飞利浦芯片产品介绍.doc

合集下载

P80C592芯片的特点与在显示通讯模块中有哪些应用

P80C592芯片的特点与在显示通讯模块中有哪些应用

P80C592芯片的特点与在显示通讯模块中有哪些应用
1P80C592芯片简介
P80C592是PHILIPS公司采用先进的COMS工艺制造的高性能8位单片机。

该单片机的指令集与80C51 完全兼容,但在80C51标准特性的基础上又增加了一些对于应用具有重要作用的硬件功能。

P80C592是P8XC592的无片内ROM版本,是现有P8XC522和Philips CAN控制器PCA82C200功能相结合的产物。

该器件具有下列特性:
●带有80C51中心处理单元(CPU);
●带2×256 B的片内RAM,外部可扩展至64kB;
●具有两个标准的16位定时器/计数器;
●新增一个包括四个捕捉和三个比较寄存器的16位定时器/计数器;
●具有8路模拟量输进的10位ADC变换器;
●带有两路分辨率为8位的脉冲宽度调制输出;
●具有两级优先权的15个中断源(可以有2~6个外部中断源);
●具有五组8位I/O端口和一组与ADC模拟量输进共用的8位输进口;
●带有与内部RAM进行DMA数据传送的CAN控制器;
●内含具有总线故障治理功能的1Mbps CAN控制器;
●VDD/2基准电压;
●具有与标准80C51兼容的全双工UART模式;
●带有在片监视跟踪定时器(WDT);
●时钟频率为1.2MHz~16MHz。

图2 显示通讯模块的外部存储器扩展电路
2显示通讯模块的结构设计
基于CAN总线的显示通讯模块的结构框图如图1所示,该模块采用以带有在片CAN的微处理器P80C592为核心设计的液晶接口电路,并采用大规模液晶显示屏DMF50081NB-FW。

主流MP3解码芯片详解

主流MP3解码芯片详解
1、Sigmatel 3410
曾几何时,SigmaTel 3410的芯片还占据着MP3芯片市场的半壁江山,可能直到目前STMP3410单芯片方案仍然是最成熟和常见的一种方案。其价格低廉、良好的程序移植性的特点曾为它在2003年抢占到80%解码芯片的市场份额。该芯片的音质表现一般,多用在中、低档产品上。现在对于采用SigmaTel 3410芯片的方案已经很成熟,但如果没有在外围电路上增加更多设计的话,其音质会很一般。这也就是为什么虽然采用该芯片的产品很多,但音质表现却有云泥之别的原因了。采用Sigmatel 3410解决方案的MP3播放器主要有Maycom XP168R,DEC M220R系列。
瑞芯RockChip
RockChip RK2606芯片是瑞芯微电子有限公司(Fuzhou Rockchip Electronic Co.,Ltd)制造生产。总部位于福建省福州。
而Sigmatel 1342是一款专为闪存盘而设计的功能增强型芯片,该芯片的功能相对较少,多用在很低端的带MP3播放功能的闪存盘上,其音质表现大致与Sigmatel 3410在伯仲之间。
3、Sigmatel 3510/3520
与Sigmatel 3410相比,Sigmatel 3510不仅支持USB2。0,而且改进了综合能源管理、支持电池充电功能检测、并且强化了数字/模拟转换器和耳机的音乐放大器电路、拥有子目录管理能力等智能化的功能,可以说Sigmatel家族的芯片发展到Sigmatel 3520迈出了一大步。
二、Telechips TCC730/TCC731系列
产地:韩国
去年才出现在市场上的韩国Telechips解码芯片,一经面世便获得一致好评,在韩国众多厂商的大力支持下成长迅速。从功能、性能、音质各方面来看,Telechips TCC730/731比Sigmatel的STMP3410之类的芯片着实要好一些,低音感充足、各频段表现比较平衡、而且音场更为宽阔;但与飞利浦SAA7750/7751相比还有一定差距。另外,Telechips TCC730价格比SAA7750便宜一点,但需要外接ROM,外围元件比较多,因此采用这种芯片的MP3产品难得有身材玲珑的产品面世。

S50简介

S50简介
非接触式IC卡的存储器结构特点使它一卡多用,能运用于不同系统,用户可根据不同的应用设定不同的密码和访问条件。
⑸加密性能好
非接触式IC卡由IC芯片、感应天线组成,并完全密封在一个标准PVC卡片中,无外露部分。非接触式IC卡的读写过程,通常由非接触型IC卡与读写器之间通过无线电波来完成读写操作。
非接触型IC卡本身是无源体,当读写器对卡进行读写操作时,读写器发出的信号由两部分叠加组成:一部分是电源信号,该信号由卡接收后,与其本身的L/C产生谐振,产生一个瞬间能量来供给芯片工作。另一部分则是结合数据信号,指挥芯片完成数据、修改、存储等,并返回给读写器。由非接触式IC卡所形成的读写系统,无论是硬件结构还是操作过程都得到了很大的简化,同时借助于先进的管理软件可脱机的操作方式,都使数据读写过程更为简单。
⑧人为失误:例如,密码加载操作失误,误将KeyA加载为KeyB;或者是误将其他制卡厂约定的初始密码值如a0a1a2a3a4a5、b0b1b2b3b4b5加载到MF1卡内;或者在初始状态下(密码A=000000000000【隐藏状态,实际为FFFFFFFFFFFF】、控制位=FF 07 80 69、密码B=FFFFFFFFFFFF【可见】),若不经意地将KeyA=000000000000删除后又重新输入12个“0”,并加载了它!这时无意中已将KeyA原来12个隐藏的“F”,修改成了12个“0”,其后果可想而知!
●说明:9位数的内码表面号有:10H9D码,8H9D码,6H9D码.有的客户会指定类型
可封装成白卡/印刷卡
产品批号20100120-0018
产品介绍
● Mifare S50射频卡采用的飞利浦(NXP)原装的Mifare IC S50芯片,符合IEC/ISO 14443A空气接口协议。其具有先进的数据加密及双向密码验证系统,和16个完全独立的扇区,有着极高稳定性和广泛的应用范围,是企业一卡通,水表预付费,公交储值卡,高速公路收费,停车场,小区管理,交运卡,公园,公路等首选的RFID产品。

6.3.2 Philips公司的USB接口芯片_USB应用开发宝典_[共2页]

6.3.2 Philips公司的USB接口芯片_USB应用开发宝典_[共2页]

第6章 元器件的识别和加工95║6.3.2 Philips公司的USB接口芯片Philips公司提供了多种USB接口芯片,包括USB 1.1接口的PDIUSBD12、USB 2.0接口的ISP1581等。

此外,该公司还提供了多种USB主控芯片。

下面介绍几款常用的USB接口芯片。

1.PDIUSBD12芯片PDIUSBD12是一款性价比很高的USB器件。

它通常用作微控制器系统中实现与微控制器进行通信的高速通用并行接口。

它还支持本地的DMA传输。

PDIUSBD12使得设计者可以在各种不同类型微控制器中选择出最合适的微控制器。

这种灵活性减小了开发的时间、风险以及费用,从而用最快捷的方法实现最经济的USB外设的解决方案。

PDIUSBD12完全符合USB 1.1的规范。

它还符合大多数器件的分类规格:成像类、海量存储器件、通信器件、打印设备以及人机接口设备。

同样地,PDIUSBD12理想地适用于许多外围设备,例如,打印机、扫描仪、外部的存储设备(Zip驱动器)和数码相机等。

它使得当前使用SCSI的系统可以立即降低成本。

PDIUSBD12所具有的低挂起功耗连同LazyClock输出可以满足使用ACPI、OnNOW和USB电源管理的要求。

低的操作功耗可以应用于使用总线供电的外设。

此外它还集成了许多特性,包括SoftConnetTM、GoodLinkTM、可编程时钟输出、低频晶振和终止寄存器集合。

所有这些特性都为系统显著节约了成本,同时使USB功能在外设上的应用变得容易。

PDIUSBD12的引脚结构,如图6.12所示。

PDIUSBD12芯片的主要特性如下。

∙符合USB 1.1规范,并且符合大多数器件的分类规格。

器、收发器以及电压调整器。

∙可与任何外部微控制器/微处理实现高速并行接口(2MB/s)。

∙完全自治的直接内存存取(DMA)操作。

∙集成320字节多结构FIFO存储器。

∙主端点的双缓冲配置增加了数据吞吐量并轻松实现实时数据传输。

TEA5767芯片说明书

TEA5767芯片说明书

查询TEA5767HN供应商INTEGRATED CIRCUITSDATA SHEETTEA5767HNLow-power FM stereo radio for handheld applicationsPreliminary specification2002Sep13handheld applicationsTEA5767HNCONTENTS1FEATURES2GENERAL DESCRIPTION3ORDERING INFORMATION4QUICK REFERENCE DATA5BLOCK DIAGRAM6PINNING7FUNCTIONAL DESCRIPTION7.1Low-noise RF amplifier7.2FM mixer7.3VCO7.4Crystal oscillator7.5PLL tuning system7.6RF AGC7.7IF filter7.8FM demodulator7.9Level voltage generator and analog-to-digitalconverter7.10IF counter7.11Soft mute7.12MPX decoder7.13Signal dependent mono to stereo blend7.14Signal dependent AF response7.15Software programmable ports7.16I2C-bus and 3-wire bus8I2C-BUS, 3-WIRE BUS ANDBUS-CONTROLLED FUNCTIONS8.1I2C-bus specification8.1.1Data transfer8.1.2Power-on reset8.2I2C-bus protocol8.33-wire bus specification8.3.1Data transfer8.3.2Power-on reset8.4Writing data8.5Reading data8.6Bus timing 9LIMITING VALUES10THERMAL CHARACTERISTICS11DC CHARACTERISTICS12AC CHARACTERISTICS13INTERNAL PIN CONFIGURATION14APPLICATION INFORMATION15PACKAGE OUTLINE16SOLDERING16.1Introduction to soldering surface mountpackages16.2Reflow soldering16.3Wave soldering16.4Manual soldering16.5Suitability of surface mount IC packages forwave and reflow soldering methods17DATA SHEET STATUS18DEFINITIONS19DISCLAIMERS20PURCHASE OF PHILIPS I2C COMPONENTShandheld applicationsTEA5767HN1FEATURES•High sensitivity due to integrated low-noise RF inputamplifier•FM mixer for conversion to IF of the US/Europe(87.5to108MHz) and Japanese (76to91MHz)FM band•Preset tuning to receive Japanese TV audio up to108MHz•RF Automatic Gain Control (AGC) circuit•LC tuner oscillator operating with low cost fixed chip inductors•FM IF selectivity performed internally•No external discriminator needed due to fully integrated FM demodulator•Crystal reference frequency oscillator; the oscillator operates with a 32.768kHz clock crystal or with a13MHz crystal and with an externally applied 6.5MHz reference frequency•PLL synthesizer tuning system•I2C-bus and 3-wire bus, selectable via pin BUSMODE •7-bit IF counter output via the bus•4-bit level information output via the bus•Soft mute•Signal dependent mono to stereo blend [Stereo Noise Cancelling (SNC)]•Signal dependent High Cut Control (HCC)•Soft mute, SNC and HCC can be switched off via the bus•Adjustment-free stereo decoder•Autonomous search tuning function•Standby mode•Two software programmable ports•Bus enable line to switch the bus input and output lines into 3-state mode•Automotive temperature range (at V CCA, V CC(VCO) and V CCD=5V).2GENERAL DESCRIPTIONThe TEA5767HN is a single-chip electronically tuned FM stereo radio for low-voltage application with fully integrated IF selectivity and demodulation. The radio is completely adjustment-free and only requires a minimum of small and low cost external components. The radio can be tuned tothe European, US and Japanese FM bands.3ORDERING INFORMATIONTYPE NUMBERPACKAGENAME DESCRIPTION VERSIONTEA5767HN HVQFN40plastic,heatsink very thin quadflat package;no leads;40terminals;body6×6×0.85mmSOT618-1handheld applicationsTEA5767HN4QUICK REFERENCE DATA V CCA =V CC(VCO)=V CCD .Note1.LOW side and HIGH side selectivity can be switched by changing the mixer from HIGH side to LOW side LO injection.SYMBOL PARAMETERCONDITIONSMIN.TYP .MAX.UNIT V CCA analog supply voltage 2.5 3.0 5.0V V CC(VCO)voltage controlled oscillator supply voltage 2.5 3.0 5.0V V CCD digital supply voltage 2.5 3.0 5.0V I CCA analog supply current operating; V CCA =3V 6.08.410.5mA standby mode; V CCA =3V−36µA I CC(VCO)voltage controlled oscillator supply current operating; V VCOTANK1=V VCOTANK2=3V 560750940µA standby mode; V VCOTANK1=V VCOT ANK2=3V −12µA I CCDdigital supply currentoperating; V CCD =3V 2.13.0 3.9mA standby mode; V CCD =3V bus enable line HIGH 305680µA bus enable line LOW111926µA f FM(ant)FM input frequency 76−108MHz T ambambient temperatureV CCA =V CC(VCO)=V CCD =2.5V −10−+75°C V CCA =V CC(VCO)=V CCD =5V−40−+85°C FM overall system parameters;see Fig.7V RFRF sensitivity input voltagef RF =76to 108MHz;∆f =22.5kHz;f mod =1kHz; (S+N)/N =26dB;de-emphasis =75µs; L =R;B AF =300Hz to 15kHz−23.5µVS −200LOW side 200kHz selectivity ∆f =−200kHz; f RF =76to 108MHz; note 13236−dB S +200HIGH side 200kHz selectivity∆f =+200kHz; f RF =76to 108MHz; note 13943−dB V AFL ; V AFR left and right audio frequency output voltage V RF =1mV; L =R;∆f =22.5kHz;f mod =1kHz; de-emphasis =75µs 607590mV (S+N)/Nmaximum signal plus noise-to-noise ratio V RF =1mV; L =R;∆f =22.5kHz;f mod =1kHz; de-emphasis =75µs;B AF =300Hz to 15kHz5460−dBαcs(stereo)stereo channel separationV RF =1mV; R =L =0 or R =0 and L =1including 9% pilot;∆f =75kHz; f mod =1kHz;data byte 3 bit 3=0; data byte 4 bit 1=12430−dBTHD total harmonic distortionV RF =1mV;L =R;∆f =75kHz;f mod =1kHz;de-emphasis =75µs−0.41%handheld applicationsTEA5767HNT h i s t e x t i s h e r e i n w h i t e t o f o r c e l a n d s c a p e p a g e s t o b e r o t a t e d c o r r e c t l y w h e n b r o w s i n g t h r o u g h t h e p d f i n t h e A c r o b a t r e a d e r .T h i s t e x t i s h e r e i n _w h i t e t o f o r c e l a n d s c a p e p a g e s t o b e r o t a t e d c o r r e c t l y w h e n b r o w s i n g t h r o u g h t h e p d f i n t h e A c r o b a t r e a d e r .T h i s t e x t i s h e r e i n T h i s t e x t i s h e r e i n w h i t e t o f o r c e l a n d s c a p e p a g e s t o b e r o t a t e d c o r r e c t l y w h e n b r o w s i n g t h r o u g h t h e p d f i n t h e A c r o b a t r e a d e r .w h i t e t o f o r c e l a n d s c a p e p a g e s t o b e ...5BLOCK DIAGRAMh a n d b o o k , f u l l p a g e w i d t hM H C 283I /Q -M I X E R 1s t F M I F C E N T R E F R E Q U E N C Y A D J U S T100 p F22 n FV C C A35323334292827262527 p F L 147 p F 22 µF36373839R F I 1I g a i n A G N D V C C AR F G N D R F I 2T A G C L O O P S W 23V C O T A N K 145C P O U T V C O T A N K 2V C C (V C O )6789D A T A V C C D D G N D C L O C K A G CF M a n t e n n a p r o g r a m m a b l e d i v i d e r o u t p u tr e f e r e n c e f r e q u e n c y d i v i d e r o u t p u tT U N I N G S Y S T E M4.7 n F47 n F 47 n F 33 n F 242322L I M D E C 2L I M D E C 1T I F C V r e f M P X O T M U T E V A F R V A F L19181716151413B U S E N A B L EW R I T E /R E A DS W P O R T 1S W P O R T 2X T A L 1X T A L 2P H A S E F I LP I L F I L11S D S 33 n F1 n F 22 n F22 n FC c o m p (1)C p u l l (1)32.768 k H z o r 13 M H z33 k Ω10 k Ω10 k Ω47 n F V C O 39 n F10 n F R 14.7 Ω100 k Ω10 k Ω47 ΩV C C (V C O )12 Ω22 n F D 1L 3D 2L 222 n FL E V E L A D C I F C O U N T E RL I M I T E RD E M O D U L A T O R I r e f R E S O N A N C E A M P L I F I E RS O F T W A R E P R O G R A M M A B L E P O R TM U XI 2C -B U SA N D 3-W I R EB U SV C C D G A I N S T A B I L I Z A T I O NP O W E R S U P P L YS O F T M U T E M P X D E C O D E RC R Y S T A LO S C I L L A T O RT E A 5767H NV C C A2N 11, 10, 20, 21,30, 31, 40n .c .12B U S M O D Ep i l o tm o n oF i g .1 B l o c k d i a g r a m .T h e c o m p o n e n t l i s t i s g i v e n i n C h a p t e r 14.(1)C c o m p a n d C p u l l d a t a d e p e n d s o n c r y s t a l s p e c i f i c a t i o n .TEA5767HN handheld applications6PINNINGSYMBOL PIN DESCRIPTIONn.c.1not connectedCPOUT2charge pump output of synthesizer PLLVCOTANK13voltage controlled oscillator tuned circuit output1VCOTANK24voltage controlled oscillator tuned circuit output2V CC(VCO)5voltage controlled oscillator supply voltageDGND6digital groundV CCD7digital supply voltageDA TA8bus data line input/outputCLOCK9bus clock line inputn.c.10not connectedWRITE/READ11write/read control input for the 3-wire busBUSMODE12bus mode select inputBUSENABLE13bus enable inputSWPORT114software programmable port1SWPORT215software programmable port2XTAL116crystal oscillator input1XTAL217crystal oscillator input2PHASEFIL18phase detector loop filterPILFIL19pilot detector low-pass filtern.c.20not connectedn.c.21not connectedV AFL22left audio frequency output voltageV AFR23right audio frequency output voltageTMUTE24time constant for soft muteMPXO25FM demodulator MPX signal outputV ref26reference voltageTIFC27time constant for IF centre adjustLIMDEC128decoupling IF limiter1LIMDEC229decoupling IF limiter2n.c.30not connectedn.c.31not connectedI gain32gain control current for IF filterAGND33analog groundV CCA34analog supply voltageRFI135RF input1RFGND36RF groundRFI237RF input2T AGC38time constant RF AGCLOOPSW39switch output of synthesizer PLL loop filtern.c.40not connectedhandheld applicationsTEA5767HNhandbook, full pagewidthB U S E N A B L EX T A L 2S W P O R T 2X T A L 1W R I T E /R E A DS W P O R T 1B U S M O D EP H A S E F I Ln .c .P I L F I LT A G C V C C A R F G N D R F I 1n .c .R F I 2L O O P S W A G N D n .c .I g a i n TEA5767HNMHC282V AFL TMUTE V ref LIMDEC1n.c.V AFR MPXO TIFC LIMDEC2n.c.n.c.n.c.21345687201614181917151312113136333234353738394091030282526292724232221CPOUTVCOTANK1VCOTANK2V CC(VCO)DGND V CCD DATA CLOCK Fig.2 Pin configuration (bottom view).7FUNCTIONAL DESCRIPTION 7.1Low-noise RF amplifierThe LNA input impedance together with the LC RF input circuit defines an FM band filter. The gain of the LNA is controlled by the RF AGC circuit.7.2FM mixerThe FM quadrature mixer converts the FM RF (76to 108MHz) to an IF of 225kHz.7.3VCOThe varactor tuned LC VCO provides the Local Oscillator (LO) signal for the FM quadrature mixer. The VCO frequency range is 150to 217MHz.7.4Crystal oscillatorThe crystal oscillator can operate with a 32.768kHz clock crystal or a 13MHz crystal. The temperature drift ofstandard 32.768kHz clock crystals limits the operational temperature range from −10to +60°C.The PLL synthesizer can be clocked externally with a 32.768kHz,a 6.5MHz or a 13MHz signal via pin XTAL2.The crystal oscillator generates the reference frequency for:•The reference frequency divider for the synthesizer PLL •The timing for the IF counter•The free-running frequency adjustment of the stereo decoder VCO•The centre frequency adjustment of the IF filters.7.5PLL tuning systemThe PLL synthesizer tuning system is suitable to operate with a 32.768kHz or a 13MHz reference frequencygenerated by the crystal oscillator or applied to the IC from an external source. The synthesizer can also be clocked via pin XTAL2 at 6.5MHz. The PLL tuning system can perform an autonomous search tuning function.7.6RF AGCThe RF AGC prevents overloading and limits the amount of intermodulation products created by strong adjacent channels.handheld applicationsTEA5767HN7.7IF filterFully integrated IF filter.7.8FM demodulatorThe FM quadrature demodulator has an integrated resonator to perform the phase shift of the IF signal.7.9Level voltage generator and analog-to-digitalconverterThe FM IF analog level voltage is converted to4bits digital data and output via the bus.7.10IF counterThe IF counter outputs a 7-bit count result via the bus. 7.11Soft muteThe low-pass filtered level voltage drives the soft mute attenuator at low RF input levels. The soft mute function can be switched off via the bus.7.12MPX decoderThe PLL stereo decoder is adjustment-free. The stereo decoder can be switched to mono via the bus.7.13Signal dependent mono to stereo blendWith a decreasing RF input level the MPX decoder blends from stereo to mono to limit the output noise. The continuous mono to stereo blend can also be programmed via the bus to an RF level depending switched mono to stereo transition. Stereo Noise Cancelling (SNC) can be switched off via the bus.7.14Signal dependent AF responseThe audio bandwidth will be reduced with a decreasing RF input level. The function can be switched off via the bus.7.15Software programmable portsTwo software programmable ports(open-collector)can be addressed via the bus.The port1(pin SWPORT1)function can be changed with write data byte4 bit0 (see Table13). Pin SWPORT1 is then output for the ready flag of read byte1.7.16I2C-bus and 3-wire busThe3-wire bus operates with a maximum clock frequency of 1MHz.The I2C-bus operates with a maximum clock frequency of 400kHz.The I2C-bus mode is selected when pin BUSMODE is LOW,when pin BUSMODE is HIGH the3-wire bus mode is selected.8I2C-BUS, 3-WIRE BUS AND BUS-CONTROLLED FUNCTIONS8.1I2C-bus specificationInformation about the I2C-bus can be found in the brochure “The I2C-bus and how to use it” (order number 939839340011).The standard I2C-bus specification is expanded by the following definitions.IC address C0: 1100000.Structure of the I2C-bus logic: slave transceiver. Subaddresses are not used.The maximum LOW-level input and the minimumHIGH-level input are specified to 0.2V CCD and 0.45V CCD respectively.The pin BUSMODE must be connected to ground to operate the IC with the I2C-bus.Note:The bus operates at a maximum clock frequency of 400kHz. It is not allowed to connect the IC to a bus operating at a higher clock rate.8.1.1D A TA TRANSFERData sequence:address,byte1,byte2,byte3,byte4and byte5 (the data transfer has to be in this order). The LSB=0of the address indicates a WRITE operation to the TEA5767HN.Bit7of each byte is considered as the MSB and has to be transferred as the first bit of the byte.The data becomes valid bitwise at the appropriate falling edge of the clock. A STOP condition after any byte can shorten transmission times.When writing to the transceiver by using the STOP condition before completion of the whole transfer:•The remaining bytes will contain the old information •If the transfer of a byte is not completed,the new bits will be used, but a new tuning cycle will not be started.handheld applicationsTEA5767HNThe IC can be switched into a low current standby mode with the standby bit; the bus is then still active. Thestandby current can be reduced by deactivating the bus interface (pin BUSENABLE LOW). If the bus interface is deactivated (pin BUSENABLE LOW) without the standby mode being programmed, the IC maintains normal operation, but is isolated from the bus lines.The software programmable output (SWPORT1) can be programmed to operate as a tuning indicator output.As long as the IC has not completed a tuning action,pin SWPORT1 remains LOW. The pin becomes HIGH,when a preset or search tuning is completed or when a band limit is reached.The reference frequency divider of the synthesizer PLL is changed when the MSB in byte 5 is set to logic 1. The tuning system can then be clocked via pin XTAL2 at 6.5MHz.8.1.2P OWER -ON RESETAt Power-on reset the mute is set, all other bits are set to LOW. To initialize the IC all bytes have to be transferred.8.2I 2C-bus protocol Table 1Write modeNotes1.S =START condition.2.A =acknowledge.3.P =STOP condition.Table 2Read modeNotes1.S =START condition.2.A =acknowledge.Table 3IC address byteNote1.Read or write mode:a)0=write operation to the TEA5767HN b)1=read operation from the TEA5767HN.S (1)address (write)A (2)data byte(s)A (2)P (3)S (1)address (read)A (2)data byte 1IC ADDRESSMODE 11R/W (1)handheld applicationsTEA5767HN8.33-wire bus specificationThe3-wire bus controls the write/read,clock and data lines and operates at a maximum clock frequency of 1MHz. Hint:By using the standby bit the IC can be switched into a low current standby mode.In standby mode the IC must be in the WRITE mode.When the IC is switched to READ mode,during standby,the IC will hold the data line down. The standby current can be reduced by deactivating the bus interface(pin BUSENABLE LOW).If the bus interface is deactivated (pin BUSENABLE LOW) without the standby mode being programmed, the IC maintains normal operation, but is isolated from the clock and data line.8.3.1D A TA TRANSFERData sequence: byte1, byte2, byte3, byte4 and byte5 (the data transfer has to be in this order).A positive edge at pin WRITE/READ enables the data transfer into the IC. The data has to be stable at the positive edge of the clock. Data may change while the clock is LOW and is written into the IC on the positive edge of the clock. Data transfer can be stopped after the transmission of new tuning information with the first two bytes or after each following byte.A negative edge at pin WRITE/READ enables the data transfer from the IC.The WRITE/READ pin changes while the clock is LOW. With the negative edge atpin WRITE/READ the MSB of the first byte occurs atpin DATA.The bits are shifted on the negative clock edge to pin DATA and can be read on the positive edge.To do two consecutive read or write actions,pin WRITE/READ has to be toggled for at least one clock period. When a search tuning request is sent, the IC autonomously starts searching the FM band; the search direction and search stop level can be selected. When a station with a field-strength equal to or greater than the stop level is found,the tuning system stops and the ready flag bit is set to HIGH.When,during search,a band limit is reached,the tuning system stops at the band limit and the band limit flag bit is set to HIGH.The ready flag is also set to HIGH in this case.The software programmable output (SWPORT1) can be programmed to operate as a tuning indicator output.As long as the IC has not completed a tuning actionpin SWPORT1 remains LOW. The pin becomes HIGH, when a preset or search tuning is completed or when a band limit is reached.The reference frequency divider of the synthesizer PLL is changed when the MSB in byte5 is set to logic1. The tuning system can then be clocked via pin XTAL2 at6.5MHz.8.3.2P OWER-ON RESETAt Power-on reset the mute is set, all other bits are random.To initialize the IC all bytes have to be transferred.handheld applicationsTEA5767HN8.4Writing datahandbook, full pagewidthMHC25050%t su(clk)t su(write)valid datat W(write)50%50%50%WRITE/READ CLOCK DA T A t h(write)Fig.3 3-wire bus write data.Table 4Write modeTable 5Format of 1st data byteTable 6Description of 1st data byte bitsTable 7Format of 2nd data byteTable 8Description of 2nd data byte bitsDA T A BYTE 1DA T A BYTE 2DA TA BYTE 3DA TA BYTE 4DA T A BYTE 5BIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)MUTE SMPLL13PLL12PLL11PLL10PLL9PLL8BIT SYMBOL DESCRIPTION7MUTE if MUTE =1 then L and R audio are muted; if MUTE =0 then L and R audio are not muted6SM Search Mode: if SM =1 then in search mode; if SM =0 then not in search mode 5to 0PLL[13:8]setting of synthesizer programmable counter for search or presetBIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)PLL7PLL6PLL5PLL4PLL3PLL2PLL1PLL0BIT SYMBOL DESCRIPTION7to 0PLL[7:0]setting of synthesizer programmable counter for search or presethandheld applicationsTEA5767HNTable 9Format of 3rd data byteTable 10Description of 3rd data byte bitsTable 11Search stop level settingTable 12Format of 4th data byte Table 13Description of 4th data byte bitsBIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)SUDSSL1SSL0HLSIMSMLMRSWP1BIT SYMBOL DESCRIPTION7SUD Search Up/Down: if SUD =1 then search up; if SUD =0 then search down6and 5SSL[1:0]Search Stop Level: see T able 114HLSI HIGH/LOW Side Injection: if HLSI =1 then HIGH side LO injection; if HLSI =0 then LOW side LO injection3MS Mono to Stereo: if MS =1 then forced mono; if MS =0 then stereo ON2ML Mute Left: if ML =1 then the left audio channel is muted and forced mono; if ML =0then the left audio channel is not muted1MR Mute Right:if MR =1then the right audio channel is muted and forced mono;if MR =0then the right audio channel is not mutedSWP1Software programmable port 1: if SWP1=1 then port 1 is HIGH; if SWP1=0 then port 1 is LOWSSL1SSL0SEARCH STOP LEVEL00not allowed in search mode 01low; level ADC output =510mid; level ADC output =711high; level ADC output =10BIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)SWP2STBYBLXTALSMUTEHCCSNCSIBIT SYMBOL DESCRIPTION7SWP2Software programmable port 2: if SWP2=1 then port 2 is HIGH; if SWP2=0 then port 2 is LOW6STBY Standby: if STBY =1 then in standby mode; if STBY =0 then not in standby mode 5BL Band Limits: if BL =1 then Japanese FM band; if BL =0 then US/Europe FM band 4XTAL if XT AL =1 then f xtal =32.768kHz; if XTAL =0 then f xtal =13MHz3SMUTE Soft MUTE: if SMUTE =1 then soft mute is ON; if SMUTE =0 then soft mute is OFF 2HCC High Cut Control: if HCC =1 then high cut control is ON; if HCC =0 then high cut control is OFF1SNC Stereo Noise Cancelling: if SNC =1 then stereo noise cancelling is ON; if SNC =0then stereo noise cancelling is OFFSISearch Indicator:if SI =1then pin SWPORT1is output for the ready flag;if SI =0then pin SWPORT1 is software programmable port 1handheld applicationsTEA5767HNTable 14Format of 5th data byte Table 15Description of 5th data byte bits8.5Reading dataBIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)PLLREFDTC−−−−−−BIT SYMBOL DESCRIPTION7PLLREF if PLLREF =1 then the 6.5MHz reference frequency for the PLL is enabled;if PLLREF =0 then the 6.5MHz reference frequency for the PLL is disabled 6DTC if DTC =1 then the de-emphasis time constant is 75µs; if DTC =0 then the de-emphasis time constant is 50µs 5to 0−not used; position is don’t carehandbook, full pagewidthMHC24950%t h(out)t LOWt su(clk)t W(read)50%50%50%WRITE/READ CLOCK DATA 50%t d(out)t HIGHFig.4 3-wire bus read data.handheld applicationsTEA5767HNTable 16Read modeTable 17Format of 1st data byte Table 18Description of 1st data byte bitsTable 19Format of 2nd data byte Table 20Description of 2nd data byte bitsTable 21Format of 3rd data byte Table 22Description of 3rd data byte bitsTable 23Format of 4th data byte Table 24Description of 4th data byte bitsDA T A BYTE 1DA T A BYTE 2DA TA BYTE 3DA TA BYTE 4DA T A BYTE 5BIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)RFBLFPLL13PLL12PLL11PLL10PLL9PLL8BIT SYMBOL DESCRIPTION7RF Ready Flag: if RF =1 then a station has been found or the band limit has been reached; if RF =0 then no station has been found6BLF Band Limit Flag: if BLF =1 then the band limit has been reached; if BLF =0 then the band limit has not been reached5to 0PLL[13:8]setting of synthesizer programmable counter after search or presetBIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)PLL7PLL6PLL5PLL4PLL3PLL2PLL1PLL0BIT SYMBOL DESCRIPTION7to 0PLL[7:0]setting of synthesizer programmable counter after search or presetBIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)STEREOIF6IF5IF4IF3IF2IF1IF0BIT SYMBOL DESCRIPTION7STEREO Stereo indication: if STEREO =1 then stereo reception; if STEREO =0 then mono reception 6to 0PLL[13:8]IF counter resultBIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)LEV3LEV2LEV1LEV0CI3CI2CI1BIT SYMBOL DESCRIPTION7to 4LEV[3:0]level ADC output3to 1CI[3:1]Chip Identification: these bits have to be set to logic 00−this bit is internally set to logic 0handheld applicationsTEA5767HNTable 25Format of 5th data byte Table 26Description of 5th data byte bits8.6Bus timingTable 27Digital levels and timing BIT 7 (MSB)BIT 6BIT 5BIT 4BIT 3BIT 2BIT 1BIT 0 (LSB)BIT SYMBOLDESCRIPTION7to 0−reserved for future extensions; these bits are internally set to logic 0SYMBOL PARAMETERCONDITIONSMIN.MAX.UNITDigital inputs V IH HIGH-level input voltage 0.45V CCD −V V IL LOW-level input voltage −0.2V CCD V Digital outputsI sink(L)LOW-level sink current 500−µA V OL LOW-level output voltageI OL =500µA−450mVTiming f clk clock input frequency I 2C-bus enabled −400kHz 3-wire bus enabled −1MHz t HIGH clock HIGH time I 2C-bus enabled 1−µs 3-wire bus enabled 300−ns t LOW clock LOW timeI 2C-bus enabled 1−µs 3-wire bus enabled 300−ns t W(write)pulse width for write enable 3-wire bus enabled 1−µs t W(read)pulse width for read enable 3-wire bus enabled 1−µs t su(clk)clock set-up time3-wire bus enabled 300−ns t h(out)read mode data output hold time 3-wire bus enabled10−ns t d(out)read mode output delay time 3-wire bus enabled −100ns t su(write)write mode set-up time 3-wire bus enabled 100−ns t h(write)write mode hold time3-wire bus enabled100−nshandheld applicationsTEA5767HN9LIMITING VALUESIn accordance with the Absolute Maximum Rating System (IEC 60134).Notes1.Machine model (R =0Ω, C =200pF).2.Human body model (R =1.5k Ω, C =100pF).10THERMAL CHARACTERISTICSSYMBOL PARAMETERCONDITIONSMIN.MAX.UNITV VCOTANK1VCO tuned circuit output voltage 1−0.3+8V V VCOTANK2VCO tuned circuit output voltage 2−0.3+8V V CCD digital supply voltage −0.3+5V V CCA analog supply voltage −0.3+8VT stg storage temperature −55+150°C T amb ambient temperature −40+85°C V eselectrostatic handling voltage for all pins except pin DATA note 1−200+200V note 2−2000+2000V for pin DATAnote 1−150+200V note 2−2000+2000VSYMBOL PARAMETERCONDITIONSVALUE UNIT R th(j-a)thermal resistance from junction to ambient in free air29K/Whandheld applicationsTEA5767HN11DC CHARACTERISTICSV CCA=V VCOT ANK1=V VCOTANK2=V CCD=2.7V; T amb=25°C; unless otherwise specified.SYMBOL PARAMETER CONDITIONS MIN.TYP.MAX.UNIT Supply voltagesV CCA analog supply voltage 2.5 3.0 5.0VV CC(VCO)voltage controlledoscillator supply voltage2.53.0 5.0VV CCD digital supply voltage 2.5 3.0 5.0V Supply currentsI CCA analog supply current operatingV CCA=3V 6.08.410.5mAV CCA=5V 6.28.610.7mAstandby modeV CCA=3V−36µAV CCA=5V− 3.2 6.2µAI CC(VCO)voltage controlledoscillator supply current operatingV VCOTANK1=V VCOTANK2=3V560750940µA V VCOTANK1=V VCOTANK2=5V570760950µA standby modeV VCOTANK1=V VCOTANK2=3V−12µA V VCOTANK1=V VCOTANK2=5V− 1.2 2.2µAI CCD digital supply current operatingV CCD=3V 2.1 3.0 3.9mAV CCD=5V 2.25 3.15 4.05mAstandby mode; V CCD=3Vbus enable line HIGH305680µAbus enable line LOW111926µAstandby mode; V CCD=5Vbus enable line HIGH5078105µAbus enable line LOW203345µA。

5909 全桥驱动器芯片UBA2032T UBA2032TS

5909 全桥驱动器芯片UBA2032T UBA2032TS

飞利浦公司采用EZ-HV SOI工艺制造的全桥驱动器UBA2032T/TS可用于驱动任何一类负载,尤其适合于驱动HID灯。

文中介绍了UBA2032T/TS的功能特点,给出了它的典型应用电路。

1概述:飞利浦公司推出的UBA2032高压单片IC是采用EZ-HVSO1工艺制造的一种高压全桥驱动器。

UBA2032在全桥拓扑中通过外部MOSFET可以驱动任何一种负载,尤其适用于驱动高强度的放电HID灯如高压钠灯和金卤灯换向器等commutator。

UBA2032的主要特点如下:●内置自举二极管和高压电平移位器;●桥路电压最高可达550V,并可直接从IC的HV脚输入高压,以为内部电路产生低工作电压,而无需附加低压电源;●带输入启动延时,可利用简单的RC滤波器或来自处理器的控制信号产生延迟;●振荡器频率可调节;●只要BD脚上电压超过桥路截止门限1.29V,所有MOSFET都将被关断;●为保证50%的占空因数,振荡器信号在馈送到输出驱动器之前应通过除法器;●非交叠non-overlap时间可由自适应非交叠电路控制,最小非交叠时间可在内部固定;●采用24脚SO封装UBA2032T和28脚SSOP封装UBA2032TS,引脚排列如图1所示。

图2 UBA2C32T/TS内部结构方框图2内部结构及工作原理2.1内部结构及引脚功能UBA2032片内集成有电压稳压器、振荡器、输入信号延迟和桥路禁止电路、控制逻辑、高/低压电平移位器、高端左/右驱动器和低端左/右驱动器等单元电路,图2所示是其内部结构框图。

表1所列是UBA2032的各引脚功能表1 UBA2032的引脚功能符号引脚功能UBA2032T UBA2032TS-LVS 1 1 逻辑输入负电源电压EXTRD 2 2 振荡器信号输入+LVS 3 3 逻辑输入正电源电压n.c 4,6,16,19,21 4,5,7,18,19,22,24,25 空脚HV 5 6 内部低电源电压产生引脚VDD 7 9 内部低电源电压SU 8 10 启动延时输入信号DD 9 11 除法器禁止控制输入BD 10 12 桥路禁止控制输入RC 11 13 内部振荡器RC输入SGND 12 14 信号地GHL 13 15 高端左边MOSFET栅极FSL 14 16 左边浮置电源电压SHL 15 17 高端左边MOSFET源极GLL 17 20 低端左边MOSFET栅极PGND 19 21 功率地GLR 20 23 低端右边MOSFET栅极SHR 22 26 高端右边MOSFET源极FSR 23 27 右边浮置电源电压GHR 24 28 高端右边MOSFET栅极表2 逻辑关系器件状态输入(脚)输出(脚)BD SU DD EXTDR GHL GHR GLL GLR 启动H X X X L L L LL X X X L L H H振荡H X X X L L L L L L X X L L H H L H HG L H H LL H L L H L H LL H L L HLH H L L HH H L L HHL L H H L备注:H为高电平;L为低电平;X表示无关2.2工作原理UBA2032既可从HV脚施加电压以产生内部低电源电压VDD11.5±2V,也可将低压电源直接连接到VDD脚此情况下HV脚必须连接到脚VDD或SGND。

NXP DESFire芯片

NXP DESFire芯片

同所有RFID系统一样,MF3 D21,D41,D81卡片既有常用RFID卡片的共性,也有其特有的个性。

如:采用MF3 D21,D41,D81芯片制作的智能卡在非接触式RFID应用系统中,工作于无源形式,卡片由读卡机具等相关设备通过RF空中接口辐射的电磁波获取工作能量,而不需要另外使用电池,这就是共性的一面。

下面分别对其个性化的一面做些简单介绍。

独特的7 byte UID码,这是被固化在专为芯片厂商保留的非易失存储器的锁定部份,并且能够确保每个UID码是独一无二的。

根据ISO/IEC 14443-3和ISO/IEC 7816-6 AMD 1协议,SN0为NXP(04h)保留制造商身份辨别。

基于安全和系统要求,这些字节由IC制造商在生产编程后写保护。

也就是说,这个7 byte UID码是固定的,芯片厂商在Wafer制造过程中就已经固化好了,是不能改变的。

根据ISO/IEC 14443-3的协议规定,在第一次防撞循环串联标签返回88h值、3 bytes UID、UID0到UID2和BCC。

第二防撞循环返回bytes UID3到UID6及BCC。

当MF3 D21,D41,D81卡片处在读卡机具等相关设备的RF有效场强范围内时,高速的RF通讯接口可使数据传输率最高可达848 kbit/s,让快速数据处理得以实现。

MF3 D21,D41,D81具有智能防冲撞机制,当读卡机具或相关读卡设备检测到同一场强范围内有两张或两张以上的D21,D41,D81卡片存在时,防冲撞算法可以精准单独选择每一张Mifare DESFire卡片,并确保其执行与选定的Mifare DESFire卡片不会因为在同一区域存在其他Mifare DESFire 卡片而破坏其内部的数据信息。

这样做的目的,有利于防范对卡片内的重要数据信息不会因为人为或其他意外因素而遭到破坏。

关于随机ID的问题,在Mifare DESFire EV1系列芯片被重置复位时,会产生一个随机的3 byte的随机数。

芯片资料简介

芯片资料简介

芯片资料简介一、飞利浦系列|技术交流|资料下载|图书杂志|家电资讯2m8Q o r-l《家电修理》技术论坛a ^ A7p*T k l产地:荷兰假如一定要评出目前市场上最好的MP3解码芯片的话,那么无疑确实是飞利浦芯片了。

飞利浦家族的解码芯片在业界一直以其“功能全,音质好,价格高”而著称。

飞利浦的解码芯片一样都采纳的是BGA封装工艺,而国内的这方面技术相当有限,此外,由于飞利浦的解码芯片需要搭配另外的操纵芯片电路协同工作,因此产品成本较高。

因此采纳飞利浦解码芯片的厂商往往都定位于中高价位,如MPIO和IRIVER这两家韩国的MP3专业厂商。

这两个品牌一个最要紧的共同特点确实是在产品中全面采纳了飞利浦的解码芯片。

因此,他们的产品拥有专门高的音质和品质,成为全球MP3爱好者追逐的对象。

#x;V3g#D(y!s&[ s N|技术交流|资料下载|图书杂志|家电资讯%q2e{ L#N8t1、飞利浦SAA775X系列(SAA7750/7751/7752/7753)飞利浦SAA775x芯片是目前市场上MP3播放器解码芯片组中功能最全(支持CD直录),成效最好的解码芯片之一。

该解码芯片的音质表现为:低音下沉较深、中音表现杰出、而相比之下高音则显得一样。

;}3v1T U^%t zjdwxmagazine .{ c j+Q5~因为SAA775x中内含DSP(Digital Signal Processing,数字信号处理)和32位ARM RISC处理器,因此能用超高集成度的单颗芯片,音频解码和语音编码等工作,同时能够加入SDMI(Secure Digital Music Initiative,安全式数字音乐)爱护。

其中SAA7750内含DSP和32位ARM RISC处理器,信噪比为90dB。

该芯片兼容多段多档位EQ智能音效,支持以ADPCM格式储存语音记录、同步显示歌名和歌曲信息、Line-in直录,此外还支持USB 1。

飞利浦芯片产品介绍

飞利浦芯片产品介绍

飞利浦芯片产品介绍1、MIFARE完全符合ISO 14443A 標準,MIFARE® 是非接觸式與雙接口智能卡的業界標準,已經廣為全球採用,並且是一個經過驗證的RF 通信技術,主要用在智能卡與讀卡器間的數據傳輸。

這個平台提供一系列兼容的非接觸式智能卡、讀卡器器件以及雙接口器件,為非接觸式與接觸式智能卡市場提供一個安全的連接方式。

產品目前MIFARE® 接口平台包含四個產品系列1.MIFARE® classic系列涵蓋符合MIFARE® classic 協議的固線式(Hardwired) IC,如MIFARE® Standard 與新的MIFARE® Standard 4k。

MIFARE® classic 商标泛指采用MIFARE® 接口、MIFARE® classic 协议及安全机制的芯片产品,目前飞利浦半导体提供两种不同版本,分别为拥有 1 Kbytes EEPROM 的MIFARE® Standard 与拥有 4 Kbytes EEPROM 的MIFARE® Standard 4k。

MIFARE® CLASSICMIFARE® 系列产品是非接触式智能卡芯片中的先锋,作业频率为 13.56 MHz,并且具备读写能力。

MIFARE® standard 芯片于 1995 年推出,是业界第一颗能够放入 ISO 非接触式智能卡的芯片,它所搭配的超小型线圈也提供了大批量生产的能力。

目前全球MIFARE® Standard 芯片的使用量超过两亿个,拥有非接触式智能卡85% 以上的市场份额 (数据来源:Frost & Sullivan, 2000)。

因此,MIFARE® Standard 本身就代表业界标准,同时也成为其他竞争技术的标竿。

面向多功能卡的需求,MIFARE® Standard 芯片可支持高达 40 个不同的应用,分别拥有专属的金钥与存储区域。

NXPDESFire芯片及其智能卡简介

NXPDESFire芯片及其智能卡简介

NXPDESFire芯⽚及其智能卡简介前⾔本⽂简要介绍荷兰飞利浦(即NXP)公司的Mifare DESFire D21,D41,D81芯⽚及其智能卡,Mifare DESFireD21,D41,D81芯⽚属于Mifare DESFire EV1系列中的⼀种,国内称之为MF3。

相对于现有的MF1系列芯⽚⽽⾔,Mifare DESFire EV1 技术更加成熟⽽可靠。

⼀直以来,NXP以其快速(Fast)、独创((Innovative)、可靠(Reliable)、安全(sEcure)的卓越领先理念,并且以开放的全球标准为基础,在速度、效能与成本效益上取得了最佳综合平衡。

Mifare DESFire EV1系列中的MF3 D21,D41,D81在保持其先进性的同时,还可以与现有MF1系列硬件平台完全兼容。

芯⽚特征从Mifare DESFire EV1系列芯⽚的型号命名上,就可看出其特性。

DES 代表Mifare DESFire EV1 使⽤3DES 硬件加密引擎,以表⽰其⾼安全性。

Mifare DESFire EV1系列芯⽚具有如下主要特征:▲载波频率:13.56MHz;▲完全符合ISO/IEC14443 Type A四个层级的协议标准,并特别选⽤ISO/IEC 7816-4 指令;▲⾼速、安全的指令集;▲灵活的⽂件结构适合多种应⽤;▲2K字节(D21)、4K字节(D21,D41,D81)和8K字节(D81)的EEPROM 及快速编程能⼒;▲独特的7 byte 序列号(ISO cascade level 2)功能;▲随机ID功能;▲数据完整性:在物理层执⾏CRC 与位计算;▲防碰撞(anti-collision)机制;▲可选的开放DES/3DES/3K3DES/AES 加密算法,采⽤硬件协处理器执⾏加密;▲对于普通的安全交易,交易时间⼩于100 毫秒;▲硬件中开放AES128 加密算法;▲向下兼容MF3 IC D40;▲快速的数据传输速率:106 kbit/s,212 kbit/s,424 kbit/s,848 kbit/s;▲采⽤NXP公司先进的0.14微⽶NV 技术;▲安全等级为CC EAL 4+安全认证。

飞林非隔离升降压型LED灯丝灯芯片 S5119 S5129 数据手册说明书

飞林非隔离升降压型LED灯丝灯芯片 S5119 S5129 数据手册说明书

特点主要描述升、降压架构600V单芯片集成功率管,更稳定 600V高压供电,即开即亮专利技术,无反馈引脚过温自动掉电流保护±5%的恒流输出精度内置输入线电压补偿,宽输入电压 内置逐周期的电流限制及前沿消隐 LED开/短路保护LED 过压保护CS电阻短路保护SOP-8 / To-94封装应用范围LED灯丝灯其它小电流应用S5119与S5129是一组高精度原边反馈的LED驱动恒流控制开关。

芯片采用了600V单芯片集成工艺制造,具有极高的稳定性和极快的启动速度,适合于功率在5W以内的非隔离小电流LED恒流电源中。

S5129与S5119为组合芯片,同样外围应用时S5119电流约为S5129的50%。

两芯片均采用了原边反馈模式,内置高压启动电路,无需启动电阻即可实现芯片自主供电;芯飞凌特有的专利技术使得无需反馈管脚即可完成放电检测,并实现系统的过压保护和开短路保护;不同于双芯片联合封装同类产品,单芯片工艺的本产品为目前外围最精简,最稳定的方案之一。

芯片内置线电压补偿,带有高精度电流取样,无需增加电流补偿电路便可满足全电压输入范围内±5%的电流精度。

集成了多种保护功能:欠压锁定、前沿消隐、LED开路保护、短路保护、过流保护、环路开路保护、过温保护等,大大增加了系统的稳定性。

典型应用图1 S5119/S5129应用示意图TEL**************-810Mobile:159****1751管脚封装图图2 Sop脚位图图3 To-94脚位图订购信息管脚描述(Note1)Note1 : 最大极限值是指在实际应用中超出该范围,将极有可能对芯片造成永久性损坏。

以上应用极限值表示出了芯片可承受的应力值,但并不建议芯片在此极限条件或超出“推荐工作条件”下工作。

芯片长时间处于最大额定工作条件,将影响芯片的可靠性。

Note2 : 人体模型,100pF电容通过1.5K ohm电阻放电。

电气特性(除非特别说明,VCC=6V且Ta=25o C )功能模块图1、电路启动S5119/S5129系统集成600V耐压供电功率管,能直接通过高压启动电路,省掉了传统的外部启动以及辅助供电的绕组电路,极大的简化了系统的成本。

S50简介

S50简介
⑧人为失误:例如,密码加载操作失误,误将KeyA加载为KeyB;或者是误将其他制卡厂约定的初始密码值如a0a1a2a3a4a5、b0b1b2b3b4b5加载到MF1卡内;或者在初始状态下(密码A=000000000000【隐藏状态,实际为FFFFFFFFFFFF】、控制位=FF 07 80 69、密码B=FFFFFFFFFFFF【可见】),若不经意地将KeyA=000000000000删除后又重新输入12个“0”,并加载了它!这时无意中已将KeyA原来12个隐藏的“F”,修改成可靠性高
非接触式IC卡与读写器之间无机械接触,避免了因接触读写而产生的各种故障(例如:由于粗暴插卡、非卡外物插入、灰尘或油污导致接触不良造成的故障)。此外,非接触式卡表面无裸露芯片,无须担心芯片脱落、静电击穿、弯曲损坏等问题,既便于卡片印刷,又提高了卡片的使用可靠性。
⑵操作方便
由于非接触通讯,读写器在10CM范围内就可以对卡片操作,所以不必插拨卡,非常方便用户使用。非接触式卡使用时没有方向性,卡片可以在任意方向掠过读写器表面,即可完成操作,这大大提高了每次使用的速度。
M1卡有16个区,每个区都有独立的两组密码KeyA/KeyB和区读写控制位,每个区互不相关.
在M1卡出厂时,KeyA/KeyB默认的密码都是12个F.
密码的验证是在卡内部进行的,读写器只负责给卡提供电并和卡通讯,读写器发送加密的密码到卡,卡内部进行解密验证并发返回值,读写器根据卡的返回值来判断验证是否通过.
名称
● ISOISO M1 IC S50卡(进口芯片国内封装)
●ISO MF1 IC S50卡(进口) Philips Mifare 1 S50卡●符合IEC/ISO 14443A空气接口协议
●可封装成白卡/印刷卡
●产品批号20100120-0018

飞利浦P89C51系列单片机简介

飞利浦P89C51系列单片机简介

飞利浦P89C51系列单片机简介文/邢矫健舞P89C51系列单片机是飞利浦公司在兼容MCS-51内核结构的基础上对譬标准的MCS-51内核进行改进后推出誓的一个增强型MCS一51单片机系列.i在芯片型号命名上,P代表是Phifips的产品,89代表芯片内带有非易失性Flash程序存储器(早期还有与Intel_命名上一致的内置ROM/OTP的80系列和内置EPROM的87系列),C代表萋CMOS工艺制造.51/52/54/58代表_芯片内Flash程序存储器的容量分别为4K/8K/16K/32K,还用后缀名区.分为X2,Rx2等不同系列(Rx2系列用A/B/C/D代表Flash程序存储器的容量,见下文).《P89C51系列是从引脚到内核都完.全兼容标准8051的单片机,有40脚DIP,44脚PLCC,44脚LQFP三种.封装形式(见图1).下面,先以P89C51u系列单片机的子系列P89C51Rx2为例介绍其内核的增强功能,再介绍其他类似型号的特点.关于P89C51Rx2的详细开发资料,可上网下载:http:///acrobat/datasheets/一P89C51RB2jC2jD2_9.pdf蕞P89C51Rx2系列单片机主要分_P89C51RA2/RB2/RC2/RD2四种型.号,内核完全相同,差别主要在于片.内Flash闪存分别为8K/16K/32K/--64K,其管脚排列与标准的8051完全_酾嘲鳓adC—ShOW【3一i].=temp1O+0x30;//处理电压值,用于在LCD上显示temp:temp/10;兼容.但芯片内核较之8051有不少大的改进,下面就改进方面逐一介绍.一6时钟,机器周期模式标准的8051每个机器周期为12时钟,增强型的P89C51Rx2系列单片机可以设置工作模式为6时钟/机器周期(双倍速)或12时钟/机器周期.6时钟模式时工作频率为0到20MHz,12 时钟模式时工作频率为0到33MHz. 6时钟/机器周期(双倍速)工作模式下,定时器的计数速度会加倍,相应的12时钟/机器周期模式下的串口波特率也会加倍,因此单片机使用的最高的波特率也可提高~倍.=.片内硬件■门狗P89C51Rx2芯片内置了一个14位的硬件看门狗定时器.从而可以省去外接专用看门狗硬件,当然在不启动内置看门狗的情况下P89C51Rx2完.||l毽甄g警骜l|孽l囊沓薯簪毒毽蘩弩j冁l蚤§甓《《ggil一|l;| 全可以和普通8051单片机一样使用.三.内部扩展删P89C51Rx2系列单片机中的RA2/RB2/RC2在原来8052标准内置256字节RAM的基础上,又扩展了256字节ERAM,共有512字节内置RAM.P89C51RD2则扩展了768字节ERAM,共有1024字节内置RAM.四降低簟片机对外部电磁辐射通过设置6时钟/机器周期(双倍速),可以将外接晶振频率降低一半,能有效降低对外部电磁辐射(EMI).更重要的是,P89C51Rx2系列单片机可以关闭ALE输出,最有效地降低EMI.通过将ALEoff位(AUXR.0)置1,可以使ALE引脚仅在读取外接存储器时才有变化电平输出,从而降低对外部电磁辐射.另外,F'89C51Rx2系列单片机还通过限制引脚信号陕速切换时产生的过冲(对10ns1~.1的上升,下降的摆率采取限制措施),来降低对外部的电磁辐射. 五双l咿m数据指针标准的8051只有一个16位的DPTR数据指针.这样,在进行数据块复制等动作时,必须对源地址指针和目标地址指针进行暂存,编程会非常麻烦.P89C:;1R系列单片机内有两个DPTR数据指针DPTR0/DPTR1,可以通过设…S位(AUXR1.0)方便地选择,DPS置0则选中DPTR0,置1则选中DPTR1.通过执行INC AUXR1指令,能对DPS快速切换,并不影响AUXR1寄存器的高位. AUXR:爵存器(8EH)和AUXR1寄存器(A2H)是在8051标准内核基)adc_Show[0]=adc_Show[1]adc_show[1]=.;adc_show[4]=V'adc_show[5]=0)完整的程序见本期配刊光盘.电路的实际运行结果如图2所示,旋转黑色电位器,可以看到AD转换的电压值. 篇后练习将电位:器连接在ADC的通道IADC1上,编写程序在LCD上显示AD转换值.圆巳口口B.11总第53口期?www.r日 "馥尊础上新增的特殊寄存器,已被多家51芯片厂商用于增强型51单片机产品中,已成为事实上增强型51单片机一个新的标志性标准.六1卵与删P编程方式可在线烧录ISP(InSystemProgramming)和可在应用烧录IAP (InApplicationProgramming)功能改变了单片机的固化程序升级需拔插单片机芯片,使用专用编程器进行烧录的麻烦方式,轻松实现在单片机系统电路板上对单片机芯片内固化的程序进行升级.为了能够实现ISP和IAP功能,P89C51Rx2单片机芯片上内置了BootROM固件,固件中包含着用于擦除,烧录Flash闪存的多种子程序.另外,P89C51Rx2片内Flash闪存以4KB为一块,被分为大小一样的2/4/8/16块.当其中的一块或几块已经烧录着正在运行的程序时,可以对另外的闪存块进行擦除和烧录,完成后再将程序的入El地址设定为新烧录闪存块的首地址.从而实现了不需拔插芯片而对单片机芯片固化程序进行升级. 采用ISP方式烧录程序时,只需用三根串口连线如图2所示方式连接到计算机RS232接121,并在计算机上运行飞利浦系列单片机专用的ISP软件FlashMagic,即可实现对单片机芯片内Flash闪存的擦除,烧录,加密等动作.FlashMagic软件可到网上下载,下载网址为ft9:///pub/esa/flashmagic/F1ashMagic.exe除了可以用ISP方式烧录程序,P89C51Rx2还可以通过调用在芯片内提供的BootROM固件里用于擦除, 烧录Flash闪存的子程序,对当前运行程序块以外的Flash闪存块进行编程. 这一编程方式被称为IAP功能.七,ONCE模式ONCE(在线仿真)模式可以实现对系统的测试和调试而不需要将器件从电路中移去.当器件处于ONCE模式时,PO口处于悬浮状态,其他I/O口,ALE和PSEN为弱上拉,?振荡电路保持工作状态.器件处于该模式时,可用仿真器测试CPU驱动电路,执行正常复位时恢复正常操作.八,可编程计数器^可编程计数器PCA由5个基本一样的可编程计数器模块组成,5个模块共用一套计数/定时器系统,但各有各的比较/捕捉器.每个模块都可单独经编程实现捕捉模式,软定时器模式,高速输出模式,PWM(脉宽调制)模式.第5个模块(即模块4)还多一种看家狗模式.计数/定时器的信号源可选择单倍机器周期频率,3倍机器周期频率,定时器0的溢出频率,ECI引脚(P1.2)输入脉冲中的一种.在使用上,比起仅有计数/定时器0,1,2的标准8052多了更大的灵活性.九全双工增强型咖岍除了标准操作模式外,P89C51Rx2内置的UART(全双工串行口)还可实现自动地址识别和通过查询丢失的停止位进行帧错误检测.当使用帧错误检测时,丢失的位将会置位SCON中的FE位,FE与SM0共用SCON.7,通过PCON.6(SMOD0位) 选择.如果SMOD0置位,SCON.7作为FE,如果SMOD0为0,SCON.7作为SM0.P89C51Rx2内置的UART还对多机通信方式作了增强,可以自动进行地址识别.它使UART可以通过硬件比较从串行数据流中识别出特定的地址,这样就不必花费大量软件资源秘臻叠去检查每一个从串口输入的串行地址.在9位UART模式模式2和模式3 下,如果接收的地址字节中包含给定地址或广播地址(广播地址是指一机发送,多机同时接收数据的模式),接收机就会自动接收串行总线上的数据. 通过一定的地址编号方式,可以实现一机对任意另一,二,三直至更多机同时发送数据.十,其他类似的型号Philips内置Flash闪存的增强型P89C51系列有多个子系列,X2系列包括P89C51X2/52X2/54X2/58X2 (片p~Flash闪存分别为4K/8K/16K/ 32K,51X2片内RAM为128字节,其他均为256字节,无扩展ERAM),片内~gP89C51Rx2系列少了ISP和IAP 编程方式,PeA,看门狗电路,其他方面(包括可倍频)则完全一样.P89C61X2/62X2(片内Flash闪存均为64K,RAM均为256字节,扩展ERAM分别为256/768字节),片内比P89C51Rx2系列少了PeA,看门狗电路,其他方面(包括可ISP和IAP编程方式和倍频)则完全一样.P89C660/662/664/668(片内Flash闪存分别为16K/32K/64K/64K,RAM均为256字节,扩展ERAM 分别为256/768/1768/7936字节),在拥有P89C51Rx2系列所有功能的基础上,还增加了I2C串行通信模块.此外,PhiliI~还有14~28引脚的LPC900系列也使用了51内核,在外部引脚上作了精简,限于篇幅,本文不作详细介绍.十一性价比目前,P89C51X2/52X2/54X2/58X2报价分别为7.2/8.2/9.8/15.2元,P89C51RA2/RD2报价分别为7.8/30元,P89C60X2/61X2报价分别为19.2/19.8元,P89C662/664/668报价分别为51/53/51元.可以根据应用需要选择性价比最高的型号.⑩掌誊凳g2006.11总第53口期?www.radio.oom.on37 黟;;.。

【精编】MP芯片资料简介

【精编】MP芯片资料简介

MP3芯片资料简介一、飞利浦系列|技术交流|资料下载|图书杂志|家电资讯2m8Q o r-l《家电维修》技术论坛a ^ A7p*T k l产地:荷兰如果一定要评出目前市场上最好的MP3解码芯片的话,那么无疑就是飞利浦芯片了。

飞利浦家族的解码芯片在业界一直以其“功能全,音质好,价格高”而著称。

飞利浦的解码芯片一般都采用的是BGA封装工艺,而国内的这方面技术相当有限,此外,由于飞利浦的解码芯片需要搭配另外的控制芯片电路协同工作,所以产品成本较高。

所以采用飞利浦解码芯片的厂商往往都定位于中高价位,如MPIO和IRIVER这两家韩国的MP3专业厂商。

这两个品牌一个最主要的共同特点就是在产品中全面采用了飞利浦的解码芯片。

因此,他们的产品拥有很高的音质和品质,成为全球MP3爱好者追逐的对象。

#x;V3g#D(y!s&[ s N|技术交流|资料下载|图书杂志|家电资讯%q2e{ L#N8t1、飞利浦SAA775X系列(SAA7750/7751/7752/7753)飞利浦SAA775x芯片是目前市场上MP3播放器解码芯片组中功能最全(支持CD直录),效果最好的解码芯片之一。

该解码芯片的音质表现为:低音下沉较深、中音表现出色、而相比之下高音则显得一般。

;}3v1T U^%t z.{ c j+Q5~因为SAA775x中内含DSP(Digital Signal Processing,数字信号处理)和32位ARM RISC处理器,所以能用超高集成度的单颗芯片,音频解码和语音编码等工作,并且可以加入SDMI(Secure Digital Music Initiative,安全式数字音乐)保护。

其中SAA7750内含DSP和32位ARM RISC处理器,信噪比为90dB。

该芯片兼容多段多档位EQ智能音效,支持以ADPCM格式保存语音记录、同步显示歌名和歌曲信息、Line-in直录,此外还支持USB 1。

1/2。

0标准,支持多重音乐格式解码。

飞利浦 TDA1519A 数据手册

飞利浦 TDA1519A 数据手册

DATA SHEETProduct specificationFile under Integrated Circuits, IC01May1992TDA1519A22 W BTL or 2 x 11 W stereo car radio power amplifier查询TDA1519A供应商power amplifierTDA1519AGENERAL DESCRIPTIONThe TDA1519A is an integrated class-B dual output amplifier in a 9-lead single in-line (SIL) plastic power package. The device is primarily developed for car radio applications.Features•Requires very few external components for Bridge Tied Load (BTL)•Stereo or BTL application•High output power•Low offset voltage at output (important for BTL)•Fixed gain•Good ripple rejection•Mute/stand-by switch•Load dump protection•AC and DC short-circuit-safe to ground and V P •Thermally protected•Reverse polarity safe•Capability to handle high energy on outputs (V P= 0 V)•No switch-on/switch-off plop•Protected against electrostatic discharge•Low thermal resistance•Identical inputs (inverting and non-inverting)•Compatible with TDA1519B (except output power).QUICK REFERENCE DATAPARAMETER CONDITIONS SYMBOL MIN.TYP.MAX.UNIT Supply voltage rangeoperating V P 6.014.417.5V non-operating V P−−30V load dump protected V P−−45V Repetitive peak output current I ORM−−4A Total quiescent current I tot−4080mA Stand-by current I sb−0.1100µA Switch-on current I sw−−40µA Input impedanceBTL|Z I|25−−kΩstereo|Z I|50−−kΩStereo applicationOutput power THD = 10%; 4ΩP o−6−WTHD = 10%; 2ΩP o−11−W Channel separationα40−−dB Noise output voltage V no(rms)−150−µVpower amplifierTDA1519APACKAGE OUTLINES9 lead SIL; plastic power (SOT131); SOT131-2; 1996July 22.9-lead SIL-bent-to-DIL; plastic power (SOT157); SOT157-2; 1996July 22.BTL application Output powerTHD = 10%; 4ΩP o−22−W Supply voltage ripple rejectionR S = 0 Ωf = 100 Hz RR 34−−dB f = 1 kHz to 10 kHzRR 48−−dB DC output offset voltage |∆V 0|−−250mV Crystal temperature T c−−150°CPARAMETERCONDITIONSSYMBOLMIN.TYP .MAX.UNITTDA1519A power amplifierFig.1 Block diagram.power amplifierTDA1519APINNING FUNCTIONAL DESCRIPTIONThe TDA1519A contains two identical amplifiers with differential input stages. The gain of each amplifier is fixed at 40dB.A special feature of this device is the mute/stand-by switch which has the following features:•Low stand-by current (< 100µA)•Low mute/stand-by switching current (low cost supply switch)•Mute condition.RATINGSLimiting values in accordance with the Absolute Maximum System (IEC 134)1NINV non-inverting input 2GND1ground (signal)3RR supply voltage ripple rejection 4OUT1output 15GND2ground (substrate)6OUT2output 27V P positive supply voltage 8M/SS mute/stand-by switch 9INVinverting inputPARAMETERCONDITIONSSYMBOLMIN.MAX.UNITSupply voltage operating V P −17.5V non-operating V P −30V load dump protectedduring 50 ms;t r ≥2.5 msV P −45V AC and DC short-circuit-safe voltage V PSC −18V Reverse polarityV PR−6V Energy handling capability at outputs V P = 0 V−200mJ Non-repetitive peak output current I OSM −6A Repetitive peak output current I ORM −4A Total power dissipation see Fig.2P tot −25W Crystal temperature T c −150°C Storage temperature rangeT stg−55+ 150°CTDA1519A power amplifierFig.2 Power derating curve.DC CHARACTERISTICSV P= 14.4 V; T amb= 25°C; measurements taken using Fig.3; unless otherwise specifiedPARAMETER CONDITIONS SYMBOL MIN.TYP.MAX.UNIT SupplySupply voltage range note 1V P 6.014.417.5V Total quiescent current I tot−4080mA DC output voltage note 2V O− 6.95−VDC output offset voltage|∆V4-6|−−250mV Mute/stand-by switchSwitch-on voltage level V ON8.5−−V Mute condition V mute 3.3− 6.4V Output signal in mute position V I = 1 V (max.);f = 20 Hz to15 kHz V O−−20mV DC output offset voltage|∆V4-6|−−250mVpower amplifierTDA1519AAC CHARACTERISTICSV P = 14.4 V; R L = 4Ω; f = 1 kHz; T amb = 25°C; measurements taken using Fig.3; unless otherwise specifiedStand-by conditionV sb 0−2V DC current in stand-by condition I sb −−100µA Switch-on currentI sw−1240µAPARAMETERCONDITIONSSYMBOLMIN.TYP .MAX.UNITStereo application Output powernote 3THD = 0.5%P o 45−W THD = 10%P o5.56.0−WOutput power at R L = 2Ωnote 3THD = 0.5%P o 7.58.5−W THD = 10%P o 1011−W Total harmonic distortion P o = 1 W THD−0.1−%Low frequency roll-offnote 4−3 dBf L −45−Hz High frequency roll-off −1 dBf H 20−−kHz Closed loop voltage gain G v394041dBSupply voltage ripple rejection ON notes 5 and 6RR 40−−dB ON notes 5 and 7RR 45−−dB mute notes 5 and 8RR 45−−dB stand-by notes 5 and 8RR 80−−dB Input impedance |Z i |506075k ΩNoise output voltage (RMS value)note 9ON R S = 0 ΩV no(rms)−150−µV ON R S = 10 k ΩV no(rms)−250500µV mutenote 10V no(rms)−120−µV Channel separation R S = 10 k Ωα40−−dB Channel unbalance|∆G v |−0.11dBPARAMETERCONDITIONSSYMBOL MIN.TYP .MAX.UNITpower amplifierTDA1519AAC CHARACTERISTICSV P = 14.4 V; R L = 4Ω; f = 1 kHz; T amb = 25°C; measurements taken using Fig.4; unless otherwise specifiedNotes to the characteristics1.The circuit is DC adjusted at V P = 6 V to 17.5 V and AC operating at V P = 8.5 V to 17.5 V.2.At 17.5 V < V P < 30 V the DC output voltage ≤ V P /2.3.Output power is measured directly at the output pins of the IC.4.Frequency response externally fixed.5.Ripple rejection measured at the output with a source impedance of 0Ω (maximum ripple amplitude of 2 V).6.Frequency f = 100 Hz.7.Frequency between 1 kHz and 10 kHz.8.Frequency between 100 Hz and 10 kHz.9.Noise voltage measured in a bandwidth of 20 Hz to 20 kHz.10.Noise output voltage independent of R S (V I = 0 V).PARAMETERCONDITIONSSYMBOLMIN.TYP .MAX.UNITBTL application Output powernote 3THD = 0.5%P o 1517−W THD = 10%P o2022−WOutput power at V P = 13.2 Vnote 3THD = 0.5%P o −13−W THD = 10%P o −17.5-W Total harmonic distortion P o = 1 W THD-0.1−%Power bandwidthTHD = 0.5%;P o =−1 dB;35 to w.r.t. 15 WB w−15 000−HzLow frequency roll-off note 4−1 dB f L −45−Hz High frequency roll-off −1 dBf H 20−−kHz Closed loop voltage gain G v454647dBSupply voltage ripple rejection ON notes 5 and 6RR 34−−dB ON notes 5 and 7RR 48−−dB mute notes 5 and 8RR 48−−dB stand-by notes 5 and 8RR 80−-dB Input impedance |Z i |253038k ΩNoise output voltage (RMS value)note 9ON R S = 0 ΩV no(rms)−200−µV ON R S = 10 k ΩV no(rms)−350700µV mutenote 10V no(rms)−180−µVTDA1519A power amplifierAPPLICATION INFORMATIONFig.3 Stereo application circuit diagram.Fig.4 BTL application circuit diagram.TDA1519A power amplifierFig.5 Total quiescent current (I tot) as a function of supply voltage (V P).Fig.6 Output power (P o) as a function of supply voltage (V P) for BTL application at R L= 4Ω; f= 1 kHz.TDA1519A power amplifierFig.7Total harmonic distortion (THD) as a function of output power (P o) for BTL application at R L= 4Ω;f= 1kHz.Fig.8Total harmonic distortion (THD) as a function of operating frequency (f) for BTL application at R L= 4Ω;P o= 1 W.power amplifierTDA1519APACKAGE OUTLINESUNIT A b max.b p 2c D (1)E (1)Z (1)d e D h L j REFERENCESOUTLINE VERSION EUROPEAN PROJECTIONISSUE DATE IECJEDECEIAJmm4.64.21.10.750.600.480.3824.023.620.019.6102.5412.211.83.43.1A max.12.0E h 62.001.452.11.8DIMENSIONS (mm are the original dimensions)Note1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.17.216.5SOT131-292-11-1795-03-11510 mmscaleQ 0.25w 0.03x DLA EcA 2Qw Mb pdD Zexh19E hnon-concaves e a t i n g p l a n e1bjSIL9P: plastic single in-line power package; 9 leadsSOT131-2view B : mounting base sideBpower amplifierTDA1519AUNIT A A e 12b p c D (1)E (1)Z (1)d e D h L L 3m REFERENCESOUTLINE VERSION EUROPEAN PROJECTIONISSUE DATE IECJEDECEIAJmm17.015.54.64.20.750.600.480.3824.023.620.019.6105.0812.211.82.54e 25.082.41.6E h 62.001.450.83.43.14.3DIMENSIONS (mm are the original dimensions)Note1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.12.411.0SOT157-20510 mmscalev 2.11.8Q j 0.25w 0.03x DLEAcA 2L 3Q w Mb p1dD Ze exh19jE hnon-concave92-10-1295-03-11DBS9P: plastic DIL-bent-SIL power package; 9 leads (lead length 12 mm)SOT157-2Bview B : mounting base sidem2e v Mpower amplifierTDA1519ASOLDERING IntroductionThere is no soldering method that is ideal for all IC packages. Wave soldering is often preferred whenthrough-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.This text gives a very brief insight to a complex technology.A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 939865290011).Soldering by dipping or by waveThe maximum permissible temperature of the solder is 260°C; solder at this temperature must not be in contact with the joint for more than 5seconds. The total contact time of successive solder waves must not exceed 5seconds.The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T stg max ). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.Repairing soldered jointsApply a low voltage soldering iron (less than 24V) to the lead(s) of the package, below the seating plane or not more than 2mm above it. If the temperature of the soldering iron bit is less than 300°C it may remain in contact for up to 10seconds. If the bit temperature isbetween 300and 400°C, contact may be up to 5seconds.DEFINITIONS LIFE SUPPORT APPLICATIONSThese products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.Data sheet status Objective specification This data sheet contains target or goal specifications for product development.Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.Product specification This data sheet contains final product specifications.Limiting valuesLimiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.Application informationWhere application information is given, it is advisory and does not form part of the specification.。

世界知名芯片厂商及其产品介绍

世界知名芯片厂商及其产品介绍

1联发科—MTK联发科技是全球IC设计领导厂商,专注于无线通讯及数字多媒体等技术领域。

本公司提供的芯片整合系统解决方案,在无线通讯、高清数字电视、光储存、DVD及蓝光等相关产品领域,均处于市场领导地位。

联发科技成立于1997 年,已在台湾证券交易所公开上市,股票代号为2454。

公司总部设于台湾,并设有销售及研发团队于中国大陆、印度、美国、日本、韩国、新加坡、丹麦及英国。

网址:MTK系列芯片—2展讯—展讯通信有限公司(“展讯”)致力于无线通信及多媒体终端的核心芯片、专用软件和参考设计平台的开发,为终端制造商及产业链其它环节提供高集成度、高稳定性、功能强大的产品和多样化的产品方案选择。

展讯成立于2001年4月,目前在美国的圣地亚哥和中国的上海、北京、深圳等地设有分公司和研发中心,在韩国设有办事处。

展讯的产品支持多标准的宽带无线通信,包括GSM、GPRS、EDGE、TD-SCDMA、W-CDMA、HSDPA、HSUPA以及未来的无线通讯标准。

网址:/展讯系列芯片—展讯基带芯片3创杰—(ISSC)台湾专业无线通讯IC设计公司,提供世界级蓝牙IC解决方案网址:创杰蓝牙芯片—4威盛—VIA威盛电子(VIA T echnologies, Inc. 简称VIA)是无晶圆低功耗x86 处理器平台先驱,也是个人电脑,客户机,超移动设备及嵌入式市场的领导厂商。

有效整合低功耗的处理器、多媒体的芯片组及先进的IO、总线与网络控制器,组成计算机运算与通讯平台以及广受好评的EPIA 系列主板。

目前公司总部位于台湾。

网址:威盛系列芯片—5北京天基科技—北京天碁科技是一家独立的TD-SCDMA终端核心技术设计公司,在3G无线通信领域为终端设备制造商和手机设计公司提供TD-SCDMA终端核心技术产品及支持,包括终端芯片组、协议栈软件、终端参考设计及客户化技术支持等。

TD-SCDMA技术TD-SCDMA(时分同步码分多址)是一个新的无线接口标准,是国际电信联盟和第三代移动通信伙伴项目(3GPP)认可的3G无线通信的三个标准之一,该技术能应用于所有的无线实施要求,包括农村和城市地区,支持微型,小型及大型蜂窝,满足各种高速移动的无线接入和多媒体应用。

飞利浦I2C总线产品简介

飞利浦I2C总线产品简介

飞利浦I2C总线产品简介Introduction to Philips I2C Bus飞利浦半导体I2C总线简介I2C(集成电路间互连总线)是由飞利浦公司于上世纪80年代早期开发的。

它是一个简单的两线总线,包括一条数据线和一条时钟线。

目前I2C已经成为重要的全球业界标准,被所有主要的IC厂商所认同和使用。

它具有多种机功能和仲裁特性,采用主控-伺服通讯方式,通常在某一时刻,只有两个器件进行通信,广播呼叫例外,此种情形下伺服设备可充当伺服接收机或伺服发射机使用。

I2C是低数据速率方式,用于短距离用途。

目前的I2C指标显示,它的速度可以做到100kHz、400kHz和3.4MHz,不过还没有出现3.4MHz的产品。

400kHz产品是经过了很长一段时间才变得普及,3.4MHz走向应用尚需时间。

这里将主要讨论100kHz、400kHz产品。

I2C没有规定的电缆长度,唯一的限制是I2C总线规范,它规定I2C 的最大电容是400pF,现在通过使用缓冲器如P82B96可以延长总线的距离。

所有的I2C硬件架构均为漏极开路或集电极开路设计,具有上拉电阻。

上拉电阻的值为2-10千欧,它们不超过I2C规范中3mA反向电流的规定和上升时间的规定。

大多数飞利浦伺服设备的SCL上没有下拉电阻。

有一点特别重要,即设备的最大输入电容是10pF。

I2C总线与其它总线如UART、CAN、USB、SPI相比,在性能上各有千秋,I2C的优点是它非常简单,如在一个微控制器上使用两个插脚来产生I2C。

I2C得到应用的时间比较长,为众多工程师所了解,也有着大量的产品系列支持。

I2C技术及产品介绍飞利浦I2C器件飞利浦拥有一系列的新器件用来克服规范指标上的限制,以扩展I2C使用。

I2C总线的主要局限是它的7位地址,通过使用飞利浦的I2C多路复用器,可以在一条总线上使用具有相同地址的相同设备。

多路复用器允许应用工程师将主I2C总线动态划分为几个子分支,以解决I2C地址冲突。

飞利浦 Technical Datasheet DS63 说明书

飞利浦 Technical Datasheet DS63 说明书

LUXEON ®RebelIllumination PortfolioANSI Binned with Minimum CRILUXEON RebelIllumination PortfolioOptimized solutions forillumination applicationsT echnical Datasheet DS63IntroductionThe LUXEON ® Rebel Illumination Portfolio emitters in this datasheet deliver optimized combinations of light quality and light output needed for today’s lighting applications. In addition to delivering specified Correlated Color T emperature and Color Rendering combinations, these parts deliver the efficacy, lifetime and reliability that all LUXEON Rebel LEDs are renowned for. This document contains the performance data needed to design and engineer LUXEON Rebel based applications.LUXEON Rebel Illumination Portfolio Products Specified CCT & CRI combinations • ANSI compliant binning• Exceed ENERGY STAR • ® lumen maintenance requirements High efficacy for sustainable design• More light delivered at operating temperature.•T able of ContentsP roduct Nomenclature (3)Average Lumen Maintenance Characteristics (3)Environmental Compliance (3)Product Selection (4)Optical Characteristics (5)Electrical Characteristics (6)Absolute Maximum Ratings (7)JEDEC Moisture Sensitivity (7)Reflow Soldering Characteristics (8)Mechanical Dimensions (9)Pad Configuration (10)Solder Pad Design (10)Relative Spectral Distribution vs. Wavelength Characteristics (11)Light Output Characteristics over T emperature (15)T ypical Forward Current Characteristics (16)Current Derating Curves (17)T ypical Radiation Patterns (18)Emitter Pocket T ape Packaging (19)Emitter Reel Packaging (20)Product Binning and Labeling (21)LUXEON Rebel ANSI Bin Structure (22)LUXEON Rebel ANSI Bin Coordinates (23)Forward Voltage Bins (25)Product NomenclatureLUXEON Rebel is tested and binned at 350 mA, with current pulse duration of 20 ms. All characteristic charts where the thermal pad is kept at constant temperature (25ºC typically) are measured with current pulse duration of 20 ms.The part number designation is explained as follows:L X M L - A B C D and L X M 3 - A B C DWhere:A — designates radiation pattern (value P for Lambertian)B — designates color (W for White)C — designates nominal CCTD — designates test current (value 1 for 350 mA)Therefore products tested and binned at 350 mA follow the part numbering scheme:L X M L - P x x 1 and L X M 3 - P x x 1Average Lumen Maintenance CharacteristicsLumen maintenance for solid-state lighting devices (LEDs) is typically defined in terms of the percentage of initial light output remaining after a specified period of time. Philips Lumileds projects that LUXEON Rebel products will deliver, on average, 70% lumen maintenance (L70) at 50,000 hours of operation at a forward current of up to 700 mA. This projection is based on constant current operation with junction temperature maintained at or below 135°C. This performance is based on independent test data, Philips Lumileds historical data from tests run on similar material systems, and internal LUXEON reliability testing. Observation of design limits included in this data sheet is required in order to achieve this projected lumen maintenance.Environmental CompliancePhilips Lumileds is committed to providing environmentally friendly products to the solid-state lighting market. LUXEON Rebel is compliant to the European Union directives on the restriction of hazardous substances in electronic equipment, namely the RoHS directive. Philips Lumileds will not intentionally add the following restricted materials to the LUXEON Rebel: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE).Product Selection for LUXEON RebelThermal Pad T emperature = 25°CT able 1.Minimum T ypicalLuminous LuminousPart Minimum T ypical Flux (lm) FluxNominal CCT Number CRI CRI FV FV2700K LXM3-PW81 80 85 65 733000K LXM3-PW71 80 85 66 773000K LXML-PW71 85 90 50 663500K LXM3-PW61 80 85 67 804000K LXML-PW51 60 70 90 1054000K LXM3-PW51 80 85 75 855000K LXML-PW31 65 70 90 1055700K LXML-PW21 65 70 90 1056500K LXML-PW11 65 70 90 105Notes for T able 1:1. Philips Lumileds maintains a tolerance of ± 6.5% on luminous flux and ± 2 on CRI measurements.2. LUXEON Rebel products with higher performance levels will become available in the future. Please consult Philips Lumileds or Future LightingSolutions for more information.3. T est current is 350 mA for all LXML-Pxx1 and LXM3-Pxx1 products.Product SelectionLUXEON Rebel at T est Current [1]Thermal Pad T emperature = 25°CT able 2.T ypicalT otal T ypicalColor T emperature [2]Included ViewingCCT Angle [3]Angle [4] Nominal (degrees) (degrees)2u 1/2 CCT Min. T yp. Max. u0.90V2700K 2580K 2725K 2870K 160 1203000K 2870K 3045K 3220K 160 1203000K 2870K 3045K 3220K 160 1203500K 3220K 3465K 3710K 160 1204000K 3710K 3985K 4260K 160 1204000K 3710K 3985K 4260K 160 1205000K 4745K 5028K 5311K 160 1205700K 5310K 5665K 6020K 160 1206500K 6020K 6530K 7040K 160 120 Notes for T able 2:1. T est current is 350 mA for all LXML-Pxx1 and LXM3-Pxx1 products.2. CCT ±5% tester tolerance.3. T otal angle at which 90% of total luminous flux is captured.4. Viewing angle is the off axis angle from lamp centerline where the luminous intensity is ½ of the peak value.5. All white products are built with Indium Gallium Nitride (InGaN).Electrical Characteristics at 350 mA for LUXEON RebelThermal Pad T emperature = 25ºCT able 3.T ypicalT emperature T ypicalCoefficient of ThermalForward ResistanceForward Voltage Vf [1]Voltage [2]Junction to(V)(mV/°C) Thermal Pad (°C/W)Nominal CCT Min. T yp. Max. D Vf / D TJR uJ-C2700K,3000K,3500K, 2.55 3.00 3.99 -2.0 to -4.0 10 4000K,5000K,5700K,6500KNotes for T able 3:1. Philips Lumileds maintains a tolerance of ±0.06V on forward voltage measurements.2. Measured between 25°C = TJ = 110°C at If= 350 mA.* Dynamic resistance is the inverse of the slope in linear forward voltage model for LEDs. See Figure 13.T ypical Electrical Characteristics at 700 mA for LUXEON Rebel Thermal Pad T emperature = 25ºCT able 4.T ypical Forward Voltage VfNominal CCT (V)2700K,3000K,3500K,4000K,5000K,5700K,6500K 3.20Notes for T able 4:1. Philips Lumileds maintains a tolerance of ±0.06V on forward voltage measurements.Absolute Maximum RatingsT able 5.Parameter Maximum PerformanceDC Forward Current (mA) [3]1000Peak Pulsed Forward Current (mA) [3]1000Average Forward Current (mA) [3]1000ESD Sensitivity < 8000V Human Body Model (HBM)Class 3A JESD22-A114-E< 400V Machine Model (MM)Class B JESD22-A115-BLED Junction T emperature[1][3]150°COperating Case T emperature at 350 mA -40°C - 135°CStorage T emperature -40°C - 135°CSoldering T emperature JEDEC 020c 260°CAllowable Reflow Cycles 3Autoclave Conditions 121°C at 2 ATM100% Relative Humidity for 96 Hours MaximumReverse Voltage (Vr) See Note 2Notes for T able 5:1. Proper current derating must be observed to maintain junction temperature below the maximum.2. LUXEON Rebel LEDs are not designed to be driven in reverse bias.3. Maximum Ratings limits are specified when applied singularly and for device operation not to exceed 60 seconds.JEDEC Moisture SensitivityT able 6.S oak Requirements Level Floor Life StandardTime Conditions Time Conditions 1unlimited [30°C / 168h 85°C / 85%85% RH + 5 / -0 RHT emperature Profile for T able 7.T able 7.Profile FeatureLead Free AssemblyAverage Ramp-Up Rate (Ts max to T p ) 3°C / second maxPreheat T emperature Min (Ts min ) 150°C Preheat T emperature Max (Ts max ) 200°C Preheat Time (ts min to ts max ) 60 - 180 secondsTime Maintained Above T emperature (T L )217°C Time Maintained Above Time (t L ) 60 - 150 secondsPeak / Classification T emperature (T P ) 260°C Time Within 5°C of Actual Peak T emperature (t P )20 - 40 seconds Ramp - Down Rate 6°C / second maxTime 25°C to Peak T emperature8 minutes maxNotes for T able 7:1. All temperatures refer to the application Printed Circuit Board (PCB), measured on the surface adjacent to the package body.Reflow Soldering CharacteristicsJEDEC 020cMechanical DimensionsFigure 1. Package outline drawing.Notes for Figure 1:1. Do not handle the device by the lens—care must be taken to avoid damage to the lens or the interior of the device that can be damaged byexcessive force to the lens.2. Drawings not to scale.3. All dimensions are in millimeters.4. The thermal pad is electrically isolated from the anode and cathode contact pads.Pad ConfigurationNote for Figure 2:1. The thermal pad is electrically isolated from the anode and cathode contact pads.Solder Pad DesignNote for Figure 3:The photograph below shows the recommended LUXEON Rebel layout on Printed Circuit Board (PCB). This design easily achieves a thermal resistance of 7 K/W .Application Brief AB32 provides extensive details for this layout. In addition, the .dwg files are available at .Figure 2. Pad configuration.Figure 3. Solder pad layout.Relative Spectral Distribution vs. Wavelength CharacteristicsLXM3-PW81 (2700K) at T est Current, Thermal Pad T emperature = 25°C LXM3-PW71 (3000K) at T est Current, Thermal Pad Temperature = 25°C0.20.40.60.81350400450500550600650700750800Wavelength (nm)R e l a Ɵv e S p e c t r a l P o w e r D i s t r i b u Ɵo nFigure 5. Color spectrum of 3000K, 80 minimum CRI emitters, integrated measurement.0.20.40.60.81350400450500550600650700750800Wavelength (nm)R e l a Ɵv e S p e c t r a l P o w e r D i s t r i b u Ɵo n Figure 4. Color spectrum of 2700K emitters, integrated measurement.LXML-PW71 (3000K) at T est Current, Thermal Pad T emperature = 25°CLXM3-PW61 (3500K) at T est Current, Thermal Pad Temperature = 25°C0.20.40.60.81350400450500550600650700750800Wavelength (nm)R e l a Ɵv e S p e c t r a l P o w e r D i s t r i b u Ɵo nFigure 7. Color spectrum of 3500K emitters, integrated measurement.0.20.40.60.81350400450500550600650700750800Wavelength (nm)R e l a Ɵv e S p e c t r a l P o w e r D i s t r i b u Ɵo n Figure 6. Color spectrum of 3000K, 85 minimum CRI emitters, integrated measurement.LXM3-PW51 (4000K) at T est Current, Thermal Pad T emperature = 25°CLXML-PW51 (4000K) at T est Current, Thermal Pad Temperature = 25°C0.20.40.60.81350400450500550600650700750800Wavelength (nm)R e l a Ɵv e S p e c t r a l P o w e r D i s t r i b u Ɵo nFigure 9. Color spectrum of 4000K, 60 minimum CRI emitters, integrated measurement.0.20.40.60.81350400450500550600650700750800Wavelength (nm)R e l a Ɵv e S p e c t r a l P o w e r D i s t r i b u Ɵo n Figure 8. Color spectrum of 4000K, 80 minimum CRI emitters, integrated measurement.LXML-PW31 (5000K), LXML-PW21 (5700K) and LXML-PW11 (6500K) at T est Current, Thermal Pad Temperature = 25°C0.20.40.60.81350400450500550600650700750800Wavelength (nm)Re laƟveS p ectra lP o we rDi s tri buƟonFigure 10. Color spectrum of 5000K, 5700K and 6500K emitters, integrated measurement.Light Output Characteristics over T emperature All Parts Except LXML-PW51 at T est CurrentLXML-PW51 at T est CurrentNormalized Luminous Flux If = 350 mA , mean and +/- 3 std dev0.700.800.901.001.10-250255075100125Thermal Pad Temperature (°C)N or mali z ed L um i no usF l u xFigure 11. Relative light output vs. thermal pad temperature.Normalized Luminous Flux If = 350 mA , mean and +/- 3 std dev0.700.800.901.001.10-250255075100125Thermal Pad Temperature (°C)N or mali z ed L um i no usF l u xFigure 12. Relative light output vs. thermal pad temperature.Typical Forward Current Characteristics T ypical Forward Current CharacteristicsThermal Pad T emperature = 25°CT ypical Relative Luminous Flux vs. Forward Current Thermal Pad T emperature = 25°CdC ur ren t(m A)600800100012002426283234362004002.4 2.6 2.833.2 3.4 3.6Fo rwarForward Voltage (V)Figure 13. Forward current vs. forward voltage.100Lum inousF lux0000.000.250.500.751.001.251.501.752.002.252.50020040060080010001200Re lative Forward Current (mA)Figure 14. T ypical relative luminous flux vs. forward current, thermal pad temperature = 25ºC.Current Derating Curves Current Derating Curve for 350 mA Drive Current Current Derating Curve for 700 mA Drive Current150200250300350400501000255075100125150175I F-Fo rwa rdCu rre n t(mA )T A -Ambient Temperature (°C)15°C/W 25°C/W 35°C/W45°C/WFigure 15. Maximum forward current vs. ambient temperature, based on T JMAX = 150ºC.300400500600700800F 01002000255075100125150175I F -orwa rdCurr ent(m A)T A -Ambient Temperature (°C)15°C/W25°C/W35°C/WFigure 16. Maximum forward current vs. ambient temperature, based on T JMAX = 150ºC.Typical Radiation PatternsT ypical Spatial Radiation Pattern for LambertianT ypical Polar Radiation Pattern for Lambertian40%50%60%70%80%90%100%0%10%20%30%-90-75-60-45-30-150153045607590R e l a t i v e I n t e n s it y (%)Angular Displacement (deg)Figure 17. T ypical representative spatial radiation pattern for lambertian.Emitter Pocket T ape PackagingFigure 19. Emitter pocket tape packaging.Emitter Reel PackagingFigure 20. Emitter reel packaging.Product Binning and LabelingPurpose of Product BinningIn the manufacturing of semiconductor products, there is a variation of performance around the average values given in the technical data sheets.).For this reason, Philips Lumileds bins the LED components for luminous flux, color and forward voltage (VfDecoding Product Bin LabelingLUXEON Rebel Emitters are labeled using a four digit alphanumeric code (CAT code) depicting the bin values for emitters packaged on a single reel. All emitters packaged within a reel are of the same 3-variable bin combination. Using these codes, it is possible to determine optimum mixing and matching of products for consistency in a given application.Reels of 2700K, 3000K, 3500K, 4000K, 5000K, 5700K, 6500K Emitters are labeled with a four digit alphanumeric CAT code following theformat below.ABCDA = Flux bin (J, K, L, M etc.)B andC = Color bin (5A, 5B, 5C etc.)bin (C, D, E etc.)D = VfLuminous Flux BinsT able 8 lists the standard photometric luminous flux bins for LUXEON Rebel emitters (tested and binned at 350 mA).Although several bins are outlined, product availability in a particular bin varies by production run and by product performance.Not all bins are available in all colors.T able 8.Flux Bins - All ColorsMinimum Photometric Flux Maximum Photometric FluxBin Code (lm) (lm)H 50 60J 60*70K 70**80L 80 90M 90 100N 100 120P 120 140Q 140 160R 160 180S 180 200* 65 lm for LXM3-PW81, 66 lm for LXM3-PW71, 67 lm for LXM3-PW61** 75 lm for LXM3-PW51LUXEON Rebel ANSI Bin StructureFigure 21. LUXEON Rebel ANSI bin structure.LUXEON Rebel ANSI Bin CoordinatesLUXEON Rebel Emitters are tested and binned by x,y coordinates.32 Color Bins, CCT Range 2580K to 7040KT able 9.LUXEON Rebel ANSI Bin Coordinates,ContinuedT able 9, Continued.Note for T able 9:1. Philips Lumileds maintains a tester tolerence of ± 0.005 on x, y color coordinates.Forward Voltage Binsbin values per emitter. Although several bins are outlined, product availability in a particular bin varies by T able 10 lists minimum and maximum Vfproduction run and by product performance.T able 10.VBinsfMinimum Forward Voltage Maximum Forward VoltageBin Code (V) (V)B 2.55 2.79C 2.79 3.03D 3.03 3.27E 3.27 3.51F 3.51 3.75G 3.75 3.99Company InformationPhilips Lumileds is the world’s leading provider of power LEDs for everyday lighting applications. The company’s records for light output, efficacy and thermal management are direct results of the ongoing commitment to advancing solid-state lighting technology and enabling lighting solutions that are more environmentally friendly, help reduce CO 2 emissions and reduce the need for power plant expansion. Philips Lumileds LUXEON ® LEDs are enabling never before possible applications in outdoor lighting, shop lighting and home lighting.Philips Lumileds is a fully integrated supplier, producing core LED material in all three base colors, (Red, Green, Blue) and white. Philips Lumileds has R&D centers in San Jose, California and in the Netherlands, and production capabilities in San Jose, Singapore and Penang Malaysia. Founded in 1999, Philips Lumileds is the high flux LED technology leader and is dedicated to bridging the gap between solid-state technology and the lighting world. More information about the company’s LUXEON LED products and solid-state lighting technologies can be found at . For technical assistance or the location of your nearest sales office contact any of the following:North America:188****3662************************************Europe:00 800 443 88 873**********************************Asia Pacific:800 5864 5337********************************Japan:800 5864 5337*********************************©2009 Philips Lumileds Lighting Company. All rights reserved. Product specifications are subject to change without notice. LUXEON is a registered trademark of the Philips Lumileds Lighting Company in the United States and other countries.。

飞利浦 Xenium X603 银色 功能更出色,行动更从容 商品说明书

飞利浦 Xenium X603 银色 功能更出色,行动更从容 商品说明书

飞利浦 Xenium XeniumX603银色CTX603SLV功能更出色,行动更从容飞利浦 Xenium X603 让您的生活更加从容有序,它拥有令人赞叹的电量,待机时间长达 50 天。

强大而有趣的多媒体功能,让您始终保持联络,工作和生活更显平衡!时刻保持连通•最长 50 天的待机时间•长达 12 小时的通话时间短信迅发•快速、直观的触摸屏,导航便捷无限提升您的多媒体体验•带有闪光灯的 500 万像素自动对焦相机•借助 RDS FM 电台的屏幕显示,轻松调谐•享受蓝牙立体声音乐•MicroSD 存储卡插槽可增加内存/数据存储容量*精于心 简于形产品亮点最长 50 天的待机时间一次充电,手机便可持续待机长达 50 天之久。

长达 12 小时的通话时间充一次电,电话即可支持长达 12 小时的通话时间。

快速、直观的触摸屏方便易用的触摸屏界面带给您更简便的手机体验。

用手写笔可快速地在菜单之间导航,只需轻触或弹击即可浏览文件夹。

使用这款手机,通话、发送短信或整理日程更是毫不费力,让您多一分自如。

带有闪光灯的 500 万像素自动对焦相机捕获经典瞬间犹如定焦拍照一样简单。

内置闪光灯让您能够捕捉清晰、锐利的画面 -即便是在昏暗光线条件下。

RDS FM 收音机无线电数据系统 (RDS) 显示屏会显示电台的名称而非频率数字,您可以利用它快速轻易地调谐到您喜爱的电台。

通过 RDS,电台还能将文本消息和信息直接传输到收音机显示屏,这样您就随时可以收听最新新闻和收音机广告了。

蓝牙立体声音乐您的飞利浦移动电话支持 A2DP 蓝牙模式。

它能够让您通过蓝牙耳机以高品质立体声无线欣赏您喜爱的乐曲。

MicroSD 存储卡插槽通过在手机的内置存储卡插槽中插入MicroSD 存储卡,可以体验额外容量带来的便利,享受存储多媒体文件的乐趣。

发行日期 2011-07-05版本: 2.0.312 NC: 8670 000 62558 EAN: 87 12581 54102 6© 2011 Koninklijke Philips Electronics N.V.保留所有权利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞利浦芯片产品介绍1、MIFARE完全符合ISO 14443A 标准,MIFARE® 是非接触式与双接口智能卡的业界标准,已经广为全球采用,并且是一个经过验证的RF 通信技术,主要用在智能卡与读卡器间的数据传输。

这个平台提供一系列兼容的非接触式智能卡、读卡器器件以及双接口器件,为非接触式与接触式智能卡市场提供一个安全的连接方式。

产品目前MIFARE® 接口平台包含四个产品系列1.MIFARE® classic系列涵盖符合MIFARE® classic 协议的固线式(Hardwired) IC,如MIFARE® Standard 与新的MIFARE® Standard 4k。

MIFARE® classic 商标泛指采用MIFARE® 接口、MIFARE® classic 协议及安全机制的芯片产品,目前飞利浦半导体提供两种不同版本,分别为拥有 1 Kbytes EEPROM 的MIFARE® Standard 与拥有 4 Kbytes EEPROM 的MIFARE® Standard 4k。

MIFARE® CLASSICMIFARE® 系列产品是非接触式智能卡芯片中的先锋,作业频率为 13.56 MHz,并且具备读写能力。

MIFARE® standard 芯片于 1995 年推出,是业界第一颗能够放入 ISO 非接触式智能卡的芯片,它所搭配的超小型线圈也提供了大批量生产的能力。

目前全球MIFARE® Standard 芯片的使用量超过两亿个,拥有非接触式智能卡85% 以上的市场份额 (数据来源:Frost & Sullivan, 2000)。

因此,MIFARE® Standard 本身就代表业界标准,同时也成为其它竞争技术的标竿。

面向多功能卡的需求,MIFARE® Standard 芯片可支持高达 40 个不同的应用,分别拥有专属的金钥与存储区域。

MIFARE® ultralight 芯片采用同样的指令集,可支持目前与未来MIFARE® 基础架构上低成本的票证系统应用。

非接触式MIFARE® 芯片以 150 微米晶圆、150 微米镀铝晶圆 (以上两者都是八寸) 或以超薄金属引线架芯片模块等三种形式供货。

除了典型的 ISO 智能卡转发器之外,还提供各种不同形式的转发器,包含手表、钥匙链、磁盘等等。

应用MIFARE® Standard 芯片成功地应用在韩国汉城的主要运输系统中,这是首颗应用于高运量公共交通票证系统上的芯片,继汉城的成功导入后,伦敦、北京、台北、釜山与其它城市都相继采用MIFARE®作为现在与未来的非接触式接口平台。

随着MIFARE® 双接口控制器的逐渐成长,提供了额外的开放式电子钱包支持,MIFARE® Classic 芯片主要应用于封闭式票证系统上,运输业者藉由一个安全且经授权的方式从电子钱包中自动收取车资,它们也被广泛地应用在定额储值票上,例如一周或一个月的旅游券等。

MIFARE® classic 产品同时还运用在许多交通运输的收费上,例如使用车载系统(OBU, On-Board Unit) 或设有非接触式读卡机的收费站所使用的电子收费系统(ETC, Electronic Toll Collection)、停车计时或停车场进出管理等,甚至还包含德国航空与法国航空的旅客贵宾卡,以及加油站的加油付费上 (壳牌的Easypay)。

除了上述诸多应用之外,另一个重要的应用为门禁管制 (Physical Access Control),MIFARE® classic 芯片卡可应用在身分识别、公司或大楼的门禁管制、职工识别证等方面,例如,法国邮政局的 VIGIK 计画,可藉此让邮差顺利进入公寓大楼递送邮件。

带给客户的利益•快速、安全与便利的交易方式•非接触式卡片的业界标准•可信赖与通过验证的批量生产技术•MIFARE® 认证机制为您确保来自不同厂商的产品均可兼容•免维护的读卡机 - 无机械式结构•适应恶劣的环境 - 密封式的读取设备不受湿度、风砂、灰尘或人为蓄意破坏所影响•有多种不同芯片来源•可提供各式各样的收发器形式产品总览MIFARE® Standard MF1 S50 ISO14443A MIFARE® Classic 1 Kbytes EEPROM MIFAR E® Standard 4k MF1 S70 ISO14443A MIFARE® Classic 4 Kbytes EEPROM2.MIFARE® ultralight是安全、低成本与高用量应用,如公共交通票证、活动入场券等的理想选择,同时也是目前使用的磁条接触式读取设备的最佳替代方案。

目前,大约有三分之二的公共交通系统提供旅客使用各种不同的储值车票,其余的三分之一则采用传统的收费方式,如收取现金、代币或是纸式磁条车票等,这意味着运输业者必须倚赖能够处理各种不同付费方式与车票类型的机器。

飞利浦最新研发的MIFARE® ultralight 技术可以填补这个落差,而且特别适合低成本的非接触式票务解决方案应用。

典型的应用包括公共交通系统的单程车票、忠诚卡,以及展览馆、体育场甚至休闲育乐场所的门票等等。

技术特性MIFARE® ultralight 拥有一个与现有MIFARE® 架构完全兼容的 512-bit EEPROM 读 / 写存储器,符合 ISO 14443A 标准,有效运作范围达 10 公分,拥有真正防干扰特性而且免用电池。

它让公共交通系统可以发展出一个完全电子化、非接触式的收费系统,同时可以推广到其它应用上。

飞利浦半导体设计的MIFARE® ultralight 是在与公共交通业者、系统集成商以及纸式票证制造商经过密集的规格讨论后所推出的产品。

目前运输业者已经可以采用MIFARE® ultralight 技术制作的智能型纸式票证。

此外,只要加入经过升级拥有车票初始化设定功能的简单读卡器,即可利用标准的 Edmonson/Eurosize 打印机打印智能型车票。

应用由早期的投币式与磁条卡刷卡机一路发展到单一的非接触式电子收费方式,大幅降低运输系统的运作成本以及现金的循环,同时降低在旅客、运务人员与售票机上可能发生的犯罪机会。

只要旅客购买了智能型非接触式车票,不论是搭乘公车、地下铁或是火车,当他们通过设有读卡器剪票口时,便不需停下脚步将车票插入电子剪票口,利用射频技术,读卡器会自动扫描旅客口袋中的车票,让旅客免去大排长龙直接快速通过剪票口。

依照系统安装与特定应用,可在指定的收费终端设备重新加值MIFARE® ultralight,甚至在高用量的应用中,可以选择用后即丢的方式。

如果是全面采用智能型非接触式自动收费系统,由于验票口的终端机不需任何机械式操作器件,因此能够免除机器故障或操作损坏问题,彻底解决投币式售票机常见的困扰,包括车票卡住及人为蓄意破坏等,让公共交通业者的维护成本大幅降低。

带给客户的利益•完全非接触式收费系统,仅需单一票证•降低车票卡住机器的故障情形•降低终端设备损坏•降低现金流量,预防伪造•降低系统安装与维护成本•最先进的统计数据收集•可轻易地扩展到其它服务•可使用标准的纸式车票售票机•可轻易、快速地集成到现有系统中产品总览MIFARE® ultralight MF0ICU10 ISO14443A MIFARE®16.9 pF512 bitEEPROMMIFARE® ultralight MF0ICU11 ISO14443A MIFARE®50.0 pF512 bitEEPROM3.MIFARE® 双接口控制器包括MIFARE® PRO 与MIFARE® PRO X系列。

这些8-bit 控制器芯片的接触式与非接触式接口采用开放式协议,具备极佳的弹性与安全性,可支持单一卡片上的多种应用。

通过 8-bit MIFARE® PROX 双接口智能卡控制器系列产品,飞利浦半导体提供集成接触式卡片的安全性以及非接触接口方便性的最先进产品,不但满足金融应用的安全要求,而且符合现有 ISO 7816 接触式与 ISO 14443 A 非接触式接口标准。

应用专为满足新一代智能卡应用需求而设计,MIFARE® PRO X主要面向双接口多重服务卡应用市场,提供银行、电子商务与安全网络接入应用所需的高安全性,并且集成了如公共交通与电子钱包等非接触式应用所需的便利性与快速。

MIFARE® PRO X相当适合高端语言与操作系统,如 Java 或 MULTOS,而且已经成为双接口多重服务卡应用的目标平台。

它是全球第一个能够完全满足银行业界需求的产品,包括 EMV (Europay、Mastercard 与 Visa 共同制定的信用卡与借记卡标准) 以及电子钱包共同标准 (CEPS, Common Electronic Purse Standards) 等,MIFARE® PRO X能够帮助服务供应商提供使用简易的电子钱包应用架构。

基于目前普遍应用的MIFARE® 接口平台,MIFARE® PRO X可以帮助服务供应商推出更加便利的票证系统与付费方式,同时MIFARE® PRO X的高安全性 (包含 PKI 与 3-DES) 以及多样的延伸功能将可以实现崭新的服务概念,如红利积点计划的集成、自动售货机的使用或作为取代预付式电子票证的电子钱包等,不管是哪一种应用,都可以通过客户所设计的程序码来完全决定MIFARE® PRO X芯片的工作方式。

带给客户的利益•接触式与非接触式应用可以轻易集成,带来新的服务商机•支持集成电子票证的金融应用•支持非接触式小额付款机制,如停车计费表、公用电话等安全性提供与接触式智能卡芯片相同的高安全性,MIFARE® PRO X芯片采用高度集成的工艺技术与设计方法,使得它能够抗拒任何形式的物理分析。

MIFA RE® PRO X系列产品中所集成的 triple-DES 协同处理器可以将triple-DES 的整体计算时间降低到35 µs 以下,与目前应用于电子钱包的软件DES 运作相较,效能显着提升。

此外,MIFARE® PRO X控制器 (P8RF50xx) 同时拥有飞利浦专门面向公共密钥算法,如 RSA 或 ECC 等设计的嵌入式 32-bit FameX编密协同处理器,提供了密钥长度与算法的最佳选择组合,同时也立下了执行速度的标竿。

相关文档
最新文档