logeqf(,)得x+所以-x所以-eqf(,)x所以f(x)的定义域为(-eqf(,))故选A一有关对数及对数函数的运算问题【例】()设函数f(x)=eqblc{rc(avsalco(f(,)xx≥,f x+x))则f(log)=()设a=b=则eqf(,a)+eqf(,b)=()计算:lg(lg+lg)+(lgeqr())+lgeqf(,)+lg+log【解析】()因为log所以f(log)=f(+log)=f(+log)=f(+log)=(eqf(,))+log=(eqf(,))·(eqf(,))log=eqf(,)×eqf(,)=eqf(,)()由a=b=得a=logb=log 再根据换底公式得a=log=eqf(,log)b=log=eqf(,log)所以eqf(,a)+eqf(,b)=log+log=log(×)=()原式=lg(lg+)+(eqr()lg)+lg(eqf(,)×eqf(,))+log=lg·lg+lg+lg-+=lg(lg+lg)+lg+=(lg+lg)+=【点评】对数函数的真数与底数应满足的条件是求解有关对数问题时必须予以重视的另外研究对数函数时尽量化为同底.素材()计算:lg+eqf(,)lg+lg·lg+(lg)=()已知log=a,b=则lg=eqf(a,b+)(用ab表示).【解析】()原式=lg+lg+lg(lg+lg)+(lg)=(lg+lg)+(lg)+lg·lg+(lg)=lg+(lg+lg)=+=【解析】()因为log=a所以a=eqf(lg,lg)lg=eqf(,)alg又b=所以b=log=eqf(lg,lg)=eqf(-lg,lg)=eqf(,lg)-lg=eqf(,b+)所以lg=eqf(a,b+)二对数函数的图象与性质问题【例】已知f(x-)=logaeqf(x,-x)(a且a≠).()求f(x)的解析式并判断f(x)的奇偶性()判断函数的单调性()解关于x的方程f(x)=logaeqf(,x)【分析】先用换元法求解解析式用定义判断奇偶性证明单调性解不等式时注意函数的单调性.【解析】()令x-=t则x=t+所以f(t)=logaeqf(+t,-t)又eqf(x,-x)所以x所以t+即-t故f(x)=logaeqf(+x,-x)(-x).而f(-x)=logaeqf(-x,+x)=loga(eqf(+x,-x))-=-logaeqf(+x,-x)=-f(x)故f(x)是奇函数.()设-xx则-x-x所以eqf(,-x)eqf(,-x)eqf(+x,-x)=-+eqf(,-x)eqf(+x,-x)=-+eqf(,-x)(ⅰ)当a时logaeqf(+x,-x)logaeqf(+x,-x)即f(x)f(x)故f(x)在(-,)上是增函数(ⅱ)当a时logaeqf(+x,-x)logaeqf(+x,-x)即f(x)f(x)故f(x)在(-,)上是减函数.()由()可知logaeqf(+x,-x)=logaeqf(,x)所以eqblc{rc(avsalco(f(+x,-x)=f(,x),-x,x))⇒eqblc{rc(avsalco(x+x-=,x))解得x=eqr()-【点评】解决与对数有关问题首先要看对数函数定义域复合函数y=logaf(x)的单调区间也是y=f(x)的单调区间.研究由对数函数与其他函数的复合函数要以这两点为解题的突破口.素材()已知logeqf(,)alogeqf(,)blogeqf(,)c则a,b,c三个数从小到大的排列是cba ()若函数f(x)=loga(-ax)在(,上是减函数则a的取值范围是(,)【解析】()因为logeqf(,)alogeqf(,)blogeqf(,)c又y=logeqf(,)x是减函数所以abc而y=x为增函数所以abc()因为a且a≠所以t=-ax在(,上为减函数且t所以-a即a又f(x)=loga(-ax)在(,上是减函数所以y=logat 是增函数所以a故a即a的取值范围是(,).三有关对数函数的综合问题【例】(·长沙模拟)设f(x)=logeqf(,)eqf(-ax,x-)为奇函数a为常数.()求a的值()若对于,上的每一个x的值不等式f(x)(eqf(,))x+m 恒成立求实数m的取值范围.【解析】()因为f(x)是奇函数所以f(-x)=-f(x)⇒logeqf(,)eqf(+ax,-x-)=-logeqf(,)eqf(-ax,x-)⇔eqf(+ax,-x-)=eqf(x-,-ax)⇔-ax=-x⇒a=±经检验a=-(a=舍去).()对于,上的每一个x的值不等式f(x)(eqf(,))x+m恒成立⇔f(x)-(eqf(,))xm恒成立.令g(x)=f(x)-(eqf(,))x=logeqf(,)(+eqf(,x-))-(eqf(,))xg(x)在,上是单调递增函数所以mg()=-eqf(,)即m的取值范围是(-∞-eqf(,)).素材已知函数y=g(x)的图象与函数y=ax(a且a ≠)的图象关于直线y=x对称又将y=g(x)的图象向右平移个单位长度所得图象的解析式为y=f(x)且y=f(x)在+∞)上总有f(x)()求f(x)的表达式()求实数a的取值范围.【解析】()由已知y=g(x)与y=ax 互为反函数所以g(x)=logax(a且a≠)所以f(x)=loga(x-).()因为f(x)=loga(x-)在+∞)上总有f(x)即loga(x-)所以当a时ax-在+∞)上恒成立所以a又若a则loga(x-)在+∞)上不可能恒成立.综上可得a 的取值范围是(,).备选例题已知x≤且logx≥eqf(,)求函数f(x)=logeqf(x,)·logeqr()eqf(r(x),)的最大值和最小值.【解析】因为x≤=所以x≤又logx≥eqf(,)所以x≥eqr()故x∈eqr().因为f(x)=logeqf(x,)·logeqr()eqf(r(x),)=(logx-)(logx-)=(logx)-logx+令logx =t因为x∈eqr()所以t∈eqf(,)所以y=t-t+=(t-eqf(,))-eqf(,)当t =eqf(,)时即logx=eqf(,)x=eqr()时f(x)min=-eqf(,)当t=即logx=当x=时f(x)max=。
高中数学《函数图象的变换》课件
翻折变换
y = f(x) 的图象
y =|f( x )| 的图象
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴 为对称轴翻折到上方可得到 y =|f(x)|的图象.
平移变换
左上 右下 平平 移移
对称变换
关关关 于于于 x y原 轴轴点
翻折变换
上左 下右 翻翻 折折
归纳总结
平 y = f(x) 左移 h (h>0) y = f(x + h)
移 的图象 个 单 位
的图象
变 换
y = f(x) 右移 h (h>0) y = f(x - h)
的图象 个 单 位
的图象
问题与思考——复习
1、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = |log2x| (2) y = x2 - 2x,y = |x2 - 2x|
yy= log2 x
o
o
1
x
1
x
将 y = log2x 在 x 轴上方的图象保留, 下方的图象以 x 轴为对称轴翻折到上方可
翻 的图象 折 变 换
y =f( |x| ) 的图象
?
谢 谢
翻折变换
问题与思考:
2、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = 2x,y = 2|x| (2) y = x2 - 2x,y = |x|2 - 2|x|
y
y
y = 2x 11
o x
y = 2|x| 1
函数的图像及其变换
的图像可由y=f(x)的图像向上平移b个单位 而得到.总之, 对于平移变换,记忆口诀为:左加右减,上加下减.
(2)对称变换 y=f(-x)与y=f(x)的图像关于 y轴 y=-f(x)与y=f(x)的图像关于 x轴 对称; 对称; 对称;
y=-f(-x)与y=f(x)的图像关于 原点
y=|f(x)|的图像可将y=f(x)的图像在x轴下方的部分
AD,当点C落在X轴上时,h′=CF,显然AD=CF,即 当“中心点”M位于最高处时,“最高点”与X轴的距离 相等,选项B不符,故选A.
【答案】 A
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
► 探究点3 判断、证明函数的单调性 题型三:函数图象的应用及对称问题 3. 已知f(x)=| x2 -4x+3|. (1)求f(x)的单调区间; (2)求m的取值范围, 使方程f(x)=mx有4个不同实根.
方法二 y=f(x-1)与y=f(1-x)的图像分别由y=f(x) 与y=f(-x)的图像同时向右平移一个单位而得,又y=f(x) 与y=f(-x)的图像关于y轴对称. ∴y=f(x-1)与y=f(1-x)的图像关于直线x=1对 称.
【答案】 (1)g(x)=-ln(x-1) (2)D
变式
(1)已知函数 f(2x+1)是奇函数, 则函数 y=f(2x) )
【解析】 如图所示,不妨设正三角形ABC的边长 为a,记“中心点”M与X轴的距离为h,记“最高点”与 X轴的距离为h′.由图可知,当三段弧的中点落在X轴上 时,h最小,此时h=MD;当点A、B、C落在X轴上时, h最大,h=MC,故“中心点”M的位置先低后高,呈周 期性变化,排除选项C与D.当点D落在X轴上时,h′=
第10讲 函数图像及其变换(教案)
函数图像与变换教学目标:掌握常见函数图像及其性质(高考要求B ),熟悉常见的函数图像(平移、对称、翻折)变换(高考要求B ).教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折”等手段进行函数图像变换。
教学过程:一.知识要点:1.常见函数图像及其性质: (1)平移变换:①y =f (x ) →y =f (x ±a )(a >0)图象 横向 平移a 个单位,(左+右—). ②y =f (x ) →y =f (x )±b (b >0)图象 纵向 平移b 个单位,(上+下—)③若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. (2)对称变换:①y =f (x ) →y =f (-x )图象关于 y 轴 对称; 若f (-x )=f (x ),则函数自身的图象关于y 轴对称.②y =f (x ) →y =-f (x )图象关于x 轴 对称.③y =f (x ) →y =-f (-x )图象关于原点 对称; 若f (-x )=-f (x ),则函数自身的图象关于原点对称.④y =f (x ) →y =f -1(x )图象关于直线y =x 对称.⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b ) 对称.若f (x )=f (2a -x )(或f (a +x )=f (a -x ))则函数自身的图象关于直线x =a 对称.若函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=(3)翻折变换主要有①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称.②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习:1.若把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 则函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A )A.y =f (x -1)-1B.y =f (x +1)-1C.y =f (x -1)+1D.y =f (x +1)+1 2.已知函数y =f (x )的图象如图2—3,则下列函数所对应的图象中,不正确的是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x ) D.y =-f (x )图2—3解: y =f (|x |)是偶函数,图象关于y 轴对称.3.设函数y =2x 的图象为C ,某函数的图象C ′与C 关于直线x =2对称,那么这个函数是y =24-x解 ∵y =f (x )的图象与y =f (4-x )的图象关于直线x =2对称,设f (x )=2x ,则f (4-x )=24-x4.设函数y =f (x )的定义域是R ,且f (x -1)=f (1-x ),那么f (x )的图象有对称轴 直线x =0 解: 设x -1=t ,则f (t )=f (-t ),函数为偶函数,关于y 轴对称.5.函数y =12--x x 的图象关于点(1,-1)_对称.解: y =12--x x =-1+11-x ,y =12--x x 的图象是由y =x1的图象先右移1个单位,再下移1个单位而得到,故对称点为(1,-1). 三.例题精讲:例1.(1)函数y=||x xax(0<a <1)的图象的大致形状是 ( D )(2).(2009·郑州模拟)定义运算,)()(⎩⎨⎧>≤=⊗b a bb a a b a 则函数f(x)=x21⊗的图象是 ( A )(3).已知函数y=f(x)的图象如图①所示,y=g(x)的图象如图②所示,则函数y=f(x)·g(x)的图象可能是图中的( C )例2. 作出下列函数的图象.(1).f (x )=x 2-2|x |+1 (2)f (x )=x 2-2|x |+1(3)f (x )=|x 2-1|(4)f (x )= x 2+2x +1 (5)y=112--x x ; (6)y=)21(|x|. (7)(2)y=|log 21(1-x )|; (8)y=21(lgx+|lgx|);例3.(1)定义在R 上的函数y =f (x )、y =f (-x )、y =-f (x )、y =-f (-x )的图象重合,它们的值域为__{0}. 【解析】 函数y =f (x )与y =f (-x )的图象重合,说明函数y =f (x )的图象关于y 轴对称;y =f (x )与y =-f (x )图象重合,说明y =f (x )的图象关于x 轴对称;y =f (x )与y =-f (-x )的图象重合,说明y =f (x )的图象关于原点对称.即若y =f (x )上任一点(x ,y ),则也有点(-x ,y )、(x ,-y )、(-x ,-y );根据函数的定义,对于任一x ∈R,只能有惟一的y 与之对应,从而y =-y ,即y =0,故函数的值域为{0}.(2)已知函数f (x )定义域为R ,则下列命题中①y =f (x )为偶函数,则y =f (x +2)的图象关于y 轴对称. ②y =f (x +2)为偶函数,则y =f (x )关于直线x =2对称.③若f (x -2)=f (2-x ),则y =f (x )关于直线x =2对称.④y =f (x —2)和y =f (2-x )的图象关于x =2对称.其中正确命题序号有_②④_(填上所有正确命题序号).【解析】 ①y =f (x )是偶函数,而f (x +2)是将f (x )的图象向左平移2个单位得到的,则对称轴左移2个单位为x =-2,所以f (x +2)图象关于直线x =-2对称.②y =f (x +2)为偶函数,则f (x +2)=f (2-x ),所以y =f (x )图象关于直线x =2对称. ③令x -2=t ,则2-x =-t ,得f (t )=f (-t ),y =f (x )的图象关于y 轴对称.④f (x )与f (-x )的图象关于y 轴对称,将f (x )与f (-x )的图象分别向右平移2个单位, 分别得到f (x -2)与f (2-x )的图象,对称轴右移2个单位为直线x =2. 例4.设f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),又当-1≤x ≤1时,f(x)=x 3. (1)证明直线x =1是函数f (x )的图象的一条对称轴;(2)当x ∈[1,5]时,求f (x )的解析式. 【解】 (1)设(x 0,y 0)是f (x )的图象上任意一点,它关于x =1对称的点为(x 1,y 1),则y 0=y 1,x 0=2-x 1,∴y 1=f (2-x 1)=-f (-x 1)=f (x 1)∴(x 1,y 1)也在y =f (x )的图象上,命题成立.(2)∵f (x )的图象关于x =1对称,故当1≤x ≤3时,f (x )=(2-x )3又当3<x ≤5时,-1<x -4≤1,此时f (x )=(x -4)3∴f (x )=⎪⎩⎪⎨⎧≤<-≤≤-)53(,)4()31(,)2(33x x x x 例5.设函数f(x)=x 2-2|x|-1 (-3≤x ≤3).(1)证明:f(x)是偶函数; (2)画出函数的图象; (3)指出函数f(x)的单调区间; (4)求函数的值域.(1)证明 f(-x)=(-x)2-2|-x|-1 =x 2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数.(2)解 当x ≥0时,f(x)=x 2-2x-1=(x-1)2-2,当x <0时,f(x)=x 2+2x-1=(x+1)2-2, 即f(x)=,)03(2)1()30(2)1(22⎩⎨⎧<≤--+≤≤--x x x x根据二次函数的作图方法,可得函数图象如图所示. (3)解 函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3]. f (x )在区间[-3,-1)和[0,1)上为减函数,在[-1,0),[1,3]上为增函数. (4)解 当x ≥0时,函数f(x)=(x-1)2-2的最小值为-2,最大值为f(3)=2;当x <0时,函数f(x)=(x+1)2-2的最小值为-2, 最大值为f(-3)=2; 故函数f(x)的值域为[-2,2].例6.作函数y =x + 1x 的图象. 扩展:y =a x + bx(a >0,b >0)的图像.例7.(1)已知函数y=f(x)的定义域为R ,且当x ∈R 时f(m+x)=f(m-x)恒成立. 求证:y=f(x)的图象关于直线x=m 对称;(2)若函数y=log 2|ax-1|的图象的对称轴是x=2,求非零实数a 的值. (1)证明 设P (x 0,y 0)是y=f(x)图象上任意一点,则y 0=f(x 0).又设P 点关于x=m 的对称点为P ′,则P ′的坐标为(2m-x 0,y 0).由已知f(m+x)=f(m-x), 得f(2m-x 0)=f [m+(m-x 0)]=f [m-(m-x 0)] =f(x 0)=y 0.即),-(200y xm P '在y=f(x)图象上,∴y=f (x )的图象关于直线x=m 对称.(2)解 ∵对定义域内的任意x,有f(2-x)=f(2+x)恒成立.∴|a (2-x )-1|=|a (2+x )-1|恒成立, 即|-ax+(2a-1)|=|ax+(2a-1)|恒成立. 又a ≠0,∴2a-1=0,得a=21.自我检测1.(2008·全国Ⅱ理,3)函数f(x)=x1-x 的图象关于 坐标原点对称2.作出下列函数的图象. (1)y=2-2x;(2)y=112+-x x . (3)y =⎩⎪⎨⎪⎧x +1 x ≤112(5-x ) 1<x ≤34-x x >33.已知f(x)=[][],1,0,10,1,12⎩⎨⎧∈+-∈+x x x x 则f(x-1)的图象是4.若函数f(x)=3+log 2x 的图象与g(x)的图象关于 y=x 对称,则函数g(x)= 2x-35. 函数y=f(x)与函数y=g(x)的图象如图,则函数y=f(x)·g(x)的图象可能是 ( A )6.设a >1,实数x,y 满足|x|-log a y1=0,则y 关于x 的函数的图象形状大致是 ( B )7.使log 2(-x)<x+1成立的x 的取值范围是 . 答案 (-1,0)8.设f(x)是定义在R 上奇函数,在(0,21)上单调递减,且f(x)=f(-x-1).给出下列四个结论:①函数f(x)的图象关于直线x=21对称;②f(x)在(21,1)上单调递增;③对任意的x ∈Z ,都有f(x)=0;④函数y=f )2(x -π的图象是中心对称图形,且对称中心为()0,2π.其中正确命题的序号是 . 答案 ①②③④9.当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,则a 的取值范围为 . 答案 (1,2] 10.要得到)3lg(x y -=的图像,只需作x y lg =关于_y __轴对称的图像,再向__右__平移3个单位而得到11.函数()lg(2)1f x x x =⋅+-的图象与x 轴的交点个数有__2__个12.如若函数(21)y f x =-是偶函数,则函数(2)y f x =的对称轴方程是_12x =-__。
函数图像及其变换
1. f(x)=|x-1|的图象为如下图所示中的 ( )
【解析】 【答案】 B
2. (湖北卷)函数 y e |ln x| | x 1 |的图象大致是
D
( D
)
(D )
3.为了得到函数 y=2 -1 的图象,只需 把函数 y=2x 的图象上所有的点( ) A.向右平移 3 个单位长度,再向下平移 1 个单位长度 B.向左平移 3 个单位长度,再向下平移 1 个单位长度 C .向右平移 3 个单位长度,再向上平移 1 个单位长度 D.向左平移 3 个单位长度,再向上平移 1 个单位长度
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来
图象变换法:常用变换方法有4种,即平移变换、 翻折变换、伸缩变换和对称变换
y f (2a x)
a 对称的解析式为
④函数 y f ( x) 的图象关于点 (a, 0) 对称的解析式为
y f (2a x)
1 ⑤函数 y f ( x) 和 y f ( x) 的图象关于直线 y=x 对称 .
【例1】 作出下列函数的大致图象
(1) y ( x 1) 1 (2) y log 2 ( x ) 1 (3) y 2
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来
第五节 函数的图像及其变换-高考状元之路
1第五节 函数的图像及其变换预习设计 基础备考知识梳理1.描点法作圈通过 三个步骤画出函数的图像.2.图像变换法作图(1)平移变换:①函数)(x f y =的图像 平移)0(>a a 个单位得到函数)(a x f y +=的图像,)0)((>-=b b x f y ②的图像可由)(x f y =的图像向 平移6个单位得到.(2)对称变换(在)(x f -有意义的前提下):①函数)(x f y -=与)(x f y =的图像 对称; ②函数)(x f y -=与)(x f y =的图像 对称; ③函数)()(x f hy x f y -=--=的图像 对称;④函数作|)(|x f y =的图像可将)(x f y =的图像在x 轴下方的部分 ,其余部分不变. ⑤作||x f y =的图像可先作出)(x f y =当0≥x 时的图像,再利用偶函数的图像关于y 轴对称,作出 的图像.(3)伸缩变换:①函数)0)((>=A x Af y 的图像,可将)(x f y =的图像上所有点的 变为原来的A 倍,横坐标不变而得到;②函数)0)((>=a ax f y 的图像,可将)(x f y =的图像上所有点的 变为原来的a1倍, 不变而得到.典题热身1.函数|1|ln )(-=x x f 的图像大致是 ( )2.为了得到函数xy )31(3⨯=的图像,可以把函数xy )31(=的图像( ) A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度3.函数xy 5=与函数xy 51-=的图像关于 ( ) A.x 轴对称 B.y 轴对称 C.原点对称 D .直线y-x 对称24.设函数)(x f y =的定义域为R ,则函数)1(-=x f y 与=y )1(x f -的图像关于 A.直线y=0对称 B.直线x-0对称 C.直线y=l 对称 D .直线x-1对称 5.把函数)32(log 2+-=x y 的图像向左平移1个单位长度得到函数 的图像.课堂设计 方法备考题型一 作图【倒1】作出下列函数的图像.;||)1(3x x y = ;12)2(-+=x x y .|1log |)3(2-=x y 题型二 识图【例2】(1)(2010.山东高考)函数22x y x -=的图像大致是( )(2)(2010.湖南高考)函数bx ax y +=2与=/=ab x aby (||log |)|||,0b a =/在同一直角坐标系中的图像可能是 ( )题型三 用 图【例3】已知函数.|34|)(2+-=x x x f (1)求函数)(x f 的单调区间;(2)求m 的取值范围,使得方程mx x f =)(有四个不等实根.技法巧点(1)作函数的图像一般要将函数解析式“分解”出基本初等函数,在“分解”中认清各步的图像变换类型与次序,最后由基本初等函数的图像和图像变换作出函数的图像.(2)函数图像的识别要多方面考虑.如:函数的定义域、值域;函数的奇偶性、单调性、最值、渐近线等诸多方面进行分析与排除.(3)函数图像的应用主要是将函数方程根的问题或不等式解的问题转化为两个函数图像的交点或图像间的关系问题求解.失误防范1.作函数的图像时,一定要注意图像的平滑性和对称性.2.函数图像的左、右平移变换,函数的解析式中z 的系数必须为l ,这样才能正确找到平移量. 当x 的系数不是1时,必须通过提取x 的系数才能实现左、右平移.随堂反馈1. 函数)(x f y =与函数)(x g y =的图像分别如图①②所示.3则函数)()(x g x f y ⋅=的图像可能是 ( )2.为了得出函数103lg+=x y 的图像,只需把函数x y lg =的图像上所有的点 ( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度3.(2011.威海模拟)若方程f(x) -2=O 在(- 1,+ 00)内有两个解,则)(x f y =的大致图像为( )4.(2011.课标全国卷)已知函数⎪⎩⎪⎨⎧>+-≤<=.10,621,100|,lg |)(x x x x x f 若a ,b ,c 互不相等,且),()()(C f b f a f ==则abc 的取值范围是( ))10,1.(A )6,5.(B )12,10.(C )24,20.(D5.若)2,1(∈x 时,不等式x x a log )1(2<-恒成立,则a 的取值范围是高效作业 技能备考一、选择题 1.函数|1|1ln+=x y 的大致图像为( )2.函数x x xx ee e e y ---+=的图像大致为 ( )43.(2011.临沂模拟)若函数⎩⎨⎧<>=0),(0),(x x f x x g y 是奇函数,当0>x 时,其对应的图像如图,则=)(x f( )32.--x A 32.+-x B 32.-x C 32.+x D4.(2011.天津高考)对实数a 和b ,定义运算=⊗⊗b a ”:“⎩⎨⎧>-≤-.1,,1,b a b b a a 设函数),1()2()(2-⊗-=x x x f .R x ∈若函数c x f y -=)(的图像与x 轴恰有两个公共点,则实数c 的取值范围是 ( )),2[]1,1.(+∞- A ]2,1(]1,2.( ⋅--B ]2,1()2,.( --∞c ]1,2.[--D5.函数)(x g 与函数)1)(1lg()(>-=x x x f 的图像关于原点对称,则函数)(x g 的大致图像是下列图像中的 ( )6.(2011.平顶山模拟)厂(x)的定义域为R ,且=)(x f ⎩⎨⎧>-≤--),0()1(),0(12x x f x x 若方程a x x f +=)(有两不同实根,则a 的取值范围为( ))1,.(-∞A ]1,.(-∞B )1,0.(c ),.(+∞-∞D二、填空题7.使1)(log 2+<-x x 成立的x 的取值范围是8.函数)(x f 与)(x g 的定义域为[m ,n],它们的图像如图所示,则不等式0)()(<x g x f 的解集是9.(2011.漳州模拟)已知函数))((R x x f y ∈=满足=)(x f ),2(+x f 且]1,1[-∈x 时,,)(2x x f =则函数)(x f 与=y sx log 的图像的交点个数为 三、解答题10.若a x ,31<<为何值时,0352=++-a x x 有两解、一解、无解.511.若直线a y 2=与函数0|1|><-=a a y x且)1=/a 的图像有两个公共点,求a 的取值范围. 12.已知函数)(x f 的图像与函数21)(++=xx x h 的图像关于点A(O ,1)对称. (1)求)(x f 的解析式; (2)若,)()(xax f x g +=且)(x g 在区间(0,2]上为减函数,求实数a 的取值范围.。
函数图像变换的四种情况
函数图像的变换有四种主要情况,它们分别是平移、缩放、翻转和旋转。
1. 平移(Translation):平移是指将函数图像沿着坐标轴的方向移动一定的距离。
平移可以分为水平平移和垂直平移两种情况。
水平平移表示在x 轴方向上移动函数图像,垂直平移表示在y 轴方向上移动函数图像。
平移可以使函数图像的位置发生变化,但不改变其形状。
2. 缩放(Scaling):缩放是指根据比例因子将函数图像在x 轴和y 轴方向上进行拉伸或压缩。
缩放可以分为水平缩放和垂直缩放两种情况。
水平缩放会改变函数图像在x 轴上的横向长度,垂直缩放会改变函数图像在y 轴上的纵向长度。
缩放会改变函数图像的形状和大小。
3. 翻转(Reflection):翻转是指将函数图像关于某个轴进行对称操作。
常见的翻转有关于x 轴的翻转和关于y 轴的翻转。
关于x 轴的翻转会使函数图像在x 轴上下翻转,而关于y 轴的翻转会使函数图像在y 轴左右翻转。
翻转会改变函数图像的对称性和方向。
4. 旋转(Rotation):旋转是指将函数图像绕一个旋转中心点
进行旋转角度的变换。
旋转可以使函数图像在平面上发生旋转,改变其角度和位置。
旋转可以是顺时针旋转或逆时针旋转。
这些函数图像变换情况可以单独或组合使用,可以通过改变函数的参数或对函数表达式进行修改来实现。
它们在数学和图形学中被广泛应用,用于研究和描述函数的性质和图像的变化。
函数图像的三种变换平移变换
函数图像的三种变换一 、平移变换函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 沿水平方向左右平行移动比如函数()y f x =与函数()(0)y f x a a =->,由于两函数的对应法则相同,x a -与x 取值范围一样,函数的值域一样。
以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数()y f x =的图象水平移动才能得到函数()y f x =的图象呢?因为对于函数()y f x =上的任意一点(11,x y ),在()y f x a =-上对应的点为11(,)x a y +,因此若将()y f x =沿水平方向向右平移a 个单位即可得到()(0)y f x a a =->的图象。
同样,将()y f x =沿水平方向向左平移a 个单位即可得到()(0)y f x a a =+>的图象。
沿竖直方向上下平行移动比如函数()y f x =与函数()(0)y f x b b =+>,由于函数()y f x =函数()(0)y b f x b -=>中函数y 与y b -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数()y f x =的图象上下移动得到函数()y b f x -=的图象呢?因为对于函数()y f x =上的任意一点(11,x y ),在()(0)y b f x b -=>上对应的点为11(,)x y b +,因此若将()y f x =沿竖直方向向上平移a 个单位即可得到()(0)y b f x b -=>的图象。
同样,将()y f x =沿竖直方向向下平移a 个单位即可得到()(0)y b f x b +=>的图象。
据此,可以推断()y f x a b =±±(0,0)a b >>为水平方向移动a 个单位,“左加右减”,竖直方向移动b 个单位,“上加下减”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的图像及变换【知识要点】一、图像法①表示函数的方法之一;②处理问题的优点“直观,形象”; ③体现数学思想“数形结合”。
二、作图的基本方法1.利用描点法作图:(处理陌生函数图像的常用方法) ①确定函数的定义域; ②化简函数解析式—等价变形; ③讨论函数的性质:1) 值域:研究一下图像的最高(低)点; 2) 单调性:分析图像的升降性; 3) 奇偶性:研究函数图像的对称性; 4) 周期性:研究函数图像是否重复出现;5) 截距:确定图像与x 轴,y 轴交点的横、纵坐标。
2.利用已知的基本初等函数的图像变换作图: (1)对称变换(几种常用对应点的对称变换)关于x 轴对称:(,)(,)x y x y →- 关于y 轴对称:(,)(,)x y x y →- 关于原点对称:(,)(,)x y x y →-- 关于y x =对称:(,)(,)x y y x →关于y x =-对称:(,)(,)x y y x →-- 关于直线x a =对称:(,)(2,)x y a x y →-(轴对称) 关于y x b =+对称:(,)(,)x y y b x b →-+ 关于y x b =-+对称:(,)(,)x y b y x b →--+ 关于点(,)P a b 对称:(,)(2,2)x y a x b y →--(点对称) (2)对折变换①关于形如()y f x =的图像画法:当0x ≥时,()y f x =;当0x ≤时,()y f x =-()y f x =为偶函数,关于y 轴对称,即把0x ≥时()y f x =的图像画出,然后0x ≤时的图像与 0x ≥的图像关于y 轴对称即可得到所求图像.②关于形如()y f x =的图像画法当()0f x ≥时,()y f x =;当()0f x ≤时,()y f x =-先画出()y f x =的全部图像,然后把()y f x =的图像x 轴下方全部关于x 轴翻折上去,原x 轴上方的图像保持不变,x 轴下方的图像去掉不要即可得到所求图像. (3)平移及伸缩变换 ①水平平移把函数()y f x =的全部图像沿x 轴方向向左(0a >)或向右(0a <)平移a 个单位即可得到函数()y f x a =+的图像②垂直平移把函数()y f x =的全部图像沿y 轴方向向上(0a >)或向下(0a <)平移a 个单位即可得到函数()y f x a =+的图像③伸缩变换Ⅰ.将函数()y f x =的全部图像中的每一点横坐标不变,纵坐标伸长(1)a >或缩短(01)a <<为原来的a 倍得到函数()(0)y af x a =>的图像.Ⅱ. 将函数()y f x =的全部图像中的每一点纵坐标不变,横坐标伸长(1)a >或缩短(01)a <<为原来的1a倍得到函数()(0)y f ax a =>的图像.课后检测函数图像及其变换-数形结合一.选择题(共10小题)1.(2012?湖北)已知定义在区间(0,2)上的函数y=f(x)的图象如图所示,则y=﹣f(2﹣x)的图象为()A.B.C.D.2.(2010?兰州一模)当a>1时,在同一坐标系中,函数y=a﹣x与y=log a x的图象()A.B.C.D.3.(2007?奉贤区一模)函数y=1+的图象是()A.B.C.D.4.(2009?成都二模)函数f(x)=的图象为()A.B.C.D.5.(2013?福建)函数f(x)=ln(x2+1)的图象大致是()A.B.C.D.6.(2010?河南模拟)已知函数在(﹣∞,+∞)上单调递减,那么实数a的取值范围是()A.(0,1)B.C.D.7.(2010?宁夏)已知函数若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)8.(2007?浙江)设f(x)=,g(x)是二次函数,若f(g(x))的值域是[0,+∞),则函数g(x)的值域是()A.(﹣∞,﹣1]∪[1,+∞)B.(﹣∞,﹣1]∪[0,+∞)C.[0,+∞)D.[1,+∞)9.(2007?湖南)函数的图象和函数g (x )=log 2x 的图象的交点个数是( ) A . 4 B . 3C . 2D . 110.(2002?北京)已知f (x )是定义在(﹣3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )?cosx <0的解集为( )A .(﹣3,﹣)∪(0,1)∪(,3)B .(﹣,﹣1)∪(0,1)∪(,3)C . (﹣3,﹣1)∪(0,1)∪(1,3)D .(﹣3,﹣)∪(0,1)∪(1,3)二.填空题(共1小题)11.(2012?浦东新区二模)直线y=﹣x+a 与曲线y=有两个交点,则a 的取值范围是_________ .参考答案与试题解析一.选择题(共10小题)1.(2012?湖北)已知定义在区间(0,2)上的函数y=f (x )的图象如图所示,则y=﹣f (2﹣x )的图象为( )A .B .C .D .考点: 函数的图象与图象变化. 专题: 作图题.分析: 由(0,2)上的函数y=f (x )的图象可求f (x ),进而可求y=﹣f (2﹣x ),根据一次函数的性质,结合选项可可判断解答:解:由(0,2)上的函数y=f (x )的图象可知f (x )=当0<2﹣x <1即1<x <2时,f (2﹣x )=2﹣x 当1≤2﹣x <2即0<x≤1时,f (2﹣x )=1 ∴y=﹣f (2﹣x )=,根据一次函数的性质,结合选项可知,选项B 正确故选B点评: 本题主要考查了一次函数的性质在函数图象中的应用,属于基础试题2.(2010?兰州一模)当a >1时,在同一坐标系中,函数y=a ﹣x与y=log a x 的图象( )A .B .C .D .考点: 函数的图象与图象变化. 专题: 数形结合.分析: 先将函数y=a ﹣x化成指数函数的形式,再结合函数的单调性同时考虑这两个函数的单调性即可判断出结果. 解答: 解:∵函数y=a ﹣x与可化为函数y=,其底数小于1,是减函数,又y=log a x ,当a >1时是增函数,两个函数是一增一减,前减后增.故选A.点评:本题考查函数的图象,考查同学们对对数函数和指数函数基础知识的把握程度以及数形结合的思维能力.3.(2007?奉贤区一模)函数y=1+的图象是()A.B.C.D.考点:函数的图象与图象变化.专题:数形结合.分析:把函数y=的图象先经过左右平移得到y=的图象,再经过上下平移得到y=+1的图象.解答:解:将函数y=的图象向右平移1个单位,得到y=的图象,再把y=的图象向上平移一个单位,即得到y=+1的图象,故选 A.点评:本题考查函数图象的平移规律和平移的方法,体现了数形结合的数学思想.4.(2010?宁夏)已知函数若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)考点:分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质.专题:作图题;压轴题;数形结合.分析:画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.解答:解:作出函数f(x)的图象如图,不妨设a<b<c ,则ab=1,则abc=c∈(10,12).故选C.点评:本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.5.(2010?河南模拟)已知函数在(﹣∞,+∞)上单调递减,那么实数a的取值范围是()A.(0,1)B.C.D.考点:分段函数的解析式求法及其图象的作法;函数单调性的性质.分析:f(x)在(﹣∞,+∞)上单调递减,即f(x)在两段上都单调递减,且在x<1时,x→1时,f(x)≥f(1).解答:解:x<1时,f(x)=(3a﹣2)x+6a﹣1单调递减,故3a﹣2<0,a <,且x→1时,f(x)→9a﹣3≥f(1)=a ,a≥;x>1时,f(x)=a x单调递减,故0<a<1,综上所述,a 的范围为故选C点评:本题考查分段函数的单调性,除了考虑各段的单调性,还要注意断开点处的情况.6.(2009?成都二模)函数f(x)=的图象为()A.B.C.D.考点:分段函数的解析式求法及其图象的作法.专题:图表型;数形结合.分析:我们看,该函数是偶函数,所以对称区间上的图象关于y轴对称,则易知结论.解答:解:当x≥0时,是一条直线,所以选项都满足当x<0时,y=3|x|=3﹣x与y=3x(x≥0)关于y轴对称.故选C点评:本题主要考查函数图象在作图和用图时,一定要注意关键点,关键线和分布规律.7.(2013?福建)函数f(x)=ln(x2+1)的图象大致是()A.B.C.D.考点:函数的图象.专题:作图题.分析:由题意可判函数为偶函数,可排除C,再由f(0)=0,可排除B、D,进而可得答案.解答:解:由题意可知函数的定义域为R,∵f(﹣x)=ln(x2+1)=f(x),∴函数为偶函数,故可排除C,由f(0)=ln1=0,可排除B、D故选A点评:本题考查函数的图象,涉及函数的奇偶性和函数值,属基础题.8.(2007?浙江)设f(x)=,g(x)是二次函数,若f(g(x))的值域是[0,+∞),则函数g(x)的值域是()A.(﹣∞,﹣1]∪[1,+∞)B.(﹣∞,﹣1]∪[0,+∞)C.[0,+∞)D.[1,+∞)考点:函数的图象;函数的值域.专题:计算题;压轴题;数形结合.分析:先画出f(x)的图象,根据图象求出函数f(x)的值域,然后根据f(x)的范围求出x的范围,即为g(x)的取值范围,然后根据g(x)是二次函数可得结论.解答:解:如图为f(x)的图象,由图象知f(x)的值域为(﹣1,+∞),若f(g(x))的值域是[0,+∞),只需g(x)∈(﹣∞,﹣1]∪[0,+∞).而g(x)是二次函数,故g(x)∈[0,+∞).故选:C点评:本题主要考查了函数的图象,以及函数的值域等有关基础知识,同时考查了数形结合的数学思想,属于基础题.9.(2007?湖南)函数的图象和函数g(x)=log2x的图象的交点个数是()A.4B.3C.2D.1考点:函数的图象与图象变化.专题:计算题;压轴题;数形结合.分析:根据分段函数图象分段画的原则,结合一次函数、二次函数、对数函数图象的画出,我们在同一坐标系中画出函数的图象和函数g(x)=log2x的图象,数形结合即可得到答案.解答:解:在同一坐标系中画出函数的图象和函数g (x )=log 2x 的图象 如下图所示:由函数图象得,两个函数图象共有3个交点 故选B点评: 本题考查的知识函数的图象与图象的变化,其中在同一坐标系中画出两个函数的图象是解答的关键.10.(2002?北京)已知f (x )是定义在(﹣3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )?cosx <0的解集为( )A .(﹣3,﹣)∪(0,1)∪(,3)B .(﹣,﹣1)∪(0,1)∪(,3)C . (﹣3,﹣1)∪(0,1)∪(1,3)D .(﹣3,﹣)∪(0,1)∪(1,3)考点: 函数的图象与图象变化;奇函数. 专题: 计算题;压轴题.分析: 由已知中f (x )是定义在(﹣3,3)上的奇函数,当0<x <3时,f (x )的图象,我们易得到f (x )<0,及f (x )>0时x 的取值范围,结合余弦函数在(﹣3,3)上函数值符号的变化情况,我们即可得到不等式f (x )?cosx <0的解集. 解答: 解::由图象可知:0<x <1时,f (x )<0;当1<x <3时,f (x )>0. 再由f (x )是奇函数,知: 当﹣1<x <0时,f (x )>0; 当﹣3<x <﹣1时,f (x )<0. 又∵余弦函数y=cosx 当﹣3<x <﹣,或<x <3时,cosx <0﹣<x <时,cosx >0∴当x∈(﹣,﹣1)∪(0,1)∪(,3)时,f (x )?cosx <0故选B点评: 本题主要考查了奇、偶函数的图象性质,以及解简单的不等式,题目有一定的综合度属于中档题.二.填空题(共1小题)11.(2012?浦东新区二模)直线y=﹣x+a 与曲线y=有两个交点,则a 的取值范围是 [1,) .考点: 函数的图象;直线与圆的位置关系. 专题: 作图题.分析:数形结合来求,因为曲线y=表示的曲线为圆心在原点,半径是1的圆在x 轴以及x轴上方的部分.只要把斜率是1的直线平行移动,看a 为何时直线与曲线y=有两个交点即可. 解答:解;曲线y=表示的曲线为圆心在原点,半径是1的圆在x 轴以及x 轴上方的部分. 作出曲线y=的图象,在统一坐标系中,再作出斜率是1的直线,由左向右移动,可发现,直线先与圆相切,再与圆有两个交点, 求出相切时的a 值为,最后有两个交点时的a 值为1,则1≤a<故答案为[1,)点评: 本体考查了数形结合求直线与曲线交点个数的问题.。